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We consider the classical and quantum-mechanical processes of three-wave interactions in different phase
regimes and present numerical calculations for the quantum case, where all three modes are sizably excited
from the beginning. These excitations are coherent so that various important phase regimes can be adjusted. In
addition, one mode can also be prepared in a squeezed or Kerr state. The classical solutions are well known and
are briefly summarized, but certain phase regimes are classically unexplored and we show here that they give
interesting and surprising results. In the out-of-phase regime~where the photon numbers do not change in the
first order of time! we get, with an initial Kerr state, strongly sub-Poissonian photon statistics in the signal after
a short interaction time. This effect is limited by the classically described phase shifts that are present even in
the parametric approximation. This nonclassical phenomenon~due to the Kerr state! helps us to understand
similar nonclassical effects generated by entangled states of the pump and signal during sum-frequency gen-
eration.

PACS number~s!: 42.50.Dv

I. INTRODUCTION

The parametric interaction between intense light waves
has been studied since the laser came into existence in 1960.
Shortly after the creation of the second harmonic of the laser
light had been observed by Frankenet al. @1#, a comprehen-
sive paper by Armstronget al. appeared@2# that describes
three-wave and four-wave interactions in nonlinear media
and gives exact solutions for the classical coupled-mode
equations. This work shows the great importance of coher-
ence effects during nonlinear interactions and is now at the
heart of nonlinear optics and also the basis of many quantum
optical investigations. Let us confine ourselves to three inter-
acting waves, i.e.,x (2) media, and consider the general case
that all waves are excited at the beginning of the interaction.
In the case of exact resonance we have the relation

v35v11v2 , ~1!

wherev3 is the frequency of the pump andv1 andv2 are
the same frequencies of the signal and idler, respectively. We
assume phase matching of the wave vectors, which provides
the justification for retaining only these three waves or three
modes in the quantum case.

An important approximation that allows an analytic solu-
tion also in the quantum case is the so-called parametric one,
where the strong pump wave is treated as ac number and
any depletion is neglected while the relatively weak signal
and idler can change considerably@3#. Thereby we get the
linear parametric amplifier~for the signal!, which can be
phase insensitive~with the idler mode initially empty! or
phase dependent~with the idler initially coherently excited!.
Experimentally the latest achievement is a quantum noise
reduction in such an amplifier by coupling a squeezed
vacuum into the idler mode, performed by Ouet al. @4#. An-
other property of signal and idler photons within the para-
metric approximation is their strong correlation, allowing

many experiments in respect to fundamental questions of
interference. Pioneering investigations in this field were
made by Wanget al. ~cf., e.g.,@5#!. Finally, we should re-
mark that the parametric approximation is easily applied, but
its justification is hard to show@6#. Most quantum optical
investigations withx (2) media are carried out in this approxi-
mation @7#.

However, an arbitrary preparation of all three waves is
now experimentally possible with different phase relations
between them. Classically the solutions are then well known,
but quantum mechanically we have to resort to numerical
methods@8#. In their first calculations Walls and Barakat
started with a Fock state in the pump mode or Fock states in
the pump and signal. By now these initial states have been
replaced by coherent states with considerable excitation, but
at least one mode is still in the vacuum. During the interac-
tion the vacuum mode becomes excited and its phase adjusts
automatically to the right phase difference. Thus, the mani-
fold of phase relations cannot be explored with two excited
coherent states either.

Here we present analytical and numerical calculations for
the quantum case, where all three modes are considerably
excited from the beginning, and choose a proper phase rela-
tion between them. A coherent state with a mean photon
number exceeding 5 already has a sufficiently sharp mean
phase@9#. Hence, starting with such states in all three modes
allows therefore the choice of an arbitrary initial phase rela-
tion between them for the nondegenerate three-wave interac-
tion. This is compared with classical solutions and applied to
a specially prepared signal, which under sum-frequency gen-
eration shows strong sub-Poissonian photon statistics. The
results of this approach in turn help us understand the non-
classical properties occurring during sum-frequency genera-
tion for coherent initial states after a quasiperiod.

II. QUANTUM THEORY OF THREE-WAVE INTERACTION

We start with the Hamiltonian for the nondegenerate
three-wave interaction in the interaction picture
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Ĥ int5\k~ âb̂ĉ†1â†b̂†ĉ!, ~2!

where ĉ ( ĉ†) is the annihilation~creation! operator of the
pump mode~frequencyv3) and â and b̂ denote the corre-
sponding operators for the signal and idler, respectively. The
coupling constantk contains the nonlinear susceptibility
x (2). Because the system~2! can only be numerically solved
by diagonalization, we limit our analytical treatment to a
short-time expansion. For the signal mode operator we find
up to second order inkt, from the Heisenberg equations of
motion,

â~ t !5â2 iktb̂†ĉ1
~kt !2

2!
~ ĉ†âĉ2b̂†âb̂!1O„~kt !3…, ~3!

where all operators without a time argument are taken at
t50. Equivalent expressions can be written forb̂ andĉ. The
photon number in the signal is then described by

â†~ t !â~ t !5â†â2 ikt~ â†b̂†ĉ2 ĉ†b̂â!

1~kt !2@ ĉ†ĉ~ â†â1b̂b̂†!2â†âb̂†b̂#

1O„~kt !3…. ~4!

Assume now initially coherent states in all three modes

ua&aub&bug&c ,

a5uaueiwa, b5ubueiwb, g5ugueiwc. ~5!

Then the expectation value of~4! results in

^â†~ t !â~ t !&5uau212ktuauubuugusin~wc2wb2wa!

1k2t2@ ugu2~ uau21ubu211!2uau2ubu2#

1O~k3t3!. ~6!

We call the linear terms inkt coherent because they depend
on the phase difference. IfDw5wc2wb2wa52p/2 the
signal becomes attenuated while forDw5p/2 the signal is
first amplified. In addition, we consider the phase difference
Dw50, where all phase-dependent terms in~6! disappear
and the direction of the process is given simply by the inten-
sity relations ~the second-order term!. We call this initial
condition the out-of-phase regime. Note further that the fluc-
tuations enter~4! in the second-order term by the commuta-
tion relation of the idler operators. If we neglect this fluctua-
tion contribution, the condition for the disappearance of the
second-order term in~6! is

ugu25
uau2ubu2

uau21ubu2
. ~7!

For such intensity relations andDw50 there is classically no
energy exchange, as will be discussed later. Before deriving
the classical equations and showing the numerical results, let
us also provide the squared number operator

@ â†~ t !â~ t !#25â†2â21â†â1 i2kt~ â†â2ĉ†b̂2â†2âb̂†ĉ!1 ikt~ âĉ†b̂2â†b̂†ĉ!1~kt !2@2~ ĉ†ĉ2b̂†b̂!~ â†2â21â†â!

12ĉ†ĉ~ b̂†b̂11!â†â#2~kt !2@ ĉ†2â2b̂21 ĉ2b̂†2â†222â†âĉ†ĉb̂†b̂2â†âb̂†b̂2 ĉ†ĉ~ â†â1b̂†b̂11!#

1O„~kt !3…. ~8!

In ~8! all single-mode operators are in normal order. This
simplifies the calculation of the variance of the photon num-
ber considerably. Special attention will be dedicated to terms
of the first order of time in~8!. For three coherent states the
disappearance of the first-order terms in~6! would result in
the same effect in the expectation value of~8!. However, for
more general states, we can set these terms equal to zero in
the photon number and nevertheless retain nonzero terms for
the expectation value of~8!. This could give a strong ten-
dency to sub-Poissonian statistics. Note two possibilities for
this in the expectation value of the first-order term of~8!.
First, there are higher moments ofâ,â† and second, due to
some entanglement, any factorization of the expectation val-
ues of the different modes may become impossible. We will
discuss both properties, but focus on the first.

Finally, we should point out that there is another peculiar-
ity in ~8! that affects the nonclassical properties of the signal
and idler and has no analog within the parametric approxi-
mation: If we assume for the pump a squeezed vacuum, then
the first-order terms in the expectation values of~4! and ~8!
would vanish, but the ensemble average of the term in the

last set of square brackets in~8! shows that the squeezed
pump can determine tendencies as well. If the signal and
idler are initially in coherent states with real amplitudesa
andb, then

@2^ĉ†ĉ&2^ĉ2&2^ĉ†2&#a2b2

can be positive or negative, depending on the phase of the
pump squeezing. This effect can be enhanced by increasing
a andb. On the other hand, the signal and idler generate the
sum frequency that changes in turn the pump field. This ef-
fect can now be calculated numerically and will be discussed
elsewhere.

III. CLASSICAL DESCRIPTION OF THE THREE-WAVE
INTERACTION

Because we will mainly investigate the caseDw50 ~with
no coherent interaction at the beginning! and this is normally
avoided even in the classical coupled-mode equations@2#, we
should also briefly discuss the classical interaction. Introduc-
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ing a scaled timez5kt, we get, for the classical amplitudes,
the equations@2#

du1
dz

52u2u3 sinu,

du2
dz

52u1u3 sinu,

du3
dz

5u2u1 sinu, ~9!

where u1 ,u2 ,u3 are the classical~slowly varying! ampli-
tudes of the signal, idler, and pump, respectively, and

u~z!5f3~z!2f2~z!2f1~z! ~10!

is the phase difference between the phase of these three
waves. The equation of motion foru(z) is

du

dz
5
cosu

sinu

d

dz
ln~u1u2u3!. ~11!

We neglect here any mismatch and mention that there are
three constants

m15u2
21u3

2 , m25u1
21u3

2 , m35u1
22u2

2 , ~12!

which constitute the so-called Manley-Rowe relations and
have their corresponding conserved quantities in the quan-
tum system described by~2!. There is also the conservation
of power flow and we can interpretu1

2 ,u2
2 ,u3

2 as photon num-
bers in the corresponding modes if we introduce a suitable
rescaling of theui and z @10#, which does not change the
form of the equations in any way. Thus Eqs.~9! and~11! are
the classical equivalents of the Heisenberg equations of mo-
tion derived from~2!.

The advantage of Eq.~11! for the phase difference is that
it can immediately be integrated to give

u1~z!u2~z!u3~z!cos@u~z!#5G

5u1~0!u2~0!u3~0!cos@u~0!#.

~13!

Note, however, that the single equations for each phase

df1

dz
5
u2u3
u1

cosu,

df2

dz
5
u1u3
u2

cosu,

df3

dz
5
u2u1
u3

cosu ~14!

are not solved by this approach.
With the help of~13! and~12! the system~9! can then be

integrated, which results in the well-known Jacobian elliptic
functions for theui

2(z) ( i51,2,3) that correspond to the pho-
ton numbers. With the help of these solutions andG we can
study the motion of cosu(z) and of u(z)5f3(z)2f2(z)

2f1(z), but for the motion of each single phase we have to
integrate~14!. This will be discussed in more details in@11#.
Here we will gain insight into the behavior of each single
phase by calculating theQ functions in the quantum picture.

The solutions of~9! depend decisively on the constantG
given in ~13!, which appears in the cubic equation

x32~m21m1!x
21m2m1x2G250, ~15!

wherex5u3
2 and ~15! always has three real roots. It is easy

to solve ~15! for G50 @where Dw56p/2, or one
ui(0)50 ~i51,2,3#, but the solution forGÞ0 is just as
simple. For the caseG5u1(0)u2(0)u3(0) @cosu(0)51# we
find as the first root

x15u3
2~0! ~16!

and factor it out so that we are left with a quadratic equation.
The three roots have to be ordered@2# and their magnitude
and mutual relations determine whether or not the signal first
increases forDw50. To illustrate this we calculate also the
other roots to

x2,35
1

2
$u3

2~0!1u2
2~0!1u1

2~0!

6A@u3
2~0!1u2

2~0!1u1
2~0!#224u1

2~0!u2
2~0!%.

~17!

By setting the roots

u3c
2 >u3b

2 >u3a
2 >0

and introducing the constant

m5
u3b
2 2u3a

2

u3c
2 2u3a

2 , ~18!

the photon numbers of the three waves behave as

u3
2~z!5u3a

2 1~u3b
2 2u3a

2 !sn2@~u3c
2 2u3a

2 !1/2~z1z0!,m#,

u2
2~z!5u2

2~0!1u3
2~0!2u3

2~z!,

u1
2~z!5u1

2~0!1u3
2~0!2u3

2~z!. ~19!

In ~19! we denoted by sn[u,m] the Jacobian elliptic function
and bym its parameter@12# and used the conserved quanti-
ties m1 andm2 @Eq. ~12!# to express the signal and idler
intensity by the intensity of the pump. The constantz0 has to
be determined from the initial conditions. As a numerical
example we consider now

u1
2~0!536, u2

2~0!516, u3
2~0!59 ~20!

~these values will also be taken for our quantum calculations!
and find then

u3a
2 59, u3b

2 511.68, u3c
2 549.32. ~21!

From ~19! and ~20! it follows that z050. Looking at the
differenceu3b

2 2u3a
2 , we conclude that the energy exchange

is strongly limited. It can even be completely suppressed
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~classically! for u3b
2 →u3a

2 , which amounts to condition~7!.
No energy exchange would be reached in our example for

u1
2~0!536, u2

2~0!516, u3
2~0!511.077. ~22!

Comparing~22! and ~20! one can see how close the photon
numbers~20! are to the no-exchange case. It is instructive to
add another example

u1
2~0!516, u2

2~0!59, u3
2~0!536. ~23!

Then we find the roots to be

u3a
2 52.46, u3b

2 536, u3c
2 558.54 ~24!

and here the energy exchange is almost as complete as for
optimum phases@G50, where u(0)56p/2, or one
ui
2(0)50 ~i51,2,3!#. We conclude that in this out-of-phase
regime, the amount of the pump intensity in relation to the
signal and idler intensity determines how complete the en-
ergy exchange can be and emphasize that for this start the
phase difference does not stay atu50 (Dw50). Contrarily,
it changes in the direction that favors the energy exchange.
Simultaneously the single phases change much faster@11#. In
the next section we will compare these classical results with
quantum calculations for coherent input states and then turn
to nonclassical peculiarities.

IV. APPLICATION TO COHERENT INPUT STATES

The quantum-mechanical equivalent of~13! is the expec-
tation value of the interaction Hamiltonian~2!. Hence the
subtle classical results have their quantum-mechanical ana-
logs in the solution of~2!. Especially fromG50 we can
conclude that^Ĥ int&50 and classically this requires that
cos@u(z)# remains zero for allz because all amplitudes can
become nonzero@see~13!#. From the equations for the single
phases~14! it follows then that the single phases stay at
constant values. To determine the phases quantum mechani-
cally we can calculate the phase probability distributions and
with the help of them calculate the average phase values,
which behave in approximately the same way as the classical
phases if we are sufficiently far away from the phase jump
points. Things are different forGÞ0 because then
cos@u(z)#, along with the amplitudes cannot become zero.
However, sin@u(z)# can change its sign and reverse the power
flow in Eqs.~9! because now the phases move within certain
limits. The quantum-mechanical expectation values of the
phase~e.g., via the Pegg-Barnett approach@13#! can again be
determined by means of the phase distribution function. In-
structive insight into this phase behavior has already been
delivered by the contour lines of theQ function, to which we
will limit ourselves in this paper. A more detailed discussion
of the different phase regimes will be given in@11#.

Here we illustrate these facts by our numerical results and
show then the nonclassical features. Figure 1~a! demonstrates
the behavior of the signal photon number for the initial state
~5! with uau56, ubu54, andugu53. Note that the period of
the energy exchange is almost the same as for bothDw50
andDw52p/2, even though the amplitude parameters pre-
vent a sizable energy transfer forDw50. For sufficiently
intense coherent states we can identifyu(0)5f3(0)

2f1(0)2f2(0)50 with Dw5w32w12w250. Both pro-
cesses~Dw50 andDw5p/2! start with sum-frequency gen-
eration, but theQ parameter of the signal

Q5
^~ â†â!2&2^â†â&2

^â†â&
21, ~25!

plotted in Fig. 1~b!, becomes negative only after the second
start of sum-frequency generation, showing strongly sub-
Poissonian behavior of the signal in the caseDw52p/2.
This phenomenon is at the center of our paper because it
represents a very interesting nonclassical effect that occurs
unexpectedly in sum-frequency generation. The phase-stable
motion of the contour lines of theQ function for the signal is
plotted in Fig. 1~c!. We call a motion phase stable when the
center of these contour lines shifts only radially. Note the
remarkable deformation of theQ function when sum-
frequency generation drives the nonlinearly amplified signal
into sub-Poissonian photon statistics.

The sum-frequency generation in the first quasiperiod is
for both the signal and idler only a one-photon process and
therefore not so different from a simple reduction by absorp-
tion ~if both modes start with coherent inputs!. However, the
spontaneous decay of pump photons increases the fluctua-
tions in the signal and idler visible as a blowup of the con-
tour lines in Fig. 1~c!. These phenomena have their analogs
in the parametric approximation, which will be discussed
later. When the idler amplitude crosses zero there is a phase
jump but no saturation because also this zero passage of the
idler amplitude finds its equivalent within the parametric ap-
proximation. After this phase jump, the signal and idler are
amplified and this process becomes increasingly nonlinear
because the pump is affected by its depletion. Only the ex-
haustion of the pump is characterized by strong saturation
and prepares the signal into a different state for the restart of
sum-frequency generation. The character of this state that
shows enhanced phase fluctuations@cf. Fig. 1~c!# will be-
come clear in the following.

Analogous effects were observed with the initial condi-
tions

ua&au0&bug&c , ua&aub&bu0&c , ~26!

where the initial coherent amplitudes could be as high as
a5g58 starting with difference-frequency generation@14#
and a59,b55 generating first sum frequency@15#. The
phases in the newly generated modes in~26! adjust in a way
that corresponds toDw56p/2, respectively.

For completeness and further illustration we present in
Figs. 2~a! and 2~b! results corresponding to Fig. 1, but now
with Dw5p/2. Hence, here the interaction starts with
difference-frequency generation~or phase-dependent ampli-
fication!. After total depletion of the pump the process re-
verses and the signal and idler are used to establish the pump
~sum frequency!. A weak sub-Poissonian effect of theQ pa-
rameter is thereby observed, but the preparation was not long
enough to result in a strong narrowing. This is only reached
at the second start of the signal and idler depletion in Fig. 2.

Another important case is met when the pump wave be-
comes the strongest mode. An example that corresponds to
the photon numbers in~23! is illustrated in Figs. 3 and 4.
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Note the virtually complete energy exchange in the out-of-
phase regime@Fig. 3~a!# and the remarkable motion of the
classical phase difference accompanying it@Fig. 4~a!#. The
change of the single phases is made visible by plotting the
contour lines of theQ function for the various modes at
equidistant times@Fig. 4~b!#.

V. KERR-STATE ANSATZ FOR THE SIGNAL MODE

Achieving a remarkable nonclassical effect after one qua-
siperiod in the three-wave interaction is physically very in-
teresting, but experimentally still unrealistic. Therefore we
tried to understand the mechanism of this effect and to find
ways to realize it within the first quasiperiod, i.e., before the
signal or pump mode are depleted for the first time. One

method to get this without any entanglement at the beginning
is a Kerr-state ansatz for the signal mode and coherent states
for the idler and pump. This uses the properties of a Kerr
state@16#, that

K^auâ†2âua&K5a* uau2 exp$2uau2@12cos~e!#

1 i uau2 sin~e!1 i e%, ~27!

while

K^auâ†ua&K5a* exp$2uau2@12cos~e!#1 i uau2 sin~e!%,
~28!

FIG. 1. ~a! Change of the signal mean photon number for the initial state~5! (uau56,ubu54,ugu53) with Dw50 andDw52p/2. The
full line represents the quantum calculation of~2! while the dashed line shows the classical solution of~9! and ~11!. In the out-of-phase
regime (Dw50) we can see clearly the start of the change beginning in second order of time.~b! Q parameter@Eq. ~25!# of the signal
~joined! and idler for the same initial state as in Fig. 1~a! according to the quantum calculation~2!. The most interesting nonclassical
phenomenon occurs for the signal atDw52p/2, whereQ becomes negative after the restart of sum-frequency generation while theQ of
the idler shows the opposite tendency. This is due to the different preparations during the first quasiperiod because signal and idler start with
the mean photon numbersuau2536 andubu2516, respectively.~c! Contour lines of theQ ~quasiprobability! function for the signal wave at
the phase differenceDw52p/2 calculated quantum mechanically at equidistant times@D(kt)50.1#. The center of these lines~starting
circularly! moves radially~phase stable!. The blowup illustrates the increase of phase and amplitude fluctuations while the deformation and
transition to bananalike contours signals first pump saturation and then sub-Poissonian photon statistics, respectively.
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where ua&K is a Kerr state developed from a coherent state
and

K^auâ†ua&K5^auâ†ei eâ
†âua&. ~29!

In ~29! we denote bye a scaled interaction parameter that
containsx (3) and the interaction length. This equation uses
the simple operator solution for the ideal Kerr effect@16#.

If we compare~27! and~28! the small phase shifte intro-
duced by the commutation relations becomes very important
and leads, for

wa1wb2wc2uau2 sine50, ~30!

to a nonzero first-order term in the expectation value of~8!,
while the photon number has no such contribution. The vari-
ance of the photon number is then

^@ â†~ t !â~ t !#2&2^â†~ t !â~ t !&25uau21ktuau3ubuugusine12k2t2ugu2uau2ubu2$12exp@2uau2~12cos2e!#cose%

1k2t2@ uau2~ ugu22ubu2!1ugu2~ ubu211!12uau2ugu2#1O~k3t3!. ~31!

FIG. 2. ~a! Same parameters as in Fig. 1~a! but for the case
Dw5p/2.~b! Q parameter@Eq. ~25!# of the signal~full line!, idler
~dashed line!, and pump~line with squares! for the same case as in
~a!. After the second start of sum-frequency generation we observe
again the remarkable sub-Poissonian photon statistics in the signal.

FIG. 3. ~a! Change of the pump mean photon number when it
starts as the strongest wave (uau54,ubu53,ugu56). As in Fig. 1~a!,
the full line represents the quantum solution while the dashed line
corresponds to the classical case. The energy exchange forDw50
is now almost as effective as for the optimum phase differences
(Dw56p/2). ~b! Q parameter@Eq. ~25!# of the signal wave and
the same case as in~a!. Even in the out-of-phase regime (Dw50)
there is sub-Poissonian photon statistics during sum-frequency gen-
eration after saturated amplification.
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This equation shows fore,0 a strong tendency to sub-
Poissonian statistics because only in~31! is there such a con-
tribution of first order inkt for the phase relation~30! while
the photon number stays constant in first order.

The disappearance of the first-order terms in~6! with the
Kerr state in the signal and the phase difference~30! means
that

^â&K^b̂†ĉ&2^â†&K^ĉ†b̂&50

and is thus equivalent to a vanishing field strength in the
Kerr state. The coherent states in the idler and pump can
namely be thought of as determining the phase position of
the electric field in the signal. A vanishing Kerr field strength
is exactly the condition for obtaining extreme sub-Poissonian
statistics by interference of a coherent beam and a Kerr-state
field @17#. Note also that a Kerr state at this phase position
cannot show any squeezing.

In Fig. 5~a! we plot theQ parameter@Eq. ~25!# of the
signal for the interaction ~2! and the initial state
ua56&Kub54&bug53&c imposing the phase relation~30!. A
very short interaction time is sufficient to result in a strong
sub-Poissonian photon statistics. On the other hand, the ex-
tremes obtained by interference@16,17# cannot be reached
because the phases move classically in this configuration out
of the positionDw50. This is illustrated in Fig. 5~b!. We
should mention that we get a similar result if we start with
ua54&Kub53&bug56&c , but now with an initial amplifica-
tion of the signal forDw50 because the intensity relations
here lead to a positive term of second order in time in~6!.

In the optimized interference version of Kitagawa and
Yamamoto@17# the photon number in the output is increased
by a relatively small amount from the coherent reference
field. This field shifts theQ function of the Kerr state in an
optimum position between concentric circles and so the
photon-number fluctuations attain their minimum.

VI. PREPARED ENTANGLEMENT BETWEEN
THE SIGNAL AND PUMP

With our knowledge about the parametric interaction on a
Kerr state in the signal mode we return to the results in Figs.
1~a!–1~c!. There is of course no Kerr effect at the restart of
sum-frequency generation, although the phase fluctuations
are enhanced after this saturated amplification process~cf.
@18#!. But our Kerr-state calculations teach us that there must
be a first-order of time reduction effect of the photon-number
variance. However, this is not conceivable in a disentangled
state because at this moment we have

^ĉ&5^ĉ†&50, ~32!

i.e., the coherent pump amplitude crosses zero. In addition,
the signal and idler photon numbers are maximum, i.e., the
first derivative of the mean signal photon number vanishes

d

dt
^â†â&5

i

\
^@Ĥ int ,â

†â#&5 ik^~ âb̂ĉ†2â†b̂†ĉ!&50,

which amounts to

FIG. 4. ~a! Behavior of the cosine of the clas-
sical phase difference@Eq. ~10!# for initially
Dw50 and the same amplitude parameters as in
Fig. 3~a!. The variable is the classical coordinate
z, which corresponds exactly to the scaled time
kt. ~b! Illustration of the phase motion by con-
tour lines of theQ function within the quantized
model andDw50. The amplitudes are the same
as in Fig. 3~a!. For clarity we plot only one con-
tour line at the equidistant times@D(kt)50.13#
with the height 0.01. The shift of the pump phase
is initially the smallest because this wave is the
most intense.
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^âb̂ĉ†&5^â†b̂†ĉ&, ~33!

and hence the mean values are real. The simple consequence
of Eq. ~33! is that there is no first-order contribution to the
signal photon number as well as to any other of the modes
due to the conservation laws. In addition, we are working in
the phase-stable regime withDw52p/2, which implies
G50. This means that the expectation value of the interac-
tion HamiltonianĤ int also equals zero

^Ĥ int&5\kG5\k~^âb̂ĉ†&1^â†b̂†ĉ&!50.

As a consequence, at the moment of maximum photon num-
ber in the signal we have

^âb̂ĉ†&50.

Because the signal and the idler are strongly populated and
have a considerable coherent amplitude at this moment, the
vanishing of the mean valuêâb̂ĉ†& can only be due to the
zero crossing of the pump amplitude as expressed in Eq.
~32!. Our numerical results show exactly the coincidence of
both zeros. The dynamics of the pump is illustrated in Fig. 6.
The initial coherent state at the momentt50 is first ampli-
fied and then attenuated. The attenuation is seen as the ap-
proach to the zero point@Re(a)50,Im(a)50# along a
straight line ~phase-stable motion! and then is amplified
again by crossing the center. Note also that the zero crossing
of the quantity Eq.~33! induces a phase shift, making pos-
sible the reverse of the energy exchange process, i.e., the

buildup of the pump. As already mentioned, the simulta-
neous zero crossing of the pump amplitude does not imply a
possible factorization of the total state vector of the three-
mode system. It means only that both crossings are not mu-

FIG. 5. ~a! Q parameter@Eq. ~25!# of the sig-
nal as a function of time for the Kerr-state ansatz
in the signal and coherent states in the idler and
pump. The amplitudes areuau56, ubu54, and
ugu53 and the phases fulfill Eq.~30! with
e520.1. The strong tendency to negative values
described by Eq.~31! leads to a fast decrease of
Q, but the classical phase shifts present at
Dw50 and illustrated in~b! limit the achievable
minimum. ~b! Illustration of the classical phase
shifts for the initial state~5! by Q-function con-
tour lines at equidistant times@D(kt)50.1# for
the same amplitude parameters as in~a!. For clar-
ity we plot only one contour line at each time
with the height 0.01. These nonlinear phase shifts
are typical for the out-of-phase regimeDw50.
The initial photon numbers are close to the case
where classically no energy exchange takes place.
The time flow in all cases is indicated by an ar-
row in the idler picture.

FIG. 6. Dynamics of the pump in the regime of phase stable
motion Dw52p/2 (G50). The amplitudes of the modes have
been set as in Fig. 1~a!. To avoid confusing overlaps of the~outer!
contour lines we do not plot all time moments. The pump is first
amplified ~contour line atkt50.2) and then attenuated (kt50.4)
and amplified again (kt50.6). During this process the mean value
of the pump amplitude crosses zero~near tokt50.5), although
~due to considerable fluctuations! the mean photon number is not
zero at this moment.
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tually shifted by any correlations. Finally, it is important to
notice that the following quantity is nonzero:

i ^ĉ†â†â2b̂&2 i ^b̂†â†2âĉ&,0 ~34!

at the zero crossing discussed above. Equation~34! in turn
has the consequence that there is a first-order term in the
photon-number variance.

If we had factorized the expectation values in~34! we
would always get zero due to condition~32!. So it follows
that the entanglement between the pump and signal is crucial
for the presence of a strong tendency to sub-Poissonian pho-
ton statistics in the signal mode. The behavior of the quantity
~34! in comparison to~33! multiplied by the photon number
is shown in Fig. 7 for a region around the second start of the
sum-frequency generation.

Now by seeing the effect of~34! we conclude that it re-
sults from the preparation in the first quasiperiod. In this
sense the first quasiperiod can be interpreted as a state prepa-
ration for a special sum-frequency generation. During this
period the nonlinear amplification of the signal and idler up
to the exhaustion of the pump wave is most important. It
starts linearly when the idler amplitude crosses zero~more
exactly when̂ âb̂&50) and becomes nonlinear insofar as the
number fluctuations in the signal are then reduced while the
signal phase fluctuations continue to grow, as illustrated in
Fig. 1~c!. These findings with respect to the phase agree with
those obtained in@18#.

VII. SOME PROPERTIES OF THE PARAMETRIC
APPROXIMATION

We have already mentioned that certain properties survive
the transition in which the pump wave becomes very strong
and is not affected by the energy transfer from or to the
signal and idler. The pump wave is then treated as a classical
c number and any depletion is neglected. In the interaction
picture the solutions for the signal and idler are then@3#

â~T!5â cosh~T!1b̂†i sinh~T!,

b̂~T!5b̂ cosh~T!1â†i sinh~T!, ~35!

where the operators are defined as in Sec. II andT contains
the coupling constant and the pump amplitude. The phase
scaling is as in@3#. To simplify the expressions we will use
the abbreviations

cosh~T!5c~T!, sinh~T!5s~T!.

With ~35! we find for the signal photon number for initially
coherent statesua&a in a and ub&b in b ~as in Sec. II!

^â†~T!â~T!&5uau2c2~T!12uauubus~T!c~T!

3cos~p/22wa2wb!1~ ubu211!s2~T!,

~36!

from which we see that, in@3#, wc is set equal top.
In discussing various simple cases let us first assume that

uau54, ubu53, and

wc2wa2wb5p2wb2wa50, ~37!

i.e., we consider the out-of-phase regime in the parametric
approximation. The photon number~36! will then always
increase because the pump photon number is sufficiently
large and therefore the second-order term in~6! is always
positive. Concerning the signal amplitude we find

^â~T!&52eiwa~eT1e2T!1 3
2e

i ~p/22wb!~eT2e2T!

5eiwa@~22 3
2 i !e

T1~21 3
2 i !e

2T#, ~38!

where we used~37!. The equivalent result for the idler mode
is

^b̂~T!&5eiwb@~ 3
222i !eT1~ 3

212i !e2T#. ~39!

These two equations tell us that there are phase shifts for the
signal and idler that amount, for strong amplification, to ro-
tations by 36.9° and 53.1°, respectively. We can see these
rotations qualitatively in Fig. 4~b!, where the pump wave
contained initially 36 photons as the strongest wave. For a
more exact agreement we would need a much stronger pump
wave. Thus there are phase shifts within the parametric ap-
proximation.

Our other example refers to the first zero passage of the
idler amplitude~and of^ ĉ†b̂â&) for Dw52p/2 in Fig. 1~a!.
After this phase jump byp of the idler wave both the signal
and idler are amplified until the complete depletion of the
pump. The zero passage of the idler has an analog in the
parametric approximation and the number fluctuations can
here be calculated to

FIG. 7. Behavior of@ i ^ĉ†âb̂&1c.c.#^â†â& ~dashed line! and of
@ i ^ĉ†â†â2b̂&1c.c.# ~full line! at the restart of sum-frequency gen-
eration in Figs. 1~a! and 1~b! (Dw52p/2). The process begins
where the first quantity crosses zero. The second is then negative
and describes the tendency to sub-Poissonian photon statistics in the
expectation value of Eq.~8!.
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^@ b̂†~T!b̂~T!#2&2^b̂†~T!b̂~T!&2

^b̂†~T!b̂~T!&

5c2~T!1s2~T!
@ ubuc~T!2uaus~T!#2

^b̂†~T!b̂~T!&
. ~40!

The fluctuations~40! are plotted in Fig. 8 for the case
uau56, ubu54, andDw52p/2 and show qualitatively the
same wiggle as in Figs. 1~b! and 2~b! (Qb of the idler!.

VIII. CONCLUDING REMARKS

We have presented a classical and quantum-mechanical
analysis of the three-wave interaction in its simplest form
without any losses, but including the full quantization of all
three modes and depletion. Already in this idealized descrip-
tion there is a variety of effects that demand further investi-
gation and offer interesting experimental possibilities.

Our numerical calculation starts with sufficiently strong
coherent states in all three modes and therefore allows us to
investigate all possible phase regimes. In general, the single
phases and their difference change during the interaction.
Exceptions can be found only for distinguished phase differ-
ences or initially empty modes.

There is a close analogy between the quantum and classi-
cal behavior because the conserved quantities are equivalent.
On the other hand, we can find drastic differences due to the
developing entanglement between the modes, which has no
classical analog.

Besides the well-known entanglement between the signal
and idler, there can also be an entanglement between the
signal and the pump mode after saturated amplification of the
signal. This entanglement is responsible for the strong non-
classical effects during sum-frequency generation in the non-
degenerate process where normally nothing unexpected is
happening.

The entanglement is usually indicated by the purity of the
modes, but here we have focused on certain expectation val-
ues that could not be factorized. The study of these expecta-
tion values showed strong tendencies to nonclassical effects
that were proved by our numerical analysis to last during
longer interaction times.
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FIG. 8. Relative photon-number fluctuations@Eq. ~25!# of the
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where the idler amplitude crosses zero.
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