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In this work we analyze the quantum phase properties of pairs of electromagnetic field modes. Since phases
differing by 2p are physically indistinguishable, we propose a general procedure to obtain the correct
mod(2p) probability distributions for the phase difference. This allows us to investigate the properties of a
number of phase approaches. This procedure provides deeper insight into the quantum nature of the phase
difference. We relate this problem to the representation of nonbijective canonical transformations in quantum
mechanics.

PACS number~s!: 42.50.Dv, 03.65.2w

I. INTRODUCTION

The problem of quantum phase fluctuations of optical
fields has a long history and has provoked many discussions
@1#. There have been many attempts to properly introduce a
satisfactory description of phase and significant progress has
been achieved in the last fews years in clarifying the status of
the quantum phase operator~for latest reviews see Refs.
@2,3#!.

Most of this previous work has been devoted to the prop-
erties of the phase for a single-mode field or, equivalently,
for a single-harmonic oscillator. The more relevant conclu-
sion is that there is no such phase operator, at least verifying
simultaneously a polar decomposition, self-adjointness, and
adequate commutation relations. This has allowed the intro-
duction of several approaches depending on which of those
criteria should be fulfilled@4#.

Although the definition of the absolute phase is, alone, an
interesting problem, from a practical point of view an abso-
lute phase has no meaning. Since in real measurements we
are always forced to deal with the difference with respect to
a reference phase, the phase difference should be the funda-
mental quantity in describing the optical phase. It is worth
emphasizing that the absence of a proper phase operator for a
single mode is usually ascribed to the semiboundedness of
the eigenvalue spectrum of the number operator. However,
the conjugate variable to the phase difference is the number
difference, that is not bounded from below. So, it is reason-
able to expect that the phase difference will be free of the
problems arising in the one-mode case.

Taking this into account, two different ways to describe
the phase difference emerge. One focuses on the phase-
difference variable itself, without any previous assumption
about the absolute phases. We have pursued this issue in
previous works@5–7#, showing that the polar decomposition
corresponding to the phase difference has a unitary solution,
in contrast with the polar decomposition for the absolute
phase. In fact, the solution has interesting commutation rela-
tions with the number difference@8#.

The other way to proceed is to describe the phase differ-
ence in terms of previously introduced phase operators for
the two systems. This approach is faced with an interesting
difficulty. Due to its periodic character, adding and subtract-
ing phases must be done carefully. The eigenvalue spectra of

the sum and difference operators have widths of 4p, and this
is not compatible with the idea that the phase must be 2p
periodic. Thus there should be a way to cast the phase sum
and difference into the 2p range. Such a casting procedure
was proposed by Barnett and Pegg@9#.

We should emphasize that although the 4p and 2p prob-
ability distributions are both valid, they give different values
for the variances. The former explicitly reveals the existence
of correlations between single-mode phases, while the latter
is easier to interpret because in it the phase sum or difference
is a single-valued variable.

Our aim here is to obtain a casting procedure more suited
for a clear analysis of its implications and a comparison with
the phase-difference operator arising directly from the polar
decomposition.

The plan of this paper is as follows. In Sec. II we first
consider the enlightening subject of the angle difference. In
this case we have the same kind of problems linked to the
periodicity, but with the advantage of having an angle opera-
tor. This fact makes the special behavior of the transforma-
tion to the angle sum and difference more transparent and
allows an easier translation to the very similar phase prob-
lem. It also shows the nonbijective character of this transfor-
mation and the particularities that this fact introduces.

In Sec. III we apply these conclusions to the Pegg-Barnett
formalism and in Sec. IV to theQ function. The conse-
quences of the casting procedure are then discussed and
compared.

II. ANGLE SUM AND DIFFERENCE

We begin our discussion with a brief description of the
problem of the angle difference. For a system described by
an angular momentum componentLz ~like a particle con-
strained to move on a circle or a one-dimensional system
obeying periodic conditions! the exponential of the angle
E5eiw is given by the lowering operator@10#

Eum&5um21&, ~2.1!

whereum& are the eigenvectors ofLz , the integerm running
from 2` to 1`.

This unitary operatorE verifies the following commuta-
tion relation withLz @11#:

PHYSICAL REVIEW A JANUARY 1996VOLUME 53, NUMBER 1

531050-2947/96/53~1!/495~7!/$06.00 495 © 1996 The American Physical Society



@E,Lz#5E, ~2.2!

and its eigenvectors are

uw&5
1

A2p
(

m52`

1`

eimwum&, ~2.3!

with Euw&5eiwuw&. This operatorE, like Lz , is itself a com-
plete set of commuting operators for the system.

When we have two such systems, labeled 1 and 2, the
exponentials of the angle sumE1 and angle differenceE2

are

E15E1E2 , E25E1E2
† . ~2.4!

These unitary operators verify the commutation relations

FE2 ,
L1z1L2z

2 G50, FE1 ,
L1z1L2z

2 G5E1 ,

FE2 ,
L1z2L2z

2 G5E2 , FE1 ,
L1z2L2z

2 G50, ~2.5!

showing that their canonically conjugate variables are the
angular momentum sum and difference. The eigenvectors of
E1 and E2 are of the form uw1 ,w2& with eigenvalues
eiw15ei (w11w2) andeiw25ei (w12w2), respectively.

Note that while (E1 ,E2), (L1z ,L2z), or
(L1z1L2z ,L1z2L2z) are complete sets of commuting opera-
tors, this is not true for (E1 ,E2), since uw1 ,w2& and
uw11p,w21p& have the same angle sum and difference.

Therefore another commuting operator must be consid-
ered to describe the system. We propose to use even and odd
combinations ofuw1 ,w2& and uw11p,w21p& to solve the
degeneracy. So, we can take

uw1 ,w2 ,p&5
e2 ipw1

2
@ uw1 ,w2&1~21!puw11p,w21p&],

~2.6!

with p50,1; and

w15
w11w2

2
, w25

w12w2

2
, ~2.7!

and define an operatorP,

Puw1 ,w2 ,p&5puw1 ,w2 ,p&. ~2.8!

This operator, together withE1 andE2 , gives a complete
set of commuting operators. The associated basis is~2.6!,
allowing the resolution of the identity

I5(
p
E E dw1dw2uw1 ,w2 ,p&^w1 ,w2 ,pu, ~2.9!

wherew1 andw2 run over 2p intervals.
To obtain the probability distribution functionP cast into

a 2p range for the angle sum and difference associated with
a system stater we must add the contributions from eachp
value,

P ~w1 ,w2!5 (
p50,1

^w1 ,w2 ,puruw1 ,w2 ,p&. ~2.10!

Taking into account ~2.6! and ~2.7! we can express
P (w1 ,w2) in terms of the probability distribution for the
individual anglesP(w1 ,w2)5^w1 ,w2uruw1 ,w2& in the form

P ~w1 ,w2!5
1

2 FPS w11w2

2
,
w12w2

2 D
1PS w11w2

2
1p,

w12w2

2
1p D G . ~2.11!

We see that the probability distribution for the angle sum
and difference cannot be obtained from the one associated
with the individual angles simply by the corresponding trans-
formation of the variables~2.7!. This is because the same
sum and difference can be obtained from two different values
for the angles of each system such that the transformation
becomes nonbijective. The true transformation is obtained
only after adding these two contributions. In the Appendix
we study this problem in the context of canonical transfor-
mations.

III. PEGG-BARNETT FORMALISM
FOR THE PHASE DIFFERENCE

We now turn to our problem of the phase difference be-
tween two systems like two harmonic oscillators or a two-
mode quantum field.

As discussed in the Introduction, one possible way to de-
scribe this variable is using a previous definition of the ab-
solute phase for each system. Contrary toLz , now the spec-
trum of the number operatorN is bounded from below. This
precludes the unitarity of the operator exponential of the
phaseE arising from the polar decomposition of the annihi-
lation operator

a5EAN, ~3.1!

adding difficulties to its interpretation in describing the phase
in quantum optics.

Despite this fact, the eigenvectors ofE with unit-modulus
eigenvalueseif,

uf&5
1

A2p
(
n50

`

einfun&, ~3.2!

known as Susskind-Glogower phase states, are considered to
have a well-defined phase, and are the starting point for some
approaches to the problem@12,13#.

One of them, the Pegg-Barnett approach@14#, is perhaps
the most widely used in the last few years. It is equivalent to
the prescription of a phase probability distribution for a sys-
tem stater in terms of the Susskind-Glogower phase states
~3.2!

P~f!5^furuf&. ~3.3!

When we have a two-mode field the joint probability distri-
bution is given by
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P~f1 ,f2!5^f1 ,f2uruf1 ,f2&, ~3.4!

where uf1 ,f2& are two-mode Susskind-Glogower phase
states. Since we are mainly interested in the phase difference,
we may ask first for the corresponding probability distribu-
tion P (f1 ,f2) associated with the phase-sum and phase-
difference variables. Finally we integrate over the phase sum.

At this point the reader is referred to the previous and
careful analysis of Barnett and Pegg@9#. However, we think
that the Barnett-Pegg procedure is perhaps obscure in the
sense that the nonbijective character of the transformation is
not explicit and must be supplied with a careful handling of
the range variation of all the variables. Moreover, the general
relation betweenP (f1 ,f2) and P(f1 ,f2) is not easily
obtained.

As is clear from the preceding section, the transformation
to the phase sum and difference

f15f11f2 , f25f12f2 , ~3.5!

or equivalently

f15
f11f2

2
, f25

f12f2

2
, ~3.6!

is nonbijective because we are demandingf1 andf2 to be
2p periodic and not 4p periodic, as seems necessary from
the previous equations. ThereforeP (f1 ,f2) cannot be ob-
tained fromP(f1 ,f2) simply by means of the change of
variables~3.6!. The proper form for the transformation is
obtained by adding the probabilities corresponding to
(f1 ,f2) and (f11p,f21p) which give the same phase
sum and difference, getting@taking into account the Jacobean
of ~3.6!#

P ~f1 ,f2!5
1

2 FPS f11f2

2
,
f12f2

2 D
1PS f11f2

2
1p,

f12f2

2
1p D G ,

~3.7!

which is 2p periodic.
Before going on, some remarks seem in order. First,

P (f1 ,f2) contains less information thanP(f1 ,f2). For
example, in generalP(f1) cannot be obtained from
P (f1 ,f2). Contrary to the angle variable, here we do not
have phase operators from which~3.7! could be directly de-
rived as in~2.4!. However, the analysis of Sec. II supports
this transformation law. In fact, one way to overcome the
difficulties caused by the semiboundedness of the number
operator is, precisely, enlarging the Hilbert space so as to
include fictitious negative number states@15,16#. Physical
results are recovered only when we are restricted to states
having null projection over them. With this extension we are
then formally in the same situation considered in Sec. II and
therefore we arrive at~3.7! in the same way.

If we were only interested in the calculation of mean val-
ues ~such aseikf1eilf2, with k and l integers! all of this
analysis would not be necessary, since they can be obtained
simply as

^eikf1eilf2&5E E df1df2e
ik~f11f2!eil ~f12f2!P~f1 ,f2!.

~3.8!

Equation ~3.8! can also be used to obtainP (f1 ,f2) by
noting that we must get the same mean values for any peri-
odic function of the phase sum and difference whether we
use the variables (f1 ,f2) or (f1 ,f2); i.e.,

E E df1df2e
ikf1eilf2P ~f1 ,f2!

5E E df1df2e
ik~f11f2!eil ~f12f2!P~f1 ,f2!. ~3.9!

Since P (f1 ,f2) and P(f1 ,f2) are periodic functions,
these equalities determineP (f1 ,f2) completely, as can be
shown using Fourier analysis. The final result is the same as
Eq. ~3.7!.

From now on we shall deal exclusively with the phase
difference whose probability distribution function is given by

P ~f2!5E df1P ~f1 ,f2!, ~3.10!

and, for simplicity, in what follows we shall omit the sub-
script2 on it. A useful expression forP (f) is

P ~f!5E du^u1f,uuruu1f,u&. ~3.11!

Note that, as may be expected,P (f) is invariant under
any phase-sum shift. Then the system stater and

eif0~N11N2!re2 if0~N11N2! ~3.12!

have the sameP (f), as is clearly seen from~3.11!.
This property means~as it occurs in the angle case! that

the phase difference and the total photon number are com-
patible @17#. This compatibility can be expressed more ex-
plicitly by noting that~3.10! and~3.11! are also equivalent to

P ~f!5 (
n50

`

^f~n!uruf~n!&, ~3.13!

where the vector

uf~n!&5
1

A2p
(
n150

n

ein1fun1 ,n2n1& ~3.14!

lies in the subspaceHn with total photon numbern. Equa-
tion ~3.13! allows us to extract a joint probability distribution
function for the total number and the phase difference

P ~n,f!5^f~n!uruf~n!&, ~3.15!

and in this way we have the compatibility expressed as

P ~f!5 (
n50

`

P ~n,f!, P ~n!5E dfP ~n,f!,

~3.16!
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whereP (n) is the probability of havingn photons in the
system. Consequently, we can independently study the
phase-difference properties of any field state in each finite-
dimensional subspaceHn without losing information.

EachP (n,f) is to some extent redundant. This can be
shown by noting thatP (n,f) cannot be arbitrary. Its more
general form is, according to~3.15! and ~3.14!,

P ~n,f!5 (
k52n

n

cke
ikf, ~3.17!

with ck5c2k* . This has two interesting consequences. First,
the mean value ofeimf with umu.n is 0 in the subspace
Hn . Second,P (n,f) depends on 2n11 parameters and
can be completely fixed by its values on 2n11 properly
chosen points, such as, for example,f r

(n)52pr /(2n11)
with r an integer running from2n to n. We can then invert
~3.17! and obtain the coefficientsck as

ck5
1

2n11 (
r52n

n

P ~n,f r
~n!!e2 i2pkr/~2n11!, ~3.18!

which allows us to expressP (n,f) as

P ~n,f!5
1

2n11 (
k,r52n

n

P ~n,f r
~n!!eik~f2fr

~n!
!. ~3.19!

Thus the knowledge of the distributionP (n,f) for 2n11
values of the phase difference is enough to characterize the
behavior of the phase difference within theHn subspace.

We can now express any mean value in terms of these
P (n,f r

(n)) as

^ f ~f!&5 (
n50

`
2p

2n11 (
r52n

n

P ~n,f r
~n!! f ~n!~f r

~n!!, ~3.20!

wheref (n)(f) is the function arising fromf (f) after remov-
ing the Fourier frequencies higher thann. It is worth noting
the close resemblance of these expressions with those ob-
tained with a phase-difference operator arising from a polar
decomposition@5#. Formally there are only two differences:
the removing of Fourier frequencies and the number of
phase-difference values, 2n11 instead ofn11. Otherwise,
it turns up that they share more properties than expected at
first glance. It seems that the phase difference has properties
not evidently related to the absolute phase, as happens in the
polar decomposition, here hidden in the casting procedure. A
particular example is discussed in detail in Ref.@18#.

IV. PHASE DIFFERENCE AND Q FUNCTION

When one focuses attention on realistic schemes for phase
measurements~such as amplification with a linear laser am-
plifier @19#, heterodyning@20#, or beam splitting@21#! it be-
comes clear that, in fact, all these techniques are suited to
determine theQ function for the signal field@22#, defined as
usual as

Q~a!5
1

p
^aurua&, ~4.1!

whereua& is a coherent state.
In particular, a phase distribution is obtained fromQ as a

marginal distribution after integrating over the radial vari-
able. Moreover, theQ function was recently shown@23# to
be a special case of the quantum propensity@24#, correspond-
ing to the choice of the reference state as the vacuum state
and of the phase-spacemotionas the Glauber displacement
operator. Thus it is interesting to examine the corresponding
casting procedure for this formalism that, to our best knowl-
edge, has not been previously considered.

The joint distribution for the phase of a two-mode field is

P~f1 ,f2!5E
0

`E
0

`

dr1dr2r 1r 2Q~r 1e
if1,r 2e

if2!, ~4.2!

wherea15r 1e
if1, a25r 2e

if2. Then we can express it in
terms of the phase sum and difference by means of Eq.~3.7!
and finally integrate over the phase sum to get the probability
distribution for the phase difference.

Instead of taking this direct way, we rather prefer to em-
ploy a useful relation between the two-mode coherent states
ua1 ,a2& and the SU~2! coherent statesun,u,f& @25#,

ua1 ,a2&5 (
n50

`
r neinf2

An!
e2r2/2un,u,f&, ~4.3!

where

un,u,f&5 (
n150

n S nn1D
1/2S cosu2D n1S sinu2D n2n1

3ein1fun1 ,n2n1&, ~4.4!

and

r5Ar 121r 2
2, f5f12f2 , tan

u

2
5
r 2
r 1
, ~4.5!

with 0<r,`, 0<u,p.
These vectorsun,u,f& are the SU~2! coherent states in the

subspacesHn corresponding to the realization of the algebra
of this group in terms of the bosonic operators@26#

j x5
1

2
~a1

†a21a1a2
†!,

j y5
i

2
~a2

†a12a2a1
†!, ~4.6!

j z5
1

2
~a1

†a12a2
†a2!,

with

j25
N

2 SN2 11D , ~4.7!

and we have

un,u,f&5expS u

2
e2 ifa2

†a12
u

2
eifa1

†a2D un,0&. ~4.8!
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We can use Eq.~4.3! to express theQ function in terms of
the phase sum and difference as well as the variablesr and
u. If we integrate over the phase sum andr we get a function
of u and the phase differencef,

P ~u,f!5 (
n50

`
n11

4p
^n,u,furun,u,f&sinu5 (

n50

`

P ~n,u,f!.

~4.9!

It can be recognized thatP (n,u,f) is ~up to the volume
element! the SU~2! Q function for the projection of the state
over the subspaceHn .

To obtain the distribution for the phase difference we sim-
ply integrate overu,

P ~f!5 (
n50

` E
0

p

duP ~n,u,f!5 (
n50

`

P ~n,f!

5 (
n50

`
n11

4p E
0

p

dusinu^n,u,furun,u,f&, ~4.10!

and we get finally

P ~n,f!5
1

2p (
n1 ,n1850

n

Gn1 ,n18
~n!

ei ~n12n18!f

3^n18 ,n2n18urun1 ,n2n1&, ~4.11!

where

Gn1 ,n18
~n!

5

GS n11n18

2
11DGS n112

n11n18

2 D
An1!n18! ~n2n1!! ~n2n18!!

. ~4.12!

This structure is the same as the one found in Eq.~3.15!.
They only differ from the coefficientsGn1 ,n18

(n)
that are re-

placed by 1 in the Pegg-Barnett approach. Otherwise we
have the same compatibility between the phase difference
and the total photon number~3.16!. Therefore the discussion
made from~3.16! to ~3.20! could be translated here in the
same terms. Note that while Eq.~3.13! represents a sharp
phase-difference measurement, Eq.~4.10! represents an un-
sharp~or noisy! measurement, as discussed in Refs.@27,28#.

We can also introduce a similar joint distribution for the
total number and the number difference in the form

P ~n,u!5E dfP ~n,u,f!

5
n11

4p E df^n,u,furun,u,f&sinu. ~4.13!

This could be justified as in Eq.~4.10!, since the connection
between the polar angleu ~or its cosine! and the number
difference is equivalent to the relation between the azimuthal
anglef and the phase difference. This distribution could be
very interesting theoretically and perhaps tightly connected
with the experiment. However, surely it would not be named
a probability distribution for the number difference nor
called for to support a continuous range of variation for it. A

similar situation arises for the field quadratures because the
integration ofQ over the real or imaginary part ofa does not
give their probability distribution functions.

Although theQ function cannot be the substitute of a
phase operator@22#, it has the advantage of corresponding to
an experimental realization and provides a complete knowl-
edge of the system state.

Using the concept of area of overlap and interference in
phase space, Schleich, Horowicz, and Varro@29# suggested a
theoretical procedure for determining phase distributions.
Their approach consists in calculating the phase distribution
by averaging the Wigner distribution function over the field
amplitude. The casting procedure for this Wigner function is
also necessary and can be obtained along the same lines we
have followed for theQ function. This point should be im-
portant in the recent studies of optical homodyne tomogra-
phy @30# to characterize, from the experimental point of
view, the state of the field.

V. CONCLUSIONS

In this paper we have developed a procedure giving the
phase-difference probability distribution function for a two-
mode field state in terms of previous approaches for the one-
mode field phase, such as the Pegg-Barnett formalism and
theQ function. In this procedure we have encountered the
difficulty of the nonbijective character of the transformation
from the individual phases to the phase sum and phase dif-
ference.

After solving this problem, obtaining the corresponding
transformation law for the probability distributions, we have
studied some general properties of the phase-difference prob-
ability distribution. We have shown that it is compatible with
the total photon number. This could be expected from the
classical Poisson bracket verified by the corresponding vari-
ables, but it has further consequences. We have shown that
its value on a numerable set of points completely fixes the
whole probability distribution. When the state involves a fi-
nite number of photons this set of points is also finite.

We have also compared these results with the correspond-
ing ones obtained from a phase-difference operator arising
from a polar decomposition for a two-mode field. Although
very different in their origin and in some of their properties,
we have shown that these approaches are closer than ex-
pected at first sight.
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APPENDIX: CANONICAL TRANSFORMATION
TO ANGLE SUM AND DIFFERENCE

In this Appendix we wish to consider the transformation
relating one set of coordinates of the phase space of the
system (w1 ,w2 ,L1z ,L2z) to another one (w1 ,w2 ,L1 ,L2)
defined by
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w15w11w2 , w25w12w2 ,

L15
L1z1L2z

2
, L25

L1z2L2z
2

.
~A1!

This transformation is a canonical one; i.e., it preserves the
Poisson brackets and thereby (w1 ,L1) and (w2 ,L2) are
conjugate variables.

It is clear that a similar transformation in position and
momentum for instance will not need any special caution.
Even if the range of variation of the position would be a
finite interval, we could always properly accommodate the
range of variation of the sum and difference variables.

However, in the angle case we are forced to think about
w1 andw2 as 2p-periodic variables. This necessary restric-
tion makes the transformation nonbijective since, as dis-
cussed, the points (w1 ,w2) and (w11p,w21p) map on the
same point (w1 ,w2).

The equivalence between phase-space coordinates related
by a canonical transformation is expressed in quantum me-
chanics by a unitary transformation@31#. This means that
now we have two Hilbert spacesH̄1 and H̄2 associated
with angle and momentum operators (Ē1 ,L̄1) and
(Ē2 ,L̄2) related to the original onesH1 andH2 , associ-
ated with (E1 , L1z) and (E2 , L2z) via a unitary operator
U:H1^H2→H̄1 ^H̄2 such that

Ē15UE1E2U
†, Ē25UE1E2

†U†,

L̄15U
L1z1L2z

2
U†, L̄25U

L1z2L2z
2

U†.
~A2!

The knowledge ofU provides us complete information about
the transformation we are studying.

It is clear that some difficulties must appear in this defi-
nition of U. Intimately linked with the nonbijectivity, we
find that the transformation must relate operators with differ-
ent spectra@32#. Relations~A2! seem to impose half-integer
values toL1 andL2 ~that is, 4p periodicity for the corre-
sponding angles! contrary to what we have supposed. There-
fore the transformationU posed in~A2! cannot be unitary.

This is a simple example of the kind of problems arising
in the representation in quantum mechanics of nonbijective
canonical transformations@33#. AlthoughU cannot be uni-
tary, we can nevertheless find isometric mappings if we re-
strict the definition to certain subspaces ofH1^H2 . This
can be accomplished by using the concept of the ambiguity
group; i.e., the group connecting the set of points in the
original space mapped on the same one in the new space
@32#. Here this groupV has only two elements: the identity
and a jointp rotation on both angles; i.e.,

Vk5eikp~L1z1L2z!, ~A3!

wherek50,1. Note that this group leaves invariant all the
operatorsE1E2 , E1E2

† , L1z1L2z , andL1z2L2z in the defi-
nition ~A2! of the transformation.

If we want to find subspaces that could be isometrically
mapped inH̄1 ^H̄2 verifying ~A2! up to constants, we
must restrict ourselves to subspaces where the action of the

ambiguity groupV becomes a constant phase factor, that is,
the subspaces carrying the unitary representations of the
group. Here we have two of these subspaces; we shall call
themE0 andE1 . The subspaceE0 is spanned by the eigen-
vectors ofL1z and L2z $u2n,2m&,u2n11,2m11&%, while
E1 is spanned by$u2n11,2m&,u2n,2m11&%, with n andm
integers running from2` to 1`. Note that in avoiding the
nonbijectivity with these restrictions, we also remove the
problem caused by the difference of the spectra. The sub-
spaceE0 has only eigenvalues ofL1z andL2z whose sum or
difference is even, and then the spectra of the operators in-
volved in ~A2! are equal. On the other hand,E1 contains
only eigenvalues whose sum or difference is odd, and the
spectra can be made equal simply adding toL̄1 and L̄2 in
~A2! a half-integer constant.

Now it is possible to find two isometric mappingsUp

from Ep (p50,1) to H̄1 ^H̄2 verifying ~A2! up to con-
stants. They are given by

U05 (
n,m52`

1`

~ un1m,n2m&^2n,2mu

1un1m11,n2m&^2n11,2m11u!,
~A4!

U15 (
n,m52`

1`

~ un1m,n2m&^2n11,2mu

1un1m,n2m21&^2n,2m11u!,

with UpUp
†5I while Up

†Up is the projector on the subspace
Ep .

Despite this, we may be interested in a truly unitary trans-
formation defined over the whole space, in order to have a
complete description of the system in terms of the angle sum
and difference. To do this we need to enlarge the final space
by adding a new variable, usually called the ambiguity spin.
With this, the final space will be of the form
H̄1 ^H̄2 ^V , whereV is the Hilbert space needed to ac-
commodate this new variable.

Clearly, the role of the ambiguity spin is to provide a
different image for each subspaceEp and simultaneously
equalize the spectra. Considering nowU:H1^H2→H̄1

^H̄2 ^V , V being a two-dimensional space, we have

U5ue0&U01ue1&U1 , ~A5!

whereue0& and ue1& are an orthonormal basis inV . U is a
unitary operator performing the transformation

Ē15UE1E2U
†, Ē25UE1E2

†U†,

L̄11
P̄

2
5U

L1z1L2z
2

U†, L̄21
P̄

2
5U

L1z2L2z
2

U†,

~A6!

whereP̄uep&5puep&.
With this unitary transformation we immediately obtain

the probability distribution function associated with the angle
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sum and difference. Callinguw̄1 ,w̄2& the eigenstates of
Ē1 and Ē2 , we have

P ~w1 ,w2!5 (
p50,1

^w̄1 ,w̄2 ,epuUrU†uw̄1 ,w̄2 ,ep&

5 (
p50,1

^w̄1 ,w̄2uUprUp
†uw̄1 ,w̄2&

5 (
p50,1

^w1 ,w2 ,puruw1 ,w2 ,p&, ~A7!

where we have used@with the definition~2.6!#

Uuw1 ,w2 ,p&5uw̄1 ,w̄2 ,ep&. ~A8!

Here we have arrived at~2.10! and therefore at the same
transformation law~2.11! in a different way.

It could be thought that the representation of arbitrary
canonical transformations is a rather obscure subject arising
only in very special situations far from any practical signifi-
cance. Then the ambiguity spin appears as a curiosity im-
posed by a theoretical procedure, but otherwise spurious.
However, this example shows that this is not always the case.
Moreover, now the results of Sec. II are clearer. The reason is
that the nonbijectivity merely translates the fact that the
angle sum and difference are not by themselves a complete
set of commuting operators. Then, the ambiguity spin is es-
sentially the other operator needed to complete this set.
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