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The projection postulate has been used to predict a slow-down of the time evolution of the state of a system
under rapidly repeated measurements, and ultimately a freezing of the state. To test this so-called quantum
Zeno effect an experiment was performed by Itanoet al. @Phys. Rev. A41, 2295~1990!# in which an atomic-
level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to
controversies in the literature. In particular, the projection postulate and its applicability in this experiment
have been cast into doubt. In this paper we show analytically that for a wide range of parameters, such a short
laser pulse acts as aneffectivelevel measurement to which the usual projection postulate applies with high
accuracy. The corrections to the ideal reductions and their accumulation overn pulses are calculated. Our
conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding
of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and
an actual freezing does not seem possible because of the finite duration of measurements.

PACS number~s!: 03.65.Bz, 42.50.2p, 32.80.2t

I. INTRODUCTION

The so-called quantum Zeno effect~QZE! @1# is a theo-
retical prediction for the behavior of a system under rapidly
repeated measurements at timesDt apart. It is based on usual
quantum theory and on the concept of instantaneous mea-
surements together with ensuing state reductions according
to the projection postulate of von Neumann and Lu¨ders@2#.
The predictions are as follows:~i! impediment and slow-
down of the time development of the system due to repeated
measurements;~ii ! freezing of the state forDt→0, i.e., in the
limit of continuous measurements.

The underlying reason for this can be traced to the fact
that for short enough times transition probabilities grow qua-
dratically with time. If, in a given time intervalT, one per-
forms n measurements at timesDt5T/n apart, then the
probability to find an orthonormal state is at most propor-
tional to n(Dt)25T2/n, which goes to zero forn→` or
Dt→0.

Properties~i! and ~ii ! may be taken as a definition of the
QZE, as, for instance, in Refs.@3–6#. A slightly different
definition is used in Ref.@7#, where essentially only property
~ii ! is used.

An experiment to test the QZE for atomic systems has
been performed by Itanoet al. @3#, following a suggestion by
Cook @7#. In the experiment a large numberN of ions was
stored in a Penning trap@see Fig. 1 for the relevant level
structure, a V configuration; level 2 is~meta!stable#. The
time development is given by a so-calledp pulse @8# of
length Tp , tuned to the 1–2 transition frequency. A very
short pulse of a probe laser couples level 1 with an auxiliary
third level, and this is regarded as a measurement to which
the projection postulate is applied as follows. It is assumed
that an atom is in either level 1 or level 2, depending on
whether or not it has emitted photons during the probe pulse

@9#. At the end of thep pulse the final level populations for
up to 64 probe pulses~‘‘measurements’’! during ap pulse
~see Fig. 2! are determined and found to be in agreement
with the quantum Zeno predictions@10#.

The interpretation of this experiment, as to whether it
does or does not bear on the QZE, has been controversial in
the literature. Some have hailed the results as a dramatic
verification of the QZE, others argue that they are unrelated
to it @4,5,11–17#. In particular the use of the projection pos-
tulate and reduction of the wave function have been criti-
cized, and the very existence of the QZE has been cast into
doubt. It is no exaggeration to say that the QZE has aroused
tremendous interest in the literature@18–20#.

It was pointed out in Refs.@4,5,14–17# that these results
could be understood without any recourse to the projection
postulate or to the QZE. One can simply incorporate the
short probe pulses in the dynamics by an appropriate term in
the Hamiltonian or in the optical Bloch equations. A numeri-
cal solution of these Bloch equations should then yield the
experimental result, and indeed they do to good agreement.
The projection postulate does not seem to be needed. Is it
also incorrect to use it here?

This is one of the two main questions we are going to
address in this paper. First we give a justification of the pro-
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FIG. 1. V system with~meta!stable level 2 and Einstein coeffi-
cientA3 for level 3.V2 andV3 are the Rabi frequencies of the two
lasers.
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jection postulate as a useful and approximatetechnicaltool
in experimental situations of the general setup considered in
Ref. @3# for a wide range of parameters. Our motivation dif-
fers somewhat from that of Refs.@4,5,14–17#, although there
is no contradiction, in particular not to Refs.@5,16#. In Ref.
@5# the ensemble density matrix is calculated by adiabatic
Bloch equation techniques for a single probe pulse and found
to be nearly diagonal. But this contains no information about
the outcome for individual atoms and subensembles and does
not prove that atoms with or without photon emissions are in
u1& andu2&, respectively. The same technique is used in Ref.
@16# to study the parameter domain of ‘‘good’’ measurements
with a resulting diagonal density matrix@21#. We, however,
are concerned first with selective measurements, namely
with the states of atoms at the end of a probe pulse with or
without photon emissions. These states are explicitly deter-
mined and found to be close, but not identical, tou1& and
u2& @22#. Thus a probe pulse can indeed be regarded as ac-
complishing a highly accurate — but not perfect — reduc-
tion to and measurement of levels 1 and 2 in experiments of
the type of Ref.@3# for a wide range of parameters. As a
second question we discuss the cumulative effect of the de-
viations from ideal measurements — i.e., measurements
which can be described by the projection postulate — overn
probe pulses for the density matrix and determine the result-
ing level populations at the end of thep pulse. We exhibit an
explicit n dependence of the corrections to the treatment by
the projection postulate.

For a probe pulse to be an effective measurement some
obvious requirements have to be fulfilled. First of all, its
duration,tp , should be very short compared to the duration
Tp of thep pulse,

tp!Tp . ~1!

Furthermore, the probe pulse cannot be too short or too
weak, because it should produce fluorescence photons from
level 1 with high certainty. In addition, at the end of a probe
pulse any population in the auxiliary level 3 should decay to
level 1 extremely rapidly. This means thatA3

21 , the inverse
Einstein coefficient of level 3, must be tiny compared to the
time between two probe pulses,

A3
21!

Tp

n
2tp . ~2!

The first two conditions lead to a restriction on two param-
eters, namely@23#

ep[
A3V2

V3
2 !1 and eR[

V2

V3
!1. ~3!

In Secs. IV and V we will use the conditions

ep[
A3V2

V3
2 !1 and ed[

V3
2

A3
2 !1. ~4!

Then the conditioneR!1 is automatically fulfilled since
eR5eped

1/2. This parameter regime is compatible with the
one investigated in Ref.@16#. In the experiment of Itano
et al. @3# eR is about 6.531026, ep about 4.131024, and
ed about 2.531024 @24#.

In our paper we mainly use the quantum jump approach
~quantum trajectories! @26–28#, and because of its inherent
simplicity the analysis can be carried out analytically here
for a wide range of experimental parameters. This approach
is equivalent to the Monte Carlo wave-function approach
@29#. The ensemble of all trajectories satisfies the usual
Bloch equations and is often used to obtain numerical solu-
tions of the latter through numerical simulations. The quan-
tum jump approach deals with pure states for single atoms
instead of density matrices for ensembles@25#, which in the
present case means a simplification from nine components to
three, and it describes the time development of single atoms
between photon emissions by a simple reduced Hamiltonian
and by a ‘‘jump’’ to a reset state~in this paper the ground
state! at a photon detection@30#. It allows an intuitive under-
standing of the processes involved.

The simple derivation of the quantum jump approach out-
lined in Sec. II uses the projection postulate and reductions
as a technical tool for photon detections~not for atomic mea-
surements!, and it might seem that one uses this postulate for
an investigation of itself. However, as explained elsewhere
@26# the use of reductions in the derivation of quantum tra-
jectories is not necessary and can be avoided. Moreover, the
photon detections happen on a much shorter time scale than
all times considered in the experiment, and for such detec-
tions the projection postulate has been a reliable tool in the
past.

In Sec. III we consider the simple case of a probe pulse
with thep pulse temporarily switched off. In this example it
is very easy to see how the probe pulse acts on a state
a1u1&1a2u2& of a single atom and that it effectively leaves
it either in u1& or in u2&, with probability ua1u2 and ua2u2,
respectively, depending on whether the atom has emitted
photons or not. The small deviations from an ideal measure-
ment with perfect state reduction are determined.

In Sec. IV we consider the case of a single probe pulse
with thep pulse switched on. Complications arise now since
the p pulse causes a small additional transition between 1
and 2. In Sec. V the case ofn probe pulses during a single
p pulse and the buildup of the corrections are considered. It
turns out that one gets an excellent approximation for the
level populations if in the results for the idealized case one
takes the finite duration of the probe pulse into account by
neglecting the action of thep pulse during this time~see Fig.
3!. This simply means thatTp /n is replaced by
DT5Tp /n2tp . At the end of Sec. V we compare our ana-

FIG. 2. Probe pulses andp pulse.
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lytical results with those of a numerical solution of the opti-
cal Bloch equations for the parameters of the experiment.
The agreement is amazing.

In the final section we discuss our result and their signifi-
cance for the role of the projection postulate in the so-called
quantum Zeno effect. Our main conclusion is that although
the projection postulate is not necessary here, it is a useful
tool for a fairly accurate description of the measurements
involved. It is useful since it gives a quick intuitive under-
standing of the physical situation — without having to solve
unwieldy Bloch equations. Hence the projection postulate
should not be dismissed out of hand. However, it is only
approximately valid, because in practice realistic measure-
ments are never ideal nor instantaneous. Therefore the first
part of the Zeno effect — impediment and slow-down of the
time development — can legitimately be understood by the
projection postulate, but the second part — the freezing of
the state — is in our opinion an overidealization.

II. THE QUANTUM JUMP APPROACH IN QUANTUM
OPTICS. QUANTUM TRAJECTORIES

In this section we briefly summarize the quantum jump
approach used in the subsequent sections. The reader famil-
iar with it can proceed directly to Eqs.~16! – ~19!. The idea
is to describe the radiating atom between photon detections
by a reduced~or effective! time evolution operator giving the
time development under the condition that no photon has
been detected@26#. After a photon detection one has to reset
the atom to the reset state~‘‘jump’’ !, with ensuing reduced
time development, and so on. For a driven system with many
emissions one then obtains a stochastic path, called a quan-
tum trajectory@28#. The general reset state has been deter-
mined in Ref.@27#. For a V system as considered in this
paper the reset state after an emission is the ground state. The
reduced time development together with the reset state pro-
vide a complete stochastic description of the time develop-
ment of the atom@27#. Starting with this description one can
then derive the Bloch equations describing an ensemble of
radiating atoms@26,27#. In fact, both approaches, quantum
jumps and Bloch equations, are possible and equivalent ways
to describe the time evolution of an ensemble of fluorescing
atoms, but the former is also easy to apply to the emission
behavior of a single atom.

We now indicate how to determine the reduced time de-
velopment operator for the V system. To be sure that no
photon has been detected in a time interval one may imagine

measurements on the radiation field in a rapid succession at
timesDt apart, att1,•••,tm5t, say. If in all these mea-
surements no photons are found the state of the atom at time
t is, by the von Neumann – Lu¨ders projection postulate@31#,

uf~ t !&5u0ph&^0phuU~ tm ,tm21!u0ph&^0phu•••u0ph&

3^0phuU~ t1 ,t0!u0ph&uc& ~5!

5u0ph&U red~ t,t0!uc&, ~6!

whereu0ph& is the vacuum state,u0ph&uc& the initial state,U
the complete time development operator, and where the sec-
ond equality serves as a definition of the reduced time evo-
lution operatorU red(t,t0), which acts on atomic states. The
time difference between successive measurements has to be
chosen short enough to be able to say that at most one pho-
ton has been detected in this interval. On the other hand this
time difference has to be longer than the inverse transition
frequencies@26#. Under these assumptions one can calculate
Eq. ~5! by means of perturbation theory. WithU red(t,t0) one
has a simple expression for the probabilityP0(t) that no
photon is detected in the interval@0,t# if the atom is in the
stateuc& at t50,

P0~ t !5uu uf~ t !&uu25uuU red~ t,t0!uc&uu2. ~7!

We now apply this to the V system depicted in Fig. 1. In
this system the upper levels 2 and 3 couple to a common
ground level 1, with Einstein coefficientsA2 andA3 . Later
we will consider level 2 to be stable and putA250. We
assume here thatv32[v32v2 is in the optical range, i.e.,
not too small. For simplicity we consider zero detunings of
the driving fields, whose~real! Rabi frequencies are denoted
by V2 andV3 , respectively. The Hamiltonian in the rotating
wave approximation is given by@32#

H5HA
01HF

01(
i52

3

\$ 1
2 V i u i &^1ue2 iv i t1H.c.%

1(
i52

3

(
kl

\$giklaklu i &^1u1H.c.%

where

gikl5 ieDi1•eklvkl /~2e0\V!1/2, ~8!

with the transition dipole momentDi15^ i uXu1& andekl the
polarization vector.V is the quantization volume, later taken
to infinity. Going over to an interaction picture with respect
to

H05HA
01HF

0 ~9!

one has

HI~ t !5(
i52

3

\$ 1
2 V i u i &^1u1H.c.%1(

i52

3

(
kl

\$giklaklu i &

3^1uei ~v i2vkl!t1H.c.%. ~10!

By UI we denote the corresponding time development opera-
tor. With Dt5t i2t i21 in the range given above we can cal-

FIG. 3. p pulse switched off during probe pulse.
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culate in second-order perturbation theory the time evolution
under the condition that no photon has been detected. From

^0phuUI~ t i ,t i21!u0ph&51A2
i

\Et i21

t i
dt8^0phuHI~ t8!u0ph&

2
1

\2E
t i21

t i
dt8E

t i21

t8
dt9^0phuHI~ t8!

3HI~ t9!u0ph&

one obtains for the first-order contribution

2 i(
i52

3

$ 1
2 V i u i &^1u1H.c.%Dt

and for the second order, omitting terms proportional to
(Dt)2,

2 (
i , j52

3

(
kl

E
t i21

t i
dt8E

t i21

t8
dt9giklgjkl* ei ~v i2vkl!t8e2 i ~v j2vkl!t9u i &^ j u

52 (
i , j52

3

(
kl

E
t i21

t i
dt8ei ~v i2v j !t8E

0

t82t i21
dtgiklgjkl* ei ~v j2vkl!tu i &^ j u. ~11!

In the last equation we have substitutedt5t82t9. Since
Dt is much larger than the inverse optical frequenciesv i

21

one can extend the inner integral to infinity, leading to
pd(v j2vkl) plus a principle value. Alternatively one can
argue that the correlation function

k i j ~t!5(
kl

giklgjkl* ei ~v j2vkl!t ~12!

is negligible fort@v j
21 . The sum overk then yields gen-

eralized decay constantG i j and level shiftsD i j . The level
shifts are small@33# and will be neglected in the following.
With

G i j5
e2Di1•D1 j

6pe0\c
3 v j

3 ~13!

one obtains for the second-order contribution

2 (
i , j52

3

G i j u i &^ j u E
0

Dt

dte2 i ~v i2v j !t. ~14!

Now, if v32v2 is in the optical range, as supposed here,
then the last integral vanishes foriÞ j and equalsDt other-
wise. We note that

G i i5
1
2 Ai ,

whereAi is the Einstein coefficient of thei th level. Collect-
ing all terms we thus obtain

^0phuUI~ t i ,t i21!u0ph&51A2 i(
i52

3

$ 1
2 V i u i &^1u1H.c.%Dt

2(
i52

3
1
2 Ai u i &^ i uDt. ~15!

This can be written as exp$2iHred
I Dt/\% where, in matrix

notation, the reduced HamiltonianH red
I and the atomic op-

eratorM are defined through

H red
I /\5

1

2 S 0 V2 V3

V2 2 iA2 0

V3 0 2 iA3

D [2 iM . ~16!

Later on, we will takeA250. For arbitrary time intervals we
thus have, in the interaction picture,

U red
I ~ t,0!5e2 iH red

I t/\[e2Mt. ~17!

The no-photon probability is then, fort050 and initial state
c, or more generally a density matrixr(0),

P0~ t;c!5uue2Mtuc&uu2,

P0„t;r~0!…5tr$e2Mtr~0!e2M†t%. ~18!

The probability that the first photon is emitted in (t,t1dt)
equalsP0(t;c)2P0(t1dt;c)[w1(t;c)dt, where

w1~ t;c!52
d

dt
P0~ t;c! ~19!

is the probability density for the first photon@34#. For small
upper level separation nonzero off-diagonalG i j terms may
appear which lead to interesting coherence effects@35–38#.
For generaln-level systems the reduced Hamiltonian is
given in Ref.@27#.

The reduced time development is not unitary. The reason
is that it does not describe the time evolution of the whole
ensemble but that of the subensemble with no photons. The
size of this subensemble is decreasing in time since an atom
for which a photon has been detected leaves the sub-
ensemble, and this is reflected by the decrease of the norm
squared in Eq.~7!. The above probability density determines
the ~random! time for the first photon. After that the atom is
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reset to the ground state,u1&, for a V system. The next emis-
sion time is then determined byw1(t;1), and so on. Inthis
way one obtains a quantum trajectory.

From this description of single systems one can recover
the usual Bloch equations of the complete ensemble as fol-
lows @27#. The density matrixr(t) of the ensemble is a sum
of two terms,r. andr0, corresponding to a subensemble of
atoms with or without photon emissions until timet, respec-
tively. From Eq.~17! one has

r0„t;r~0!…5e2Mtr~0!e2M†t. ~20!

If I „t;r(0)…dt denotes the~unconditioned! probability of
finding a photon betweent and t1dt, then the sub-
subensemble of atoms with their last emission beforet in this
interval is described by

I „t;r~0!…dtr0~ t2t;u1&) ~21!

and therefore

r.~ t !5E
0

t

dtI „t;r~0!…r0~ t2t;u1&). ~22!

Differentiation ofr5r01r. gives

ṙ~ t !5 ṙ0„t;r~0!…1I „t;r~0!…u1&^1u

1E
0

t

dtI „t;r~0!…ṙ0~ t2t;u1&). ~23!

Taking the trace and using trr(t)[1 gives
I „t;r(0)…5A2r221A3r33. From Eq. ~20! one obtainsṙ0,
and inserting this into Eq.~23! gives

ṙ52
i

\
@H red

I r2rH red
I† #1~A2r221A3r33!u1&^1u. ~24!

This is a compact form of the Bloch equations used in Refs.
@4,5#.

In this outline of the quantum jump approach, state reduc-
tions were used as a tool. But it is noteworthy that one can
also use the Markov approximation, indicating a close con-
nection between the two@26#.

III. A SIMPLE SPECIAL CASE: INTERMITTENT PROBE
AND p PULSE

The quantum jump approach will now be applied to the
experimental situation of Itanoet al. @3#. Here one can take
A250. The simplicity of the mechanism becomes particu-
larly clear if thep pulse is switched off while the probe
pulse is on. ThenV2 is zero during a probe pulse and Eq.
~16! reads during this time interval

H red
I /\5

1

2 S 0 0 V3

0 0 0

V3 0 2 iA3

D [2 iM 0 . ~25!

Note that this annihilates the stateu2& and therefore the re-
duced time development leavesu2& invariant. At the end of a
probe pulse one has to wait a short transient time of the order

of A3
21 for a possible 3-component to decay. This will al-

ways be done in the following.

A. Effective reduction by a probe pulse

If the state at the beginning of a probe pulse is

uc&5a1u1&1a2u2& ~26!

and 0<t<tp , then uc& evolves, until the emission of the
first photon, as

e2 iH red
I t/\uc&5e2M0tuc&5a1e

2M0tu1&1a2u2& ~27!

since thep pulse is assumed to be switched off now. Due to
the termA3 in M0 the norm of the first term of the right-hand
side~rhs! decreases exponentially and the first term becomes
negligible fort large enough. Therefore, if an atom did not
emit a photon until the end of the probe pulse it will essen-
tially be in the stateu2&, and this happens with probability
given by the norm-squared of the rhs, i.e., byua2u2 for large
enoughtp .

On the other hand, if an atom does emit one or
more photons — this happens with probability
12uue2M0tuc&uu25ua1u2(12uue2M0tu1&uu2) — then right
thereafter it is in stateu1& and will then be pumped between
u1& and u3& by the probe pulse, with photon emissions. A
short time after the end of the probe pulse,u3& decays to
u1& due to the damping termA3 . Thus a single atom is pro-
jected ontou1& or u2& by the probe pulse with probability
ua1u2 and ua2u2 if uue2M0tu1&uu2 can be neglected. For an
ensemble of atoms the density matrix becomes diagonal be-
cause of the reduction of every single atomic state.

The preceding analysis is easily made more quantitative
as follows. The eigenvalues ofM0 arel250 and

l1,35
1

4
~A36AA3

224V3
2!. ~28!

The first term on the rhs of Eq.~27! becomes

a1e
2M0tu1&5a1

1

l12l3
$~M02l3!e

2l1t

2~M02l1!e
2l3t%u1&, ~29!

as immediately checked by explicit differentiation@39#. For
2V3<A3 the root in Eq.~28! is real andl1 and l3 are
positive. Therefore in this case the exponential decrease goes
at least as

expF2
t

4
~A32AA3

224V3
2!G<expF2

t

2
V3

2/A3G ~30!

and this becomes exponentially small for a probe pulse of
lengthtp with

tp@2A3 /V3
2 ~ for 2V3,A3!. ~31!

If 4V3
2>A3

2 the root is imaginary and the decrease goes as

expF2
t

4
A3G ~32!
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and Eq.~31! is replaced by

tp@4/A3 ~ for 2V3.A3!. ~33!

This can be combined to

tp@max$A3
21 ,A3 /V3

2%. ~34!

For the special case under consideration this is the condition
on the length of the probe pulse for an effective reduction to
u1& and tou2&, with probabilityua1u2 andua2u2, respectively.

B. Population vs observed photons

A single atom is projected onto the ground state if it emits
several photons during the probe pulse. For an ensemble of
atoms the number of photons is expected to be a measure for
the population of level 1. With the quantum jump approach
this is easily seen as follows.

The probability for no photon emission until time
t,P0(t;c), is given by the norm squared of the rhs of Eq.
~27!, according to Eq.~18!, and it approachesua1u2 for large
times. For the subensemble of atomswith emissions the
~conditional! probability density for the emission of the first
photon is therefore

w1~t;c!/ua1u252
d

dt
P0~t;c!/ua1u2 ~35!

for a1Þ0 ~for a150 it is not defined!. Since the two terms
on the rhs of Eq.~27! are orthogonal, thea2 term drops out
upon differentiation, and2d/dtP0(t;c) is proportional to
ua1u2. Thus for a1Þ0 the probability density for the first
photon as well as the number of photons per atom in this
subensemble~i.e., the conditional expectation value! is inde-
pendent of the atomic state at the beginning of the probe
pulse. The number,N(t;c), of photons per atom for an un-
conditioned ensemble with initial stateuc& ~i.e., the usual
expectation value! is

N~t;c!5ua1u2N~t;1!. ~36!

This expression is now also true fora150.
The result is exact for the caseV250 and for all times

t within the validity domain of the quantum jump approach
and Bloch equations. As a consequence, in the case of an
ensemble realized by a large number of noninteracting atoms
without cooperative effects, as in Ref.@3#, the number of
observed photons per atom is proportional to the population
of level 1.

C. Effectiveness of state reduction

Instead of the condition in Eq.~34! for tp one can use
N(tp ;c), the number of photons per atom emitted until time
tp , as a more precise measure for the effectiveness of state
reduction. Equation~34! corresponds toN(tp ;1)@1, but we
will show that also for smallerN(tp ;c) an almost complete
state reduction is obtained.

As pointed out in Sec. III A atoms with photon emissions
are in u1& if one waits at the end of the probe pulse for a
short transient time to allow for the decay of levelu3&. But
atoms without emissions, however, still contain a part which

is not reduced tou2& if a1Þ0 in Eq. ~27!. At the end of the
probe pulse and after a short transient time to allow for the
decay of levelu3& this nonreduced component is

a1^1ue2M0tpu1&u1&. ~37!

The smaller the norm of this, the better the reduction to
u2&. The norm can be estimated by

uua1^1ue2M0tpu1&u1&uu<uua1e
2M0tpu1&uu. ~38!

For initial stateu1& the number of photons per atom until
time tp , N(tp ;1), is in good approximation given by the
steady-state emission rate@32# multiplied by tp ,

N~tp ;1!5A3

V3
2

A3
212V3

2 tp . ~39!

For initial stateuc&5a1u1&1a2u2& we denote the number of
photons per atom until timetp by N, i.e., N5N(tp ,c).
Then one can use Eqs.~36! and~39! to expresstp throughN
and ua1u2,

tp5
A3
212V3

2

A3V3
2 N/ua1u2. ~40!

This can now be inserted into Eq.~38! to obtain an estimate
of the nonreduced part whenN photons per atom are emitted.
This norm is easily calculated by Eq.~27!. The norm is a
function ofV3 /A3 , N, anda1 , and one easily shows that
for fixed other parameters it becomes largest forua1u51. A
graphical evaluation gives as upper bound for the norm of
the nonreduced part

uua1^1ue2M0tpu1&u1&uu<1.043e2N~t;1!/2 ~41!

which holds forN>2 and for all values ofV3 , A3 , and
a1 . For increasingN the reduction thus becomes very effec-
tive.

For particular values ofV3 /A3 the bound for the nonre-
duced part can be substantially improved. For example, for
V3 in the vicinity of A3/2 the nonreduced part becomes
much smaller than the above bound. For very small and very
large values ofV3 /A3 the reduction is somewhat less effi-
cient than forV3 close toA3/2.

In Table I we have listed the norm of the maximally pos-
sible nonreduced part for various values ofN andV3 /A3 .
The best reduction occurs forV3 aroundA3/2, but the re-
duction is also excellent for small and large values ofV3 if
N is larger than 8.

Summarizing this section, we have shown the following
for the case in which thep pulse is turned off during a probe
pulse.~i! The probe pulse provides an effective reduction of
the initial state provided its duration is much longer than
max$1/A3,A3 /V3

2%, a rather mild restriction.~ii ! For an~infi-
nite! ensemble the observed number of photons per atom is
proportional to the population of level 1.~iii ! Already for
small average numbers of emitted photons an almost com-
plete state reduction is obtained.
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IV. SIMULTANEOUS PROBE AND p PULSE

Now we consider a single probe pulse with thep pulse
switched on. At the end of a probe pulse, we include a short
transient time of the orderA3

21 to allow for the decay of the
auxiliary level 3. Since this short transient time, with the
action of thep pulse, is neglected this introduces an error of
the orderV2 /A3 in the time development of the above sub-
ensembles. In the following we will assume that this error is
much smaller thanep . Sinceep5A3V2 /V3

2 this is equiva-
lent to the condition

ed[V3
2/A3

2!1. ~42!

In this and the next section we will use the conditionsep ,
ed!1. The conditioneR!1 is then automatically fulfilled
@24#.

Thep pulse causes a small additional transition between
1 and 2. We will show that, as a consequence, an atom with
initial stateuc&5a1u1&1a2u2& and without photon emission
until the end of a probe pulse, including the above short
transient time, is not in the stateu2& but in a stateul̃& which
also has a 1-component. On the other hand, if an atom emits
photons, the last photon may have been emitted some time
before the end of the probe pulse. Right after the emission
the atom is inu1&, but until the end of the probe pulse a
small contribution of stateu2& may build up, due to the ac-
tion of thep pulse. Thus the atom will not be inu1& as in the
ideal projection result. Instead it is in a mixed state, denoted
by r̃. Thus, with thep pulse switched on, a single probe
pulse effectively projects onto the stateul̃& if no photon is
emitted and ontor̃ otherwise, and this happens with the
probabilityP0(tp ;c) and 12P0(tp ;c), respectively. In the
following ul̃& and r̃ will be determined. Ifep ,ed!1 the
differences betweenul̃& and u2&, r̃ and u1&^1u, and
P0(tp ;c) andua2u2 are small and the results of Sec. III can
be used as a good approximation.

A single atom now evolves with the reduced Hamiltonian
H red
I [2 i\M of Eq. ~16!, with A250, until the emission of

the first photon. The possible pumping between levels 1 and
2 is reflected by the fact thatu2& is no longer annihilated
by H red

I . To calculate the time development
exp$2iHred

I t/\%5exp$2Mt% one may proceed in two alterna-
tive ways if the eigenvaluesl i of M ,i51,2,3, are all distinct.
In the first way one determines the corresponding eigenvec-
tors ul i& of M . SinceM is non-Hermitian these are in gen-
eral nonorthogonal, and therefore one also needs the recip-
rocal basis$ul i&% with ^l i ul j&5d i j . Then one can write

e2Mt5( e2l i tul i&^l
i u. ~43!

Alternatively one has, as a generalization of Eq.~29!,

e2Mt5e2l1t
~M2l2!~M2l3!

~l12l2!~l12l3!
1~cyclic permutations!

~44!

which is immediately checked by application to eigenvec-
tors. The case of degenerate eigenvalues can be treated by
considering appropriate limits of Eq.~44!.

Comparing the two equations one sees thatul i&^l
i u coin-

cides with the operator multiplyinge2l i t in Eq. ~44!. More-
over, applying this operator to any vector gives a multiple of
ul i&, thus automatically yielding the eigenvectors. The ei-
genvalues are the roots of the characteristic equation@41#
which, in principle, can be solved in closed form. One easily
calculates

~M2l1!~M2l3!S 1

0

0
D 5S l2~l22

1
2 A3!

1
2 iV2~l22

1
2 A3!

1
2 il2V3

D .

By the above remarks, this is a multiple oful2&. Similarly
@42#,

~M2l1!~M2l3!S 01
0
D 52

V2

2il2
~M2l1!~M2l3!S 10

0
D ,

~45!

which is also a multiple oful2&.
For the parameter range of the Introduction good approxi-

mations forl i are

l1,35
1
4 ~A36AA3

224V3
2!, l25

1
2 A3V2

2/V3
25 1

2 eR
2A3 ,

~46!

wherel2 has been obtained by Newton’s method. Note that,
for V2!V3 ,

l2!Rel1,3. ~47!

Hence the exponentials exp$2l1,3t% in Eq. ~44! drop off very
rapidly. When calculating exp$2Mtp%uc& by Eq.~44! one can
therefore, as in Sec. III, neglect theul1& and ul3& terms if
tp@ max$A3

21 ,A3 /V3
2%5A3 /V3

2 ~becauseed!1).

TABLE I. Maximally possible nonreduced part for a given numberN of observed photons per atom and
for different values ofV3 /A3 . Thep pulse is switched off.

N 4 5 6 8 10 20 50

V3!A3 0.135 0.082 0.050 0.018 6.731023 4.531025 1.4310211

V35A3/2 0.023 0.006 0.002 0.0001 6.731026 4.0310212 2.9310231

V35A3 0.051 0.027 0.015 0.004 6.931024 4.331027 5.1310217

V352A3 0.094 0.065 0.038 0.011 3.431023 1.231025 5.7310213
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A. Subensemble without photon emission

With Eqs.~44! – ~47! one can now obtain the state of the
subensemble of atoms without photon emissions until the
end @40# of the probe pulse. For initial stateuc&,

uc&5a1u1&1a2u2&,

it is described at timetp by

e2Mtpuc&5e2Mtp$a1u1&1a2u2&%

5e2l2tp~a22 i epa1!A12eR
21ep

2ul2&, ~48!

where

ul2&5
1

A12eR
21ep

2 S 2 i ep

12eR
2

eR
D . ~49!

Moreover,

l2tp5
1
2 epp

tp
T

!1 ~50!

and hence exp$2l2tp%'1. Similarly for an initial density
matrix. The stateul2& in Eq. ~49! has a very small third
component, and after the probe pulse has been turned off this
component will, on the time scale ofA3

21 , decay to zero
@43#. Thus at the end of a probe pulse and after this transient
decay time the subensemble with no photons is in the —
normalized — state

ul̃&P1,2ul2&/i•i5
1

A11ep
2 S 2 i ep

1

0
D 'u2&, ~51!

whereP1,2[u1&^1u`u2&^2u denotes the projector onto the 1–2
subspace and where terms of higher orders inep anded have
been omitted. The probability for no photon emission is

P0~tp ;c!5uuP1,2e2Mtpuc&uu2

5ua2u212 Ima1a2* ep2pua2u2
tp
Tp

ep

1~higher orders inep ,ed!. ~52!

For an initial density matrixr in instead of the pure statec
one has to replaceua2u2 by r22

in anda1a2* by r12
in .

Thus, to good approximation, the probability for no pho-
ton emission is proportional to the population of level 2 and
the atoms with no emissions are approximately in the state
u2&. For the parameters@44# of the experiment@3# the cor-
rections in Eq.~52! are less than 431024.

B. Subensemble with photon emissions

We will now calculate the density matrixr̃ for the suben-
semble with photon emissions. One can employ a systematic
expansion in powers ofV2 , including second order. How-
ever, the following more physically motivated procedure is
simpler and yields the same results.

At the beginning of the probe pulse we assume the en-
semble to be in the pure stateuc&; for a density matrix the
treatment is similar. The complete ensemble at timetp after
the beginning of the probe pulse can be thought of as con-
sisting of two subensembles of atoms with and without pho-
ton emissions. The latter is described by Eq.~20!,

r0~tp ;c![e2Mtpuc&^cue2M†tp, ~53!

with its relative weight given by Eq.~18!,

trr0~tp ;c!5P0~tp ;c!. ~54!

According to Eq.~22! the former subensemble is described
by

r.~tp ;c!5E
0

tp
dtI ~t;c!r0~tp2t;1!. ~55!

The complete density matrix isr.1r0, and therefore

trr.512P0 . ~56!

We now determiner12
. andr22

. at timetp . For initial state
u1& the no-photon probability decreases rapidly, and there-
fore r0(tp2t;1) contributes essentially only in the vicinity
of t'tp @cf. Eqs. ~29! – ~31!#. Because of this one can
replaceI (t;c) by I (tp ;c) which is approximately equal to
the fraction 12P0(tp ;c) of emitting atoms timesI (tp ;1).
The latter practically equals the stationary emission rate for
the three-level system which is, up to terms of order in
V2

2 , the stationary rate from Eq.~39! for the two-level sys-
tem. For the calculation of the 12- and 22-components these
corrections inV2

2 can be omitted sincer0(tp2t;1)12 and
r0(tp2t;1)22 are themselves of orderV2 andV2

2 and much
smaller than 1. Thus we obtain

r.~tp ;c!12/22

5@12P0~tp ;c!#
A3V3

2

A3
212V3

2E
0

tp
dtr0~t;1!12/22. ~57!

After the end of the probe pulse, any population of level 3
will rapidly decay to level 1 in a transient time of order
A3

21 . We denote the resulting — normalized — density ma-
trix of the subensemble of atoms with emissions byr̃ @45#.
The normalization factor ofr. is 12P0 , and according to
Eq. ~56! we obtain from Eq.~57!

r̃~tp ;c!12/225
A3V3

2

A3
212V3

2E
0

tp
dtr0~t;1!12/22. ~58!

For this we note that, by Eq.~53!,

r12
0 ~t;1!5^1ue2Mtu1&^1ue2Mtu2&,

r22
0 ~t;1!5bz^2ue2Mtbu1& z2. ~59!

Using Eq.~44! for e2Mt an elementary calculation yields

r̃225p
tp
Tp

ep1~higher orders inep ,ed!, ~60!
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r̃125 i ep1~higher orders inep ,ed!, ~61!

r̃11512 r̃22, r̃2152 r̃12, ~62!

and its 13, 23, and 33 components vanish,

r̃135 r̃315 r̃235 r̃325 r̃3350. ~63!

We conclude that after a short transient time at the end of
the probe pulse the subensemblewith photon emissions is
described by the above normalized stater̃, which is indepen-
dent of the initial stateuc&, and the relative size of the sub-
ensemble is given by 12P0(tp ;c).

We note thatr̃22 and r̃12 are indeed very small. For the
parameters of the experiment @3,44# one has
r̃22,1.231025 and ur̃12u,4.131024.

C. Level population after a probe pulse

We denote byr (p) the density matrix of the complete
atomic ensemble after a short transient time at the end of a
probe pulse. By the preceding results it is given by

r~p!5P0~tp ;r
in!ul̃&^l̃u1@12P0~tp ;r

in!#r̃, ~64!

wherer in is the density matrix at the beginning of the probe
pulse. From Eqs.~52!, ~51!, and ~60! one immediately ob-
tains for the population of level 2 after the probe pulse

r22
~p!5r22

in12ep Imr12
in1p

tp
Tp

ep~122r22
in !. ~65!

The first term is the projection-postulate result for an ideal
measurement. Forn probe pulses,r12 is of the order
sinp/2(1/n2tp /Tp), and ifn is as in the experiment@3# the
second term is larger than, or comparable to, the last term. In
the corresponding Eq.~16! of Ref. @5# this important term is
missing, due the approximation used there@22#, and the cor-
rection appearing there is equivalent toO(ep2ptp /Tp) in
our notation.

Summarizing this section, we have shown that, for the
parametersep anded much less than 1, a probe pulse acts as
an effective state reduction also in the presence of thep
pulse. The reductions are tor̃ and ul̃&, corresponding to
subensembles with and without emissions, respectively. One
has r̃'u1&^1u and ul̃&'u2&. The corrections have been ex-
plicitly calculated in terms of the above parameters@46#.

V. LEVEL POPULATION AFTER n PROBE PULSES

The preceding results show that after a probe pulse and a
short transient time, the ensemble consists of two suben-
sembles, one in the stater̃ and the other inul̃&, correspond-
ing to atoms with and without photon emissions. The small
difference from the projection result can have a cumulative
effect for the density matrix aftern probe pulses.

After a probe pulse, the density matrix for the complete
ensemble is of the form

r5ar̃1bul̃&^l̃u ~66!

with a1b51. Until the beginning of the next probe pulse at
a timeTp /n2tp later the time development is given by the
p pulse only, i.e., in matrix notation and in theu1&2u2&
subspace by

Up~ t,0!5S cos12 V2t 2 i sin12 V2t

2 i sin12 V2t cos12 V2t
D . ~67!

For t5Tp /n2tp we defineUp(t,0)[Ũn . We will now de-
termine the density matrix after thekth probe pulse. To this
end we put

p5tr$P1,2e
2MtpŨnr̃Ũn

†e2M†tpP1,2%,

q5uuP1,2e2MtpŨnul̃&uu2, ~68!

whereP1,2 is the projector onto the 122 subspace. Physi-
cally, p is the probability of finding no photons after the next
probe pulse@40# if one had started withr̃ at the end of the
preceding probe pulse, similarly forq and ul̃&.

With the abbreviation

sn5sinpS 1n2
tp
Tp

D , cn5cospS 1n2
tp
Tp

D ~69!

one finds by a straightforward calculation from Eq.~67! for
Up and Eq.~44! for e2Mtp

p5 1
2 ~12cn!1snep1 r̃22cn2 i r̃12sn2

1
2 p

tp
Tp

~12cn!ep

5 1
2 ~12cn!12snep1p

tp
Tp

cnep2
1
2 p

tp
Tp

~12cn!ep ,

q5 1
2 ~11cn!22snep2

1
2 p

tp
Tp

~11cn!ep, ~70!

where higher orders inep anded have been omitted.
Now suppose that after the (k21)st probe pulse the den-

sity matrix r is given by Eq.~66! with a5a(k21) and
b5b(k21). Then after thekth probe pulse the relative size
of the no-photon subensemble is given by

b~k!5pa~k21!1qb~k21!5p1~q2p!b~k21!,

~71!

wherea512b has been used. The solution of this recur-
rence relation is

b~k!5p
12~q2p!k21

12~q2p!
1~q2p!k21b~1!,

a~k!512b~k!. ~72!

According to Eq.~66! b(1) is the probability of finding no
photon during the first probe pulse@40#. For the initial con-
dition that all atoms are prepared in the ground state at the
beginning of the experiment, as in the experiment of Ref.@3#,
b(1) is given by
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b~1!5uuP1,2e2MtpŨnu1&uu2

5
1

2
~12cn!1snep2

1

2
p

tp
Tp

~12cn!ep . ~73!

At the end of thep pulse, i.e., after thenth probe pulse
the density matrix is

r~Tp!5a~n!r̃1b~n!ul̃&^l̃u. ~74!

The populations of levels 2 is then

r22~Tp![^2ur~Tp!u2&5a~n!r̃221b~n!bz^2ul̃&bz2. ~75!

Using Eqs.~51!, ~60!, and ~70!–~75! and omitting higher
orders inep anded one obtains

r22~Tp!5 1
2 ~12cn

n!1~2n21!sncn
n21ep1pn

tp
Tp

cn
nep ,

r11~Tp!512r22~Tp!. ~76!

Omitting also theep terms one obtains for the populations of
levels 1 and 2 the approximate results@47#

r22~Tp!> 1
2 ~12cn

n!5 1
2 F12cosnpS 1n2

tp
Tp

D G
r11~Tp!> 1

2 ~11cn
n!5 1

2 F11cosnpS 1n2
tp
Tp

D G . ~77!

For n ideal measurements with the projection postulate
the result would be@3,7#

r22~Tp!5 1
2 F12cosn

p

n G , r11~Tp!5 1
2 F11cosn

p

n G .
~78!

This differs from the result in Eq.~77! only by the term
tp /Tp in the cosine, and therefore Eq.~77! can be obtained
from the ideal projection result by neglecting the action of
the p pulse during a probe pulse, thus replacing the time
DT5Tp /n between measurements by the effective time
DT5Tp /n2tp . This can be also understood directly quite
easily as follows. Atoms which emit photons during a probe
pulse flip repeatedly between levels 1 and 3, and so thep
pulse acts less effectively. Moreover, right after emission of a
photon an atom is in the ground state and since the action of
the p pulse is of cosine form it is small for small times.
Similarly, as shown in Sec. IV, the atoms without emissions
rapidly approach the stateul̃&>u2& so that one again has a
small action for small times. Therefore the action of thep
pulse is greatly inhibited during a probe pulse .

It is evident from Eq.~77! that this approximation yields
the same result as if one had switched off thep pulse during
the probe pulse and then uses the results of Sec. III.

The corrections of Eq.~76! to the approximate values for
r i i (Tp) in Eq. ~77! are small forep!1. Moreover, it is
straightforward to show that in the parameter range consid-
ered here the correction tor22(Tp) is positive and increases
with n, as long astp is not too close toTp /n. This is borne
out in Table II, where predicted and observed values of

r22(Tp) for the parameters of the experiment of Ref.@3# are
shown. The second column is based on the projection postu-
late forn ideal measurements. The third column is based on
Eq. ~77! or, alternatively, onn ideal measurements with en-
suing switch-off of thep pulse fortp seconds. The agree-
ment between the quantum jump result in Eq.~76! and the
numerical solution of the three-level Bloch equations of Eq.
~24! in column 5 is apparent. The projection postulate with
DT modified toDT5Tp /n2tp also gives very good results.
The experiment deals with a system where additional energy
levels may make minor contributions@10# and this may ex-
plain the deviations from the experimental results in the last
column of Table II.

VI. CONCLUSIONS: DOES THE ZENO EFFECT EXIST?

We have investigated the so-called quantum Zeno effect
for an ensemble of atomic three-level systems as that of the
experiment in Ref.@3#. There has been some controversy
about the interpretation of that experiment as to whether it
provides an experimental proof of that effect. The Zeno ef-
fect is a theoretical prediction for the behavior of a system
under rapidly repeated measurements with ensuing state re-
ductions according to the projection postulate. As explained
in the Introduction, the controversy has mainly focused on
two points, namely~i! whether some of the ‘‘measurements’’
in Ref. @3# should not rather be included as ‘‘interactions’’ in
the Hamiltonian, and~ii ! whether the projection postulate is
appropriate at all.

Now, a measurement on a microscopic system is indeed a
complicated interaction with another system, ultimately at
the macroscopic level. Not all conceivable measurements
conform to the idealized case considered by von Neumann
and Lüders @2# where each measurement is associated with
an operator,A, say, such that the mean value,^A&, is given
by the expectation value and the mean-square deviation by
the expectation of (A2^A&)2. As a simple example one may
consider a system of photons in a cavity. The outcome of the
measurement consists of two possible pointer readings, 0 and
1, say. The actual measurement is performed by a ‘‘black
box’’ which has been so constructed that an auxiliary two-
level atom in some initial state is passed through the cavity
and then it is determined whether the atom is in the ground
or excited state, yielding the pointer readings 0 or 1, respec-
tively. Considered as a measurement performed by the black
box on the photon system, it is obviously not of the above

TABLE II. Predicted and observed population of level 2 at the
end of thep pulse forn probe pulses of lengthtp .

Project postulate

n DT5Tp /n
DT5Tp /
n2tp

Quantum
jump

Bloch
equation Observed@3#

1 1.00000 0.99978 0.99978 0.99978 0.995
2 0.50000 0.49957 0.49960 0.49960 0.500
4 0.37500 0.35985 0.36062 0.36056 0.335
8 0.23460 0.20857 0.20998 0.20993 0.194
16 0.13343 0.10029 0.10215 0.10212 0.103
32 0.07156 0.03642 0.03841 0.03840 0.013
64 0.00371 0.00613 0.00789 0.00789 20.006
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kind. There is indeed an operatorA for the photon system,
whose expectation value gives the mean, but it has eigenval-
ues different from 0 and 1, and right after a measurement the
photon is not in an eigenstate ofA. As a consequence, the
mean-square deviation is not of the above form. By combin-
ing part of the black box, namely the atom, with the photons
to a larger system one may possibly retrieve or come close to
the situation considered by von Neumann, depending on how
the measurement on the atom is actually performed.

This example shows that one may have to study the mea-
surement at hand more closely. This is what we have done
with the atomic Zeno experiment by means of the quantum
jump approach@26,27#, which is essentially equivalent to the
Monte Carlo wave-function approach@29# and to the quan-
tum trajectory approach@28#. The advantage of this approach
is that it allows a physically intuitive as well as analytic
treatment of the problem. Part of the measurement interac-
tion — the laser pulses — has been incorporated in the
Hamiltonian; this corresponds in the above example to com-
bining the photon system and atom to a larger system and is
related to shifting the Heisenberg ‘‘cut’’@48#.

Our analysis has shown that, to a fair accuracy and within
the parameter regimes considered in this paper, a short probe
pulse can indeed be viewed as performing a measurement of
levels 1 or 2 of the atom, with ensuing state reduction, as
given by the projection postulate for an ideal measurement.
However, since these ‘‘measuring’’ pulses have been mod-
eled very accurately in the Hamiltonian we were able to
show that the more realistic case is also slightly more com-
plicated, giving rise to corrections to the idealized case.
These corrections were explicitly calculated, and they have a
cumulative effect on the density matrix when the number of
probe pulses is increased, i.e., just for the interesting case.

What then remains of the Zeno effect? Does it exist at all?
In our opinion the answer depends on one’s point of view. If

one takes the view that, for example, the probe pulses
~‘‘measuring pulses’’! have nothing to do with a measure-
ment but just lead to additional terms in the Hamiltonian,
then any change in the temporal development is not surpris-
ing and may simply be attributed to these additional interac-
tion terms. The other — possibly more fruitful — point of
view is that these pulses approximately realize measurements
with state reductions, and then one immediately has simple
predictions for the approximate behavior of the system and
arrives at the impediment and slow-down of the time evolu-
tion without complicated calculation. Finer details require of
course a finer analysis, as performed in the preceding sec-
tions. An actual freezing of the state does not seem possible
since all realistic measurements take a finite time. In the
present case this hinges on the corrections and on the finite
duration of the probe pulse~including the transient decay
time of orderA3

21).
Our analysis may possibly shed some light on the use of

the projection postulate in quantum optics in general, not
only in connection with the Zeno effect. It seems that quite
often the projection postulate is a useful tool which can give
quick and fairly accurate answers. The accuracy depends on
how far the particular realistic measurement differs from an
ideal measurement as considered in orthodox quantum me-
chanics, and corrections may have to be taken into account.
The idealization of realistic measurements and the projection
postulate may often be very useful. Overidealization, how-
ever, should be avoided since any idea, when carried to ex-
tremes, easily reduces itself to absurdity.

ACKNOWLEDGMENT

One of us~G.C.H.! is indebted to the late Gerhart Lu¨ders
~1920–1995!, who also discovered the TCP theorem, for
stimulating discussions on his formulation of the projection
postulate.

@1# B. Misra and E.C.G. Sudarshan, J. Math. Phys.18, 756~1977!.
@2# The projection postulate as commonly used nowadays is due to
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