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Factoring integers with Young’s N-slit interferometer
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We show that a Young'sl-slit interferometer can be used to factor the intelyehe device could factor
four- or five-digit numbers in a practical fashion. This work shows how number theory may arise in physical
problems, and may provide some insight as to how quantum computers can carry out factoring problems by
interferometric meangS1050-29476)01806-9

PACS numbgs): 03.65.Bz, 42.79.Dj, 42.79.Hp

Recently, Shor has produced a remarkable proof thahabove conditionsand whenn is a factor of N, CR have
guantum computers can be used to factor a large intdger shown that the wave amplitude on the screen is givefby
using only “polynomial resourcesf1]. Such a computer, if .
built, Wpuld have great_ |mpact on the flglds of publlp—key l/,n‘N(X)ch En(0)P,(v— 5t/ (x—av)dv, 1)
encryption and computing in gener@]. Given anM-bit, —o
parallel representation dfi, Shor achieves these results by

considering arM-particle quantum system that is in a num- where

ber state, and then by using superposition and interference (n—1)/2
after unitarily transf_ormmg this state into an entangled state. th(x)== > s(x—aq) )
Since all of these ingredienig@xcept entangled stajeare Ng=(T=n)2

available in classical interferometry, we wondered to whate resents the transmission of a “shortened” modified
extent it might be possible to factor integers by classical *P'e: . , :

. . . e n-period grating. We have defined the functions
interferometric means. Herein, we show that it is indeed POSg (v)= exp(mv?n) and P,(v)= sin(arv)/sin(mv), where

. . . m 5 . n - r - ’
sible .to fgctor the integel using a ff"‘m”'ar Young SN'SI.'t r=N/n is also an odd integer, sind¢is odd and is one of
classical interferometer. In such an interferometer, wkeés

: X its factors.
a product of two integers andr, we show that a simple  The ahove formulas give an exact result, at least within

analysis of the resultant diffraction pattern, and its depenge |imits of validity of the Fresnel approximation and the
dence on illumination wavelength, can be used to deter- irchoff diffraction integral. The functiorP,(v) is periodic
minen andr. Our result illustrates an interesting appearanceyith period one. It consists of a string of positive spikes of
of number theory in physics, and indicates how problemseightr centered on integer values®fIn the limit asN and
such as factoring might be attacked by novel physical—as approach infinity, theP,(v) approaches a comb function
opposed to algorithmic—methods. Of course, our classicalinfinite periodic string ofé functiong, and Eqgs(1) and(2)
scheme does not exhibit the exponential decrease in compimply that the diffraction pattern will consist of a “filtered”
tational resources that apparently can only be obtained on self-image of the grating, an example of the Talbot effé¢t
guantum device. Nevertheless, it is instructive from a A necessary condition for obtaining the above result is
fundamental-concept point of view. thatn be a factor oiN, so that the individual slits, takemat
Consider a simplificatiorisee Fig. 1, ins¢tof the two-  atime[via Eq.(2)], add coherently. When additional slits are
dimensional(2D) problem considered by Clauser and Rein-appended to either end of the grating, such thiatno longer
sch(CR) [3]. A planar, finiteN-period diffraction gratingin @ factor ofN, then the unique filtered-self-imaging properties
the xy plane atz=0), is illuminated by parallel monochro- ©f Ed. (1) no longer hold exactly but instead only approxi-
matic light propagating in therz direction. It produces a Mately. The resulting error then represents a remainder to the
diffraction pattern on a planar image screen, located anyan factorization. _ _ _ o
plane atz=R. The grating is centered on the=0 axis and 10 illustrate these ideas, let us first consider the idealized
is composed of an odd numbisrof parallel slits with width ~ limiting case with very high intensity illumination and infini-
s and perioda. (If N is even, then 2 is a factonWe take the  tesimal slit widths. In this limit we can approximate the
transmission functiors(x) for a single slit of the grating transmission functiorignoring the normalizationas s(x)

(defined on the interva/2<x<=a/2) to be 1 for/2<x<.2, =~ 9(X), whereupon the integral in E41) may be evaluated
and zero otherwise. Furthermore, we choose a discrete set 8%

illumination wavelengths\, such that\,,=a®n/R, wheren (n-1)/2 ) )

is an integer. Since we are searching for factordlpandN =) (f_ _) e tm( X 3

is odd, then fom to be a factorn must also be odd. For the YnN(X) o Pr 2 q:(zn)/z M ola 9 | )
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1 (alllllil||lIIII|IIlI|Illlnlzlllllllllll f(I,n,p,q)Eexp{% |+%—q>—|+%—p)H.
N =143
(6)
10 [ HEETETA A
light gralting screen Using Eq.(6), and the fact thap,q,l, andn are all integers

with n odd, after some algebra, we find the recursion relation
f(l,n,p+n,q)=f(l,n,p,q). Using this relation, it is pos-
z=0  z=R sible to express the double summation of Eg).as

LML Iml “I““ | “I l HH (n—1) (n—1)/2
0 1 13

TI T I T T T T T T T T Ti T TTITTTT I T I i T ridgiriTTd 2("”)22 Z f(lln!b+q!q) (7)
b=0 q=(1—n)r2

.
- - = -

13
(b 143

n
N
Further, using Eq(6), we have

f(l,n,p,q)= exn[%T(q—p)(qJr p—2l —1)} 8

Combining Eqgs(7) and(8), we find
lmmmw L (n—1)

TV T T FPFT TP AT T T T T i T i TTIT i TrTTTTd

7 s(1.n) > T b—21-1)
n= ,nN)=yn+ exg — — -2l -
lc) N =143 b=1 n
(n—1)/2 b
X E exp(—Ziw—q)J. 9
q=(1—n)/2 n
The summation oveq in Eq. (9) represents a geometric
series which may be summed to yield
AAAAAEANA b Ake 08 AN ALIEAA LABR DA AANLOR ol RARL L ALABAAL) (n-1) . .
0 70 i sin(2mb)
x S(,n)=] n+ D, ex;{—Fb(b—Zl—l) — 7
b=1 .

FIG. 1. A diffraction grating consisting dfl slits of width. and Sln( 2775)
period a is located atz=0, and is illuminated by parallel mono- (10
chromatic light propagating in the z direction (insej. It produces
a diffraction pattern on a screen, locatedzatR. Intensity distri-  In the ratio of sine functions in Eq10), the numerator is

bution as a function ok for a portion of the diffraction pattern always zero, since is an integer. The ratio correspondingly
produced by a grating witthN=143 infinitesimally wide slits{a)  will vanish for all integers unless the denominator likewise
n=11, (b) n=13, and(c) n=17. vanishes for some values bf However, the summation over

b always has/n<1 andb/n#1/2 (sincen is odd, so that
Here we have used the fact that the funct®nis periodic, the denominator never vanishes for any valueThus the
with period one, to move it outside of the summation. Thewhole sum ovetb in Eq. (10) vanishes3 (I,n)=n is then
function P, is peaked at integer values of its argument, i.e.just a constant. The resulting intensity is then given by
at values ofx/a=I+ 3, wherel is an integer. Defining the 1(l,n,N)=r?n=N?/n for all values ofl. That is,all spikes in
intensity at any position x on the screen as the diffraction pattern have the same heigltoreover, this
()= drin(X) n(X), then the intensity at the position of result does not obtain when the wavelength is chosen so that

thelth peak is given by n is an integer, bubotone that is a factor dil. Thus one can
determine ifn is not a factor ofN by simply looking at the

R a a diffraction pattern produced by illumination at various wave-
L(,n,N)= ¢ la+ E) Yol la+ E)' (4) lengths\,,, chosen so that,=a®n/R produces an odd inte-

ger value fomn.

To illustrate these results, we calculate numerically the
Upon substitution of the above formulas into this equationdiffraction pattern produced under the above conditions with
we find 1(I,n,N)r?3(l,n), where we have defined the n odd but not necessarily a factor Nf The intensity is then

functions given by the Kirchoff diffraction integral as
(n—1)/2 (n—1)/2 (N=1)/2
S(hm= X > f(np,q) (5) l(x,n,N)ec PN s(é—aq)

p=(1-n)/2 q=(1—-n)/2
2

d¢| . (11

d i )
an Xex M—R(f—x)
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FIG. 3. Dependence of the rms variatiom,(n,N), on J/a.
Curves are labeled bjn,N}.
comparison, Fig. @) shows this dependence for the case
with a prime number of slitd\ =139, while Fig. 2g) shows

this dependence for the cablke=105. As anticipated above,
FIG. 2. Dependence of the rms variatiofin,N) uponn for the  we note that the rms variation vanishes wirers a divisor
cases@ N=55, () N=95, (c) N=119, (d) N=141,(e) N=143,  (facton of N, but does not when it is not.

(f) N=139 (a prime numbey and(g) N=105 (a product of three In contrast to the above results, when finite width slits are
prime numbers Zeros indicate factors oi, while nonzero dips  used, the amplitude produced by a single slit then diminishes
occur at “near factors.” for large diffraction angle. As such it will not illuminate the

We consider five different cases wherein the number of slit%[;']hde Tﬁracti_?r?_ pittern of dv_\;:cdthxtl_a 3], EUt instiad O?]Iylf
is a product of two primes, i.e., gratings with=55=5 € portion within 1ts own ditiraction pattern, whose nafl-

— OE— _ a1 idth on the image plane will beAx),~\R/(2s). One is
x11, N=95=5x19, N=119=7x17, N=141=3x47, WV ) 172 +)-
and N=143=11x 13 slits, respectively, one case Whereinthen led to expect thd] the ability of theN-slit interfer-

S . TN ometer to factomM will fail unless.N/(an)<3, or equiva-
the number of slits is prime, i.eN=139, and one case lently, JJa<n/(2N)=1/(2r) holds.

wherein the number of slits is a product of three primes, i.e., To test this probosition. we define the average intensitv of
N=105=3X5X7. For\, to span the range from infrared to .  Propo ' 9 y
thel single-slit self-image by

ultraviolet wavelengths, typical parameters &e10 m,
a=1 cm. The wavelength is varied in step8, consistent 1
with n being an odd integer, for values of=1, N, as per IJ(I,n,N)E—j
A,=a’n/R. ?
Figures 1a), 1(b), and 1c) show the intensity distribution

42

Il la+ E+§,n,N)d§, (14)
—l2 2

and, exactly as per Eqsl2) and(13), define an associated

as a function ofx for N=143, andn=11, 13, and 17, re- -
spectively. Indeed, the cases whereiis a factor ofN, with [RZ?; and rms variation ds(n,N) and o,(n,N), respec-

n=11 and 13, show all spikes with the same height, while . . .
the pattern witm= 17, whereim is not a factor oN, shows We now consider ten of the cases discussed above. Figure

spikes with differing heights. 3 showso(n,N) as a function of/a for these various cases
At the Ith spike’s peak, the intensifyia Eq.(12)] will be and for Osf;/aso.lS_.Consstent with the main point of thls
given by fK(I,n,N)EIK(Ia+a/2,n,N). To determine the Paper, we note that in all case@(n',N)' vanishes in the I|m|t.
magnitude of the variation of spike height as a functiomof @S~ 90€s to zero. A further examination of the results of Fig.
we evaluate the rms variation b§(l,n,N) over spiked =1 3 indicates that with increasinga, the utility of the diffrac-

to (N—1)/2, where we define this variatiahby the simple tion pattern for finding factors oN deteriorates first and
formulas most rapidly for the smaller of the two factors b This

deterioration[increase ofo,(n,N)] is consistent with the

_ (N-Di2 constraint set by/a<n/(2N). If the various curves of Fig. 3
I(nN)=3—7 I (l,n,N) (12)  are replotted as a function oNg)/(na) then they all(ap-
-t proximately collapse to form a single curve, with a shape
and similar to that ofn, N=3, 141 of Fig. 3.

To summarize: An importar(tinsolved problem in num-
ber theory is the question of how to rapidly factor a large

13 integerN into its prime integer divisor§2]. Quantum com-
putation[1] has been offered as a possible solution; however,
Figures 2a)—2(e) show the dependence o6f(n,N) uponn  as yet its practical implementation is wanting. As a first step
for the casedN =55, 95, 119, 141, and 143, respectively. Fortoward understanding how a novel application of a physical

1/2

o(n,N)=

(N=1)/2 fK(I,n,N) 2
N-1 & (1_ I(n,N) )
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process might be used to factor integers in a nontraditionahifted locationsonly at tuning “resonances” withh~N\,
fashion, we have presented here a classical, optical factoringith n odd. The allowed tuning error¢and resonance
“engine” that utilizes the ingredients of coherent superposi-widths) are discussed at length in Ref. 3. At intermediate
tion and interference in order to factor small integ&fs  wavelengths, very complicated interference patterns form.
(With current grating technology, four- to five-digit integers Since our algorithm specifies monitoring the intensity only at
could be easily factoredNot surprisingly, in our classical narrow neighborhoods centered on the spikes, then an on-
device the resources required, such as grating size and illyasonance condition is readily detected by marginally read-
mination power, grow exponentially with the number of bits j,sting the tuning, as necessary, to maximize the average
M needed to represemM as a binary number. This is in jyiensity at all spike positions, and/éwith additional detec-
contrast to the proposed quantum device, in which resourcedq) to minimize it elsewhere. So doing, a wavelength-to-

would scale polynomially withM. We conjecture that the %rating—period relative calibration is also accomplished.
key difference is manifest in the quantum entanglement tha

can be achieved only with a quantum device. The authors acknowledge M. Reinsch for contributions,
The condition\ ,=an/R specifies thai be tuned via and J. Franson, Shifang Li, and S. Pethel for helpful sugges-

discrete steps. It is noteworthy that the full intensity pergod- tions. This work was supported by the Office of Naval Re-

self-imaging spike patterns of Fig. 1 form at half-period- search and by the firm, J. F. Clauser & Associates.
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