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Emergence of classicality via decoherence described by Lindblad operators
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Zurek, Habib, and Paz@Phys. Rev. Lett.70, 1187 ~1993!# have characterized the set of states of maximal
stability defined as the set of states having minimum entropy increase due to interaction with an environment
and shown that coherent states are maximal for the particular environment model examined. To generalize
these results, I consider entropy production within the Lindblad theory of open systems, treating environment
effects perturbatively. I characterize the maximally predicitive states that emerge from several forms of effec-
tive dynamics, including decoherence from spatially correlated noise. Under a variety of conditions, coherent
states emerge as the maximal states.

PACS number~s!: 03.65.Bz, 05.40.1j

I. INTRODUCTION

Decoherence that results from a quantum system’s inter-
action with an environment can provide a mechanism for
characterizing the transition from quantum to classical be-
havior for a quantum open system@1,2# and has been an
integral part of several programs addressing the emergence
of classicality@3,4#. Zurek, Habib, and Paz~ZHP! have char-
acterized the effectiveness of decoherence in terms of a pre-
dictability sieve and identified the maximally predictive
states~defined as those with minimal entropy production! as
the most classical@5#. ZHP considered an environment
model consisting of an independent oscillator bath linearly
coupled to the system of interest, which has been studied in
the context of quantum Brownian motion@6#. ZHP demon-
strated for the high-temperature limit of the environment that
the coherent states of a harmonic oscillator are maximally
predictive and that zero squeezing~corresponding to coher-
ent states! is maximal for squeezed states considered at arbi-
trary environment temperatures.

The purpose of this paper is to extend the results of ZHP
to additional environment models. All environmental models
should be understood to be approximations in that there is, in
prinicple, a more complete descripiton possible in terms of
unitary evolution of a composite system containing the sys-
tem of interest and external quantum-mechanical degrees of
freedom. While some models have been derived from first-
principle descriptions of such composite systems, others
have been developed largely from phenomenological prin-
ciples. The primary motivation for this paper is to use the
phenomenology to get a better understanding of how inter-
actions of a system with external quantum degrees of free-
dom lead to the emergence of classicality for that system.
However, the general nature of the mathematical formulation
employed in this paper does not restrict the results to this
interpretation. The results can also readily be applied to mod-
els that have the same mathematical structure but are moti-

vated by other constructs~for example, a modified quantum
theory that contains intrinsic stochastic processes such as
quantum mechanics with spontaneous localization@7#!.

The effects of the environment are considered in the gen-
eral framework of the Lindblad form for nonunitary evolu-
tion of a harmonic oscillator@8#, correponding to the Markov
limit. The Lindblad form of evolution can be written
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and has proven to be a very useful starting point for theoreti-
cal studies of quantum open systems. It is the most general
form for completely positive evolution~guaranteeing posi-
tive evolution for a quantum system quantum-mechanically
entangled with another system! under a wide variety of con-
ditions @8,9#. The Lindblad form of evolution does not suffer
from nonphysical negative-entropy production for pure
states, which occurs for some models in the literature.
Strictly positive-entropy production for pure states can be
established by examining the linear entropy

§~ t !5Tr@r~ t !2r2~ t !#512Tr@r2~ t !#. ~1.2!

For a pure stater05uc&^cu undergoing evolution generated
by a Lindblad operator, the entropy production is

§̇522 Tr~rL@r#!

5
22

i\
Tr~r@H,r#!2

1

\
TrS r(

j
@Vjr,Vj

†#1@Vj ,rVj
†# D

501
2

\
~^cuVj

†Vj uc&2^cuVj uc&^cuVj
†uc&!

5
2

\
u~Vj2^cuVj uc&!uc&u2>0. ~1.3!*Electronic address: mrg3@psuvm.psu.edu

PHYSICAL REVIEW A FEBRUARY 1996VOLUME 53, NUMBER 2

531050-2947/96/53~2!/655~6!/$06.00 655 © 1996 The American Physical Society



For a mixed state there is the physically reasonable possibil-
ity of negative-entropy production that might occur, for ex-
ample, if a ‘‘hot’’ system interacts with a cooler environment.

I establish a systematic framework for evaluating the pre-
dictability of states using first-order perturbation theory in
Sec. II; in Sec. III I apply this framework to a family of
Lindblad generators$Vj% linear in position and momentum
whose general properties have been studied in the literature
@9#. This family of Lindblad generators is of particular inter-
est because it encompasses as special or limiting cases many
environment models considered in the literature, such as the
quantum optical master equation@10# and Dekker’s model
for quantum dissipation@11#. I consider models with envi-
ronment spatial correlation effects@12–15# in Sec. IV. I com-
ment on these results in Sec. V.

II. PERTURBATIVE APPROACH TO EVALUATING
PREDICTABILITY

The predictability sieve was introduced by Zurek@3# as a
means of characterizing those states that are most stable
when considering not only the dynamics of the system, but
also including the effects~such as decoherence! of interac-
tion with the system’s environment. The set of states having
minimum ~linear! entropy production are the best candidates
for states corresponding to points of classical phase space.
The effect of the environment on evolution is taken to be in
the Markov regime and I assume that there is no further
explicit time dependence on the Liouville generator for the
isolated system. The form of the evolution is then stationary
and we can write

r~ t !5eLt@r#5J~ t !@r#. ~2.1!

The generatorL is assumed to be comprised of two parts: the
evolution of the isolated system corresponding toL0 with
J0(t)5eL0t, and the effects of the environmentDL. I con-
sider the effects of the environment perturbatively in part

because a wide variety of forms of evolution become trac-
table, and also because many of the effective evolution equa-
tions are derived using lowest-order approximations such as
the weak-coupling limit @16#. From formal perturbation
theory, the evolution of the Liouville generator can be writ-
ten
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defining J1(t) as the first-order perturbation. For an initial
stater0 , the entropy at timet becomes
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If the isolated system has unitary evolution generated by a
HamiltonianH0 , then
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In this case
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The maximal states are those with minimal entropy produc-
tion, that is, with minimized
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where the cyclic property of the trace and the unitarity of
U(t) have been used for the final simplification.

Given the general form for a Lindblad operator, the con-
tribution to environment interaction can be written as the
perturbation
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DH contains any additional contributions to the effective
system Hamiltonian arising from the interaction of the
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The first term on the right-hand side of this equation is iden-
tically zero, from the cyclic property of the trace. The re-
mainder can be written in a simpler form using the cyclic
property of the trace, the unitarity ofU(t), and the identifi-
cation

Vj~t![U†~t!VjU~t! ~2.9!

to yield
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If r0 is a pure state, then it is also a projection, with
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for an arbitrary operatorO. Thus, for pure states, the entropy
production is given by
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Minimization of this final quantity can then be used to deter-
mine the maximal states.

III. LINDBLAD GENERATORS LINEAR IN POSITION
AND MOMENTUM

I will now apply the results of Sec. II to Lindblad opera-
tors that have$Vj% linear in position and momentum. This
family of generators have been studied extensively in the
literature @9# and include as special or limiting cases the
quantum optical master equation@10# and Dekker’s phenom-
enological master equation@11#. In terms of Eq.~2.7!, the
operators are given by

DH5
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the perturbation on the system evolution becomes
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The particular choice of parametersDqq , Dpp , Dpq , l,
and m @Eq. ~3.3!# determines the details of the evolution
~i.e., evolution corresponding to the quantum optical master
equation, Dekker’s master equation, etc.!. In many cases one
can obtain an evolution equation from the literature simply
by selecting the appropriate diffusion constants in Eq.~3.3!,
subject to the constraints imposed by Eq.~3.2! ~the coeffi-
cients are not completely independent!. In other cases, terms
might be omitted from the evolution equations as an approxi-
mation under conditions that will, of course, depend upon the
specific density operators. The results of such approxima-
tions can be determined by setting corresponding constants
in Eq. ~3.3! to zero@although this would be in apparent con-
flict with the conditions of Eq.~3.2!#. Anomalous behavior
~such as negative-entropy production for pure states! arises
only under conditions where the underlying approximations
are not valid. A more complete discussion of the compari-
sons of the Lindblad form with other evolutionary models
can be found in Ref.@9#. It has been determined that only
when

Dpq5
\

2 (
j

2Re@ajbj* #50 ~3.4!

will the system relax into a thermal equilibrium state@9#, so
I adopt this condition for the remainder of the paper.
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For the simple harmonic oscillator, the operator equations
of motion are easily solved by

x~t!5U†~t!xU~t!

5x cos~vt!1
p
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Substituting Eq.~3.6! into Eq. ~2.12! and evaluating the el-
ementary trigonometric integrals overt,
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Equation~3.7! is the expectation of ac number times the
harmonic-oscillator Hamiltonian plus a secondc-number
constant after squeezeing and translation by^x& in position
and ^p& in momentum. The state that minimizes Eq.~3.7!
will be the corresponding squeezed and translated ground
state, which is simply a coherent squeezed state@17#. In
terms of the harmonic-oscillator creation and annihilation
operatorsa† anda, the squeeze operator is given by

S~z!5e1/2~z* a22za†2!, ~3.9!

and Glauber’s displacement operator is given by

D~a!5e~aa†2aa!. ~3.10!

The appropriate selection of the parametera for the dis-
placement operator
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provides the necessary translation~in phase space!. For sim-
plicity, I take ^x&50 and^p&50 for the rest of this section.
The effect of squeezing on the anihillation operator can be
written

S†~z!aS~z!5ma1na†, ~3.12!

where

z5seiu, m5cosh~s!, n5sinh~s!eiu. ~3.13!

The parameters determines the amount of squeezing (s50
corresponding to no squeezing! and the parameteru deter-
mines the orientation of the squeeze axis. The squeezed
harmonic-oscillator Hamiltonian~scaled by a constant factor
A! is given by
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Equating the expectation of the last expression with Eq.~3.7!
~and letting ^x&505^p&) and equating the corresponding
constants produces the conditions
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The most advantageous orientation for squeezing is deter-
mined by

tanu5
f 3~ t !

f 2~ t !
52tanvt. ~3.16!

The amount of squeezing is determined by

tanh22s5
f 2
2~ t !1 f 3

2~ t !

f 1
2~ t !

. ~3.17!

Since f 1 is linear int while f 1 and f 1 oscillate, tanh
22s ~and

hences! tends towards zero. The long time behavior of the
amount of squeezing required to minimize entropy produc-
tion is zero. Reintroducing the translations in position and
momentum ignored in comparing Eq.~3.7! to Eq.~3.14! will
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not affect this result. For times on the order of the dynamical
time scale of the system~more than a few cycles!, coherent
states are the maximal states, just as ZHP found for their
environment model.

IV. CORRELATION EFFECTS IN ENVIRONMENT NOISE

In this section I wish to consider environment models that
include the effects of finite correlation lengths in the envi-
ronment@12–15#. From a strictly phenomenological point of
view, quantum mechanics with spontaneous localization can
be included by virtue of the effective form of the dynamics,
although this is actually a fundamental modification of quan-
tum mechanics@7#. Many of these models can be written in
the form

]r~x,x8;t !

]t
5~Hamiltonian!1~dissipation!1•••

2g~x,x8!r~x,x8;t !, ~4.1!

where the decoherence term, upon which we shall focus, can
be expressed in terms of the correlations of a classical fluc-
tuating potentialV(x,t) with

g~x;y!5
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where

^V~x,t !V~y,t!&av5c~x;y!d~ t2t!. ~4.3!

For simplicity, I consider only a homogeneous and isotropic
environment for which c(x;y)5c(x2y) and g(x;y)
5g(x2y). I will also restrict my attention to weak dissipa-
tion and consider only the evolution due to the unperturbed
Hamiltonian and the~spatially correlated! noise term.

The Lindblad form can be used to represent the noise term
with

$Vj%5a~k!eikx ~4.4!

and replacing the discrete sum overj in Eq. ~2.7! with an
integral overk. The evolution in this case can be written

]r~x,x8;t !

]t
5~Hamiltonian!2

1

\E ua~k!u2

3~12eik~x2x8!!r~x,x8;t !, ~4.5!

so thatua(k)u2 andc(r ) are Fourier transform pairs

c~r !5
\

2E ua~k!u2eik~r !dk. ~4.6!

Thus a noise term with short correlation length scales will
have a narrowc(r ) and a broadua(k)u2 while a long corre-
lation length scale implies a narrowua(k)u2. Inserting Eq.
~4.4! into Eq. ~2.12! yields

D§~ t !5
1

\E0
tE ua~k!u2~12u^eikx~t!&u2!dkdt, ~4.7!

wherex(t) is given by Eq.~3.5! andeikx(s) can immediately
be recognized as Glauber’s displacement operator, with a
translation in momentum of\k cos(vt) and a translation in
position of2(\k)/(mv)sin(vt). In terms of the translated
state

uc;k,t&[eikx~t!uc&, ~4.8!

the entropy production is given by

D§~ t !5
1

\E0
tE ua~k!u2~12 z^cuc;k,t& z2!dkdt. ~4.9!

While it is not possible to find general solutions for the
minimization of Eq.~4.9! for arbitrary environment correla-
tions, it is possible to extract important limiting cases. Re-
stricting attention to times of several oscillator periods or
more, entropy minimization requires themaximizationof
z^cuc;k,t& z2 for typical values of k, on the order of
dk @ the spread ofua(k)u2#, resulting in typical translations
of \dk in momentum and (\dk)/(mv) in position. The
maximization of the square of the inner product of any two
normalized vectors occurs when the vectors are identical~up
to a phase!. Thus the maximal states and the translated maxi-
mal states will be approximately equal for typical transla-
tions, requiring that the width ofua(k)u2 be much less than
the width of the maximal states

dk!
mv

\
Dx, dk!

1

\
Dp. ~4.10!

Sinceua(k)u2 andc(r ) are Fourier transform pairs, this last
condition also implies that the noise spatial correlation func-
tion c(r ) is wide ~compared to the maximal states!. In this
long correlation length scale limit,g(x,x8) in Eq. ~4.1! is
quadratic@13,14#, corresponding to the low dissipation limit
studied by ZHP and to the results of Sec. III withbj50 for
all j . The coherent states are then the maximal states if they
are consistent with the condition expressed in Eq.~4.10! us-
ing coherent state values forDx andDp,

dk!Amv

2\
, ~4.11!

which corresponds to a environment corellatation length
much larger than the width of a coherent state
Dx5A\/2mv.

If the environment correlation length is shorter than the
width of the coherent state, then the approximation described
above is not valid. It is useful to examine the entropy pro-
duction in the position representation and absorbing the time
dependence into the~Schrödinger picture! state vectors,
where

^cueikx~t!uc&5^cuU†~t!eikxU~t!uc&

5^c~t!ueikxuc~t!&

5E dxeikxuc~x,t!u2

5E dxeikxP~x,t!. ~4.12!
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Entropy production then becomes

D§~ t !5
2

\2 S c~0!t2E dtdxdx8c~x2x8!P~x,t!P~x8,t! D ,
~4.13!

using the Fourier transform relation expressed in Eq.~4.6!.
For narrowc(r ) this expression becomes independent of the
functionP. To see this, consider an example where the spa-
tial correlation of the environment is given by

c~r !5le~r /s!2. ~4.14!

In the limit s→ zero

E dxdx8le@~x2x8!/s#2P~x,t!P~x8,t!

>lsApE P2~x,t!dx→0, ~4.15!

so that in the short correlation length limit

D§~ t !5
2

\2 c~0!t. ~4.16!

In this regime, all states produce the same entropy; there are
no maximal states. However, the decay rate of the off-
diagonal terms given by the decoherence term in Eq.~4.1! in
the low short correlation length regime is generally at a
maximum

]r~x,x8;t !

]t
5•••2

2c~0!

\2 r~x,x8;t !, ~4.17!

and if decoherence is to be effective, the decay time must be
comparable to dynamical time scales. There will necessarily
be a significant increase in the entropy for all pure states, so
that all states will be rapidly ‘‘mixed’’ by the noise.

V. COMMENTS AND CONCLUSIONS

I have established an approximation scheme for determin-
ing maximal states~as defined by ZHP! and applied it to two
families of Lindblad operators. For Lindblad generators lin-
ear in position and momentum, squeezed states emerge as the
maximal states for intermediate times compared to the dy-
namical time scales. The amount of squeezing decreases with
time, so that coherent states are maximal for large time
scales. Large time scales are the most relevant, since an ob-
ject’s classicality should be an enduring property, not a tran-
sient one. These results can be applied to a wide variety of
models in the literature by recognizing that those models are
either particular cases or limiting cases of this Lindblad
form.

For an environment with finite spatial correlation, coher-
ent states emerge as maximal when the environment has long
correlation length, but all states rapidly become mixed states
when the environment length scale is long. Thus environ-
ment correlation effects will not be important in establishing
the nature of maximal states and the character of quasiclas-
sical states. However, correlation effects can still be impor-
tant when considering quantum interference between two
such states. One important result that emerges from these
calculations is that coherent states are a robust choice for the
maximal states.
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