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Superluminal delays of coherent pulses in nondissipative media: A universal mechanism
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We identify the universal mechanism that is responsible for superlurtfamstier-than-light traversal times
as well as the narrowing of wave packets transmitted through various nondissipative media. This mechanism is
shown to be predominantly destructive interference between successive wave-packet components traversing all
accessible causally retarded paths. It strongly depends on wave-packet coherence and width, and can cause
superluminal traversal not only in evanescent-wave “tunneling” but also in allowed propagation.

PACS numbds): 42.50.Dv, 42.50.Ar, 42.25.Md

I. INTRODUCTION patible with superluminal transmission, particularly in the
single-photon casfgl]?
As shown by a two-photon interference experimidf a We purport to show in this paper that the above questions

photon that has tunneled as an evanescent wave packedn only be answered byuniversal descriptiorof the tem-
through a dielectric-mirror “barrier” appears to have beenporal wave-packet transmission aerference between its
delayed significantly less than its “twin” photon that has causally propagating consecutive compon€frig]. Our de-
traversed the same distance in vacuum. Such a delay h&sription reveals the key role of phase coherence in tunnel-

been interpreted as signifying “superluminaffaster-than-  iNg, by demonstrating its dependence on ¢bberence time
light) barrier-traversal time. Similar “superluminal” time de- (Phase randomizatigrof the wave packet. An important cor-

lay in tunneling through a dielectric mirror has now beenrOIary Is that superluminal time delay:?‘ can occur also in al-
measured in a classical two-pulse interference experimeA wed propagation, namely, propagation which can only be

[2]. The latter experiment has also revealed a remarkabl escribed byreal wave vectorse.g., in Fabry-Peet struc-

; ._Tureg and not only in evanescent-wave tunneling, where
feature, name_ly, that the temporal width of the trgns_mnf[e fomplex wave vectors can be employélg., in photonic
wave packet is strongly narrowed down. These intriguin

. . o and-gap structures
time-domain measurements add new insight to that offeregg gap B

by earlier spectral-domain observations of superluminal

mean-phase delays, in frustrated total internal refledt&n

and waveguide transmissid#d,5] of electromagnetidEM)

evanescent waves. Superluminal delays should also occur in Our general framework assumes a classical EM pulse

tunneling of massive particles through potential barrierswith field amplitudey;,(x,t) that is normally incident from

[6,7], which is analogous to EM evanescent wave-packek<0 onto a dielectric structure in<Ox<<L. The field ampli-

transmissior{ 8]. tude ¢, (x,t) transmitted through the structure is measured at
It is always possible to trace numerically the evanescenx=L. Itis related to the incident field amplitudesat 0 [13]

wave-packet evolution and compare its features with differby convolution with the impulse responsgt)

ent definitions of barrier traversal timés,7,9 (see below

Nevertheless, thenechanisnof superluminal time delays is w

still obscurd 1] and regarded as a “poorly resolved mystery” (L) = j d7 o(7) ¥in(0t—1), (1)

[9]. A commonly invoked notion is that this mechanism is 0

spectral reshapindfiltering) of the transmitted wave packet \yhere (1) is the Fourier transform of the spectral transmis-
_by dispersion. Indged, such reshaping faxplams pulse narroW;on coefficients(w). The definitions of traversal times vary
ing and superluminal pulse traversal in absorbiig] (0r  ccording to the wave-packet feature that is monitored
amplifying [1.1]) media, whose dispersion causes the faste[6’7’9]. We shall pick two of them and attempt to explain
spectral portion to be less absorkied more amplifieithan v they are superluminal, i.e., shorter than their free-space
the slower one. Analogous reshaping occurs in nonrelativisg o, nterpartgsimilar explanation of other traversal times is

tic electron wave packets which are dispersed in free spacgeferred to Ref[15]). (i) The mean traversal time is defined
beforehitting the barrief9]. Yet why should spectral reshap- by

ing necessarily yield superluminal delays of EM pulses in
nonabsorbing structures, after propagatinédispersionless
vacuum? Is there @ommon mechanisrfor superluminal tmear= (L ¥ oMWy ), 2
time delays and wave-packet narrowing, which applies to

both EM pulses in dielectric structures and relativistic maswhere the overbar denotes integration over all times and the
sive particles in potential barriefd]? How is causality com- angular brackets stand for an ensemble avetaggiired for

Il. TRANSMISSION SPECTRUM
AND MEAN TRAVERSAL TIME
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reflection coefficient of a mirror[14]. By Fourier-
transforming the expansio(8) we obtain the impulse re-
sponse

<
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a(t)zgo c;8(t—1)) (4)
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consisting of successive impulses with causal propagation
times and decreasing amplitudes.

Suppose that the incident pulgg,(0t) is of the form
R g : Uin(0t)=g(t)exd —i&t)], where g(t) is a normalized
. P ——— Gaussian of temporal widthA, and the phaseé(t)
O e (unﬁs Of6L/C)8 10 1= corresponds to an oscillation with frequendy  and

phase-coherence timer, such that (e'tMe D)

FIG. 1. A Gaussian pulse transmission through an empty layee= gl @(t=t)g=It=t'll"e Qur main tool will be the following
(n,=1) between two dielectric slabs withy=4. Inset: Succes- gytocorrelation function:
sively transmitted terms corresponding tp-f2ld reflections in the
empty layer. Thin curves: successively transmitted Gaussians num-
bered byj=0,1,2 ... with phase delayso7j=(2j+1)x. Dotted I‘(Tj— )= Ry (t— Tj)lﬁin(t_ 7))
curve: their coherent sum, for narrow ¢;, (A;=0.03 L/c). Thick
curve: ¢y, for a wide i, (Ay=1.5L/c) exhibitstyear=tpea<L/C _ (71— 70 |7 — 7l
(arrow). Dashed curve: the square root of the ensemble-averaged =005{w(7j_7k)]ex T T gAZ
intensity whenr,=0.5L/c. t
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fluctuating fields. This traversal time coincides with the
“center-of-gravity” arrival time [9] in the case where the I'(7;—7) consists of the cosine of the relative phase be-
propagation outside the barrier is not dispersive. We note thaiveen the path$ andj, weighted by an exponential term,
tmeanCan be defined for any shape of the incident pulg. measuring the amount of overlap and phase correlation be-
The peak traversal time,e,, can be defined ify,| is a tween wave packets traversing the two paths.

smooth single-peaked function, a#y(t)|%/dt|,— toeal 0. The time-integrated and ensemble-averaged transmitted

Only in the asymptotic limit of a spectrally narrow incident intensity |, = (#} ) is expressed in term of this autocorre-
pulse, where the stationary phase approximation is valid, d@ation function as

these two traversal times coincide with the so-called “phase

time” [6,7] tphasé dpldw, where p(w) is the phase of the

spectral transmission function(w). I, :2 c2+ 2 co ' (m—7) (6)
r - , J J )
k

I1l. SUPERLUMINAL TRAVERSAL TIMES IN LAYERED fth | . ith . h
STRUCTURES If the pulse is either very narrowA(<r,) or incoherent

(7.<7y), then the wave packets traveling along different
We first show how superluminal effects occur in the pathsr;+# 7, are no longer correlated, due to phase random-
simple case of a single dielectric layer: the regiGrd<L is  ization or lack of overlap. The secordoherent term in (6)
filled with a (nondispersivemedium of refractive index, is then washed out, and the transmission becomes frequency
and embedded in an infinite medium of refractive indexindependent. In the opposite limit, when the incident pulse is
n,. The transmission coefficient(w) can be expanded in a wide, smooth, and cohereritransform-limited, such that
series A, 7> 7p), strong interference takes place between the dif-
ferent overlapping wave packets and the second term plays a
major role. When this term is large and negative, this means
* that the interference is strong and predominantly destructive,
o(w)= Z e, (3 due to the negativity of thE(r;— =) terms with the largest
- c;Cy Weights. In the single-layer example, the transmission of
a wide, transform-limited pulse becomes minimal when
where each term represents a causal path, correspondingdd7j;,—7;) is an odd multiple of =, yielding
2j boundary reflectiong;: round trips through. followed by 1,=[2n;n,/(n2+n3)]2.
transmission(Fig. 1, insel. Here 7;=(2j+1)n,L/c is the The mean traversal tim{&q. (2)] through such a structure
jth path traversal time and,=(1-\?\? are determined is
by the reflection amplitudea=(n;—n,)/(n;+n,) at the
boundariesx=0 andx=L. Equation(3) also describes the
transmission of a Fabry-Rat etalon(two mirrors separated _
by a dielectric mediumwhenn is replaced by thécomplex fmear™ 2 iyt 22 G mytndl(m =m0 ()
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The first(diagona) term in(7), which is predominant for an 1.00 i ! o

incoherent or temporally narrow incident pulse, is always t ‘ |y

larger than the shortest causal arrival timg=n,L/c, as 2 T ! //;%;:

expected for 7, weighted with positive probabilities © 07517 #%// /? B
J B o

(c]-Z/chjz). For a wide, coherent pulse with carrier frequency “g*% §>/

w such that the transmitted intensfiigg. (6)] becomes mini- $ 050 %,]L g ~

mal due to strong, predominantly destructive interference be-v sgiZ/h

tween the paths, the secofcbherent term in Eq.(7) can z 925 E L - B

become sufficiently negative to causge,<7o- In the £ \

present example the minimal value oty IS c T l l |

[2n,n3/(n3+n3)]L/c, which is less thar./c if n,=1, i.e., E 0.00 - T

superluminal although we deal with allowed propagation. T

The width of the transmitted pulse is given by _gos : :

T T T
2_ -1/ 2% 0.0 05 1.0 15 2.0 25 3.0
(A)* =14 ((t—tmean ¥s ¥y). It can be shown that Time (units of L/c)

1 FIG. 2. Transmission through five double-layer periods of

(At)zzAtz—F — 2 cic(m+ Tk)ZF(Tj - Tk)_tzmean (8) length 27 (n;=1.5, n,=1). Inset: successively transmitted terms
Ay Tx due to interlayer reflections. Impulse response spikes are shown at

t=r7;,+ 7j,. Solid curve: transmitted Gaussian envelope with car-

In the limit of total incoherence, we find thah{)? is just the  rier frequencyw at the center of the band gap and=1.5L/c

sum of the squared widths of the incident wave packgt —exhibitstye,~0.6L/c.

and the impulse response;cir’—(Zcir)? where _ o _

cZ=c?/=;c?. In the opposite limit of strong interference be- Of two layers with refractive indices; andn,, and thick-

tween coherent and wide wave packet§(r;— ) r;esses”l,/z. We hav_e obtained the transmission coefficient

~¢@(5=m)_ It then follows from Eqgs(5)—(7) that Eq.(8)  on(w) of N such periods by a recurrence relation from the

becomes single-period transmission and reflection coefficients. Its
Fourier transform can be expanded, as seen from Fi{m-2
sed, in the form

2
(A?=Af-3 Fioln0u@)] | . )
o o ont)= 2 CN 8t~ (i1t 72)). (10)
If w lies in a dip of the spectral transmission cuiv§w), 11,12=0

then #*[Inl,]/dw?>0 and the pulse will be narrowed. The

temporal narrowing effect will be most salient when Here each coefficier€™). is the ;
X . e sum of the amplitudes of
A~ (#*1dw?) [In(ly(w))], providedA, is large enough to _ '1:J2 P
allow overlap of successive wave packets. This effect is seefill POSSible paths traversing the andn, layersN+2j, and
N+2j, times, respectively, with causal delay times

to be sensitive to coherence: the phase incoherenc
Senstiv pnase | J8C€ o —(N+2j)ni/i/2c (i=1,2). Equations(6)—(8) and the

which contributes only to the total spectral width f, and foregoing discussion of the single lay@ig. 1) fully apply
due to the fluctuating phasgt)], exponentially dimin- . . N
i [ g phas{t) ], exp y to the multilayered barrier, on SUbStItutlﬂg—>CJ(1N)-2 and

ishing the narrowing in(8). i
Figure 1 allows more insight into the case of wide and7j— 7j1+ 7j2. We find that(Fig. 2) an evanescent wave is a
coherenty;,, for which ¢,(L,t) (thick curve consists of sum of propagating transmitted waves whose leading terms
overlapping, destructively interfering Gaussianghin  interfere destructively at band-gap frequencies. Correspond-
curves. Amplitude suppression of the first transmitted waveingly, there is constructive interference in the leading re-
packet|coiin(t— 70)| by the next one is stronger throughout flected wavegthe Bragg reflection condition
its back half than throughout its forward half, since the en-
velopes|c;in(t— )| with j=1 are maximal at>r,. Con- IV. SUPERLUMINAL TRANSMISSION TIMES IN
sequently, the forward tail, which has extended through the DISPERSIVE MEDIA
structure already at<<O, becomes the peak af,, corre-
sponding to superlumindleq andteq, Destruction of the The foregoing results can be extended to nondissipative
back half of ¢, by interference also makes the transmitteddispersive media which are characterized by a continuous
pulse narrower, because it consists mostly of the forward taiimpulse response, e.g., a dielectric medium with continu-
of ,. By comparison, an incoherertfluctuating input  ously varying refractive index or an optical waveguide
Gaussian of the same envelope results in a broad, inten$d,9]. The sums over paths; cicl'(7j—7) in Egs.
(|#l?) with subluminal pea. (6)—(8) should be replaced by the integrals
The foregoing results render the essence of superlumindldrfd+’ o(7)o(7')['(7— 7). Reduced intensity, superlu-
effects in the transmission through any layered structuremninal time delay, and temporal narrowing of pulses transmit-
since the impulse response is then a discrete sumfahc-  ted through such media follow, as in layered structures, from
tions as in(4). Consider specifically the structure used in destructive interference between componentg;pét differ-
Refs.[1] and[2], which containsN periods, each consisting ent delay timesr# 7', corresponding to predominantly
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negative contributions otr(7)o(7')I'(7—7"). As an ex- 06 I I I !
ample, consider an infinite waveguide, with cutoff frequency
o, . Its impulse response for transmission fram0 tox=L v 05
has been found by us to have the causal fpi5] §

> 0.4-
o(t)=8(t—L/c)—w(L/c)[I1(w.S)/s]O(t—L/c), (12) ©

T 0.3 T B
whereJ, is the first-order Bessel functiof,is the Heaviside =
step function, ands=\t>— (L/c)2 If 4, is coherent and 5 02 % i
temporally wide Q;,7.>L/c) we can divide the integrals g
over o(7)o(7")[(7—7') into intervals that exhibit strong &= 0.1 B
cancellations in the expressions fQg,, | v, and At)? [the
continuous limits of Egs(6), (7), and(8), respectively pro- 0.0 T T T . » T T

|
S

|
)
[e)

vided that w<w.. The superluminal delays observed in Time (unﬁs Of6L/C)8 1o 12

waveguide transmission below cutd#f] are obtainable from
this description. It is important that massive relativistic par- _ o ) _
ticles in potential barriers obeying the Klein-Gordon equa- FIG- 3. Same as Fig. 1 for an incident Gaussian pulse that is
tion fit the same description, since their energy-momentun§opped at=0 [Eq. (12)]
dispersion is the same as in light in a wavegui@g
¥in by a field operato {M(x,t) =3, a e/l where
V. CAUSALITY AND SIGNAL TRANSMISSION a, are the annihilation operators of the modesf the free

Had the peak of the transmitted wave packet carried an?eld. In the)r single-photor? case the.incident. field state is
new information, its arrival after a superluminal time delay! 1) = =«9xa.|0), whereg, is a Gaussian function ab(«)
tpeakWould have violated causality. However, for analytic centered around» and |0) is the vacuum state. In this
input ¢, in Eq. (1) the interfering forward tails of case I'(rj—7) in Eg. (5 must be evaluated using
Yin(t— 7;) Which are present at=L att<0 already contain (1|, ) P (x"t)|1) =y (. ¥in(x',t'),  where

all the information on the rest of the pulse to follow. New #, is the classical wave packet. Equatid6$—(8) are then
information can only be transmitted by aonanalytic valid, if I, is interpreted as the detection rate or probability
(abrupy disturbance ofy;,, which would be causally de- of a transmitted photon. A transmitted photon is likely to be
layed. This can be experimentally demonstrated by switchingletected at “superluminal” times when itg is peaked at the

off the incident Gaussian at its peak<(0) much faster than forward tail of the classical;,(L,t)|?, which wasalready

o~ ! (for @ in the microwave range, this is achievable by apresent at the detector even at©. By contrast, a similar
subpicosecond optical pulse that drastically changes thghoton that has propagated the same distance through
transmissivity of a dielectric mediumSuch abrupt switch- vacuum is characterized by thpeak of | ¢;,(L,t)|2, which

ing off corresponds ta);,(x=0,t)=6(—1t)g(t), where 4(t) arrives lateratt=L/c).

is the Heaviside step functidi6]. The transmission of this

i, through any layered structure, e.g., a single Igysq.

(4)] yields by Eq.(1) VIl. CONCLUSIONS

Our theory has demonstrated that the universal mecha-
l//tr(t)ZE c;0(t—t)g(t—r)). (12 nism of predominantly destructive interference between ac-
] cessible causal patfi$2] is responsible for transmission at-
tenuation, superluminal delay times, and wave-packet
The interference is unaffected by this switching off atnarrowing. Two other characteristics of evanescent waves,
t<,. Hence, the forward half of;, looks the same as for an namely, exponential attenuation and traversal-length inde-
unchopped Gaussiagk, and may exhibit a superluminal pendence ofyeanOr tyeaxfor opaque barrierf2], can also be
tpeak The true character ofy;, is revealed only at explained in terms of this universal mechanifi5]. This
t=7o=L/c, when the first transmitted Gaussian, theory overcomes the limitations of previous approaches,
Yin(t— 7o), vanishes, causingy, (thick curve in Fig. 3t0  since it applies to arbitrary pulse shapes, widths, and coher-
drop below|c, 4i,(t— 71)|. This demonstrates a fundamental ence times, anexplicitly reveals the causal nature of their
point: The steplike decrease at successtygransmits the transmission. The understanding provided by this theory may
switching-off information in a causal fashion, whereas superopen new perspectives in the design of the velocity, intensity,
luminal features, such dge,,, carry no information. and shape of transmitted pulses, by manipulating the phase
delays along the accessible paths in the medium.

VI. PHOTON DETECTION AND SUPERLUMINAL
EFFECTS
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