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We show that a Young’sN-slit interferometer can be used to factor the integerN. The device could factor
four- or five-digit numbers in a practical fashion. This work shows how number theory may arise in physical
problems, and may provide some insight as to how quantum computers can carry out factoring problems by
interferometric means.@S1050-2947~96!01806-9#

PACS number~s!: 03.65.Bz, 42.79.Dj, 42.79.Hp

Recently, Shor has produced a remarkable proof that
quantum computers can be used to factor a large integerN
using only ‘‘polynomial resources’’@1#. Such a computer, if
built, would have great impact on the fields of public-key
encryption and computing in general@2#. Given anM -bit,
parallel representation ofN, Shor achieves these results by
considering anM -particle quantum system that is in a num-
ber state, and then by using superposition and interference
after unitarily transforming this state into an entangled state.
Since all of these ingredients~except entangled states! are
available in classical interferometry, we wondered to what
extent it might be possible to factor integers by classical
interferometric means. Herein, we show that it is indeed pos-
sible to factor the integerN using a familiar Young’sN-slit
classical interferometer. In such an interferometer, whenN is
a product of two integersn and r , we show that a simple
analysis of the resultant diffraction pattern, and its depen-
dence on illumination wavelengthl, can be used to deter-
minen andr . Our result illustrates an interesting appearance
of number theory in physics, and indicates how problems
such as factoring might be attacked by novel physical—as
opposed to algorithmic—methods. Of course, our classical
scheme does not exhibit the exponential decrease in compu-
tational resources that apparently can only be obtained on a
quantum device. Nevertheless, it is instructive from a
fundamental-concept point of view.

Consider a simplification~see Fig. 1, inset! of the two-
dimensional~2D! problem considered by Clauser and Rein-
sch~CR! @3#. A planar, finite,N-period diffraction grating~in
the xy plane atz50!, is illuminated by parallel monochro-
matic light propagating in the1z direction. It produces a
diffraction pattern on a planar image screen, located on anxy
plane atz5R. The grating is centered on thex50 axis and
is composed of an odd numberN of parallel slits with width
s and perioda. ~If N is even, then 2 is a factor.! We take the
transmission functions(x) for a single slit of the grating
~defined on the intervala/2<x<a/2) to be 1 fors/2<x,s/2,
and zero otherwise. Furthermore, we choose a discrete set of
illumination wavelengthsln such thatln5a2n/R, wheren
is an integer. Since we are searching for factors ofN, andN
is odd, then forn to be a factor,n must also be odd. For the

above conditions,and when n is a factor ofN, CR have
shown that the wave amplitude on the screen is given by@3#
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represents the transmission of a ‘‘shortened’’ modified
n-period grating. We have defined the functions
En(v)[ exp(ipv2/n) and Pr(v)[ sin(prv)/sin(pv), where
r[N/n is also an odd integer, sinceN is odd andn is one of
its factors.

The above formulas give an exact result, at least within
the limits of validity of the Fresnel approximation and the
Kirchoff diffraction integral. The functionPr(v) is periodic
with period one. It consists of a string of positive spikes of
heightr centered on integer values ofv. In the limit asN and
r approach infinity, thenPr(v) approaches a comb function
~infinite periodic string ofd functions!, and Eqs.~1! and ~2!
imply that the diffraction pattern will consist of a ‘‘filtered’’
self-image of the grating, an example of the Talbot effect@3#.

A necessary condition for obtaining the above result is
thatn be a factor ofN, so that the individual slits, takenn at
a time@via Eq.~2!#, add coherently. When additional slits are
appended to either end of the grating, such thatn is no longer
a factor ofN, then the unique filtered-self-imaging properties
of Eq. ~1! no longer hold exactly but instead only approxi-
mately. The resulting error then represents a remainder to the
factorization.

To illustrate these ideas, let us first consider the idealized
limiting case with very high intensity illumination and infini-
tesimal slit widths. In this limit we can approximate the
transmission function~ignoring the normalization! as s(x)
'd(x), whereupon the integral in Eq.~1! may be evaluated
as
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Here we have used the fact that the functionPr is periodic,
with period one, to move it outside of the summation. The
functionPr is peaked at integer values of its argument, i.e.,
at values ofx/a5 l1 1

2 , where l is an integer. Defining the
intensity at any position x on the screen as
I nN(x)[c nN* (x)cnN(x), then the intensity at the position of
the l th peak is given by

Î ~ l ,n,N![cnN* S la1
a

2DcnNS la1
a

2D . ~4!

Upon substitution of the above formulas into this equation,
we find Î ( l ,n,N)}r 2S( l ,n), where we have defined the
functions

S~ l ,n![ (
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and
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Using Eq.~6!, and the fact thatp,q,l , andn are all integers
with n odd, after some algebra, we find the recursion relation
f ( l ,n,p1n,q)5 f ( l ,n,p,q). Using this relation, it is pos-
sible to express the double summation of Eq.~5! as
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Further, using Eq.~6!, we have
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Combining Eqs.~7! and ~8!, we find
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The summation overq in Eq. ~9! represents a geometric
series which may be summed to yield
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In the ratio of sine functions in Eq.~10!, the numerator is
always zero, sinceb is an integer. The ratio correspondingly
will vanish for all integersb unless the denominator likewise
vanishes for some values ofb. However, the summation over
b always hasb/n,1 andb/nÞ1/2 ~sincen is odd!, so that
the denominator never vanishes for any valueb. Thus the
whole sum overb in Eq. ~10! vanishes;S( l ,n)5n is then
just a constant. The resulting intensity is then given by
Î ( l ,n,N)}r 2n5N2/n for all values ofl . That is,all spikes in
the diffraction pattern have the same height. Moreover, this
result does not obtain when the wavelength is chosen so that
n is an integer, butnotone that is a factor ofN. Thus one can
determine ifn is not a factor ofN by simply looking at the
diffraction pattern produced by illumination at various wave-
lengthsln , chosen so thatln[a2n/R produces an odd inte-
ger value forn.

To illustrate these results, we calculate numerically the
diffraction pattern produced under the above conditions with
n odd but not necessarily a factor ofN. The intensity is then
given by the Kirchoff diffraction integral as
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FIG. 1. A diffraction grating consisting ofN slits of width s and
period a is located atz50, and is illuminated by parallel mono-
chromatic light propagating in the1z direction~inset!. It produces
a diffraction pattern on a screen, located atz5R. Intensity distri-
bution as a function ofx for a portion of the diffraction pattern
produced by a grating withN5143 infinitesimally wide slits:~a!
n511, ~b! n513, and~c! n517.
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We consider five different cases wherein the number of slits
is a product of two primes, i.e., gratings withN55555
311, N59555319, N511957317, N514153347,
and N5143511313 slits, respectively, one case wherein
the number of slits is prime, i.e.,N5139, and one case
wherein the number of slits is a product of three primes, i.e.,
N5105533537. Forln to span the range from infrared to
ultraviolet wavelengths, typical parameters areR510 m,
a51 cm. The wavelength is varied in steps@4#, consistent
with n being an odd integer, for values ofn51, N, as per
ln5a2n/R.

Figures 1~a!, 1~b!, and 1~c! show the intensity distribution
as a function ofx for N5143, andn511, 13, and 17, re-
spectively. Indeed, the cases whereinn is a factor ofN, with
n511 and 13, show all spikes with the same height, while
the pattern withn517, whereinn is not a factor ofN, shows
spikes with differing heights.

At the l th spike’s peak, the intensity@via Eq.~11!# will be
given by Î K( l ,n,N)[I K( la1a/2,n,N). To determine the
magnitude of the variation of spike height as a function ofn,
we evaluate the rms variation ofÎ K( l ,n,N) over spikesl51
to (N21)/2, where we define this variationŝ by the simple
formulas

Ī ~n,N![
2

N21 (
l51

~N21!/2

Î K~ l ,n,N! ~12!

and

ŝ~n,N![F 2
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Figures 2~a!–2~e! show the dependence ofŝ(n,N) uponn
for the casesN555, 95, 119, 141, and 143, respectively. For

comparison, Fig. 2~f! shows this dependence for the case
with a prime number of slits,N5139, while Fig. 2~g! shows
this dependence for the caseN5105. As anticipated above,
we note that the rms variation vanishes whenn is a divisor
~factor! of N, but does not when it is not.

In contrast to the above results, when finite width slits are
used, the amplitude produced by a single slit then diminishes
for large diffraction angle. As such it will not illuminate the
whole diffraction pattern of widthNa @3#, but instead only
the portion within its own diffraction pattern, whose half-
width on the image plane will be (Dx)1/2'lR/~2s!. One is
then led to expect that@3# the ability of theN-slit interfer-
ometer to factorN will fail unless sN/(an)& 1

2 , or equiva-
lently, s/a&n/(2N)51/(2r ) holds.

To test this proposition, we define the average intensity of
the l single-slit self-image by

I s~ l ,n,N![
1

s
E

2s/2

s/2

I KS la1
a

2
1j,n,NDdj, ~14!

and, exactly as per Eqs.~12! and ~13!, define an associated
mean and rms variation asĪ s(n,N) and s s(n,N), respec-
tively.

We now consider ten of the cases discussed above. Figure
3 showss s(n,N) as a function ofs/a for these various cases
and for 0<s/a<0.15.Consistent with the main point of this
paper, we note that in all casess s(n,N) vanishes in the limit
ass goes to zero. A further examination of the results of Fig.
3 indicates that with increasings/a, the utility of the diffrac-
tion pattern for finding factors ofN deteriorates first and
most rapidly for the smaller of the two factors ofN. This
deterioration@increase ofs s(n,N)# is consistent with the
constraint set bys/a&n/(2N). If the various curves of Fig. 3
are replotted as a function of (Ns)/(na) then they all~ap-
proximately! collapse to form a single curve, with a shape
similar to that ofn, N53, 141 of Fig. 3.

To summarize: An important~unsolved! problem in num-
ber theory is the question of how to rapidly factor a large
integerN into its prime integer divisors@2#. Quantum com-
putation@1# has been offered as a possible solution; however,
as yet its practical implementation is wanting. As a first step
toward understanding how a novel application of a physical

FIG. 2. Dependence of the rms variationŝ(n,N) uponn for the
cases~a! N555, ~b! N595, ~c! N5119, ~d! N5141, ~e! N5143,
~f! N5139 ~a prime number!, and ~g! N5105 ~a product of three
prime numbers!. Zeros indicate factors ofN, while nonzero dips
occur at ‘‘near factors.’’

FIG. 3. Dependence of the rms variation,s s(n,N), on s/a.
Curves are labeled by$n,N%.
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process might be used to factor integers in a nontraditional
fashion, we have presented here a classical, optical factoring
‘‘engine’’ that utilizes the ingredients of coherent superposi-
tion and interference in order to factor small integersN.
~With current grating technology, four- to five-digit integers
could be easily factored.! Not surprisingly, in our classical
device the resources required, such as grating size and illu-
mination power, grow exponentially with the number of bits
M needed to representN as a binary number. This is in
contrast to the proposed quantum device, in which resources
would scale polynomially withM . We conjecture that the
key difference is manifest in the quantum entanglement that
can be achieved only with a quantum device.

The conditionln5a2n/R specifies thatl be tuned via
discrete steps. It is noteworthy that the full intensity period-a
self-imaging spike patterns of Fig. 1 form at half-period-

shifted locationsonly at tuning ‘‘resonances’’ withl'ln

with n odd. The allowed tuning errors~and resonance
widths! are discussed at length in Ref. 3. At intermediate
wavelengths, very complicated interference patterns form.
Since our algorithm specifies monitoring the intensity only at
narrow neighborhoods centered on the spikes, then an on-
resonance condition is readily detected by marginally read-
justing the tuning, as necessary, to maximize the average
intensity at all spike positions, and/or~with additional detec-
tors! to minimize it elsewhere. So doing, a wavelength-to-
grating-period relative calibration is also accomplished.
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