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Probability distributions for the phase difference
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In this work we analyze the quantum phase properties of pairs of electromagnetic field modes. Since phases
differing by 27 are physically indistinguishable, we propose a general procedure to obtain the correct
mod(2m) probability distributions for the phase difference. This allows us to investigate the properties of a
number of phase approaches. This procedure provides deeper insight into the quantum nature of the phase
difference. We relate this problem to the representation of nonbijective canonical transformations in quantum
mechanics.

PACS numbsds): 42.50.Dv, 03.65-w

[. INTRODUCTION the sum and difference operators have widths®f 4nd this
is not compatible with the idea that the phase must be 2
The problem of quantum phase fluctuations of opticalperiodic. Thus there should be a way to cast the phase sum
fields has a long history and has provoked many discussiorgnd difference into the 2 range. Such a casting procedure
[1]. There have been many attempts to properly introduce was proposed by Barnett and Pe@g.
satisfactory description of phase and significant progress has We should emphasize that although the dnd 2 prob-
been achieved in the last fews years in clarifying the status obility distributions are both valid, they give different values
the quantum phase operattfor latest reviews see Refs. for the variances. The former explicitly reveals the existence
[2,3)). of correlations between single-mode phases, while the latter
Most of this previous work has been devoted to the propiS €asier to interpret because in it the phase sum or difference
erties of the phase for a single-mode field or, equivalentlyiS @ single-valued variable.
for a single-harmonic oscillator. The more relevant conclu- Our aim here is to obtain a casting procedure more suited
sion is that there is no such phase operator, at least verifyinfpr a clear analysis of its implications and a comparison with
simultaneously a polar decomposition, self-adjointness, anthe phase-difference operator arising directly from the polar
adequate commutation relations. This has allowed the introdecomposition.
duction of several approaches depending on which of those The plan of this paper is as follows. In Sec. Il we first
criteria should be fulfilled4]. consider the enlightening subject of the angle difference. In
Although the definition of the absolute phase is, alone, arthis case we have the same kind of problems linked to the
interesting problem, from a practical point of view an abso-periodicity, but with the advantage of having an angle opera-
lute phase has no meaning. Since in real measurements W@ This fact makes the special behavior of the transforma-
are always forced to deal with the difference with respect tdion to the angle sum and difference more transparent and
a reference phase, the phase difference should be the fundgllows an easier translation to the very similar phase prob-
mental quantity in describing the optical phase. It is worthlem. It also shows the nonbijective character of this transfor-
emphasizing that the absence of a proper phase operator fomgation and the particularities that this fact introduces.
single mode is usually ascribed to the semiboundedness of In Sec. lll we apply these conclusions to the Pegg-Barnett
the eigenvalue spectrum of the number operator. Howeveformalism and in Sec. IV to th&€ function. The conse-
the conjugate variable to the phase difference is the numbétuences of the casting procedure are then discussed and
difference, that is not bounded from below. So, it is reasoncompared.
able to expect that the phase difference will be free of the
problems arising in the one-mode case. Il. ANGLE SUM AND DIFFERENCE
Taking this into account, two different ways to describe
the phase difference emerge. One focuses on the phase- We begin our discussion with a brief deSCI’iption of the
difference variable itself, without any previous assumptionProblem of the angle difference. For a system described by
about the absolute phases. We have pursued this issue & angular momentum componelnf (like a particle con-
previous workg§5—7], showing that the polar decomposition Strained to move on a circle or a one-dimensional system
corresponding to the phase difference has a unitary solutio®Peying periodic conditionsthe exponential of the angle
in contrast with the polar decomposition for the absoluteE=€'? is given by the lowering operat¢i0]
phase. In fact, the solution has interesting commutation rela-
tions with the number differend@]. E[m)=|m—1), 23
The other way to proceed is to describe the phase differ-
ence in terms of previously introduced phase operators fowhere|m) are the eigenvectors &f,, the integem running
the two systems. This approach is faced with an interestinffom — to + .
difficulty. Due to its periodic character, adding and subtract- This unitary operatoE verifies the following commuta-
ing phases must be done carefully. The eigenvalue spectra tibn relation withL, [11]:
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[E,L,]=E, (2.2
and its eigenvectors are
1 g
@)= N m;_w e'™m), (2.3

with E|@)=¢€'?| ). This operatoE, like L,, is itself a com-
plete set of commuting operators for the system.

9)(%,sof):p;n(w,¢7,D|p|¢+,¢7,p>- (2.10

Taking into account(2.6) and (2.7 we can express
A, ,o_) in terms of the probability distribution for the
individual anglesP (¢4, ¢,) ={(®1,95|p|¢1,®5) in the form

When we have two such systems, labeled 1 and 2, the

exponentials of the angle suk, and angle differenc& _
are

E.=E;E,, E_=E;EJ. (2.4

These unitary operators verify the commutation relations

le+|-22 _ le+|-22 _
SR I L B
L,—L L,—L
[E,“TZZ=E, Ev,—5—|=0, (29

1) [eite- o~
ﬁ<P+,<P7)—§ P L
+o_ —0_
+p ‘”290 +w,¢+2‘0 - (2.19)

We see that the probability distribution for the angle sum
and difference cannot be obtained from the one associated
with the individual angles simply by the corresponding trans-
formation of the variable$2.7). This is because the same
sum and difference can be obtained from two different values
for the angles of each system such that the transformation
becomes nonbijective. The true transformation is obtained
only after adding these two contributions. In the Appendix
we study this problem in the context of canonical transfor-
mations.

showing that their canonically conjugate variables are the

angular momentum sum and difference. The eigenvectors of

E, and E_ are of the form|e.,¢,) with eigenvalues
e'¢+=glle1t¢2) gndel?-=¢(¥17¢2) respectively.
Note that while E;,E,), (L1z,L5,), or

Ill. PEGG-BARNETT FORMALISM
FOR THE PHASE DIFFERENCE

We now turn to our problem of the phase difference be-

(L,,+Lo,,Ly,—Ls,) are complete sets of commuting opera- Ween two systems like two harmonic oscillators or a two-

tors, this is not true for B, ,E_), since |¢;,¢,) and

|@1+ 7, ¢,+ ) have the same angle sum and difference.
Therefore another commuting operator must be consi

mode quantum field.
As discussed in the Introduction, one possible way to de-

gscribe this variable is using a previous definition of the ab-

ered to describe the system. We propose to use even and ogglute phase for each system. Contrary. jo now the spec-

combinations ofl¢1,¢,) and|¢,+ 7, ¢,+ ) to solve the
degeneracy. So, we can take

—ipey
lor.0-.P)=—5

(o1, 020+ (—1)Ples+ @+ )],

(2.6
with p=0,1; and
Pt P
(pl:JrT! ¢2:+T! (27)
and define an operatdi,
H|(P+1(P71p>:p|(P+r‘pfvp>' (28)

This operator, together witk, andE_, gives a complete
set of commuting operators. The associated basi?.B,
allowing the resolution of the identity

|= de do_|o,,0_, +,o_,p|, (2.9
%ff@@l@qapﬂ@(ppl()

whereg, and¢_ run over 2r intervals.
To obtain the probability distribution functiow cast into

trum of the number operatdt is bounded from below. This
precludes the unitarity of the operator exponential of the
phaseE arising from the polar decomposition of the annihi-
lation operator

a=EN,

adding difficulties to its interpretation in describing the phase
in quantum optics.

Despite this fact, the eigenvectors®fwith unit-modulus
eigenvalues'?,

(3.9

1 &
|py=—= 2 e"?In), (32
2 n=0

known as Susskind-Glogower phase states, are considered to
have a well-defined phase, and are the starting point for some
approaches to the problefh2,13.

One of them, the Pegg-Barnett approdtH], is perhaps
the most widely used in the last few years. It is equivalent to
the prescription of a phase probability distribution for a sys-
tem statep in terms of the Susskind-Glogower phase states
(3.2

P(¢)=(¢lp|d). (3.3

a 27 range for the angle sum and difference associated with
a system statp we must add the contributions from eaggh When we have a two-mode field the joint probability distri-
value, bution is given by
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P(¢1,d2)=(d1,b2lpl b1, b2), (3.4 <eik‘f’+e”‘f’—>=f fd¢1d¢zeik(¢1+¢2)e“(¢f¢2)P(¢1,¢2)-

where |¢4,¢,) are two-mode Susskind-Glogower phase (3.9

states. Since we are mainly interested in the phase difference,

we may ask first for the corresponding probability distribu- Equation(3.8) can also be used to obtair(¢, ,¢_) by

tion A ¢, ,¢_) associated with the phase-sum and phasenoting that we must get the same mean values for any peri-

difference variables. Finally we integrate over the phase sunmodic function of the phase sum and difference whether we
At this point the reader is referred to the previous anduse the variablesd{, ,¢_) or (¢1,¢,); i.e.,

careful analysis of Barnett and Peffj. However, we think

that the Barnett-Pegg procedure is perhaps obscure in th ik il b7

sense that the nonbijective character of the transformation i; jd(mdd)*e AT

not explicit and must be supplied with a careful handling of

the range variatiqp of all the variables. More_over, the ggneral :f f dep A, (@1+ 6206l (G1=62P( . | ). 3.9

relation betweenA ¢, ,¢_) and P(¢,,d,) is not easily

obtained.

As is clear from the preceding section, the transformatiorpNc€ 7{#+ ,¢-) and P(¢1,¢,) are periodic functions,
to the phase sum and difference these equalities determin&( ¢, ,¢_) completely, as can be
shown using Fourier analysis. The final result is the same as

= + , = — , 3' Eq. (3.7).
POt b b m o (39 From now on we shall deal exclusively with the phase
or equivalently difference whose probability distribution function is given by
+¢_ —¢_ _ _
W%, PR 2¢’ | 3.6 A )= f dg A bo), (3.10

is nonbijective because we are demandingandé_ to be and, for simplicity, in what follows we shall omit the sub-
2 periodic and not 4 periodic, as seems necessary fromSCript — on it. A useful expression for{ ) is

the previous equations. Therefor& ¢ . ,¢_) cannot be ob-

tain_ed fromP(¢4,¢,) simply by means of the chan.ge Qf y)((ﬁ)zj do(6+ ¢, 6)p| 6+ b, 6). (3.1D
variables(3.6). The proper form for the transformation is

obtained by adding the probabilities corresponding to

(p1,¢,) and (p1+ m,¢d,+ ) which give the same phase
sum and difference, gettifgaking into account the Jacobean

Note that, as may be expected( ¢) is invariant under
any phase-sum shift. Then the system sgatnd

of (3.6)] gl 4o(N1+N2) g =ido(N1+Np) (3.12
A, b_)= 1[ P bt b , b+ ¢> have the sameg”¢), as is clearly seen frorB.11).
2 2 2 This property meangas it occurs in the angle casthat
b+ b.—d the phase difference and the total photon number are com-
+P| = +, SR A , patible [17]. This compatibility can be expressed more ex-
2 2 plicitly by noting that(3.10 and(3.11) are also equivalent to
(3.7 i
which is 2 periodic. A ¢)=§O (¢™lplo™), (3.13

Before going on, some remarks seem in order. First,
A b, ,¢_) contains less information thaB(¢,,d,). For

. ) where the vector
example, in generalP(¢,) cannot be obtained from

A b, ,¢_). Contrary to the angle variable, here we do not 1 0
have phase operators from whi¢®17) could be directly de- |pMy= — 2 e"%n;,n—n,) (3.19
rived as in(2.4). However, the analysis of Sec. Il supports V27 n=0

this transformation law. In fact, one way to overcome the

difficulties caused by the semiboundedness of the numbdies in the subspace?, with total photon numben. Equa-
operator is, precisely, enlarging the Hilbert space so as t§on (3.13 allows us to extract a joint probability distribution
include fictitious negative number statfk5,16. Physical ~function for the total number and the phase difference
results are recovered only when we are restricted to states .

having null projection over them. With this extension we are An,¢)=(¢"[p| '), (3.15
then formally in the same situation considered in Sec. lland .. . .

therefore we arrive a3.7) in the same way. and in this way we have the compatibility expressed as

If we were only interested in the calculation of mean val- w
ues (such ase'*?+e'' ¢~ with k and| integers all of this A= An An :f déAn
analysis would not be necessary, since they can be obtained A ) nZO Ang). AN $7AN. ).
simply as (3.1
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where Z4(n) is the probability of havingh photons in the where|a) is a coherent state.
system. Consequently, we can independently study the In particular, a phase distribution is obtained fr@ras a
phase-difference properties of any field state in each finitemarginal distribution after integrating over the radial vari-
dimensional subspac#,, without losing information. able. Moreover, th& function was recently showf23] to
EachZAn, ) is to some extent redundant. This can bebe a special case of the quantum proper{&4, correspond-
shown by noting that(n, ¢) cannot be arbitrary. Its more ing to the choice of the reference state as the vacuum state
general form is, according t3.15 and(3.14), and of the phase-spaeotionas the Glauber displacement
operator. Thus it is interesting to examine the corresponding
) " " casting procedure for this formalism that, to our best knowl-
An,g)= 2 cex?, (3.17  edge, has not been previously considered.
k=-n .. .. . . .
The joint distribution for the phase of a two-mode field is
with ¢, =c* . This has two interesting consequences. First, o Fo
the mean value o™ with [m[>n is 0 in the subspace P(¢l,¢2)=f j drodrorir,Q(ro€'%,re'%2), (4.2
F,. Second, 7 n,¢) depends on 2+ 1 parameters and 0.J0
can be completely fixed by its values om21 properly
chosen points, such as, for examptgV=2xr/(2n+1)
with r an integer running from-n to n. We can then invert
(3.17 and obtain the coefficients, as

where a;=r,e'%1, a,=r,e'%2. Then we can express it in
terms of the phase sum and difference by means of &d

and finally integrate over the phase sum to get the probability
distribution for the phase difference.

n Instead of taking this direct way, we rather prefer to em-
> An,¢Mye 2wkt (319 ploy a useful relation between the two-mode coherent states

C =
KT2n+1 .4, |ay,a,) and the SI2) coherent state, 8, ¢) [25],
which allows us to expres®(n, ¢) as 2“: rNeindz 2
)= 2, ———¢e "9n,0,¢), 4.3
n N |a'l 0‘2> = \/m | ¢> 4.3
7 = 7 (M) k(6= ¢")
AN, p)= An, e r’/. (3.1
7nd)=507 k,z—n 7An.¢:7) (319 where
Thus the knowledge of the distributior(n, ¢) for 2n+1 n n\2 g\M g\ M
values of the phase difference is enough to characterize the In,8,¢)= 2 n CO% Sin§
behavior of the phase difference within th&, subspace. =011
We can now express any mean value in terms of these ><e‘”1¢|nl,n—n1>, (4.4
An, ™M) as
and

n

il > AngMiM(g™), (3.20 0 1,
on+1, =, o T r=\r2+13,  é=¢1—¢s, tap =1 (49

wheref(M(¢) is the function arising fronf(¢) after remov-

ing the Fourier frequencies higher thanlt is worth noting Wit_rll_h0$r<oo,t 0;9; e the SW2) coh i states in th
the close resemblance of these expressions with those ob- ese vectorm, 6, ¢) are the conerent states in the

tained with a phase-difference operator arising from a poIaF‘Ubs'paCGS%Zn corresponding to the realization of the algebra

decompositior]5]. Formally there are only two differences: of this group in terms of the bosonic operatpPs]
the removing of Fourier frequencies and the number of 1

phase-difference valuesnz 1 instead ofn+ 1. Otherwise, szz(aJ{aan a,al),

it turns up that they share more properties than expected at

first glance. It seems that the phase difference has properties
not evidently related to the absolute phase, as happens in the
polar decomposition, here hidden in the casting procedure. A
particular example is discussed in detail in Hd].

uw»=g%

o
jy=7(aja1—aza)), (4.6

1
i,=5(aja;—ajay),
IV. PHASE DIFFERENCE AND Q FUNCTION 2

When one focuses attention on realistic schemes for phasgith
measurementésuch as amplification with a linear laser am-

plifier [19], heterodynind 20], or beam splittind 21]) it be- , N[N
comes clear that, in fact, all these techniques are suited to ] ) E+1 ' (4.7
determine the&) function for the signal field22], defined as
usual as and we have
1 _ 4 —igpat 4 it
Qa)= ;<a|p|a>, 4.1 n,0,¢)=ex 5€ Yaa - sefaa, In,0). (4.9
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We can use Eq4.3) to express th€ function in terms of
the phase sum and difference as well as the variabkesd
0. If we integrate over the phase sum amnge get a function
of # and the phase differencg,

“on+1 . o
A0,¢)= 2 ——(n.0.4pIn.0,p)sine= 2 7(n,6,4).
n=0 4T n=0
4.9
It can be recognized tha¥{(n, 8, ¢) is (up to the volume

element the SU2) Q function for the projection of the state

over the subspace”,, .
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similar situation arises for the field quadratures because the
integration ofQ over the real or imaginary part af does not
give their probability distribution functions.

Although the Q function cannot be the substitute of a
phase operatd2], it has the advantage of corresponding to
an experimental realization and provides a complete knowl-
edge of the system state.

Using the concept of area of overlap and interference in
phase space, Schleich, Horowicz, and V42| suggested a
theoretical procedure for determining phase distributions.
Their approach consists in calculating the phase distribution
by averaging the Wigner distribution function over the field

To obtain the distribution for the phase difference we sim-amplitude. The casting procedure for this Wigner function is

ply integrate ovem,

9/’((;5):2 fﬂdﬁ.«'?/)(n,e,@:E AN, P)
n=0 Jo n=0

S L aasivatn. 0. dlpin.0.6), @10
= — siné(n, 6, n,o,d), )
o 4w Jo P
and we get finally
1 _
7 _ () Li(ng—n))¢
AN, P)= G, et
7, ¢) 2%%—0
X ({ny,n—nji|p[ny,n—ny), (4.11
where
n,+n; n,+n;
r 12 i1 ne1- =2
(n)
G , = . (412
NNy Jyninit(n—ny)!(n—nj)!

This structure is the same as the one found in BdL5.

They only differ from the coefficient@ﬁ:)n, that are re-
1

also necessary and can be obtained along the same lines we
have followed for theQ function. This point should be im-
portant in the recent studies of optical homodyne tomogra-
phy [30] to characterize, from the experimental point of
view, the state of the field.

V. CONCLUSIONS

In this paper we have developed a procedure giving the
phase-difference probability distribution function for a two-
mode field state in terms of previous approaches for the one-
mode field phase, such as the Pegg-Barnett formalism and
the Q function. In this procedure we have encountered the
difficulty of the nonbijective character of the transformation
from the individual phases to the phase sum and phase dif-
ference.

After solving this problem, obtaining the corresponding
transformation law for the probability distributions, we have
studied some general properties of the phase-difference prob-
ability distribution. We have shown that it is compatible with
the total photon number. This could be expected from the
classical Poisson bracket verified by the corresponding vari-
ables, but it has further consequences. We have shown that
its value on a numerable set of points completely fixes the

placed by 1 in the Pegg-Barnett approach. Otherwise wevhole probability distribution. When the state involves a fi-
have the same compatibility between the phase differencgite number of photons this set of points is also finite.

and the total photon numbé€8.16). Therefore the discussion

We have also compared these results with the correspond-

made from(3.16 to (3.20 could be translated here in the ing ones obtained from a phase-difference operator arising
same terms. Note that while E¢B.13 represents a sharp from a polar decomposition for a two-mode field. Although
phase-difference measurement, E410 represents an un- very different in their origin and in some of their properties,

sharp(or noisy) measurement, as discussed in RE#9,28|.

we have shown that these approaches are closer than ex-

We can also introduce a similar joint distribution for the pected at first sight.

total number and the number difference in the form
.17’(n,0)=f dgpAnN,6,d)

B n+1 )
_ﬁf de(n,0,é|p|n,0,¢)sing. (4.13

This could be justified as in E44.10, since the connection
between the polar anglé (or its cosing and the number
difference is equivalent to the relation between the azimuthal
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APPENDIX: CANONICAL TRANSFORMATION
TO ANGLE SUM AND DIFFERENCE

angle ¢ and the phase difference. This distribution could be

very interesting theoretically and perhaps tightly connected

In this Appendix we wish to consider the transformation

with the experiment. However, surely it would not be namedrelating one set of coordinates of the phase space of the
a probability distribution for the number difference nor system ¢,,¢-,L,,L,,) to another one¢,,o_,L . ,L_)
called for to support a continuous range of variation for it. Adefined by
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Oi=@1t ey, =@~ ¢, ambiguity groupV becomes a constant phase factor, that is,
the subspaces carrying the unitary representations of the
Ly, + Lo, Ly,— Loy (A1) group. Here we have two of these subspaces; we shall call
Li=—— L==—%—. them #, and £, . The subspacé& is spanned by the eigen-

vectors ofL,, and Ly, {|2n,2m),|2n+1,2m+1)}, while

This transformation is a canonical one; i.e., it preserves thé 1 IS Spanned by[2n+1,2m),|2n,2m+ 1)}, with n andm
Poisson brackets and thereby (,L.) and (¢_,L ) are integers running from-o to +o0. Note that in avoiding the
conjugate variables. o B nonbijectivity with these restrictions, we also remove the

It is clear that a similar transformation in position and ProPlem caused by the difference of the spectra. The sub-

momentum for instance will not need any special cautionSPac&”o has only eigenvalues df;, andL,, whose sum or

Even if the range of variation of the position would be adifferenpe is even, and then the spectra of the opergtors in-
finite interval, we could always properly accommodate the’0lved in (A2) are equal. On the other hand, contains
range of variation of the sum and difference variables. only eigenvalues whose sum or difference is odd, and the
However, in the angle case we are forced to think abougPectra can be made equal simply addind-toandL _ in
¢, ande_ as 27-periodic variables. This necessary restric- (A2) a half-integer constant.
tion makes the transformation nonbijective since, as dis- NOW it is possible_to find two isometric mappinds,
cussed, the pointse; ,¢,) and (¢, + 7, ¢,+ 7) map on the from £, (p=0,1) to.77, ® #_ verifying (A2) up to con-
same point ¢, ,¢_). stants. They are given by
The equivalence between phase-space coordinates related

by a canonical transformation is expressed in quantum me- i -
chanics by a unitary transformatid81]. This means that U= > (In+mn—m)(2n,2m|

. ) ~ . n,m=—o
now we have two Hilbert space#, and .7Z_ associated
with angle and momentum operatorsE (,L,) and +[n+m+1n—m)(2n+1,2m+1J),
(E—,L_) related to the original ones”; and.7%,, associ- (A4)
ated with €;, L,,) and (E,, L,,) via a unitary operator +oo
U: 7,8 #r— .77, ®.77_ such that U= > (Jn+tmn—m)2n+1,2m|

n,m=—o

_ t _ Tyt T
E.=UREU’, E_=UEEU, +|n+m,n—m-1)(2n,2m+1|),

- Lzt Lo, t 7 _ Liz— Lo, t (A2) i t— i t i i

L,=U TU ., L_=U TU . glth UpUp=1 while U U, is the projector on the subspace
Despite this, we may be interested in a truly unitary trans-
mation defined over the whole space, in order to have a
. NN . . . complete description of the system in terms of the angle sum
Itis clear that some difficulties must appear in this Olefl'and difference. To do this we need to enlarge the final space

W“O” of U. Intimately I_inked with the nonbijectivi_ty, W€ by adding a new variable, usually called the ambiguity spin.
find that the transformation must relate operators with dlfferWith this, the final space will be of the form

ent spectrd32]. ReIauons(AZ) seem to impose half-integer . ©7_©7, where7 is the Hilbert space needed to ac-
values toL, andL_ (that is, 47 periodicity for the corre- . )
commodate this new variable.

sponding anglescontrary to what we have supposed. There- Clearly, the role of the ambiguity spin is to provide a

fore the transformatiotd posed in(A2) cannot be unitary. different image for each subspaéé and simultaneously
This is a simple example of the kind of problems arising % —

in the representation in quantum mechanics of nonbijectivédualize the spectra. Considering n&Ww.7,® #,—. 7,
canonical transformation83]. Although U cannot be uni- ®-7-®7", 7" being a two-dimensional space, we have
tary, we can nevertheless find isometric mappings if we re-

strict the definition to certain subspaces.#f,® 7,. This U=lep)Uo+|e)Uy, (A5)
can be accomplished by using the concept of the ambiguity

group; i.e., the group connecting the set of points in thewhere|ey) and|e;) are an orthonormal basis . U is a
original space mapped on the same one in the new spaemitary operator performing the transformation

[32]. Here this groupV has only two elements: the identity

The knowledge ofJ provides us complete information about for
the transformation we are studying.

and a jointsr rotation on both angles; i.e., E+=UE1E2UT, E,zUElEEUT,
V= eikﬂ'“-lz+ LZZ), (AS) _ _ (A6)
Lo dopbtbory o U Ghete,
wherek=0,1. Note that this group leaves invariant all the 2 2 ' -2 2 '

operatorsE,E,, E{E}, L1, +L,,, andL,—L,, in the defi-
nition (A2) of the transformation. L
If we want to find subspaces that could be isometricallywherelI|e,)=p|e,).
mapped in.77, ®.77_ verifying (A2) up to constants, we With this unitary transformation we immediately obtain
must restrict ourselves to subspaces where the action of ththe probability distribution function associated with the angle
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sum and difference. Callinge, ,¢_) the eigenstates of
E, andE_, we have

Aes ,<p7>=p=201 (+,0.e|UpUMo. 0 &)

:p:21<(;+ v‘E—|UpPU;|<;+ JE—)

o

= 1<¢+,¢-,p|plcp+,¢—,p>, (A7)

o

where we have usedvith the definition(2.6)]

U|¢+,<p,,p>:|g;+,(;,,ep>. (A8)

Here we have arrived a2.10 and therefore at the same
transformation law(2.11) in a different way.

It could be thought that the representation of arbitrary
canonical transformations is a rather obscure subject arising
only in very special situations far from any practical signifi-
cance. Then the ambiguity spin appears as a curiosity im-
posed by a theoretical procedure, but otherwise spurious.
However, this example shows that this is not always the case.
Moreover, now the results of Sec. Il are clearer. The reason is
that the nonbijectivity merely translates the fact that the
angle sum and difference are not by themselves a complete
set of commuting operators. Then, the ambiguity spin is es-
sentially the other operator needed to complete this set.
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