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We identify the universal mechanism that is responsible for superluminal~faster-than-light! traversal times
as well as the narrowing of wave packets transmitted through various nondissipative media. This mechanism is
shown to be predominantly destructive interference between successive wave-packet components traversing all
accessible causally retarded paths. It strongly depends on wave-packet coherence and width, and can cause
superluminal traversal not only in evanescent-wave ‘‘tunneling’’ but also in allowed propagation.

PACS number~s!: 42.50.Dv, 42.50.Ar, 42.25.Md

I. INTRODUCTION

As shown by a two-photon interference experiment@1#, a
photon that has tunneled as an evanescent wave packet
through a dielectric-mirror ‘‘barrier’’ appears to have been
delayed significantly less than its ‘‘twin’’ photon that has
traversed the same distance in vacuum. Such a delay has
been interpreted as signifying ‘‘superluminal’’~faster-than-
light! barrier-traversal time. Similar ‘‘superluminal’’ time de-
lay in tunneling through a dielectric mirror has now been
measured in a classical two-pulse interference experiment
@2#. The latter experiment has also revealed a remarkable
feature, namely, that the temporal width of the transmitted
wave packet is strongly narrowed down. These intriguing
time-domain measurements add new insight to that offered
by earlier spectral-domain observations of superluminal
mean-phase delays, in frustrated total internal reflection@3#
and waveguide transmission@4,5# of electromagnetic~EM!
evanescent waves. Superluminal delays should also occur in
tunneling of massive particles through potential barriers
@6,7#, which is analogous to EM evanescent wave-packet
transmission@8#.

It is always possible to trace numerically the evanescent
wave-packet evolution and compare its features with differ-
ent definitions of barrier traversal times@6,7,9# ~see below!.
Nevertheless, themechanismof superluminal time delays is
still obscure@1# and regarded as a ‘‘poorly resolved mystery’’
@9#. A commonly invoked notion is that this mechanism is
spectral reshaping~filtering! of the transmitted wave packet
by dispersion. Indeed, such reshaping explains pulse narrow-
ing and superluminal pulse traversal in absorbing@10# ~or
amplifying @11#! media, whose dispersion causes the faster
spectral portion to be less absorbed~or more amplified! than
the slower one. Analogous reshaping occurs in nonrelativis-
tic electron wave packets which are dispersed in free space
beforehitting the barrier@9#. Yet why should spectral reshap-
ing necessarily yield superluminal delays of EM pulses in
nonabsorbing structures, after propagating in~dispersionless!
vacuum? Is there acommon mechanismfor superluminal
time delays and wave-packet narrowing, which applies to
both EM pulses in dielectric structures and relativistic mas-
sive particles in potential barriers@4#? How is causality com-

patible with superluminal transmission, particularly in the
single-photon case@1#?

We purport to show in this paper that the above questions
can only be answered by auniversal descriptionof the tem-
poral wave-packet transmission asinterference between its
causally propagating consecutive components@12#. Our de-
scription reveals the key role of phase coherence in tunnel-
ing, by demonstrating its dependence on thecoherence time
~phase randomization! of the wave packet. An important cor-
rolary is that superluminal time delays can occur also in al-
lowed propagation, namely, propagation which can only be
described byreal wave vectors~e.g., in Fabry-Pe´rot struc-
tures! and not only in evanescent-wave tunneling, where
complex wave vectors can be employed~e.g., in photonic
band-gap structures!.

II. TRANSMISSION SPECTRUM
AND MEAN TRAVERSAL TIME

Our general framework assumes a classical EM pulse
with field amplitudec in(x,t) that is normally incident from
x<0 onto a dielectric structure in 0,x,L. The field ampli-
tudec tr(x,t) transmitted through the structure is measured at
x5L. It is related to the incident field amplitude atx50 @13#
by convolution with the impulse responses(t)

c tr~L,t !5E
0

`

dt s~t! c in~0,t2t!, ~1!

wheres(t) is the Fourier transform of the spectral transmis-
sion coefficientŝ(v). The definitions of traversal times vary
according to the wave-packet feature that is monitored
@6,7,9#. We shall pick two of them and attempt to explain
why they are superluminal, i.e., shorter than their free-space
counterparts~similar explanation of other traversal times is
deferred to Ref.@15#!. ~i! The mean traversal time is defined
by

tmean5^tc tr*c tr&/^c tr*c tr&, ~2!

where the overbar denotes integration over all times and the
angular brackets stand for an ensemble average~required for

PHYSICAL REVIEW A JANUARY 1996VOLUME 53, NUMBER 1

531050-2947/96/53~1!/586~5!/$06.00 586 © 1996 The American Physical Society



fluctuating fields!. This traversal time coincides with the
‘‘center-of-gravity’’ arrival time @9# in the case where the
propagation outside the barrier is not dispersive. We note that
tmeancan be defined for any shape of the incident pulse.~ii !
The peak traversal time,tpeak, can be defined ifuc tru is a
smooth single-peaked function, as]uc tr(t)u2/]tu t5tpeak

50.
Only in the asymptotic limit of a spectrally narrow incident
pulse, where the stationary phase approximation is valid, do
these two traversal times coincide with the so-called ‘‘phase
time’’ @6,7# tphase5]f/]v, wheref(v) is the phase of the
spectral transmission functionŝ(v).

III. SUPERLUMINAL TRAVERSAL TIMES IN LAYERED
STRUCTURES

We first show how superluminal effects occur in the
simple case of a single dielectric layer: the region 0,x,L is
filled with a ~nondispersive! medium of refractive indexn2
and embedded in an infinite medium of refractive index
n1 . The transmission coefficientŝ(v) can be expanded in a
series

ŝ~v!5(
j50

`

cje
ivt j , ~3!

where each term represents a causal path, corresponding to
2 j boundary reflections:j round trips throughL followed by
transmission~Fig. 1, inset!. Here t j5(2 j11)n2L/c is the
j th path traversal time andcj5(12l2)l2 j are determined
by the reflection amplitudesl[(n12n2)/(n11n2) at the
boundariesx50 andx5L. Equation~3! also describes the
transmission of a Fabry-Pe´rot etalon~two mirrors separated
by a dielectric medium! whenl is replaced by the~complex!

reflection coefficient of a mirror @14#. By Fourier-
transforming the expansion~3! we obtain the impulse re-
sponse

s~ t !5(
j50

`

cjd~ t2t j ! ~4!

consisting of successive impulses with causal propagation
times and decreasing amplitudes.

Suppose that the incident pulsec in(0,t) is of the form
c in(0,t)5g(t)exp@2ij(t)#, where g(t) is a normalized
Gaussian of temporal widthD t and the phasej(t)
corresponds to an oscillation with frequencyv̄ and
phase-coherence timetc such that ^ei j(t)e2 i j(t8)&
5ei v̄(t2t8)e2ut2t8u/tc. Our main tool will be the following
autocorrelation function:

G~t j2tk![ Rê c in* ~ t2t j !c in~ t2tk!&

5cos@v̄~t j2tk!#expF2
~t j2tk!

2

8D t
2 2

ut j2tku
tc

G .
~5!

G(t j2tk) consists of the cosine of the relative phase be-
tween the pathsi and j , weighted by an exponential term,
measuring the amount of overlap and phase correlation be-
tween wave packets traversing the two paths.

The time-integrated and ensemble-averaged transmitted
intensity I tr5^c tr*c tr& is expressed in term of this autocorre-
lation function as

I tr5(
j
cj
21(

jÞk
cjckG~t j2tk!. ~6!

If the pulse is either very narrow (D t!t0) or incoherent
(tc!t0), then the wave packets traveling along different
pathst jÞtk are no longer correlated, due to phase random-
ization or lack of overlap. The second~coherent! term in ~6!
is then washed out, and the transmission becomes frequency
independent. In the opposite limit, when the incident pulse is
wide, smooth, and coherent~transform-limited, such that
D t ,tc@t0), strong interference takes place between the dif-
ferent overlapping wave packets and the second term plays a
major role. When this term is large and negative, this means
that the interference is strong and predominantly destructive,
due to the negativity of theG(t j2tk) terms with the largest
cjck weights. In the single-layer example, the transmission of
a wide, transform-limited pulse becomes minimal when
v̄(t j112t j ) is an odd multiple of p, yielding
I tr5@2n1n2 /(n1

21n2
2)#2.

The mean traversal time@Eq. ~2!# through such a structure
is

tmean5
1

I tr
H(

j
cj
2t j1

1
2(
jÞk

cjck~t j1tk!G~t j2tk!J . ~7!

FIG. 1. A Gaussian pulse transmission through an empty layer
(n251) between two dielectric slabs withn154. Inset: Succes-
sively transmitted terms corresponding to 2j -fold reflections in the
empty layer. Thin curves: successively transmitted Gaussians num-
bered byj50,1,2, . . . with phase delaysv̄t j5(2 j11)p. Dotted
curve: their coherent sumc tr for narrowc in (D t50.03 L/c). Thick
curve:c tr for a widec in (D t51.5 L/c) exhibits tmean'tpeak,L/c
~arrow!. Dashed curve: the square root of the ensemble-averaged
intensity whentc50.5 L/c.
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The first~diagonal! term in ~7!, which is predominant for an
incoherent or temporally narrow incident pulse, is always
larger than the shortest causal arrival timet05n2L/c, as
expected for t j weighted with positive probabilities
(cj

2/( j cj
2). For a wide, coherent pulse with carrier frequency

v̄ such that the transmitted intensity@Eq. ~6!# becomes mini-
mal due to strong, predominantly destructive interference be-
tween the paths, the second~coherent! term in Eq.~7! can
become sufficiently negative to causetmean,t0 . In the
present example the minimal value oftmean is
@2n1n2

2/(n1
21n2

2)#L/c, which is less thanL/c if n251, i.e.,
superluminal, although we deal with allowed propagation.

The width of the transmitted pulse is given by
(Dt)25I tr

21^(t2tmean)
2c tr*c tr&. It can be shown that

~Dt !25D t
21

1

4I tr
(
j ,k

cjck~t j1tk!
2G~t j2tk!2tmean

2 . ~8!

In the limit of total incoherence, we find that (Dt)2 is just the
sum of the squared widths of the incident wave packetD t

2

and the impulse response( j c̄ j
2t j

22(( j c̄ j
2t j )

2 where
c̄ j
25cj

2/( j cj
2 . In the opposite limit of strong interference be-

tween coherent and wide wave packets,G(t j2tk)
;eiv(t j2tk). It then follows from Eqs.~5!–~7! that Eq.~8!
becomes

~Dt !25D t
22 1

4
]2

]v2 @ ln„I tr~v!…# U
v̄

. ~9!

If v̄ lies in a dip of the spectral transmission curveI tr(v),
then ]2@ lnItr#/]v2.0 and the pulse will be narrowed. The
temporal narrowing effect will be most salient when
D t; (]2/]v2) @ ln„I tr(v)…#, providedD t is large enough to
allow overlap of successive wave packets. This effect is seen
to be sensitive to coherence: the phase incoherencetc

21 ,
which contributes only to the total spectral width ofc in and
c tr @due to the fluctuating phasej(t)#, exponentially dimin-
ishing the narrowing in~8!.

Figure 1 allows more insight into the case of wide and
coherentc in , for which c tr(L,t) ~thick curve! consists of
overlapping, destructively interfering Gaussians~thin
curves!. Amplitude suppression of the first transmitted wave
packetuc0c in(t2t0)u by the next one is stronger throughout
its back half than throughout its forward half, since the en-
velopesucjc in(t2t j )u with j>1 are maximal att.t0 . Con-
sequently, the forward tail, which has extended through the
structure already att,0, becomes the peak ofc tr , corre-
sponding to superluminaltpeak and tmean. Destruction of the
back half ofc in by interference also makes the transmitted
pulse narrower, because it consists mostly of the forward tail
of c in . By comparison, an incoherent~fluctuating! input
Gaussian of the same envelope results in a broad, intense
^uc tru2& with subluminal tpeak.

The foregoing results render the essence of superluminal
effects in the transmission through any layered structure,
since the impulse response is then a discrete sum ofd func-
tions as in~4!. Consider specifically the structure used in
Refs.@1# and@2#, which containsN periods, each consisting

of two layers with refractive indicesn1 andn2 , and thick-
nessesl 1 ,l 2 . We have obtained the transmission coefficient
ŝN(v) of N such periods by a recurrence relation from the
single-period transmission and reflection coefficients. Its
Fourier transform can be expanded, as seen from Fig. 2~in-
set!, in the form

sN~ t !5 (
j 1 , j 250

`

Cj 1 , j 2
~N! d„t2~t j11t j2!…. ~10!

Here each coefficientCj 1 , j 2
(N) is the sum of the amplitudes of

all possible paths traversing then1 andn2 layersN12 j 1 and
N12 j 2 times, respectively, with causal delay times
t j i5(N12 j i)ni l i /2c ( i51,2). Equations~6!–~8! and the
foregoing discussion of the single layer~Fig. 1! fully apply
to the multilayered barrier, on substitutingcj→Cj 1 , j 2

(N) and

t j→t j11t j2. We find that~Fig. 2! an evanescent wave is a
sum of propagating transmitted waves whose leading terms
interfere destructively at band-gap frequencies. Correspond-
ingly, there is constructive interference in the leading re-
flected waves~the Bragg reflection condition!.

IV. SUPERLUMINAL TRANSMISSION TIMES IN
DISPERSIVE MEDIA

The foregoing results can be extended to nondissipative
dispersive media which are characterized by a continuous
impulse response, e.g., a dielectric medium with continu-
ously varying refractive index or an optical waveguide
@4,9#. The sums over paths( j ,kcjckG(t j2tk) in Eqs.
~6!–~8! should be replaced by the integrals
*dt*dt8s(t)s(t8)G(t2t8). Reduced intensity, superlu-
minal time delay, and temporal narrowing of pulses transmit-
ted through such media follow, as in layered structures, from
destructive interference between components ofc tr at differ-
ent delay timestÞt8, corresponding to predominantly

FIG. 2. Transmission through five double-layer periods of
length 2l (n151.5, n251). Inset: successively transmitted terms
due to interlayer reflections. Impulse response spikes are shown at
t5t j11t j2. Solid curve: transmitted Gaussian envelope with car-
rier frequencyv̄ at the center of the band gap andD t51.5 L/c
exhibits tpeak'0.6 L/c.
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negative contributions ofs(t)s(t8)G(t2t8). As an ex-
ample, consider an infinite waveguide, with cutoff frequency
vc . Its impulse response for transmission fromx50 tox5L
has been found by us to have the causal form@15#

s~ t !5d~ t2L/c!2vc~L/c!@J1~vcs!/s#u~ t2L/c!, ~11!

whereJ1 is the first-order Bessel function,u is the Heaviside
step function, ands5At22(L/c)2. If c in is coherent and
temporally wide (D t ,tc@L/c) we can divide the integrals
over s(t)s(t8)G(t2t8) into intervals that exhibit strong
cancellations in the expressions fortmean, I tr , and (Dt)

2 @the
continuous limits of Eqs.~6!, ~7!, and~8!, respectively# pro-
vided that v̄,vc . The superluminal delays observed in
waveguide transmission below cutoff@4# are obtainable from
this description. It is important that massive relativistic par-
ticles in potential barriers obeying the Klein-Gordon equa-
tion fit the same description, since their energy-momentum
dispersion is the same as in light in a waveguide@8#.

V. CAUSALITY AND SIGNAL TRANSMISSION

Had the peak of the transmitted wave packet carried any
new information, its arrival after a superluminal time delay
tpeakwould have violated causality. However, for ananalytic
input c in in Eq. ~1! the interfering forward tails of
c in(t2t j ) which are present atx5L at t,0 already contain
all the information on the rest of the pulse to follow. New
information can only be transmitted by anonanalytic
~abrupt! disturbance ofc in , which would be causally de-
layed. This can be experimentally demonstrated by switching
off the incident Gaussian at its peak (t50) much faster than
v̄21 ~for v̄ in the microwave range, this is achievable by a
subpicosecond optical pulse that drastically changes the
transmissivity of a dielectric medium!. Such abrupt switch-
ing off corresponds toc in(x50,t)5u(2t)g(t), whereu(t)
is the Heaviside step function@16#. The transmission of this
c in through any layered structure, e.g., a single layer@Eq.
~4!# yields by Eq.~1!

c tr~ t !5(
j
cju~t j2t !g~ t2t j !. ~12!

The interference is unaffected by this switching off at
t,t0. Hence, the forward half ofc tr looks the same as for an
unchopped Gaussianc in and may exhibit a superluminal
t peak. The true character ofc in is revealed only at
t5t05L/c, when the first transmitted Gaussian,
c in(t2t0), vanishes, causingc tr ~thick curve in Fig. 3! to
drop belowuc1c in(t2t1)u. This demonstrates a fundamental
point: The steplike decrease at successivet j transmits the
switching-off information in a causal fashion, whereas super-
luminal features, such astpeak, carry no information.

VI. PHOTON DETECTION AND SUPERLUMINAL
EFFECTS

The discussion thus far has been classical, but it can eas-
ily be rendered in quantal terms, appropriate for two-photon
interference@1# or one-photon detection. We must replace

c in by a field operatorC in
(1)(x,t)5(kake

i @kx2v(k)t# where
ak are the annihilation operators of the modesk of the free
field. In the single-photon case the incident field state is
u1&5(kgkak

†u0&, wheregk is a Gaussian function ofv(k)
centered aroundv̄ and u0& is the vacuum state. In this
case G(t j2tk) in Eq. ~5! must be evaluated using
^1uC (2)(x,t)C (1)(x8,t8)u1&5c in* (x,t)c in(x8,t8), where
c in is the classical wave packet. Equations~6!–~8! are then
valid, if I tr is interpreted as the detection rate or probability
of a transmitted photon. A transmitted photon is likely to be
detected at ‘‘superluminal’’ times when itsI tr is peaked at the
forward tail of the classicaluc in(L,t)u2, which wasalready
present at the detector even at t,0. By contrast, a similar
photon that has propagated the same distance through
vacuum is characterized by thepeakof uc in(L,t)u2, which
arrives later~at t5L/c!.

VII. CONCLUSIONS

Our theory has demonstrated that the universal mecha-
nism of predominantly destructive interference between ac-
cessible causal paths@12# is responsible for transmission at-
tenuation, superluminal delay times, and wave-packet
narrowing. Two other characteristics of evanescent waves,
namely, exponential attenuation and traversal-length inde-
pendence oftmeanor tpeakfor opaque barriers@2#, can also be
explained in terms of this universal mechanism@15#. This
theory overcomes the limitations of previous approaches,
since it applies to arbitrary pulse shapes, widths, and coher-
ence times, andexplicitly reveals the causal nature of their
transmission. The understanding provided by this theory may
open new perspectives in the design of the velocity, intensity,
and shape of transmitted pulses, by manipulating the phase
delays along the accessible paths in the medium.
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FIG. 3. Same as Fig. 1 for an incident Gaussian pulse that is
chopped att50 @Eq. ~12!#.
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