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Nondegenerate parametric interactions and nonclassical effects
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We consider the classical and quantum-mechanical processes of three-wave interactions in different phase
regimes and present numerical calculations for the quantum case, where all three modes are sizably excited
from the beginning. These excitations are coherent so that various important phase regimes can be adjusted. In
addition, one mode can also be prepared in a squeezed or Kerr state. The classical solutions are well known and
are briefly summarized, but certain phase regimes are classically unexplored and we show here that they give
interesting and surprising results. In the out-of-phase re@where the photon numbers do not change in the
first order of timg we get, with an initial Kerr state, strongly sub-Poissonian photon statistics in the signal after
a short interaction time. This effect is limited by the classically described phase shifts that are present even in
the parametric approximation. This nonclassical phenomédoe to the Kerr stajehelps us to understand
similar nonclassical effects generated by entangled states of the pump and signal during sum-frequency gen-
eration.

PACS numbsd(s): 42.50.Dv

[. INTRODUCTION many experiments in respect to fundamental questions of
interference. Pioneering investigations in this field were

The parametric interaction between intense light wavegnade by Wanget al. (cf., e.g.,[5]). Finally, we should re-
has been studied since the laser came into existence in 1960ark that the parametric approximation is easily applied, but
Shortly after the creation of the second harmonic of the laseits justification is hard to shoW6]. Most quantum optical
light had been observed by Frankenal.[1], a comprehen- investigations withy(®) media are carried out in this approxi-
sive paper by Armstrongt al. appeared?2] that describes Mation[7]. _ _ _
three-wave and four-wave interactions in nonlinear media HOWever, an arbitrary preparation of all three waves is
and gives exact solutions for the classical coupled-mod80W experimentally possible with different phase relations
equations. This work shows the great importance of cohe between them. Classically the solutions are then well known,

; ; ; ; ; ut quantum mechanically we have to resort to numerical
ence effects during nonlinear interactions and is now at thé?nethods[S]. In their first calculations Walls and Barakat

S L ! AU arted with a Fock state in the pump mode or Fock states in

optical investigations. Let us confine ourselves to three interg o pump and signal. By now these initial states have been
i i (2) i i : . . o

acting waves, i.e.y'~ media, and consider the general case;gp|aced by coherent states with considerable excitation, but

that all waves are excited at the beginning of the interactiony; jeast one mode is still in the vacuum. During the interac-

In the case of exact resonance we have the relation tion the vacuum mode becomes excited and its phase adjusts
automatically to the right phase difference. Thus, the mani-
w3= w1 w3, (1) fold of phase relations cannot be explored with two excited
coherent states either.
where w; is the frequency of the pump and; and w, are Here we present analytical and numerical calculations for

the same frequencies of the signal and idler, respectively. Wihe quantum case, where all three modes are considerably
assume phase matching of the wave vectors, which providesxcited from the beginning, and choose a proper phase rela-
the justification for retaining only these three waves or thredion between them. A coherent state with a mean photon
modes in the quantum case. number exceeding 5 already has a sufficiently sharp mean
An important approximation that allows an analytic solu- Phase[9]. Hence, starting with such states in all three modes

tion also in the quantum case is the so-called parametric on@llows therefore the choice of an arbitrary initial phase rela-
where the strong pump wave is treated as aumber and tion between them for the nondegenerate three-wave interac-

any depletion is neglected while the relatively weak signaltion- This is compared with classical solutions and applied to

and idler can change consideralj]. Thereby we get the & SPecially prepared signal, which under sum-frequency gen-
linear parametric amplifietfor the signal, which can be eration shows strong sub-Poissonian photon statistics. The

phase insensitivéwith the idler mode initially empty or results of this approach in turn help us understand the non-

phase dependefivith the idler initially coherently excited qlas?|cal pr:oper';|(_e§tpclc11trrtlng dfl:”ng sum—.freq.uiincy genera-
Experimentally the latest achievement is a quantum noigfion for coherent initial states after a quasiperiod.
reduction in such an amplifier by coupling a squeezeq

. - . QUANTUM THEORY OF THREE-WAVE INTERACTION
vacuum into the idler mode, performed by ®ual.[4]. An- Q
other property of signal and idler photons within the para- We start with the Hamiltonian for the nondegenerate
metric approximation is their strong correlation, allowing three-wave interaction in the interaction picture
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H,.=7%x(abc'+a'ob'e), (20  Then the expectation value 64) results in
where¢ (C') is the annihilation(creation operator of the
pump mode(frequencyws) anda andb denote the corre-
sponding operators for the signal and idler, respectively. The
coupling constantx contains the nonlinear susceptibility
x®. Because the syste@) can only be numerically solved
by diagonalization, we limit our analytical treatment to a . )
short-time expansion. For the signal mode operator we findVe call the linear terms it coherent because they depend

up to second order irt, from the Heisenberg equations of On the phase difference. ko=@~ ¢,—¢,=— /2 the
motion, signal becomes attenuated while b= 7/2 the signal is

first amplified. In addition, we consider the phase difference
A¢p=0, where all phase-dependent terms(@ disappear
and the direction of the process is given simply by the inten-
sity relations(the second-order tepmWe call this initial
where all operators without a time argument are taken agondition the out-of-phase regime. Note further that the fluc-

@'(ma)=|a|*+2«t|al| Bl yIsinec— ep— @a)
+ 27|y %(|e|*+| 812+ 1) — | al?| BI?]
+O(K3t3). (6)

(xt)?

2!

A(t)=a—ixtb'e+ (etac—btab)+o((x1)?), (3

t=0. Equivalent expressions can be written ioand¢. The
photon number in the signal is then described by

at(vat)=ata—ixt(a'b'e—¢'ba)

+(xt)q[e'e(ata+bbh —aTabb]

tuations entef4) in the second-order term by the commuta-
tion relation of the idler operators. If we neglect this fluctua-
tion contribution, the condition for the disappearance of the
second-order term if6) is

%8I

@ o g @

+0((«t)3).

Assume now initially coherent states in all three modes . . . . .
For such intensity relations adp=0 there is classically no

|a)al Bl V)e energy exchange, as will be discussed later. Before deriving
' ' _ the classical equations and showing the numerical results, let
a=|ale'?a, B=|ple'?, y=|y|e'%c. (5  us also provide the squared number operator

[af(t)act)2=at2a2+ata+i2«t(ata2etb—at2an’e) +ixt(acb—atb’e) + («t)[2(¢'e—b'b)(aT%a%+2a')
+28'8(b'b+1)ata]— («t)[&1%4%02+ ¢%b2at2—2a'ag ebb—atab’b—¢'e(ata+b'b+1)]

+0((kt)3). (8

In (8) all single-mode operators are in normal order. Thislast set of square brackets {8) shows that the squeezed
simplifies the calculation of the variance of the photon num-pump can determine tendencies as well. If the signal and
ber considerably. Special attention will be dedicated to termidler are initially in coherent states with real amplitudes

of the first order of time in8). For three coherent states the and 3, then
disappearance of the first-order terms(@ would result in

the same effect in the expectation valug®t However, for

more general states, we can set these terms equal to zero in

the photon number and nevertheless retain nonzero terms fggn pe positive or negative, depending on the phase of the
the expectation value of8). This could give a strong ten- pump squeezing. This effect can be enhanced by increasing
dency to sub-Poissonian statistics. Note two possibilities fo, and 8. On the other hand, the signal and idler generate the
this in the expectation value of the first-order term(8f.  sum frequency that changes in turn the pump field. This ef-

First, there are higher moments afa’ and second, due to fect can now be calculated numerically and will be discussed

some entanglement, any factorization of the expectation vaklsewhere.

ues of the different modes may become impossible. We will
discuss both properties, but focus on the first.

Finally, we should point out that there is another peculiar-
ity in (8) that affects the nonclassical properties of the signal
and idler and has no analog within the parametric approxi- Because we will mainly investigate the case =0 (with
mation: If we assume for the pump a squeezed vacuum, themo coherent interaction at the beginnjiregnd this is normally
the first-order terms in the expectation valueg4fand (8) avoided even in the classical coupled-mode equafi®hsve
would vanish, but the ensemble average of the term in thehould also briefly discuss the classical interaction. Introduc-

[2('¢)—(e?) — (&) ]a?p?

Ill. CLASSICAL DESCRIPTION OF THE THREE-WAVE
INTERACTION



53 NONDEGENERATE PARAMETRIC INTERACTIONS AND ... 509

ing a scaled time = «t, we get, for the classical amplitudes, — ¢4(¢), but for the motion of each single phase we have to

the equation$2] integrate(14). This will be discussed in more details [ibd].
Here we will gain insight into the behavior of each single
% —  UoUa SiNG phase by calculating th® functions in the quantum picture.
d¢ 283 >0 The solutions o0f9) depend decisively on the constdnt
given in (13), which appears in the cubic equation
du, )
d_fz_ulus siné, x3—(my+my)x?+mymyx—T?=0, (19
du wherex=u3 and(15) always has three real roots. It is easy
— = u,uy sing, (99 to solve (15 for I'=0 [where Ap==m/2, or one
dZ u;(0)=0 (i=1,2,3, but the solution forl'#0 is just as

simple. For the cas€& =u;(0)u,(0)u3(0) [co(0)=1] we

where u;,uU,,u; are the classicalslowly varying ampli- find as the first root

tudes of the signal, idler, and pump, respectively, and

— 12
0(8) = ¢3() — Pa(d) — 1(L) (10 X1 =U3(0) (16)

d factor it out so that we are left with a quadratic equation.
e three roots have to be ordergd] and their magnitude
and mutual relations determine whether or not the signal first
dé cow d increases foA ¢ =0. To illustrate this we calculate also the
—=— | . 11
4z~ sing dZ n(u;Uyus) (11)  other roots to

is the phase difference between the phase of these thr
waves. The equation of motion fak({) is

We neglect here any mismatch and mention that there are , 3=E{U§(O)+ug(0)+U§(O)
three constants "2

mi=u2+u?, my=ui+u?, my=ui-u?, (12 + J[U3(0) +u3(0) +ui(0)]*~4u3(0)u5(0)}.

which constitute the so-called Manley-Rowe relations and (a7
have their corresponding conserved quantities in the quarBy setting the roots

tum system described b2). There is also the conservation

of power flow and we can interprat ,u3,u as photon num- u3.=ud,=uz,=0

bers in the corresponding modes if we introduce a suitable )

rescaling of theu; and ¢ [10], which does not change the @nd introducing the constant

form of the equations in any way. Thus E¢8) and(11) are W2 — 2
_ HY3p™ H3a

the classical equivalents of the Heisenberg equations of mo- m= (18)
tion derived from(2). U3~ U3,
The advantage of Eq11) for the phase difference is that
it can immediately be integrated to give the photon numbers of the three waves behave as
Uy(O)Un(£)Us(£)cod B(0)]=T u3(0) =3+ (u3y— u3) e[ (Ui, — u5) YA L+ £o).m],
= U1(0)u2(0)us(0)cog 6(0)]. u5(£)=u3(0)+u3(0)—uj(2),
(13
uZ(£)=u(0)+u3(0)—u3(2). (19
Note, however, that the single equations for each phase
In (19) we denoted by snf,m] the Jacobian elliptic function
dé1  Upuz and bym its parametef12] and used the conserved quanti-
dac ug cow, ties m; and m, [Eq. (12)] to express the signal and idler
intensity by the intensity of the pump. The constégghas to
dg, UujUs be determined from the initial conditions. As a numerical
ac = U, CO%, example we consider now
2 _ 2 _ 2 —
dgs U, » u7(0)=36, u5(0)=16, uz(0)=9 (20
d¢  uz (these values will also be taken for our quantum calculajions

] and find then
are not solved by this approach.

With the help of(13) and(12) the systen{9) can then be u3,=9, u3,=11.68, u3.=49.32. (21)
integrated, which results in the well-known Jacobian elliptic
functions for theu?(¢) (i=1,2,3) that correspond to the pho- From (19) and (20) it follows that {,=0. Looking at the
ton numbers. With the help of these solutions &hdre can  differenceu3,—u3,, we conclude that the energy exchange
study the motion of ca¥() and of 6({)= ¢3() — do(¢) is strongly limited. It can even be completely suppressed
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(classically for u3,—u3,, which amounts to conditiofi7).  — ¢1(0)— ¢,(0)=0 with Ag=p3— ¢~ ¢,=0. Both pro-
No energy exchange would be reached in our example for cessefA¢=0 andAp=m/2) start with sum-frequency gen-
eration, but theQ parameter of the signal
u3(0)=36, u3(0)=16, u3(0)=11.077. (22)
((a'8)?)—(a"a)?
BREE)

Comparing(22) and (20) one can see how close the photon 1, (25
numberg20) are to the no-exchange case. It is instructive to

add another example plotted in Fig. 1b), becomes negative only after the second

2/ — 20\ — 2/ — start of sum-frequency generation, showing strongly sub-
u3(0)=16, u3(0)=9, u3(0)=36. @3 Poissonian behavior of the signal in the case= — /2.
Then we find the roots to be This phenomenon is at the center of our paper because it
represents a very interesting nonclassical effect that occurs
u3,=2.46, u3, =36, u3.=58.54 (24)  unexpectedly in sum-frequency generation. The phase-stable

motion of the contour lines of th® function for the signal is
and here the energy exchange is almost as complete as fplotted in Fig. 1c). We call a motion phase stable when the
optimum phases[I'=0, where #(0)==x=/2, or one center of these contour lines shifts only radially. Note the
ui2(0)=0 (i=1,2,3]. We conclude that in this out-of-phase remarkable deformation of th& function when sum-
regime, the amount of the pump intensity in relation to thefrequency generation drives the nonlinearly amplified signal
signal and idler intensity determines how complete the eninto sub-Poissonian photon statistics.
ergy exchange can be and emphasize that for this start the The sum-frequency generation in the first quasiperiod is
phase difference does not stayfat 0 (Ap=0). Contrarily, for both the signal and idler only a one-photon process and
it changes in the direction that favors the energy exchangéherefore not so different from a simple reduction by absorp-
Simultaneously the single phases change much fiktgrin ~ tion (if both modes start with coherent inputslowever, the
the next section we will compare these classical results witlspontaneous decay of pump photons increases the fluctua-
guantum calculations for coherent input states and then turtions in the signal and idler visible as a blowup of the con-

to nonclassical peculiarities. tour lines in Fig. 1c). These phenomena have their analogs
in the parametric approximation, which will be discussed
IV. APPLICATION TO COHERENT INPUT STATES later. When the idler amplitude crosses zero there is a phase

jump but no saturation because also this zero passage of the
The quantum-mechanical equivalent(&B) is the expec- idler amplitude finds its equivalent within the parametric ap-
tation value of the interaction Hamiltoniai2). Hence the proximation. After this phase jump, the signal and idler are
subtle classical results have their quantum-mechanical anamplified and this process becomes increasingly nonlinear
logs in the solution of(2). Especially fromI’=0 we can because the pump is affected by its depletion. Only the ex-
conclude that(H;,;)=0 and classically this requires that haustion of the pump is characterized by strong saturation
cog #(?)] remains zero for alf’ because all amplitudes can and prepares the signal into a different state for the restart of
become nonzerfsee(13)]. From the equations for the single sum-frequency generation. The character of this state that
phases(14) it follows then that the single phases stay atshows enhanced phase fluctuatigng Fig. 1(c)] will be-
constant values. To determine the phases quantum mechaaibme clear in the following.
cally we can calculate the phase probability distributions and Analogous effects were observed with the initial condi-
with the help of them calculate the average phase valuesions
which behave in approximately the same way as the classical
phases if we are sufficiently far away from the phase jump |@)al OVl V)ey |@)al B)bl0)c, (26)
points. Things are different for'#0 because then
cog6()], along with the amplitudes cannot become zerowhere the initial coherent amplitudes could be as high as
However, sifid({)] can change its sign and reverse the powera= y=_8 starting with difference-frequency generatid|
flow in Egs.(9) because now the phases move within certainand «=9,8=5 generating first sum frequendy5]. The
limits. The quantum-mechanical expectation values of thghases in the newly generated mode&2i§) adjust in a way
phasele.g., via the Pegg-Barnett approddl3]) can again be that corresponds td ¢ =+ 77/2, respectively.
determined by means of the phase distribution function. In- For completeness and further illustration we present in
structive insight into this phase behavior has already beeRigs. 2a) and 2b) results corresponding to Fig. 1, but now
delivered by the contour lines of tigg¢ function, to which we  with Ae=/2. Hence, here the interaction starts with
will limit ourselves in this paper. A more detailed discussiondifference-frequency generatidor phase-dependent ampli-
of the different phase regimes will be given][itil]. fication). After total depletion of the pump the process re-
Here we illustrate these facts by our numerical results anderses and the signal and idler are used to establish the pump
show then the nonclassical features. Figu@@ lemonstrates (sum frequency A weak sub-Poissonian effect of tigg pa-
the behavior of the signal photon number for the initial staterameter is thereby observed, but the preparation was not long
(5) with |a|=6, | 8|=4, and|y|=3. Note that the period of enough to result in a strong narrowing. This is only reached
the energy exchange is almost the same as for hatk-0 at the second start of the signal and idler depletion in Fig. 2.
andA o= — 7/2, even though the amplitude parameters pre- Another important case is met when the pump wave be-
vent a sizable energy transfer faro=0. For sufficiently = comes the strongest mode. An example that corresponds to
intense coherent states we can identif)(0)=¢4(0) the photon numbers i(23) is illustrated in Figs. 3 and 4.
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FIG. 1. (a) Change of the signal mean photon number for the initial &té|«|=68|=4,y|=3) with A¢=0 andA¢=— /2. The
full line represents the quantum calculation(@f while the dashed line shows the classical solutiorif®fand (11). In the out-of-phase
regime A¢=0) we can see clearly the start of the change beginning in second order of(bin@.parametefEq. (25)] of the signal
(joined) and idler for the same initial state as in Figalaccording to the quantum calculatid®). The most interesting nonclassical
phenomenon occurs for the signalfap= — /2, whereQ becomes negative after the restart of sum-frequency generation whi@ die
the idler shows the opposite tendency. This is due to the different preparations during the first quasiperiod because signal and idler start with
the mean photon numbela|?=36 and| 8|?=16, respectively(c) Contour lines of theQ (quasiprobability function for the signal wave at
the phase differencA ¢= — 7/2 calculated quantum mechanically at equidistant tifn&é«t)=0.1]. The center of these lingstarting
circularly) moves radially(phase stab)e The blowup illustrates the increase of phase and amplitude fluctuations while the deformation and
transition to bananalike contours signals first pump saturation and then sub-Poissonian photon statistics, respectively.

Note the virtually complete energy exchange in the out-of-method to get this without any entanglement at the beginning
phase regim¢Fig. 3@] and the remarkable motion of the is a Kerr-state ansatz for the signal mode and coherent states
classical phase difference accompanyingFig. 4@]. The for the idler and pump. This uses the properties of a Kerr
change of the single phases is made visible by plotting thetate[16], that

contour lines of theQ function for the various modes at

equidistant times$Fig. 4(b)].
| #Fi0. 40 (2" )= a* af? expl— a2 1—cog )]

V. KERR-STATE ANSATZ FOR THE SIGNAL MODE +i|a|? sin(e)+iel, (27)

Achieving a remarkable nonclassical effect after one qua-
siperiod in the three-wave interaction is physically very in-ynhile
teresting, but experimentally still unrealistic. Therefore we
tried to understand the mechanism of this effect and to find
ways to realize it within the first quasiperiod, i.e., before the (a|a'|a)x=a* exp—|a| 1—coge)]+i|a|? sin(e)},
signal or pump mode are depleted for the first time. One (28
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FIG. 2. (a) Same parameters as in Figlalbut for the case FIG. 3. (@ Change of the pump mean photon number when it

Ag=m/2.(b) Q parametefEq. (25)] of the signal(full line), idler  starts as the strongest waver(=4,38|=3y|=6). As in Fig. a),
(dashed ling and pump(line with squaresfor the same case as in the full line represents the quantum solution while the dashed line
(a). After the second start of sum-frequency generation we observeorresponds to the classical case. The energy exchangegfer0

again the remarkable sub-Poissonian photon statistics in the signa$ now almost as effective as for the optimum phase differences
(Ap==/2). (b) Q parametefEq. (25)] of the signal wave and
the same case as (). Even in the out-of-phase regimd ¢=0)

where|a) is a Kerr state developed from a coherent statdhere is sub-Poissonian photon statistics during sum-frequency gen-
and eration after saturated amplification.

. At ieah
k(ald|a)=(ala’e'®qa). (29 ®at op— @c—|a|? sine=0, (30)

In (29) we denote bye a scaled interaction parameter that

containsy(®) and the interaction length. This equation usest first-order t in th tati | f
the simple operator solution for the ideal Kerr effgté). 0 a nonzero first-order term in the expectation valués))

If we compare(27) and(28) the small phase shit intro- while the photon number has no such contribution. The vari-

duced by the commutation relations becomes very importar@"ce Of the photon number is then
and leads, for

([a"(Ham 1) —(@"(a))?=|al?+ xt| | || ylsine+ 2x*t? y|*| a|?| |*{1— exi] —| o] (1~ cos2e) Jcose}
+ 27l 2(| 712 | B2 + 7121 817+ 1) + 2] ] y12]+ O (x°t). (31)
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This equation shows foe<0 a strong tendency to sub- In the optimized interference version of Kitagawa and

Poissonian statistics because only34) is there such a con- Yamamotd 17] the photon number in the output is increased

tribution of first order inxt for the phase relatio(80) while by a relatively small amount from the coherent reference

the photon number stays constant in first order. field. This field shifts theQ function of the Kerr state in an
The disappearance of the first-order termg@nwith the  optimum position between concentric circles and so the

Kerr state in the signal and the phase differe(8® means photon-number fluctuations attain their minimum.

that

v itan At At VI. PREPARED ENTANGLEMENT BETWEEN
(a)k(b'c)—(a")k(c'b)=0 THE SIGNAL AND PUMP

and is thus equivalent to a vanishing field strength in the With our knowledge about the parametric interaction on a

Kerr state. The coherent states in the idler and pump caKerr state in the signal mode we return to the results in Figs.

namely be thought of as determining the phase position ot(@—1(c). There is of course no Kerr effect at the restart of

the electric field in the signal. A vanishing Kerr field strength Sum-frequency generation, although the phase fluctuations

is exactly the condition for obtaining extreme sub-Poissoniar@’€ e€nhanced after this saturated amplification pro¢efss

statistics by interference of a coherent beam and a Kerr-statd8]). But our Kerr-state calculations teach us that there must

field [17]. Note also that a Kerr state at this phase positiorPe a first-order of time reduction effect of the photon-number

cannot show any squeezing. variance. However, this is not conceivable in a disentangled
In Fig. 5a we plot theQ parametefEq. (25)] of the  state because at this moment we have

signal for the interaction(2) and the initial state A

|a=6)¢|B=4)p|y=3). imposing the phase relatidB0). A (&)=(ch=0, (32

very short interaction time is sufficient to result in a strong _ -

sub-Poissonian photon statistics. On the other hand, the ek€- the coherent pump amplitude crosses zero. In addition,

tremes obtained by interferen¢&6,17] cannot be reached the signal and idler photon numbers are maximum, i.e., the

because the phases move classically in this configuration ofifst derivative of the mean signal photon number vanishes

of the positionAe=0. This is illustrated in Fig. &). We q )

should mention that we get a similar result if we start with 9~y 1~ aganl o anap aprial

|a=4)«|B=3)p|y=6)¢, but now with an initial amplifica- gi(@ @)= ([Hin,a'al) =ix((abc’=a’b’c)) =0,

tion of the signal forA ¢=0 because the intensity relations

here lead to a positive term of second order in timéén which amounts to
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0.00
—0.20
~0.40 ] FIG. 5. (a) Q parametefEq. (25)] of the sig-
. nal as a function of time for the Kerr-state ansatz
& ] in the signal and coherent states in the idler and
_0.60 1 pump. The amplitudes argy|=86, |3|=4, and
. |y|=3 and the phases fulfill Eq(30) with
i e=—0.1. The strong tendency to negative values
_0.80 4 described by Eq(31) leads to a fast decrease of
] Q, but the classical phase shifts present at
. (a) A@=0 and illustrated in(b) limit the achievable
D o N —— minimum. (b) lllustration of the classical phase
0.00 0.05 0.10 0.15 0.20 shifts for the initial stat€5) by Q-function con-
scaled time tour lines at equidistant timdsA («t)=0.1] for
the same amplitude parameters agan For clar-
(b) ity we plot only one contour line at each time
Im(a) Im(r)- Im{a) with the height 0.01. These nonlinear phase shifts
- ® ~ L ® - ® are typical for the out-of-phase regintep=0.
- u C The initial photon numbers are close to the case
C - F where classically no energy exchange takes place.
[ o C o ) The time flow in all cases is indicated by an ar-
C C Fo& row in the idler picture.
8 o -8 8 o -8 9 0 -9
pump idler signal
(abehy=(a'b'e), (33  buildup of the pump. As already mentioned, the simulta-

neous zero crossing of the pump amplitude does not imply a
and hence the mean values are real. The simple consequenugssible factorization of the total state vector of the three-
of Eq. (33 is that there is no first-order contribution to the mode system. It means only that both crossings are not mu-
signal photon number as well as to any other of the modes

due to the conservation laws. In addition, we are working in o
the phase-stable regime witho=— /2, which implies 7
I'=0. This means that the expectation value of the interac- | 0.6
tion HamiltonianH;,; also equals zero e ’
(Hiy=AxT=hr({abc™)+(a'b'c))=0. - 0.5
PN
As a consequence, at the moment of maximum photon num- £ 04
ber in the signal we have '
0.0
A |
(abc™y=0. a 0.2
Because the signal and the idler are strongly populated and |
have a considerable coherent amplitude at this moment, the @ 8' — l4' T (l) T 411 3
vanishing of the mean valu@bc') can only be due to the Re(a)

zero crossing of the pump amplitude as expressed in Eq.

(32). Our numerical res_uItS show exaCt_Iy _the COIncu_jen(_;e of FIG. 6. Dynamics of the pump in the regime of phase stable
both Zeros. The dynamics of the pump is |Ilqstrgted in F_|g. 6 motion Ag=—m/2 (T=0). The amplitudes of the modes have
The initial coherent state at the momemtO is first ampli-  peen set as in Fig.(). To avoid confusing overlaps of theutep
fied and then attenuated. The attenuation is seen as the aRstour lines we do not plot all time moments. The pump is first
proach to the zero poinfRe(a)=0,Im(a)=0] along a  ampiified (contour line atkt=0.2) and then attenuatedki=0.4)
straight line (phase-stable motignand then is amplified and amplified again&t=0.6). During this process the mean value
again by crossing the center. Note also that the zero crossing the pump amplitude crosses zefiear to xt=0.5), although

of the quantity Eq(33) induces a phase shift, making pos- (due to considerable fluctuationtie mean photon number is not
sible the reverse of the energy exchange process, i.e., thero at this moment.
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1500+ A(T)=4a cosiT)+b'i sinh(T),

10004 B(T)=b cosKT)+a'i sinh(T), (35)
TS 5001 \ ! ) )
g ] where the operators are defined as in Sec. |l Brabntains
+ i ] the coupling constant and the pump amplitude. The phase
& :?_g O; scaling is as if3]. To simplify the expressions we will use
S e ] the abbreviations
S8 = -500
L @ 1
- (3-1000-: cosi(T)=c(T), sinnT)=s(T).

-1500: e ——— With (35) we find for the signal photon number for initially

0.44 0.45 0.46 0.47

scaled time coherent stately), in a and|B), in b (as in Sec. Nl

FIG. 7. Behavior ofi(¢'ab)+c.c](a'a) (dashed fingand of (&' (T)&(T))=|al|?c*(T)+2|al|Als(T)c(T)

[i(c'a'ab)+c.c] (full line) at the restart of sum-frequency gen- X cog 72— @~ @p) + (| B]2+1)sX(T)
eration in Figs. 8 and ib) (Ae=—m/2). The process begins a '
where the first quantity crosses zero. The second is then negative (36)
and describes the tendency to sub-Poissonian photon statistics in the

expectation value of Ed8). from which we see that, if3], ¢, is set equal tor.

_ . _ o In discussing various simple cases let us first assume that
tually shifted by any correlations. Finally, it is important to la|=4,|8|=3, and

notice that the following quantity is nonzero:
i(8Ta'ab)—i(bTat?ae)<o (34) P~ Pa— Pp=T— ¢p— ¢a=0, (37

at the zero crossing discussed above. Equaf@ in turn e we consider the out-of-phase regime in the parametric

has the consequence that there is a first-order term in thgyproximation. The photon numbésé) will then always

photon-number variance. . increase because the pump photon number is sufficiently
If we had factorized the expectation values(B¥) we  |arge and therefore the second-order term@nis always

would aIWayS get zero due to COﬂdItIGﬁﬁZ) So it follows positive_ Concerning the Signa' amp"tude we find
that the entanglement between the pump and signal is crucial

for the presence of a strong tendency to sub-Poissonian pho-
ton statistics in the signal mode. The behavior of the quantity
(34) in comparison tq33) multiplied by the photon number
is shown in Fig. 7 for a region around the second start of the =e'ea[(2—-2i)eT+(2+2i)e ], (39
sum-frequency generation.

Now by seeing the effect af34) we conclude that it re- ) )
sults from the preparation in the first quasiperiod. In thisWhere we used37). The equivalent resuit for the idler mode
sense the first quasiperiod can be interpreted as a state prepa-
ration for a special sum-frequency generation. During this
period the nonlinear amplification of the signal and idler up (b(T))=e®[(2—2i)e"+(2+2i)e ). (39)
to the exhaustion of the pump wave is most important. It
starts linearly when the idler amplitude crosses zgnore ] .
exactly wher(éB>=0) and becomes nonlinear insofar as theT'hese two _equatlons tell us that there are phgge S.hlf[S for the
number fluctuations in the signal are then reduced while th§'gnal and idler that amount, for strong amplification, to ro-
signal phase fluctuations continue to grow, as illustrated if@tions by 36.9° and 53.1°, respectively. We can see these

Fig. 1(c). These findings with respect to the phase agree witfiotations qualitatively in Fig. @), where the pump wave
those obtained if18]. contained initially 36 photons as the strongest wave. For a

more exact agreement we would need a much stronger pump
wave. Thus there are phase shifts within the parametric ap-
proximation.
Our other example refers to the first zero passage of the
We have already mentioned that certain properties survividler amplitude(and of(¢'ba)) for Ag=—#/2 in Fig. 1(a).
the transition in which the pump wave becomes very stronghfter this phase jump byr of the idler wave both the signal
and is not affected by the energy transfer from or to theand idler are amplified until the complete depletion of the
signal and idler. The pump wave is then treated as a classicaump. The zero passage of the idler has an analog in the
c number and any depletion is neglected. In the interactiopparametric approximation and the number fluctuations can
picture the solutions for the signal and idler are thgh here be calculated to

(a(T))=2€'%a(e"+e M)+ e ™ e (eT—eT)

VIl. SOME PROPERTIES OF THE PARAMETRIC
APPROXIMATION
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3.00

2.50

Ll e aarg

2.00 4

Q+1

1.00 I e e

0.00 0.20 0.40 0.60 0.80 1.00
scaled time

FIG. 8. Relative photon-number fluctuatiofqg. (25)] of the
idler wave with a very strong pump wayparametric approxima-
tion) in the damping regime X¢=—/2). The wiggle appears
where the idler amplitude crosses zero.

([bY(T)b(T)1%)—(b'(T)b(T))?
(b"(T)b(T))

[ Blc(T)—|als(T)]?

_ 2 2
S B mbeT)

(40)

The fluctuations(40) are plotted in Fig. 8 for the case
|a|=6, |B|=4, andA ¢=— /2 and show qualitatively the
same wiggle as in Figs.(h) and Zb) (Q,, of the idlej.

VIIl. CONCLUDING REMARKS

We have presented a classical and quantum-mechanical
analysis of the three-wave interaction in its simplest form
without any losses, but including the full quantization of all
three modes and depletion. Already in this idealized descrip-
tion there is a variety of effects that demand further investi-
gation and offer interesting experimental possibilities.

Our numerical calculation starts with sufficiently strong
coherent states in all three modes and therefore allows us to
investigate all possible phase regimes. In general, the single
phases and their difference change during the interaction.
Exceptions can be found only for distinguished phase differ-
ences or initially empty modes.

There is a close analogy between the quantum and classi-
cal behavior because the conserved quantities are equivalent.
On the other hand, we can find drastic differences due to the
developing entanglement between the modes, which has no
classical analog.

Besides the well-known entanglement between the signal
and idler, there can also be an entanglement between the
signal and the pump mode after saturated amplification of the
signal. This entanglement is responsible for the strong non-
classical effects during sum-frequency generation in the non-
degenerate process where normally nothing unexpected is
happening.

The entanglement is usually indicated by the purity of the
modes, but here we have focused on certain expectation val-
ues that could not be factorized. The study of these expecta-
tion values showed strong tendencies to nonclassical effects
that were proved by our numerical analysis to last during
longer interaction times.

[1] P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys.
Rev. Lett.7, 118(1961).

[2] 3. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Re%27, 1918(1962.

[3] B. R. Mollow and R. J. Glauber, Phys. Re&\60, 1076(1967);
160 1097(1967).

[4] Z. Y. Ou, S. F. Pereira, and J. H. Kimble, Phys. Rev. Léf.
3239(1993.

[5] L. J. Wang, X. Y. Zou, and L. Mandel, J. Opt. Soc. Am.9B
605 (1992, and references therein.

[6] M. Hillery and M. S. Zubairy, Phys. Rev. 29, 1275(1984);
M. Hillery, Daogi Yu, and J. Bergouibid. 49, 1288(1994).

[7]J. Opt. Soc. Am. B4 (10), 1453 (1987, special issue on

special issue on squeezed states, edited by R. Loudon and P. L.
Knight.

[8] D. F. Walls and R. Barakat, Phys. Rev.1A446(1970.

[9] P. Carruthers and M. M. Nieto, Phys. Rev. Lei4, 387
(1969.

[10] H. Paul, Nichtlineare Optik Il (Akademie-Verlag, Berlin,
1973. In the degenerate cagsecond-harmonic generatijon
there are additional factors; see p.10.

[11] A. Bandilla, G. Drobny and I. Jex(unpublishedl

[12] Handbook of Mathematical Functionsedited by M.
Abramowitz and I. A. SteguDover, New York, 1963

[13] D. Pegg and S. M. Barnett, Phys. Rev38, 1665(1989.

[14] G. Drobnyand I. Jex, Czech. J. Phy44, 827 (1994.

[15] A. Bandilla, G. Drobny and I. Jex(unpublishea

[16] H.-H. Ritze and A. Bandilla, Opt. Commug9, 126 (1979.

squeezed states of the electromagnetic field, edited by H. J17] M. Kitagawa and Y. Yamamoto, Phys. Rev34, 3974(1986.

Kimble and D. F. Walls; J. Mod. Op34 (6,7), 709 (1987,

[18] M. J. Collett and D. F. Walls, Phys. Rev. Letl, 2442(1988.



