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We describe one of the possible ways of development of a spatial instability of counterpropagating strong
light beams in resonant media. The interplay between self-focusing and saturation effects results in a formation
of counterpropagating stable filaments. The nondegenerate four-photon scattering in these waveguiding struc-
tures leads to a far-field multiconical emission with the cones’ frequencies shifted to both red and blue sides of
the resonant transition.

PACS number~s!: 42.50.SF

I. INTRODUCTION

The counterpropagation of strong light beams in nonlinear
media is capable of demonstrating a large variety of instabil-
ity effects. The temporal instability can lead to an excitation
of regular pulsations and chaos@1–4#; the spatial one can
result in the formation of patterns of different symmetries
and turbulence in the transverse beam section@2,5–9#. Reso-
nant media, due to their spectral-selective and saturation
properties, enrich nonlinear light behavior comparatively
with Kerr-like nonlinearity. For example, at copropagation of
a light beam with frequency on the blue side of a resonant
transition, an emission with frequency on the red side is ex-
cited, forming a far-field ring structure~see, for example,
@10#!. This effect has been called conical emission and is
intrinsic for to resonant media spatial instability. The conical
emission, as it has been shown in@11,12#, appears mainly
due to a frequency-shifted four-photon scattering on Stark
sublevels of the resonant system. The emission is excited
inside stable light filaments, resulting in the development of
a self-focusing frequency-nondegenerate spatial instability.

Counterpropagation in resonant media yields, generally,
the formation of filaments as well. It should be noted that the
problem concerning the interaction of counterpropagating
guided waves leading to their cross-trapping has been con-
sidered in@13#, and several aspects of the interaction of self-
trapped counterpropagating channels, resulting in so-called
cross-induced self-focusing bistability, were regarded in@14#.
We will show below that the filaments coming from opposite
directions attract each other. As the result of evolution, the
system is capable of forming a composite filament, consist-
ing of two counterpropagating ones. Moreover, it is known
@15# that among the whole family of such spatial structures
the filaments with insufficiently distinguished total energies
of the components are most stable.

That allows us to consider the formation of the filaments
as one of the intermediate asymptotics in the development of
instability of counterpropagating beams. The purpose of this
work is to elucidate properties of the following stage,
namely, the four-photon frequency-shifted decay of the coun-
terpropagating filaments. This instability shows itself in far
field as colored rings around the central pump spots. That
corresponds to emission of the scattered radiation in cones at
several angles with respect to the filament propagation direc-

tion. The cone frequencies, unlike in the copropagation case,
lie on both sides of the resonant transition, blue and red.

II. INTERACTION OF COUNTERPROPAGATING
FILAMENTS

It is well known that the spatial frequency-degenerate in-
stability of a strong light beam in resonant media can result
in the formation of stable spatial structures, filaments, or
spatial solitons as they were called quite recently. That oc-
curs under several conditions, namely, positive frequency de-
tuning of the light from the resonant transition~blue side!
and absence of energy dissipation, which can be supposed
when the detuning sufficiently exceeds the resonant line-
width. The stability of the filaments is provided by the satu-
ration mechanism, which also allows the filaments to possess
any energy above the self-focusing threshold.

The filaments can be considered as elementary spatial
‘‘quanta’’ for the case of counterpropagation as well. There
are two kinds of them: composite filaments~CF’s!, consist-
ing of two counterpropagating components, and simple one-
component ones~SF’s!. In order to elucidate what kind of
filament is chosen by the system as more preferable, we
should carry out a stability analysis of SF’s versus the inter-
action between them.

We will apply the Lagrange formalism for the following
equations describing the counter-propagation of two strong
light beams with amplitudesE6(z,r') ~see Fig. 1! in a reso-
nant medium@15#:

FIG. 1. The scheme of the counterpropagation in a resonant
two-level medium. The multiconical emission appears due to the
four-photon scattering in the field of composite filaments, formed as
the result of a counterpropagating self-focusing of the beams
E6(r').
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6 iE6z1D'E62F~ uE6u2;uE7u2!E650, ~1!

whereD' is the Laplacian over transverse coordinate$r'%.
The function

F~x;y!5
r0
d

1

2x F12
11y2x

A112x12y1~x2y!2
G ~2!

is the part resonant with the light beams of the nonlinear
susceptibility of the medium periodically modulated alongz.
In the simplest case of nonsaturating fieldsx,y→0, the func-
tion F takes the usual form for Kerr-like nonlinearity

F~x;y!5
r0
d

~12x22y!. ~3!

In ~2! and~3! r0 is the linear on-line amplitude absorption
coefficient andd@1 is the dimensionless detuning of the
light frequency from resonance in linewidth units.

The Lagrangian for~1! after eliminating the linear terms
reads

L5E Ldr' , ~4!

where

L5 i ~Ė1E1* 2Ė1* E1!2 i ~Ė2E2* 2Ė2* E2!2u¹E1u2

2u¹E2u21G~ uE1u2;uE2u2!

is the Lagrange density, the dot means a derivation onz. We
will consider the nonsaturating limit; then the functionG
takes the form

G~ uE1u2;uE2u2!5 1
2 ~ uE1u41uE2u414uE1u2uE2u2!.

As the next step, we have chosen the trial functionsE6 of
the form

E65u6 exp$2~g61 ik6!@~x2x6!21y2#1 ib6x%,
~5!

where all the valuesu6 , g6 , k6 , x6 , and b6 are sev-
eral unknown functions ofz.

Upon substitution of~5! into ~4! we obtain the form of the
Lagrangian depending on parameters of the trial functions
and their derivations. Applying the Euler-Lagrange equations
to it we find the set of dynamical equations governing the
evolution of the peak intensityI65uu6u2, width g6 , wave
front curvaturek6 , slopeb6, and peak positionx6 :

6ġ654k6 , ~6!

6 İ654k6I6 , ~7!

6 k̇652~k6
2 2g6

2 !1
g6

4
I612I7

g6
2 g7

~g11g2!2

3@12gc~x12x2!2#exp@2gc~x12x2!2#, ~8!

6ḃ652
I7

g7
gc2~x62x7!exp@2gc~x12x2!2#,

~9!

6 ẋ65b6I6 /g6 , ~10!

where

gc52g1g2 /~g11g2!.

It immediately follows from~9! and~10! that the counter-
propagating SF’s will unidirectionally attract each other, try-
ing to get united into the CF. The unification stage cannot be
described in the framework of the nonsaturation limit be-
cause of the fixed energies of SF and CF, the so called criti-
cal ones. This restriction may be avoided by taking into ac-
count just the first saturation terms in the expansion of the
functionsF andG. Then both SF and CF can contain any
energy above the critical one inside them, and the system~6!
– ~10! describes all stages of unification of SF’s into a CF.
So the counterpropagating SF’s are unstable with respect

to their attraction and formation of a CF. Moreover, as shown
in @15#, the CF’s with not sufficiently distinguished energies
of their components are stable. That allows us to consider the
CF formation as the next stage of the frequency-degenerate
spatial instability development in counter-propagation in
resonant media. Obviously, the next step should be made
taking into account the frequency-nondegenerate processes
leading to decay of a CF.

III. FOUR-PHOTON INSTABILITY OF COMPOSITE
FILAMENTS

It has been proven analytically@11#, experimentally, and
numerically@12# for the case of copropagation in a resonant
medium that the frequency-nondegenerate instability of a
light beam follows the degenerate one and the main process
responsible for that is the four-photon scattering~FPS!, en-
hanced by resonances on Stark sublevels. That allows us to
consider the FPS as the most probable mechanism of de-
struction of the CF.

Let us assume the pump field(6E6(r' ,z)exp(6ikz
2 iv0t) in the form of the CF, which preserves its structure
along axisz:

E6~r' ,z!5E~r'!exp~6 igz!.

We can write the equations for the amplitudes of fields
F6(r' ,z)exp(ikz2iv6t) and B6(r' ,z)exp(2ikz2iv6t),
coupled with the pump and with each other by the FPS
2v05v11v2 :

iF6z1D'F65x6F61b6B7* 1p6F7* e
2igz1r6B6e

2igz,

2 iB6z1D'B65x6B61b6F7* 1p6B7* e
22igz

1r6F6e
22igz. ~11!
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In ~11! the coefficientsx6 are responsible for a self-
action,b6 for a backward FPS,p6 for a forward FPS, and
r6 for a distributed feedback reflection. We will reproduce
the expression forx6 only, because we will use it in further
analysis~the other coefficients can be found in@16,1,17–
19#!:

x652 ir0
1

@n62~17 i e!#~11d2!

3FV67 i e~12 id!/2

C0
2

V6m6

C6n6
G , ~12!

where

C05A114I , C65A114I ~17 i e!/n6,

V65~17 i eh!@11 i ~d7e!#,

m6517 i eF12 i ~d6e!

2~11 id!
11G , n65V6

12 i ~d6e!

11d2
.

In ~12! d5(v02v21)T2 ande5(v12v0)T2 are dimen-
sionless detunings,v21,T1 and T2 are the frequency and
longitudinal and transverse relaxation times of the resonant
transition,h5T1 /T2 , I (r')5uE(r')u2 is the pump intensity
in saturation units.

Let us introduce in~11! the following substitutions:

B15b1~r'!expi ~2g2G!z,

B2* 5b2~r'!expi ~g2G!z,

F15 f1~r'!expi ~g2G!z, ~13!

F2* 5 f2~r'!expi ~2g2G!z,

whereG is a certain propagation constant. Then the system
~11! with natural boundary conditions corresponding to an
exponential damping of scattered emission atur'u→` is re-
duced to the eighth-order eigenvalue problem forG:

D' f15~x11g2G! f11b1b21p1 f21r1b1 ,

D' f25~x2* 1g1G! f21b2* b11p2* f11r2* b2 ,

D'b15~x11g1G!b11b1 f21p1b21r1 f1 , ~14!

D'b25~x2* 1g2G!b21b2* f11p2* b11r2* f2 .

Problems like~14! were solved numerically in@17,20,19#,
where different aspects of instability in devices containing
counterpropagating beams uniform in the transverse section
of the pump beams were considered. The continuity of the
eigenvalue spectrum$G%, as well as the plane waves
exp(ik'r') acting as eigenfunctions, allowed one to draw sta-
bility diagrams with neutral stability curves given by Im
G(k' ,P)50. HereP is the vector of internal physical param-

eters, including pump intensity, frequency detunings, etc.;
the eigenfunction is usually characterized by the angleu con-
nected withk' via k'5ksinu.

A similar procedure may be carried out in our case. First
of all, it should be noted that only damping boundary condi-
tions can ensure an amplification of the fieldsF6 and B6

alongz. The propagation of untrapped solutions of~14! with
finite amplitudes atur'u→` is secured by the linear suscep-
tibility x6(ur'u→`) which is generally absorptive. The
main feature appearing as a consequence of inhomogeneous
pump distribution is creation of a discrete spectrum. Because
of the finite transverse size of the pump field the continuous
spectrum is responsible for nonlasing solutions, so the insta-
bility properties can be established by analyzing the discrete
part of the spectrum, corresponding to emission trapped in
the CF. Further, the stability diagrams lose one continuous
dimension connected with the eigenfunction~in our case
k' , or, equivalently,u). Now the equation for the neutral
stability ImG j (P)50, where j numerates the eigenvalues,
can produce only a discrete set of relations between internal
parameters of the problem.

The neutral stability curve will bound the region of the
system’s internal parameters where the eigenmodes are am-
plified and, hence, a convective instability occurs. At this
stage no boundary conditionsF6(z50) and B6(z5L) (L
is the medium length! should be applied. They have to be
involved in the consideration of the absolute instability,
whose threshold is usually larger than the convective one.
Correspondingly, the neutral stability curve ImG j (P50)
contains a subregion of absolute instability development; the
concrete boundaries of the latter strongly depend on the me-
dium length.

We will solve the problem~14! approximately for the one-
dimensional case (r'→r'). Using the Fourier transforms

f ~r'!5
1

A2p
E

2`

`

g~k'!eik'r'dk' ,

g~k'!5
1

A2p
E

2`

`

f ~r'!e2 ik'r'dr' ,

b~r'!5
1

A2p
E

2`

`

a~k'!eik'r'dk' ,

a~k'!5
1

A2p
E

2`

`

b~r'!e2 ik'r'dr' ,

and assuming that the widths of the eigenfunctions
b(r') and f (r') exceed sufficiently those of the coeffi-
cientsx, b, p, andr ~which will be confirmed below!, we
obtain the following system:
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2k'
2g15~x1L1g2G!g11x1NL

k f1~0!

1b1
k b2~0!1p1

k f2~0!1r1
k b1~0!,

2k'
2g25~x2L* 1g1G!g21x2NL* k f2~0!

1b2
k* b1~0!1p2

k* f1~0!1r2
k* b2~0!,

~15!
2k'

2a15~x1L1g1G!a11x1NL
k b1~0!

1b1
k f2~0!1p1

k b2~0!1r1
k f1~0!,

2k'
2a25~x2L* 1g2G!a21x2NL

k* b2~0!1b2
k* f1~0!

1p2
k* b1~0!1r2

k* f2~0!.

In ~15! we extracted the linear and nonlinear susceptibili-
ties (x5xL1xNL andxNL→0 at r'→6`) and introduced
the Fourier transformsx6NL

k (k'),b6
k (k'),p6

k (k'), and
r6
k (k') of corresponding spatially inhomogeneous coeffi-
cients.

After several manipulations we can obtain a homoge-
neous system of algebraic equations forf6(0) andb6(0),
which has nontrivial solutions under the following condition:

det~Â1A2p Î !50, ~16!

where

Â51
E

2`

` x1NL
k dk'

k'
21g2G1x1L

E
2`

` p1
k dk'

k'
21g2G1x1L

E
2`

` r1
k dk'

k'
21g2G1x1L

E
2`

` b1
k dk'

k'
21g2G1x1L

E
2`

` p2
k* dk'

k'
21g1G1x2L*

E
2`

` x2NL
k* dk'

k'
21g1G1x2L*

E
2`

` b2
k* dk'

k'
21g1G1x2L*

E
2`

` r2
k* dk'

k'
21g1G1x2L*

E
2`

` r1
k dk'

k'
21g1G1x1L

E
2`

` b1
k dk'

k'
21g1G1x1L

E
2`

` x1NL
k dk'

k'
21g1G1x1L

E
2`

` p1
k dk'

k'
21g1G1x1L

E
2`

` b2
k* dk'

k'
21g2G1x2L*

E
2`

` r2
k* dk'

k'
21g2G1x2L*

E
2`

` p2
k* dk'

k'
21g2G1x2L*

E
2`

` x2NL
k* dk'

k'
21g2G1x2L*

,

2 ~17!

and Î is the unit 434 matrix.
Equation~16! determines the allowed set of eigenvalues

$G%. In order to solve it, we should calculate the integrals in
~17!. Let us specify the approximations we used above. The
greater width of eigenfunctions than coefficients means

uImA2g6G2xLu!a21, ~18!

wherea is the characteristic scale of transverse variation of
the coefficients~it could be much smaller than the filament’s
transverse size!. The stronger condition

uA2g6G2xLu!a21 ~19!

means a sufficient separation between the poles
k'
056A2g6G2xL and those of the analytically extended
coefficientsx6NL

k (k'),b6
k (k'),p6

k (k'),r6
k (k'). That allows

us to fulfil the integration in~16! on a closed contour, con-
sisting of the real axisk'P]2`;`@ and the arc of a large
radius on the upper complex half plane. We can take into
account the contribution of polesk'

0 only. After calculations
we get an algebraic equation forG which can be solved in an
approximation of a weak integral nonlinearity,

uD i
1/2u@U E

2`

`

s~r'!dr'U, ~20!

where s is any of the coefficientsx6NL(r'), b6(r'),
p6(r'), r6(r'), i51,2,3,4, andD i is one of the following
detunings:

D1522g2x1L2x2L* , D25x1L2x2L* ,

D3522g22x1L , D4522g22x2L* . ~21!

As a result, we obtain the set of eigenvalues

G15g1x1L2F E
2`

`

x1NL~r'!dr'G2, G252G1 ,

G35g1x2L* 2F E
2`

`

x2NL* ~r'!dr'G2, G452G3 .

~22!

This discrete set of eigenvalues governs the spectral and
spatial properties of FPS in the field of composed filaments.
We will select those of them having a physical meaning and
analyze them in the following section.

IV. MULTICONICAL EMISSION

First of all we should simplify the expression~12! for the
susceptibility using the condition of the absence of linear
absorption for all interacting waves:d,ud6eu@1. In order to
obtain an expression containing the Rabi resonance explicitly
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we suppose alsoueu@1. Thus we temporarily exclude the
Rayleigh-gain band at smalle,0 whose contribution will be
estimated below.

Introducing the Rabi intensityI R5h(e22d2)/(4d2)
and the width of the Rabi resonancek5 1/2e (h
12I R @(h11)/h#) we can rewrite the expression forx1@
x2(e)5x1(2e)# as a function of the intensityI :

x15
r0

d~114I R!~11A114I R /h!

3F4I R1~11A114I R /h!/2

A114I
1AI R

~12A114I R /h!

2AI R2I1 ik
G .

~23!

It follows from the analysis of~23! that an emission with
frequenciesv1.2v02v21, or e.d will be amplified ~Im
x1.0) for all values ofI . At the same time the nonlinear
addition to the refractive index proportional to
2@Rex12r0 /(d1e)# is always positive in the same condi-
tions. That means the imaginary part ofG1 is positive for
e.d.

Further, it is easy to show that the eigenvalueG1 de-
scribes propagation of the beamF1 at all coupling coeffi-
cients equal to zero. It has to be amplified because of the
positive detuning from the pump frequency. As we can see
from ~13! the eigenvalueG1 corresponds to the amplification
as well and could be selected as the ‘‘right’’ eigenvalue for
e.d.

The same procedure can be carried out with the other
three eigenvalues. Finally, we choose eigenvaluesG1 and
G2 , which have a physical meaning ate.d, and G3 and
G4 , which have to be selected ate,2d. Because of the
symmetry we will consider only the casee.d.

The spatial distribution of the scattered emission can be
obtained from Eqs.~14! at G5G1,2. It is easy to show that
the angleQ between the axis6z and the direction of propa-
gation of the emission with frequencies on blue side of the
resonant transitionv.2v02v21 takes two values:

Q5Q1
blue.0, Q5Q2

blue.S 2kD
1/2

A22g22x1L.

~24!

The angles of the emission with the frequency on the red
wing v,v21 are

Q5Q1
red.S 2kD

1/2

A22g2x1L2x2L,

Q5Q2
red.S 2kD

1/2

Ax1L2x2L. ~25!

Using the expressions for the linear susceptibilities we
can write the angles of the cones explicitly:

k~Q1
red!2

2r0
522

g

r0
1

2d

e22d2
,
k~Q2

red!2

2r0
5

2e

e22d2
,

k~Q2
blue!2

2r0
522

g

r0
2

2

e1d
. ~26!

The spectral dependences of the cone angles are shown in
Fig. 2. The valueg depends on the energy of the CF@15#,
and it can take any value between2r0 /d ~weak saturation!
and 0 ~strong saturation!. In an experiment, if the input
strong laser beams are broken up into a set of CF’s with
different energies, the conical emission under anglesQ2

red

andQ2
blue produces in the far field a blurred ring and circle,

respectively. That is shown in Fig. 2 as the dashed bands. In
the case of a single CF, because of uncertainty in the value of

FIG. 3. Diagram of the frequency-shifted instability of the com-
posite filament with the Gaussian shapeI (r')5I (r'50)exp(2r'

2)
at d510,h51. The dashed regions correspond to a gain
Im G1„e;I (r'50)…,0.

FIG. 2. Spectral dependences of the emission anglesQ of the
scattered radiation. The pump is detuned on the blue sided510 of
the resonant transition. The curves 1 and 2 are upper~weak satura-
tion! and lower~strong saturation! boundaries for the angleQ2

red

expected in an experiment; the curve 3 corresponds to conical emis-
sion under angleQ1

red . The curve 4 shows an upper limit for angles
Q2

blue and the curve 5 illustrates an emission trapped by the fila-
ment.
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g, the bands can be considered as the domains of credibility
for the cone anglesQ2

red and Q2
blue. The emission going

along thez axis Q1
blue50 and to a cone under the angle

Q1
red results in a well resolved central spot on the blue side

and a ring on the red side of the resonant transition.
It should be noted also that the intensity of the multiconi-

cal emission does depend on the frequencyv of the scattered
radiation. The analysis of this is restricted by the uncertainty
in the CF’s form and energy. We can just recall the experi-
mental results on conical emission at copropagation~see an
overview in@11#!, where the most intense conical emission is
usually detected forv52v212v0 .

Figure 2 is close to an experimental situation in the sense
that the scattered frequencies and corresponding angles can
be measured directly from an experiment. It displays the
characteristics of the multiconical emission integrated on the
filament’s parameters, and shows, for example, the range of
frequencies where the multiconical emission can be excited.
More precise information is given by the instability diagram
derived from the equation ImG j (P)50 mentioned above.
Such diagrams with pump intensityI (r'50) on the fila-
ment’s axis and detuninge taken as the components of
the vectorP are shown on Figs. 3 and 4. For simplicity we
have chosen a Gaussian profile of the CF:I (r')
5I (r'50)exp(2r'

2).
The presence of two gain bands in the spectrum is clearly

seen from Figs 3 and 4: a Rayleigh one positioned at small
e,0, and a Rabi one ate.d. Such a situation is quite simi-
lar to the problem of competition between Rayleigh and Rabi
instabilities of counterpropagating plane waves raised in
@3,18#. The preferable excitation of the Rayleigh band ob-
served in@3# was explained in@18# as a consequence of the
suppression by a high buffer gas concentration of the Rabi
gain. The same effect is produced in our case of spatially
inhomogeneous pumping. As follows from a comparison of
Figs. 3 and 4, an increase of the buffer gas pressure~Fig. 3
T15T2 and Fig. 4T155T2) results in a drastic change of
the relation between threshold values for Rabi and Rayleigh
instabilities: the latter is excited first with increase of the
pump intensity in a high buffer gas pressure domain.

We should note that the linear absorption Imx6L was con-
sidered as an independent parameter due to the fact that the
filament’s transverse size affects only the integral part of the

eigenvalues~22!. In order to make the stability diagrams
more illustrative, its value has been chosen quite small,
which allows the nonlinear gain to predominate over the lin-
ear absorption even at small pump intensitiesI (r'50). That
explains the closeness of the convective instability regions in
Fig. 3 to the axisI (r'50)50. Contact can occur only in the
physically unacceptable case of neglect of the linear absorp-
tion.

Nevertheless, as can be shown, the Rayleigh instability
does not produce sufficient cone angles as the Rabi one does.
That means that the FPS enhanced by only the Rabi gain is
responsible for the multicone structure of the scattered radia-
tion in the field of counter-propagating composite filaments.

V. CONCLUSIONS

We have shown that the formation of composite filaments
consisting of two counter-propagating components can be
considered as an intermediate state in the development of
instability of counterpropagating light beams in resonant me-
dia. We analyzed only one of possible ways of formation of
the CF’s, namely, via attraction and unification of counter-
propagating filaments already created as a result of self-
focusing of opposite light beams. That happens if the inter-
action between counterpropagating beams is weaker~or
delayed in time! than the self-action processes, and the total
dynamics in some sense can be decoupled in the two sub-
systems. Intuitively, that is possible at quite large interaction
lengthsL. The counter-propagation in short resonant media
exhibits an instability of the input plane waves usually lead-
ing to formation of hexagon patterns in a transverse section
@5#. An increase of the medium length, which plays the role
of a critical parameter, leads to an enhancement of spatial
inhomogeneousity and to instability processes which can be
analyzed already from the point of view of collective dynam-
ics of filaments~spots in a transverse section!, initially orga-
nized into a hexagonal lattice. So the system far away from
the static instability threshold should form composite fila-
ments which are stable with respect to frequency-degenerate
spatial perturbations.

Hence, the following stage is the four-photon frequency-
nondegenerate instability of the CF exhibited as multiconical
emission. As has been shown, it consists of a central spot and
cone on the blue side of the resonant transition and two
cones on the red side in the farfield. The asymmetry in angles
of emission of the radiation components coupled via FPS and
distributed feedback reflection displays the main observable
consequence of the spatially unhomogeneous pumping. That
happens thanks to the fact that only emission with frequency
on the blue side can be trapped by the filament, acting as a
waveguide. Another part of the scattered radiation which ap-
pears due to the four-photon interaction can propagate in
fixed directions ruled by wave-vector matching conditions
~Cherenkov’s at co-propagation!.

The results presented are obtained in the framework of the
single-mode approximation corresponding to a weak four-
photon gain of the scattered emission. The growth of inten-
sity and transverse size of the pump beams will lead to the
appearance of new eigenvalues and consistently to an in-

FIG. 4. The same as in Fig. 3 ath55.
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creasing number of cones. As shown in a WKB
approximation for the case of copropagation@11#, the cones
angle values stop obeying the phase matching conditions,
and can sufficiently exceed those predicted by one or another
synchronism rule.
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