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Projection postulate and atomic quantum Zeno effect
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The projection postulate has been used to predict a slow-down of the time evolution of the state of a system
under rapidly repeated measurements, and ultimately a freezing of the state. To test this so-called quantum
Zeno effect an experiment was performed by Itabal. [Phys. Rev. A1, 2295(1990] in which an atomic-
level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to
controversies in the literature. In particular, the projection postulate and its applicability in this experiment
have been cast into doubt. In this paper we show analytically that for a wide range of parameters, such a short
laser pulse acts as affectivelevel measurement to which the usual projection postulate applies with high
accuracy. The corrections to the ideal reductions and their accumulatiomopelses are calculated. Our
conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding
of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and
an actual freezing does not seem possible because of the finite duration of measurements.

PACS numbgs): 03.65.Bz, 42.50-p, 32.80-t

I. INTRODUCTION [9]. At the end of therr pulse the final level populations for

The so-called quantum Zeno effe@ZE) [1] is a theo- up to 64 probe pulse€'measurements) during a= pulse

retical prediction for the behavior of a system under rapidly\(/a(tar(]a tElagdga?]rtirgeztirnrglg?gds:lgigrg:g]nd to be in agreement

repeated measurements at timdsapart. It i_s based on usual The interpretation of this experiment, as to whether it

quantum theory and on the concept of instantaneous Megues or does not bear on the QZE, has been controversial in

surements together with ensuing state reductions accordinge |iterature. Some have hailed the results as a dramatic

to the projection postulate of von Neumann andiers[2].  verification of the QZE, others argue that they are unrelated

The predictions are as followsi) impediment and slow- tg it [4,5,11-17. In particular the use of the projection pos-

down of the time development of the system due to repeateglilate and reduction of the wave function have been criti-

measurementsii) freezing of the state fokt—0, i.e., inthe  cized, and the very existence of the QZE has been cast into

limit of continuous measurements. doubt. It is no exaggeration to say that the QZE has aroused
The underlying reason for this can be traced to the factremendous interest in the literatUrs8—20Q.

that for short enough times transition probabilities grow qua- It was pointed out in Refd4,5,14—17 that these results

dratically with time. If, in a given time interval, one per- could be understood without any recourse to the projection

forms n measurements at timest=T/n apart, then the postulate or to the QZE. One can simply incorporate the

probability to find an orthonormal state is at most propor-short probe pulses in the dynamics by an appropriate term in

tional to n(At)?>=T?/n, which goes to zero fon—x or  the Hamiltonian or in the optical Bloch equations. A numeri-

At—0. cal solution of these Bloch equations should then yield the
Properties(i) and (i) may be taken as a definition of the experimental result, and indeed they do to good agreement.

QZE, as, for instance, in Ref$3—6]. A slightly different ~ The projection postulate does not seem to be needed. Is it

definition is used in Ref.7], where essentially only property alsoincorrectto use it here?

(ii) is used. This is one of the two main questions we are going to
An experiment to test the QZE for atomic systems hasaddress in this paper. First we give a justification of the pro-

been performed by Itanet al.[3], following a suggestion by

Cook[7]. In the experiment a large numbkir of ions was

stored in a Penning trafsee Fig. 1 for the relevant level 3

structure, a V configuration; level 2 ignetgstabld. The

time development is given by a so-called pulse [8] of

length T, tuned to the 1-2 transition frequency. A very O\ \ A
short pulse of a probe laser couples level 1 with an auxiliary
third level, and this is regarded as a measurement to which =

the projection postulate is applied as follows. It is assumed
that an atom is in either level 1 or level 2, depending on
whether or not it has emitted photons during the probe pulse

2
< 7 pulse,

probe pulse
1

FIG. 1. V system withmetgstable level 2 and Einstein coeffi-
Electronic address: beige@theorie.physik.uni-goettingen.de  cientA; for level 3.0, and(); are the Rabi frequencies of the two
Electronic address: hegerf@theorie.physik.uni-goettingen.de  lasers.
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_AsQ, _Q

Q0 €= Qg <1 and €R=Q—3<l. 3
— — .
- ] probe pulse
I In Secs. IV and V we will use the conditions

7 pulse AzQ, 03
=7 <1 and e=-—7<1. (4)

0 T ¢ Q3 A3

Then the conditioneg<<1 is automatically fulfilled since
FIG. 2. Probe pulses and pulse. €r=€pey”. This parameter regime is compatible with the
one investigated in Refl16]. In the experiment of Itano
jection postulate as a useful and approximaiehnicaltool et al. [3] eg is about 6.5 10 ¢, €, about 4.K 104, and
in experimental situations of the general setup considered i@d about 2.5¢ 1074 [24].
Ref. [3] for a wide range of parameters. Our motivation dif- In our paper we main'y use the quantum Jump approach
fers somewhat from that of Ref#,5,14-17, although there  (quantum trajectorieg26—2§, and because of its inherent
is no contradiction, in particular not to Ref§,16]. In Ref.  simplicity the analysis can be carried out analytically here
[5] the ensemble density matrix is calculated by adiabatigor a wide range of experimental parameters. This approach
Bloch equation techniques for a single probe pulse and foung equivalent to the Monte Carlo wave-function approach
to be nearly diagonal. But this contains no information aboutzg]_ The ensemble of all trajectories satisfies the usual
the outcome for individual atoms and subensembles and dogfioch equations and is often used to obtain numerical solu-
not prove that atoms with or without photon emissions are injons of the latter through numerical simulations. The quan-
|1) and|2), respectively. The same technique is used in Reftym jump approach deals with pure states for single atoms
[16] to study the parameter domain of “good” measurementsinstead of density matrices for ensembl@s], which in the
with a resulting diagonal density matri21]. We, however, present case means a simplification from nine components to
are concerned first with selective measurements, namekfree, and it describes the time development of single atoms
with the states of atoms at the end of a probe pulse with opetween photon emissions by a simple reduced Hamiltonian
without photon emissions. These states are explicitly detergng by a “jump” to a reset statén this paper the ground
mined and found to be close, but not identical,[1) and  state at a photon detectiof80]. It allows an intuitive under-
|2) [22]. Thus a probe pulse can indeed be regarded as astanding of the processes involved.
complishing a highly accurate — but not perfect — reduc- The simple derivation of the quantum jump approach out-
tion to and measurement of levels 1 and 2 in experiments afned in Sec. Il uses the projection postulate and reductions
the type of Ref[3] for a wide range of parameters. As a as a technical tool for photon detectioim®t for atomic mea-
second question we discuss the cumulative effect of the desurements and it might seem that one uses this postulate for
viations from ideal measurements — i.e., measurementsn investigation of itself. However, as explained elsewhere
which can be described by the projection postulate — aver [26] the use of reductions in the derivation of quantum tra-
probe pulses for the density matrix and determine the resulfectories is not necessary and can be avoided. Moreover, the
ing level populations at the end of thepulse. We exhibitan  photon detections happen on a much shorter time scale than
explicit n dependence of the corrections to the treatment byl times considered in the experiment, and for such detec-
the projection postulate. tions the projection postulate has been a reliable tool in the
For a probe pulse to be an effective measurement somgast.
obvious requirements have to be fulfilled. First of aII, its In Sec. Ill we consider the Simp|e case of a probe pu|se
duration, ,, should be very short compared to the durationwith the 7 pulse temporarily switched off. In this example it
T, of the 7 pulse, is very easy to see how the probe pulse acts on a state
a1|1)+ a,|2) of a single atom and that it effectively leaves
Tp<Ts. (D) it either in|1) or in |2), with probability |a|? and |a,|?,
respectively, depending on whether the atom has emitted
Furthermore, the probe pulse cannot be too short or to@hotons or not. The small deviations from an ideal measure-
weak, because it should produce fluorescence photons frofient with perfect state reduction are determined.
level 1 with hlgh Certainty. In addition, at the end of a prObe In Sec. IV we consider the case of a Sing|e probe pu|se
pulse any population in the auxiliary level 3 should decay toyjth the 7 pulse switched on. Complications arise now since
level 1 extremely rapidly. This means thaf *, the inverse the 7 pulse causes a small additional transition between 1
Einstein coefficient of level 3, must be tiny compared to theand 2. In Sec. V the case of probe pulses during a single
time between two probe pulses, 7 pulse and the buildup of the corrections are considered. It
turns out that one gets an excellent approximation for the
level populations if in the results for the idealized case one
takes the finite duration of the probe pulse into account by
neglecting the action of the pulse during this timésee Fig.
The first two conditions lead to a restriction on two param-3). This simply means thatT,/n is replaced by
eters, namely23] AT=T,/n—7,. At the end of Sec. V we compare our ana-

A71<T—Tr—7' (2)
3 n p-
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measurements on the radiation field in a rapid succession at
times At apart, att;<---<t,,=t, say. If in all these mea-

o , surements no photons are f_pund the state of the atom at time
] 1 probe pulse t is, by the von Neumann - lders projection postula{@1],
i |6(1)) =106 (OprlU (1 ten- )] O (Oprl - - - 0p)
7 pulse X(0pn|U(t1,t0)|0pn)| ¥ ®)
0 I, ‘ =[0pUred . t0) [ #), (6)

where|0,,) is the vacuum stat¢0,)| ) the initial stateU

the complete time development operator, and where the sec-
ond equality serves as a definition of the reduced time evo-
lution operatorU .(t,ty), which acts on atomic states. The

) : time difference between successive measurements has to be
cal Bloch equations for the parameters of the experlmentChosen short enough to be able to say that at most one pho-

The agree_zment IS amazing. .. ... ton has been detected in this interval. On the other hand this
In the final section we discuss our result and their signifi-

for the role of th acti twlate in th I 4ime difference has to be longer than the inverse transition
cance for Ihe role of the projection postu’ate in the so-calle requencie§26]. Under these assumptions one can calculate
guantum Zeno effect. Our main conclusion is that althoug

the projection postulate is not necessary here, it is a usef d. (5) by means of perturbation theory. Withe((t,to) one

tool for a fairly accurate description of the measurementi‘as a simple expression for the probabilly(t) that no

) i X oo S photon is detected in the intervgd t] if the atom is in the
involved. It is useful since it gives a quick intuitive under- state| ) att=0

standing of the physical situation — without having to solve '

unwieldy Bloch equations. Hence the projection _pqstulate Po(t)=|| |(0))]|2=]|U ed t,to)| )| |2 7)
should not be dismissed out of hand. However, it is only

approximately valid, because in practice realistic measure- \We now apply this to the V system depicted in Fig. 1. In
ments are never ideal nor instantaneous. Therefore the firghis system the upper levels 2 and 3 couple to a common
part of the Zeno effect — impediment and slow-down of theground level 1, with Einstein coefficients, andA;. Later
time development — can legitimately be understood by theve will consider level 2 to be stable and pat=0. We
projection postulate, but the second part — the freezing ohssume here thabs,= w;— w, is in the optical range, i.e.,
the state — is in our opinion an overidealization. not too small. For simplicity we consider zero detunings of
the driving fields, whoséreal Rabi frequencies are denoted
by O, and();, respectively. The Hamiltonian in the rotating
wave approximation is given by82]

FIG. 3. 7 pulse switched off during probe pulse.

lytical results with those of a numerical solution of the opti-

II. THE QUANTUM JUMP APPROACH IN QUANTUM
OPTICS. QUANTUM TRAJECTORIES
3

In this section we briefly summarize the quantum jump H:H2+ H2+Z ﬁ{%gi|i><1|e*iwit+ H.c}
approach used in the subsequent sections. The reader famil- =2
iar with it can proceed directly to Eq&l6) — (19). The idea 3
is to describe the radiating atom between photon detections +E E G| )1+ H.c}
by a reducedor effective time evolution operator giving the i=2

time development under the condition that no photon has

been detectef26]. After a photon detection one has to resetWhere

the atom to the reset stat§ump” ), with ensuing reduced

time development, and so on. For a driven system with many

emissio_ns one then obtains a stochastic path, called a qualsin the transition dipole momerid,; = (i|X|1) and €, the

tmumetéaggcg)g[ﬁ;]]. 'I::Jer ge\r}egal treset state h%s b%en dtf]t.erbolarization vectorV is the quantization volume, later taken
) ’ ystem as considered in this ., infinity. Going over to an interaction picture with respect

paper the reset state after an emission is the ground state. The

reduced time development together with the reset state pro-

vide a complete stochastic description of the time develop- Ho=H3+H? (9)

ment of the atonf27]. Starting with this description one can

then derive the Bloch equations describing an ensemble @fne has

radiating atomg26,27. In fact, both approaches, quantum

jumps and Bloch equations, are possible and equivalent ways 3

to describe the time evolution of an ensemble of fluorescing Hi(1)= 2, A{3 Qi[i)(1|+H.c}+

atoms, but the former is also easy to apply to the emission =2

behavior of a single atom. x<1|ei(‘”i_’*’k>\)t+ H.c). (10)

We now indicate how to determine the reduced time de-
velopment operator for the V system. To be sure that ndBy U, we denote the corresponding time development opera-
photon has been detected in a time interval one may imaginer. With At=t;—t;_, in the range given above we can cal-

iy =1€Di1 - € 0, [(2€0h V)2, (8

3
- h{ginainli)

i=2 kA
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culate in second-order perturbation theory the time evolutiorone obtains for the first-order contribution
under the condition that no photon has been detected. From

it
<0ph|U|(ti ati71)|0ph>:1A_ gﬁ__ldt’<0ph|Hl(t/)|oph>

1[“ dt’ft, dt"(0,|H, (1)
h? tio1 tiog P

X H,(t")[Opn)

i,j=2 i1 t

3

3
—izz{%ﬂi|i)(1|+H.c.}At

and for the second order, omitting terms proportional to

(At)?,

3
t: t! X ' . ”
- fl dt,f dt”Qi|<>\gj*|<>\el(wiiw”)t e eim et )(j|
i [3N t i—1

t ; ’ ’*ti_ (e — T\
== 3 3 [ aveteren [ tdrg giee iyl ay
i—-1

ij=2

In the last equation we have substituteett’ —t”. Since
At is much larger than the inverse optical frequen(zjx;-‘s1

t
0

This can be written as epiH; At/#} where, in matrix
notation, the reduced Hamiltoniat,., and the atomic op-

one can extend the inner integral to infinity, leading toeratorM are defined through

76(w;— wy,) plus a principle value. Alternatively one can

argue that the correlation function

Kij(T):% Gikng i€ (i )T (12

is negligible for > wj‘l. The sum ovek then yields gen-

eralized decay constait; and level shiftsA;;. The level
shifts are smal[33] and will be neglected in the following.
With

. 0 Q, Qg
H'rec{ﬁzz Q, —iA, 0 |=-iM. (16
Q; 0 —iAg

Later on, we will takeA,= 0. For arbitrary time intervals we
thus have, in the interaction picture,

U' (t,0)=e Hredi=eMt, (17)

The no-photon probability is then, fog=0 and initial state

“ :eZDil‘ Dy; " 3 ¢, or more generally a density matrp(0),
! Bmeghe” Po(ti ) =le "™ 4)I2
one obtains for the second-order contribution Po(t;p(O))ztr{e*Mtp(O)e*MTt}. (18)
3 At , The probability that the first photon is emitted int+dt)
—_22 Fij|i><j|j0 dre '(@imepT, (14 equalsPy(t; ) — Po(t+dt; ) =w;(t; ) dt, where
ij=
Now, if wz— w, is in the optical range, as supposed here, W1 (6 4) == 5 Polti¥) (19

then the last integral vanishes fofj and equalsit other-
wise. We note that

whereA, is the Einstein coefficient of thigh level. Collect-
ing all terms we thus obtain

3
(Opn| U (t; vti—1)|oph>:1A_ii22 {2 Qili)(1]+H.clAt

3
—;%Ailixilm- (15)

is the probability density for the first phot¢gB84]. For small
upper level separation nonzero off-diagoihg) terms may
appear which lead to interesting coherence effE8%s-38§.
For generaln-level systems the reduced Hamiltonian is
given in Ref.[27].

The reduced time development is not unitary. The reason
is that it does not describe the time evolution of the whole
ensemble but that of the subensemble with no photons. The
size of this subensemble is decreasing in time since an atom
for which a photon has been detected leaves the sub-
ensemble, and this is reflected by the decrease of the norm
squared in Eq(7). The above probability density determines
the (random time for the first photon. After that the atom is
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reset to the ground statd.,), for a V system. The next emis- of A;* for a possible 3-component to decay. This will al-
sion time is then determined by, (t;1), and so on. Irthis  ways be done in the following.
way one obtains a quantum trajectory.
From this description of single systems one can recover A. Effective reduction by a probe pulse
the usual Bloch equations of the complete ensemble as fol-

lows [27]. The density matrixp(t) of the ensemble is a sum If the state at the beginning of a probe pulse is

of two terms,p~ andp®, corresponding to a subensemble of )= ag| 1)+ ap|2) (26)
atoms with or without photon emissions until tirherespec- ! 2
tively. From Eq.(17) one has and O<7<r,, then|y) evolves, until the emission of the
N first photon, as
p°(t;p(0))=e"Mp(0)e™™*. (20)

e—iHIredT/ﬁ :e—MoT — e—Morl + 2 2
If 1(7;p(0))d7 denotes thelunconditioned probability of ) ) =a [+ azf2) (2D

finding a photon betweerr and 7+dr, then the sub-  since ther pulse is assumed to be switched off now. Due to
subensemble of atoms with their last emission befanethis  the termA; in M the norm of the first term of the right-hand

interval is described by side(rhs) decreases exponentially and the first term becomes
_ 0 _ negligible for 7 large enough. Therefore, if an atom did not
1(7;p(0))d7p"(t— 7;[1)) 2D emita photon until the end of the probe pulse it will essen-

tially be in the statd2), and this happens with probability

and therefore given by the norm-squared of the rhs, i.e.,|lay|? for large

t enoughry,.
P>(t):JdTl(T;p(O))po(t—T;|l>)- (22 On the other hand, if an atom does emit one or
0 more photons — this happens with probability

1—[le”Mo7y)||?=as|*(1—|le”Mo71)||*) — then right

Differentiation of p=p°+p~ gives AAll .
p=prp g thereafter it is in statél) and will then be pumped between

p(1)=p0(t; p(0))+1(t; p(0))|1)(1| |1) and |3) by the probe pulse, with photon emissions. A
short time after the end of the probe pul$g8) decays to
t . . .
) Y |1) due to the damping term;. Thus a single atom is pro-
* fodTl(T’p(o))p (t=7[1)). 23 jected onto|1) or |2) by the probe pulse with probability

|ay|? and |a,|? if ||e”Mo7|1)||? can be neglected. For an
Taking the trace and using pift)=1 gives ensemble of atoms the density matrix becomes diagonal be-
I (t;p(0))=A,pp+Azpss. From Eq.(20) one obtainsp®, cause of the reduction of every single atomic state.
and inserting this into Eq23) gives The preceding analysis is easily made more quantitative
as follows. The eigenvalues &, areN,=0 and

1
Ng=7 (Agt JAZ—40)). (28)
This is a compact form of the Bloch equations used in Refs.
[4,5]. The first term on the rhs of Eq27) becomes
In this outline of the quantum jump approach, state reduc-
tions were used as a tool. But it is noteworthy that one can
also use the Markov approximation, indicating a close con-
nection between the twj®6].

. i
p=- g[leedO_Ple;rd] +(Azp2ot Aspza)| 1)(1]. (29

—MqgT 1 —N\q7
ae M0 |l)=a1—)\ X {(Mg—rg)e ™
173

—(Mg—\p)e 2371y, (29

Ill. A SIMPLE SPECIAL CASE: INTERMITTENT PROBE

AND  PULSE as immediately checked by explicit differentiatifd9]. For

20 3<A5 the root in Eq.(28) is real and\; and \5 are

The quantum jump approach will now be applied to thepositive. Therefore in this case the exponential decrease goes
experimental situation of Itanet al. [3]. Here one can take at least as
A,=0. The simplicity of the mechanism becomes particu-
larly c!ear if the pglse is swtihed off while the probe exr{— Z(Ag_m)
pulse is on. Ther(), is zero during a probe pulse and Eq. 4
(16) reads during this time interval

T2
<ex —593/A3 (30

and this becomes exponentially small for a probe pulse of

L 0 0 Q3 length 7, with
Heedhi=5| 0 0 0 J=-iMo. (29 T,>2A510%  (for 203<Ay). (31)
Q; 0 —iA,

If 4Q3=A3 the root is imaginary and the decrease goes as
Note that this annihilates the std@) and therefore the re-
duced time development leavi) invariant. At the end of a ex;{ _ IAs

; . ) 32
probe pulse one has to wait a short transient time of the order 4 (32
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and Eq.(32) is replaced by is not reduced t¢2) if a,#0 in Eq.(27). At the end of the
probe pulse and after a short transient time to allow for the
Tp>41Az  (for 2Q03>A3). (33 decay of level3) this nonreduced component is
This can be combined to ay(1]e Mo™|1)|1). (37
5 -1 2
Tp>Max Az~ Ag/ (23} (34 The smaller the norm of this, the better the reduction to

For the special case under consideration this is the conditiol?- The norm can be estimated by
on the length of the probe pulse for an effective reduction to M CMor
|1) and to|2), with probability| ;|2 and| a,|?, respectively. |[ar(1[e”Mo[1)|1)][<[|ase™MoTp[1)]]. (38)

B. Population vs observed photons ~ For initial state| 1.> the number of p.hoto.ns per atom until
i , i . . time 7,, N(7,;1), is in good approximation given by the

A single atom is projected onto the ground state if it em'tssteady-state emission rdt@2] multiplied by 7
several photons during the probe pulse. For an ensemble of P

atoms the number of photons is expected to be a measure for 02
th_e popula_tlon of level 1. With the quantum jump approach N(Tp;1)=A32—327-p. (39)
this is easily seen as follows. A3+2Q35

The probability for no photon emission until time
7,Po(7:¢), is given by the norm squared of the rhs of Eq. For initial state] /) = ;| 1) + @,|2) we denote the number of
(27), according to Eq(18), and it approachelsy;|? for large  photons per atom until time, by N, i.e., N=N(7,,%).
times. For the subensemble of atomith emissions the Then one can use Eq®6) and(39) to expressr, throughN
(conditiona) probability density for the emission of the first and|a;|?,
photon is therefore

AZ+203

d _ 2
wi(ri)l|aaf?=— Po(mlas? (39 W= pgng Vel “0

for @;#0 (for a;=0 it is not definedl Since the two terms This can now be inserted into E(8) to obtain an estimate
on the rhs of Eq(27) are orthogonal, ther, term drops out of the nonreduced part whéhphotons per atom are emitted.
upon differentiation, and-d/d7Py(7;) is proportional to  This norm is easily calculated by EQ7). The norm is a
|a1|?. Thus for a;#0 the probability density for the first function of Q3/Az, N, anda;, and one easily shows that
photon as well as the number of photons per atom in thifor fixed other parameters it becomes largest|teyj =1. A
subensemblé.e., the conditional expectation valus inde-  graphical evaluation gives as upper bound for the norm of
pendent of the atomic state at the beginning of the prob#he nonreduced part

pulse. The numbel(7; ), of photons per atom for an un-

conditioned ensemble with initial state) (i.e., the usual [|ay(1]e Mom|1)|1)||<1.04x e NP2 (41)
expectation valueis

which holds forN=2 and for all values of};, Az, and

a4 . For increasindN the reduction thus becomes very effec-
tive.

N(7;4)=]aq|*N(7;1). (36)

This expression is now also true faf,=0. .
The result is exact for the cage,=0 and for all times For particular values of);/A, the bound for the nonre-

7 within the validity domain of the quantum jump approach duced part can be substantially improved. For example, for

and Bloch equations. As a consequence, in the case of 5{%3 in the vicinity of Ay/2 the nonreduced part becomes
ensemble realized by a large number of noninteracting aton'{QUCh smaller than the above bognd.' For very small and very
without cooperative effects, as in RdB], the number of arge values of);/A; the reduction is somewhat less effi-

observed photons per atom is proportional to the po Iat'offient than for(2, close .t°A3/2' .
of IeV(\eII 1 P P 'S proport popuiat In Table | we have listed the norm of the maximally pos-

sible nonreduced part for various valuesNfand Q;/A;.
The best reduction occurs fd2; aroundAs/2, but the re-
duction is also excellent for small and large valuedXafif

Instead of the condition in E¢34) for 7, one can use N is larger than 8.

N(7p;4), the number of photons per atom emitted until time ~ Summarizing this section, we have shown the following
7, as a more precise measure for the effectiveness of stater the case in which ther pulse is turned off during a probe
reduction. Equatiori34) corresponds td(7,;1)>1, but we pulse.(i) The probe pulse provides an effective reduction of
will show that also for smalleN( ;) an almost complete the initial state provided its duration is much longer than
state reduction is obtained. ma>{1/A3,A3/Q§}, a rather mild restriction(ii) For an (infi-

As pointed out in Sec. Ill A atoms with photon emissions nite) ensemble the observed number of photons per atom is
are in|1) if one waits at the end of the probe pulse for aproportional to the population of level 1iii) Already for
short transient time to allow for the decay of ley@). But  small average numbers of emitted photons an almost com-
atoms without emissions, however, still contain a part whichplete state reduction is obtained.

C. Effectiveness of state reduction
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TABLE |. Maximally possible nonreduced part for a given numbkeof observed photons per atom and
for different values of)3;/A;. The 7 pulse is switched off.

N 4 5 6 8 10 20 50
Qy<A, 0.135 0.082 0.050 0.018 67103 4.5x10°° 1.4x10° 1
Q3=A4/2 0.023 0.006 0.002 0.0001 &A0°© 4.0x1071? 2.9x10°%
Q3=A, 0.051 0.027 0.015 0.004 610 * 4.3x1077 5.1x10°%7

Q3=2A,4 0.094 0.065 0.038 0.011 34103 1.2x10°° 5.7x10°%3

IV. SIMULTANEOUS PROBE AND 7 PULSE Alternatively one has, as a generalization of E2f),
Now we consider a single probe pulse with thepulse
switched on. At the end of a probe pulse, we include a short 5.t (M—=A2)(M—Xj3) . .
. . 1 =e M + (cyclic permutations
transient time of the ordek; - to allow for the decay of the (A= N2)(Ng—A3)
auxiliary level 3. Since this short transient time, with the (44

action of ther pulse, is neglected this introduces an error of

the order(),/A; in the time development of the above sub- which is immediately checked by application to eigenvec-

ensembles. In the following we will assume that this error istors. The case of degenerate eigenvalues can be treated by

much smaller thare,, . Sinceep=A302/Q§ this is equiva-  considering appropriate limits of E¢44).

lent to the condition Comparing the two equations one sees that(\'| coin-

T cides with the operator multiplying™ ' in Eq. (44). More-

eq=Q3/A3<1. (42) over, applying this operator to any vector gives a multiple of

INi), thus automatically yielding the eigenvectors. The ei-

es<1. The conditioneg<1 is then automatically fulfilled \?Vi?;’ﬁ“fﬁsprf‘r:ggge Crgr?tseosfotlcgdﬁ?]aéa‘;fgngfm?qgﬁ[gdeﬂ‘asiIy

[24].
- . calculates
The 7 pulse causes a small additional transition between

1 and 2. We will show that, as a consequence, an atom with

initial state| )= a41|1) + a,|2) and without photon emission 1 No(No— 3 Ag)
until the end of a probe pulse, including the above short 0 L. N
transient time, is not in the staf2) but in a statd\) which (M=) (M—X3) =| 2iQ2(\,— 3 A3)
also has a 1-component. On the other hand, if an atom emits 0 1IN0
photons, the last photon may have been emitted some time

before the end of the probe pulse. Right after the emission o ) o
the atom is in|1), but until the end of the probe pulse a BY the above remarks, this is a multiple jof2). Similarly

In this and the next section we will use the conditi

small contribution of stat¢2) may build up, due to the ac- ],
tion of the 7 pulse. Thus the atom will not be |4) as in the
ideal projection result. Instead it is in a mixed state, denoted 0 0 1
by p. Thus, with thes pulse switched on, a single probe _ 2

~ M=A)M=2)| 1 |==—==(M=X)(M=)3)| O,
pulse effectively projects onto the stdte) if no photon is ( V) 2 2|7\2( 2 2
emitted and ontgp otherwise, and this happens with the 0(45)

probability Po(7p;#) and 1-Po(7,;4), respectively. In the
following [\) and p will be determined. Ife,,eq<1 the o )
differences betweer|\) and [2), p and |1)(1], and Whichis also a multiple ofx,). _ .
Po(7p: 1)) and|a,|? are small and the results of Sec. Il can Fpr the parameter range of the Introduction good approxi-
be used as a good approximation. mations for; are

A single atom now evolves with the reduced Hamiltonian
Hie=—i%M of Eq. (16), with A,=0, until the emission of  A;z=3 (A;=VAI—40Q3), N\,=3Az03/05=1€2A;,
the first photon. The possible pumping between levels 1 and (46)
2 is reflected by the fact thaR) is no longer annihilated
by Hig To calculate the time development whereh, has been obtained by Newton's method. Note that,
exp{—iH|.{/%}=exp{—Mt} one may proceed in two alterna- for 0,<0;,
tive ways if the eigenvalues; of M,i=1,2,3, are all distinct.
In the first way one determines the corresponding eigenvec-
tors|\;) of M. SinceM is non-Hermitian these are in gen-
eral nonorthogonal, and therefore one also needs the recip-
rocal basis{|\')} with (\'|A;)=&;;. Then one can write Hence the exponentials efxp\; it} in Eq. (44) drop off very
rapidly. When calculating e>{|&Mrp}|¢) by Eq.(44) one can
therefore, as in Sec. Ill, neglect the,) and|\3) terms if
7,> maxA;t A3 /05 =Az/Q5 (becausesy<1).

Ny<Re . 47

e M= e MY W] (43)
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A. Subensemble without photon emission At the beginning of the probe pulse we assume the en-

With Egs.(44) — (47) one can now obtain the state of the semble to.be .in.the pure stag); for a density mgtrix the
subensemble of atoms without photon emissions until th&réatment is similar. The complete ensemble at tipafter

end[40] of the probe pulse. For initial stafe), the_beginning of the probe pulse can b_e thought_ of as con-
sisting of two subensembles of atoms with and without pho-
[ )= a1|1)+ ay|2), ton emissions. The latter is described by Ez{),
it is described at timer, by p%( Tp;l,/;)ze*""fp|¢//)<¢//|e*""”p, (53
e Mmly)=e"Mb{ay| 1)+ ay|2)} with its relative weight given by Eq(18),
=e M a,—ieyar) V1—eptepINy), (48) trp®(7p;4) = Po( 7y ). (54)
where According to Eq.(22) the former subensemble is described
_ by
L —iep
No)=—— 1_€2R . (49 p>(7p;¢)=J pd7'|(’r;zﬂ)po(7'p—'r;l). (55
N ezR-I— ezp 0
€R
; i > 0
Moreover, The complete density matrix js~ + p°, and therefore
; trp”=1—Py. (56)
=1 P
NoTp=3 <l (50 We now determingy, andps, at time 7, . For initial state

o o _ |1) the no-photon probability decreases rapidly, and there-
and hence exp-No7pj~1. Similarly for an initial density  fore p%(7,— ;1) contributes essentially only in the vicinity
matrix. The statg\,) in Eq. (49) has a very small third of ,~ 7, [cf. Egs. (29) — (31)]. Because of this one can
component, and after the probe pulse has been turned off thigplacel (; ) by I(7p;4) which is approximately equal to
component will, on the time scale @, ", decay to zero the fraction 1 Po(7p;4) of emitting atoms times$(7,;1).

[43]. Thus at the end of a probe pulse and after this transienthe latter practically equals the stationary emission rate for
decay time the subensemble with no photons is in the —the three-level system which is, up to terms of order in
normalized — state Q3, the stationary rate from Eq39) for the two-level sys-
tem. For the calculation of the 12- and 22-components these

. 1 ~lep corrections inQ% can be omitted SinC@O(Tp— 7;1),, and
NP AN - ]| = N 1 |=12), (B)  p%r,— 1)y are themselves of ordér, andQ3 and much
1+e 0 smaller than 1. Thus we obtain

whereP,,=[1)(1|+|2)2| denotes the projector onto the 1-2 P~ (Tp;¥) 12122
subspace and where terms of higher orders,iandey have
been omitted. The probability for no photon emission is

=[1=Po(7p i)z, 502 ) 47T )12z (57)
Po(7pi40)=1IPre™ "8 )||? o
- After the end of the probe pulse, any population of level 3
:|a2|2+2 Ima, o ep—WIazlzT—pep will rapidly decay to level 1 in a transient time of order
Agl. We denote the resulting — normalized — density ma-
trix of the subensemble of atoms with emissionsgbf45].

The normalization factor op~ is 1—P,, and according to

For an initial density matrip™" instead of the pure statg Eq. (56) we obtain from Eq/(57)
one has to replacky,|? by pb, and a,a by p',. AO2Z [
Thus, to good approximation, the probability for no pho- ;,(Tp;lp)lmz:_z%f Pd7p%(7:1) 1020 (58)
ton emission is proportional to the population of level 2 and A3+203)0
the atoms with no emissions are approximately in the state i
|2). For the parameterf§i4] of the experimenf3] the cor-  or this we note that, by EdS3),
rections in Eq(52) are less than 410 4.

+ (higher orders ire; , €). (52

PiAT1)=(1le”™1)(1]e”""]2),
B. Subensemble with photon emissions sz( ml)= b|<2|e—Mrb|1>|2_ (59)

We will now calculate the density matrix for the suben- ) B
semble with photon emissions. One can employ a systematlésing Ed.(44) for e
expansion in powers of),, including second order. How-
ever, the foIIo.wing more physically motivated procedure is [)22=7riep+(higher orders ire, , €4), (60)
simpler and yields the same results. T

M7 an elementary calculation yields
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pro=i ep+ (higher orders ire, , ), (62) with @+ B8=1. Until the beginning of the next probe pulse at
atimeT,/n— 7, later the time development is given by the
m pulse only, i.e., in matrix notation and in tH&)—|2)

;711:1_7322, 1321: _512, (62
subspace by

and its 13, 23, and 33 components vanish, St
coss Ot —i sing Q,t
63 U(t,0)= . (6D

P13= P31= P23= P3o= paa=0. —ising Q,t  cos Oyt

We conclude that after a short transient time at the end °|f=ort=T In— 1, we defineU (t O)Efln. We will now de-
the probe pulse the subensemiaégh photon emissions is  termine the density matrix after theh probe pulse. To this
described by the above normalized siatevhich is indepen-  onq we put
dent of the initial statéy), and the relative size of the sub-
ensemble is givgn by&f’o(rp;z/;). p=tr{P, Ze—pronﬁOTe—MMpPlz},

We note thatp,, and p,, are indeed very small. For the ’ n ’
parameters of the experiment[3,44 one has

_ ) —M7o1 1 IV\]]2
Par<1.2x 1075 and| ;] <4.1x 107, a=[IPre" U7, (68)

. where’; , is the projector onto the 42 subspace. Physi-
C. Level population after a probe pulse cally, p is the probability of finding no photons after the next
We denote byp(® the density matrix of the complete Probe puls¢40] if one had started withp at the end of the
atomic ensemble after a short transient time at the end of Breceding probe pulse, similarly for and|X).

probe pulse. By the preceding results it is given by With the abbreviation
® =Py(7,:p™ NN +[1—Po(7p:p™1p, (64 1T LT
p o( 7o ™ NN +[ o(7p;p™)1p (64) Sp=Ssinm __T_p »  Cph=cCosm ﬁ_T_p (69)

wherep™ is the density matrix at the beginning of the probe
pulse. From Eqgs(52), (51), and (60) one immediately ob- one finds by a straightforward calculation from E§7) for
tains for the population of level 2 after the probe pulse U, and Eq.(44) for e M7

. . T, .
p(zpz):pg’2+ 26p Imp'l”2+ 77'.|.—p6p(:|-_2Pg1 . (65) P

. i Tp
%(1_Cn)+sn€p+P22Cn_|P12sn_ % 7T-I-_(l_cn)fp

The first term is the projection-postulate result for an ideal
measurement. Fon probe pulses,p;, is of the order
sinm/2(1h—7,/T.), and ifn is as in the experimeri8] the
second term is larger than, or comparable to, the last term. In r
the corresponding Eq16) of Ref.[5] this important term is q= %(1+cn)—25nep— 3 w_l_—p(1+cn)ep, (70
missing, due the approximation used thg2&|, and the cor- m

rection appearing there is equivalent @e,2m,/T;) in where higher orders ie, and e4 have been omitted
our notation. P d :

Summarizing this section, we have shown that, for the_. Now suppose t_hat after thdx{—l)st_ probf pulse the den-
sity matrix p is given by Eq.(66) with a=a(k—1) and

pararfr;etgrsp and 4 much less lthar_w 1,ha probe pulse ?cths 853=g(k—1). Then after théth probe pulse the relative size

an effective state _reductlonNa so in the presence o 7the of the no-photon subensemble is given by

pulse. The reductions are @ and |\), corresponding to

subensembles with and without emissions, respectively. One B(K)=pa(k—1)+qgB8(k—1)=p+(q—p)B(k—1)

hasp~|1)(1] and|x)~|2). The corrections have been ex-

I

Tz

r

1 1 _7p

7 (1—cp) 28,6+ T—Crep— 3 7T_|_—(1—Cn)ep,
w

plicitly calculated in terms of the above parametgt§]. 7D
where a=1— 8 has been used. The solution of this recur-

V. LEVEL POPULATION AFTER n PROBE PULSES rence refation is
The preceding results show that after a probe pulse and a 1-(q—p)<? 1

short transient time, the ensemble consists of two suben- B(k)=pm+(q—p) A1),

sembles, one in the stafeand the other if\), correspond-

ing to atoms with and without photon emissions. The small a(k)=1-B(K). (72

difference from the projection result can have a cumulative

effect for the density matrix after probe pulses. According to Eq.(66) B(1) is the probability of finding no
After a probe pulse, the density matrix for the completephoton during the first probe pul$d0]. For the initial con-

ensemble is of the form dition that all atoms are prepared in the ground state at the

o beginning of the experiment, as in the experiment of R&f.
p=ap+ BN (66)  B(1) is given by
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B(1)=||P, zefmfpo |1>||2 TABLE II. Predicted and observed population of level 2 at the
' n end of thew pulse forn probe pulses of length,, .
1 1 7
=§(1— Cn)+Sn€p— Ew—p(l— Chep. (73 Project postulate
& AT=T,/ Quantum Bloch
At the end of therr pulse, i.e., after thath probe pulse N AT=T./n  n-7, jump  equation ObservefB]

the density matrix is 1.00000  0.99978 0.99978 0.99978 0.995

1
2 050000  0.49957  0.49960 0.49960 0.500
4 037500  0.35985 0.36062 0.36056 0.335
8 0.23460  0.20857 0.20998 0.20993 0.194
5 16  0.13343  0.10029  0.10215 0.10212 0.103
pod T)=(2|p(T)|2)=a(n)pypt B(N)b2|N)bJ2. (75 32 0.07156  0.03642 0.03841 0.03840 0.013
64 0.00371  0.00613 0.00789 0.00789 —0.006

p(T ) =a(n)p+B(mA)(N. (74)

The populations of levels 2 is then

Using Egs.(51), (60), and (70)—(75) and omitting higher
orders ine, and 4 one obtains

p2AT,) for the parameters of the experiment of R&] are
shown. The second column is based on the projection postu-
late forn ideal measurements. The third column is based on
Eq. (77) or, alternatively, om ideal measurements with en-
p1(T)=1=p2AT5). (76)  suing switch-off of thewr pulse for 7, seconds. The agree-
o ) ] ment between the quantum jump result in Ef6) and the
Omitting also thee, terms one obtains for the populations of nymerical solution of the three-level Bloch equations of Eq.
levels 1 and 2 the approximate resyks] (24) in column 5 is apparent. The projection postulate with
AT modified toAT=T . /n— 7, also gives very good results.

o

p2ATn)= 3 (1-cp)+(2n—1)scy "ep+ N

n
Chép.,

poAT=3(1l-cl)=3 1—co§7r<} - E) The experiment deals with a system where additional energy
n T, levels may make minor contributioi40] and this may ex-
1 plain the deviations from the experimental results in the last
T
pu(T)=3(1+ch) =1 1+co§w<ﬁ— T_p) . (77) column of Table II.

. . . VI. CONCLUSIONS: DOES THE ZENO EFFECT EXIST?
For n ideal measurements with the projection postulate

the result would bg3,7] We have investigated the so-called quantum Zeno effect
for an ensemble of atomic three-level systems as that of the
experiment in Ref[3]. There has been some controversy
about the interpretation of that experiment as to whether it
(79 provides an experimental proof of that effect. The Zeno ef-
fect is a theoretical prediction for the behavior of a system
This differs from the result in Eq(77) only by the term  ynder rapidly repeated measurements with ensuing state re-
/T, in the cosine, and therefore E(7) can be obtained ductions according to the projection postulate. As explained
from the ideal projection result by neglecting the action ofin the Introduction, the controversy has mainly focused on
the 7 pulse during a probe pulse, thus replacing the timewo points, namelyi) whether some of the “measurements”
AT=T_,/n between measurements by the effective timein Ref.[3] should not rather be included as “interactions” in
AT=T_./n—7,. This can be also understood directly quite the Hamiltonian, andii) whether the projection postulate is
easily as follows. Atoms which emit photons during a probeappropriate at all.
pulse flip repeatedly between levels 1 and 3, and sothe ~ Now, a measurement on a microscopic system is indeed a
pulse acts less effectively. Moreover, right after emission of aomplicated interaction with another system, ultimately at
photon an atom is in the ground state and since the action ehe macroscopic level. Not all conceivable measurements
the 7 pulse is of cosine form it is small for small times. conform to the idealized case considered by von Neumann
Similarly, as shown in Sec. 1V, the atoms without emissionsand Liders[2] where each measurement is associated with
rapidly approach the stata)=|2) so that one again has a an operatorA, say, such that the mean valyd\), is given
small action for small times. Therefore the action of the by the expectation value and the mean-square deviation by
pulse is greatly inhibited during a probe pulse . the expectation ofA—(A))2. As a simple example one may
It is evident from Eq(77) that this approximation yields consider a system of photons in a cavity. The outcome of the
the same result as if one had switched off thpulse during measurement consists of two possible pointer readings, 0 and
the probe pulse and then uses the results of Sec. Il 1, say. The actual measurement is performed by a “black
The corrections of Eq.76) to the approximate values for box” which has been so constructed that an auxiliary two-
pii(T) in Eq. (77) are small fore,<1. Moreover, it is level atom in some initial state is passed through the cavity
straightforward to show that in the parameter range considand then it is determined whether the atom is in the ground
ered here the correction (T ) is positive and increases or excited state, yielding the pointer readings 0 or 1, respec-
with n, as long asr, is not too close td./n. This is borne tively. Considered as a measurement performed by the black
out in Table Il, where predicted and observed values obox on the photon system, it is obviously not of the above

1 T 1
p2ATn) =3 1_CO§H v o pu(To)=3

o
1+co§—}.
n
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kind. There is indeed an operatérfor the photon system, one takes the view that, for example, the probe pulses
whose expectation value gives the mean, but it has eigenval-measuring pulses) have nothing to do with a measure-
ues different from 0 and 1, and right after a measurement theent but just lead to additional terms in the Hamiltonian,
photon is not in an eigenstate &f As a consequence, the then any change in the temporal development is not surpris-
mean-square deviation is not of the above form. By combining and may simply be attributed to these additional interac-
ing part of the black box, namely the atom, with the photonglion terms. The other — possibly more fruitful — point of

to a larger system one may possibly retrieve or come close t4eW is that these pulses approximately realize measurements
the situation considered by von Neumann, depending on hoW/ith state reductions, and then one immediately has simple
the measurement on the atom is actually performed. predictions for the approximate behavior of the system and

This example shows that one may have to study the me arrives at the impediment and slow-down of the time evolu-
surement at hand more closely. This is what we have donéEon without complicated calculation. Finer details require of

with the atomic Zeno experiment by means of the quantunfourse a finer analysis, as performed in the preceding sec-
. S ) . ions. An actual freezing of the state does not seem possible
jump approacti26,27, Wh'Ch 's essentially equivalent to the since all realistic meagurements take a finite time.pln the
Monte parlo wave-function approa¢9] and to .the quan- present case this hinges on the corrections and on the finite
tum trajectory approacﬁ?_B]. Thg ad_v_antage of this approac_h duration of the probe pulséncluding the transient decay

is that it allows a physically intuitive as well as analytic

; -1

treatment of the problem. Part of the measurement interad!M® of orderA3 )- . .

tion — the laser pulses — has been incorporated in the, Our gna_ly5|s may posslbly shed some I'ght on the use of

Hamiltonian; this corresponds in the above example to com'Ehe projection postul_ate in quantum optics in general, not

bining the photon system and atom to a larger system and @nly In connection with the Zt_ano effect. It seems that quite

related to shifting the Heisenberg “cuf48] often the projection postulate is a useful tool which can give
Our analysis has shown that, to a fair accuracy and withi uick and fairly accurate answers. The accuracy depends on

the parameter regimes considered in this paper, a short pro w far the particular realistic measurement differs from an

pulse can indeed be viewed as performing a measurement al_measurement as considered in orthodox quantum me-
levels 1 or 2 of the atom, with ensuing state reduction, a anics, and corrections may have to be taken into account.

given by the projection postulate for an ideal measurement! he idealization of realistic measurements.and _the.projection
However, since these “measuring’ pulses have been modpostulate may often_ be very useful_. Overldeallzatpn, how-
eled very accurately in the Hamiltonian we were able toeVver, should be avoided since any idea, when carried to ex-

show that the more realistic case is also slightly more comlremes, easily reduces itself to absurdity.
plicated, giving rise to corrections to the idealized case.
These corrections were explicitly calculated, and they have a
cumulative effect on the density matrix when the number of One of us(G.C.H) is indebted to the late Gerhart ters
probe pulses is increased, i.e., just for the interesting case.(1920-199% who also discovered the TCP theorem, for

What then remains of the Zeno effect? Does it exist at allatimulating discussions on his formulation of the projection
In our opinion the answer depends on one’s point of view. Ifpostulate.
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