PHYSICAL REVIEW A VOLUME 53, NUMBER 6 JUNE 1996
Electromagnetic field quantization in absorbing dielectrics. I
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A quantization scheme for the electromagnetic field in absorbing dielectrics developed previously is ex-
tended to cover more complicated arrangements of dielectric media and to investigate various limiting cases of
the general formalism. The limiting cases include media that have vanishing imaginary parts in their dielectric
functions, because either the refractive index or the extinction coefficient vanishes. The further limit of a unit
real dielectric function establishes the connection of the formalism with the well-known quantized field ex-
pressions in free space. Detailed calculations are presented for the quantization in the system of two different
absorbing dielectrics in contact at a plane interface and for the cavity formed in the free space between two
separated absorbing dielectrics. The forms of the field operators are determined for both systems, the canonical
commutation relations are verified, and the spectra of the vacuum field fluctuations are calculated and illus-
trated. The calculations are restricted throughout to fields that propagate perpendicular to the dielectric inter-
faces.[S1050-294{96)10706-X

PACS numbsdrs): 42.50—p, 12.20—m

[. INTRODUCTION properties of the Langevin forces are related to the underly-

ing noise spectrum of the microscopic oscillators of the par-

One of the main recent developments in quantum opticécles that make up the dielectric medium. In Sec. lll we

has been the study of processes, for example spontaneosiRow that the quantized field reduces to known forms when
emission, that take place inside, or adjacent to, material bodirst the absorption and then the dispersion are removed, and

ies. The need to interpret the growing body of experimentayve finally show that the well-known free-space result is ob-

results has stimulated attempts to quantize the eIectroma?ained when the dielectric function is set equal to unity. The
netic field in materials of increasingly general properties,ossless medium is also considered in the case of frequencies

Thus methods have recently been developed for the quantfithin a stop band, for example a dielectric for frequencies
zation of the electromagnetic field in dielectric media thatP€tween a transverse resonance and its associated longitudi-
simultaneously display the three properties of absorptionf@l mode, or a plasma for frequencies lower than the plasma
dispersion, and finite extent, in the special case where thé€quency, where the real part of the refractive index van-
sample has plane-parallel boundary surf4deg]. The quan- ishes but its imaginary part, or extinction coefficient, is non-
tization scheme covers propagation perpendicular to the inZ€ro.

terfaces, and it is therefore applicable to a range of problems [N terms of the second aim, in Secs. IV and V we consider
in which parallel light beams propagate through optical systhe field quantization for two different Iogsy dlelgctrlcs in
tems in a direction perpendicular to the surfaces of the comcontact at a flat interface, and for an optical cavity formed
ponents. It includes as special cases a range of earlier calcfiom the region of free space between two parallel semi-
lations that apply to dielectric media with only some of the infinite dielectric media. In both cases we derive expressions
three properties listed abovsee[2] for a review of previous ~for the quantized field operators for propagation perpendicu-
work). The formalism particularly generalizes earlier theo-1ar to the interfaces, and we evaluate the vacuum field fluc-

ries that apply to homogeneous absorbing dielectrics withouuations in the different spatial regions. It is verified that the
any boundarie§3—6]. canonical commutation relation is satisfied in all spatial re-
The presence of absorption has the effect of coupling thgions, and this forms a check on the validity of the quanti-
electromagnetic field to a reservoir, whose oscillators act agation. The reduction of the general results to those for spe-
noise sources, and these are Convenient|y represented EWI cases derived preViOUSly is also confirmed. Particular
Langevin forces that act on the fiel(see[7] for a review. attention is paid to the important practical case of an optical
It has been shown that this representation leads to a straigtavity formed from highly reflecting boundaries. The main
forward quantization of the electromagnetic field, which hasconclusions are summarized in Sec. VI.
been applied to dielectrics with the spatial forms of an infi-
nite medium, a semi-infinite medium with a flat surface, and Il. BASIC FORMALISM
a parallel-sided slafl,2]. The aims of the present paper are,
first, to make closer contact between this work and some of
the previous calculations, and, second, to extend the results The formalism is the same as we used befdrg] and it
to more complicated systems. is only necessary to summarize here the basic equations and
In terms of the first aim, we show in Sec. Il how the notation. In classical macroscopic electrodynamics, a linear
nonmagnetic medium is described completely by the con-
tinuum approximation in which the medium is characterized
*Present address: Departmemt of Physics, University of Kermarby a dielectric function. A dielectric that shows dispersion
Kerman, Iran. must inevitably be lossy, in accordance with Kramers-

A. Field equations
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Kronig relations, and the dielectric function must necessarily IE* (X, ) R
be complex. The complex refractive indefw) is related to Ix =iwB"(X,0) (2.9
the material dielectric function(w) in the usual way,
e(w)=g(w)+igi(w)=n*w)=[n(o)+ik(w)] and
(2.9 R
_ _ o7B+(X,w)_ iwe(X,w) £+ 1 3+
where _the real and imaginary parts efw) are der)ote_d by - X == o2 (X, 0) + w (X,®).
subscripts, andy(w) and k(w) are the real refractive index (2.10

and extinction coefficient, respectively.
Though these functions are defined for positive frequentt is convenient to express the field operators in terms of a

cies, nevertheless thejr negati_ve-frequency values can be dgsctor potential operatoi(x,t), which has decompositions
duced from the crossing relatiof8] similar to (2.6) and (2.7), using the relations

—_ = * —_ = * A~ A
e(—w)=¢e*(w), n(—w)=n*(w). (2.2 E* (x,0) =i wA* (X)),
The form ofe(w) in the upper half of the complex plane (2.1
is restricted by causality considerations to have neither poles R
nor zeros, and it also conforms to the lirh] é*( IAT (X, w)
X,0)= ———.
g(w)—1 for w—oo inany manner. (2.3 X

We consider linearly polarized electromagnetic waves! he omission of the scalar potential is permitted by the one-
that propagate parallel to the axis with their transverse dimensional nature of the system, where it is possible to
electric and magnetic vector operatd%ﬁx,t) and é(x,t) choose a gauge in wh|ch.only the transverse part Qf the vec-
parallel to they andz axes, respectively. The field operators tor potential participates in the quantization. The first Max-

satisfy Maxwell’s equations in the forms well equation(2.9) is automatically satisfied when these ex-
pressions are substituted, while the second Maxwell equation
JE(X,1) IB(x,1) (2.10 gives
x ot 2.4 ]
FAT(X,0) a1
and 2 TeXe) A (X,w)——w\] (X,w).
(2.12

IB(x,t) D(x,t) -

T T ax | Mo +pod(X,1), 29 The spatial dependence of the quantized vector potential is

A determined by this inhomogeneous Helmholtz differential
where D(x,t) is the electric displacement operator. In the equation.

absence of an externally applied current, the transverse op- The form of the generalized momentum operator that is

eratorJ(x,t) plays the role of a Langevin force associatedConjugate to the vector potential in the quantized field theory

with the noise reservoir. The field operators are separatel§ determined by the usual techniques of Lagrangian me-

into positive- and negative-frequency components in the&hanics. The conjugate momentum takes different forms for

usual way, different transverse gauges, but we particularly consider the
A R R Coulomb gauge where its form is ggE(X,t) and the ca-
E(x,t)=E*(x,t) +E~(x,1), (2.6 nonical commutation relation is

and the frequency-space Fourier transform operators are de- [A(X,1), —eoE(X',1)]=(iA/S)d(x—%"), (2.13

fined according to
L whereS is an area of quantization in thez plane, perpen-
é*(x,t)z f deAE*(x,w)e*i“", 2.7 dicular to the direction of propagation.
V2mJo

. . . o B. Langevin force commutator
with similar separations and transforms for the magnetic in-

duction, electric displacement, and noise current operators. |"€ Presence of fluctuations in the vacuum state of the
The negative-frequency components are provided by thglectronjagnetm field is apparent from the existence of the
Hermitian conjugates of the positive-frequency operators. Z€r0-point energy. What is not always appreciated is that a
The Fourier transform displacement operator for a systenﬁ!“ate”al medium, necessarily with complex dielectric func-
in which the dielectric function, denotedx, w), varies with tion, also introduces a fluctuating noise current of the

both the frequency and thecoordinate, is determined by vacuum. The former demonstrat_es a chara_cterlsnc property
of the free-space electromagnetic field, while the latter re-

f)*(x,w)=sos(x,w)|§+(x,w), (2.9 flects the same feature for the medium. This can be under-
stood from the form of the relation
and the frequency-domain Maxwell’s equations are obtained ~ -
from (2.4) and (2.5) as PT(X,w)=go[e(X,0) = 1]Eg((X, @) (2.149
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for the noise reservoir polarization ope[atéf*(x,w) in-  wheree andm are the charge and mass of the carriers, re-
duced by an externally applied electric figig,(x,w). Thus ~ Spectively. Herep; are the usual canonical particle momen-
if one regards the electric field as therturbing force, then tum operators, including the vector potential contributions.

the electromagnetic energy expression shows thatréhe On inserting(2.21) and(2.22) into (2.20, we have that
sponding quantityis the polarization, and the function

gole(X,w)—1] is the appropriatgeneralized susceptibility (OI[F+ (x,@),P7 (X, 0")]|0) =i 2hw m_€208_(X ©)

The vacuum-state noise polarization correlation function can L S pet "N

therefore be calculated by the help of the fluctuation- X 8 8(x—x") &( )
ij - w—w ).

dissipation theorem and Kubo’s formula] as

(2.23

As we see, an immediate outcome of the noise-current fluc-
tuation is the expectation value of the commutation relation
Xd(w—w"), (2.19  petween the charged particle position and momentum opera-
. ) tors. The noise-current fluctuation thus reflects the character-
where the factoS in the denominator results from the con- jgiic properties of the medium through an expression that
finement of the quantization to a finite area in §®plane.  jncorporates its loss spectrum. The noise-current fluctuation
The noise reservoir current density and polarization opgan ajternatively be considered as a consequence of the in-
erators are related by trinsic quantum-mechanical natures of the position and mo-
- . oA mentum operators of the charged particles that constitute the
I (xw)=—10P"(x0), (218 gielectric reservoir. In this view, it is the commutation rela-
tions among the positions and momenta of the charged par-
ticles that are transmitted to the noise current and establish

(0| |5+(X,w)|5_(x',w’)|0>= %sosi(x,w)é(X—X’)

and insertion intd2.15 gives

. . 24 the noise-current fluctuations.
(0]137(x,0)d~ (X", 0")|0)= ngsosi(x,w)ﬁ(x—x’) The field commutation relations are closely related to the
commutation properties of the noise-current operator, or
Xé(w—w"). (2.17  Langevin force, in(2.12. For noise that is uncorrelated at
different frequencies, the latter commutation relations are
Since taken in the forms
(X0 )M (X,w = 2.1 R R 2
(037 (X", ") 3" (x,®)[0)=0, (2.18 (3 x,0) 3¢ w0)] = 2gogw o (.0) B x)
we find the vacuum expectation value of the noise-current
commutator to be XSw—o'),
op (2.29
(0|[J+(x,w),J_(x’,w’)]|0>=ngsosi(x,w)é(x—x’) [J7(X,0)," (X", 0")]=[I7(X,0),d" (X",0")]=0,

consistent with(2.19. The noise current properties derived

Xw=w). (219 here agree with the results of the formalism presentdd]in

The correlation between polarization and current density can
also be found by insertin2.16 into (2.19, and we find that Ill. FIELD QUANTIZATION

A. Infinite homogeneous dielectric

- 3- ! !’ Zﬁ H !
(OIP* (x,@),3" (X", 0")]|0) = ~z i weoei(X,@) S(x=X") The complete solution to the problem of quantization in a

) dispersive lossy dielectric can be obtained fr(#rl2, pro-
Xé(w—w'). (220 vided that the noise-current commutation relati¢®24 are

satisfied. In the homogeneous case, in which the dielectric

The noise operators can be related to the spatial coordy,ntion has no spatial dependence, it is advantageous to
nates of the particles that make up the dielectric reservoir.gvert the differential equatiof2.1? into an algebraic

T_h_us the polarization operator is def.ined in terms of the POpquation. The wave-vector space Fourier transforms of
sition operators for the charged particles by A*(x,0) andJ* (x, o) are defined by

D+ __ o+ “ 1 +oo ~ )
Pr(x0)=-e2 I (x0), (229 A (x,0) = dk A" (K,)e™,
V2 ) -
wherewv is the number of charged particles per unit volume. 3.1
Similarly, the current density operator is defined in terms of
the charged particl t tors b - 1 (*= - :
e charged particle momentum operators by I (x,w) = dk 3 (K,w) e,
v 2 -
J™(x w)Z—EZ P (X ) (2.22
’ mi=1 Pi (@), ' and conversion of2.12 gives
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- w? . 1 . and the equal-time commutat(2.13 is
—kK2AT(k,0)+e(w) ?A+(k,w)= - m\ﬁ(k,w).
0

(3.2 [A(X,1), —goE(X,t)]= %rjdk exdik(x—x")]

Insertion of the solution for the vector potential operator into ()
. LL) Egilw
(3.1) gives J' om0 o

c’— wle(w)|?’

A (x.0)= ;f“dk;y(k o) 3.9
’ A\ 27T80 —o0 k2C2_w28(Q)) !
where the commutation relatio(8.5 has been used. The
X exp(ikx). (3.3 analyticity ofe(w) in the upper half of the complex plane

. . _ o makes it possible to show thpt]
It is convenient to rewrite the above expression in terms

of a boson-type operator as replacement for the noise-current +o w3ei(w)
operator[2]. We thus define a modified Langevin force op- B dw [k2c?2— 02 8(w)|2
erator in wave-vector space by

(3.10

- - and insertion of this result int§3.9) then reproduces the
f(k,w)=3"(k,0) VS2eh w’ei(w), 3.4 canonical form(2.13.

It is worth emphasizing that by introducing an imaginary
part for the dielectric function, which reflects the lossy nature
of the medium, we lose the usual polariton dispersion rela-
tion in which a limited number of discrete frequenciesre
associated with each wave vector[see Ref.[10] or Eg.
(3.23 below]. The above formalism shows that for eakh
there is now an infinite continuous range of positive frequen-

whose commutation relation fro2.24) has the form
[f(k,w),fT(k 0)]=8k-K)s(w-0'). (3.5

By the substitution 0f3.4) into (3.3), the positive frequency
part of the vector potential operator can be rewritten as

R hols (w)) 12 1 cies, and thuk and  must be considered as independent

At (x,w)= — f dkis——>—— real variables. A polariton dispersion relation can still be

me0S —» KT 0% (w) defined in this case, but it takes the form of a condition for
xf(k,w)exp(ikx), 3.6 the frequenciesw at which the field fluctuations with wave

vectork have maximum valuegl1].
The forms of vector potential operator given(®3) and

and the form of the complete operator is (3.6) are useful for displaying the underlying polariton nature

X 4 . o of the dielectric excitations, and they are used in Sec. Il B to
A(x,t)z(z—) f d“’f dk derive the quantization in a lossless dielectric. However, for
2m80S 0 — the dielectric systems with boundaries treated later in the
m paper, the magnitude of the wave vector varies from one
[ 5 f(k w)exg —i(wt—kx)] region of space to another. Since the boundary conditions are

k“c “s(w) imposed on the monochromatic field operators at the inter-

faces, it is the frequency and spatial coordinates that are the
+H.c.]. (3.7) fundamental variables. The integrand (8.3 has simple
poles atkk=+ wn(w)/c, and, with the noise operator Fourier
) - ) ) ) transformed as if3.1), it is straightforward to perform the
It is not difficult to show that3.7), with (3.9), is equivalent  contour integration. The complete vector potential operator
to expressions given previous$,4,6]. (3.7) is accordingly replaced by
The required commutation relatio(2.13 between the
vector potential operator and its conjugate momentum is eas-

o 1/2
ily checked. The one-dimensional vector potential derived A+(X1t):f+ w(ﬂ)
above is valid for a three-dimensional system in which the 0 AmeoCwe(w)S
noise-current density operatd(x,t) acts over an idealized X {Br(%, @)+ &L (x, ) e 1t (3.12

surface which is perpendicular to the direction of propaga-
tion. Evidently, if J(x,t) is produced by a flat dipole layer,
the Iongitudinal part of the electric field is identically Zero, or where the rightwards- and leftwards-traveling polariton an-
equivalently, the scalar potential is a constant. The transversghilation operators are defined by
electric field derived from the vector potenti@.7) with the
w) 12 ~y
f dx’

use of(2.11) is then

2wk(
F(Iwn w) ,
xf(k,w)exp{—i(wt—kx)]—H.c.}, (3.9 xexp —g— (x=x')

112 . .
E(x,t)=i ( ) f dwf dk{ o — “Vei(w) CR(X,w):I( S

—w?e(w)

f(x',w), (3.12
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2wk(w)\ Y2 [+ known problem in the literature. According to causality con-
CL(X, w)—l( c ) dx’ siderations, this problem must be considered in principle as a
X limiting case of the lossy dispersive formalism.
ion(w) . In order to calculate the limit, it is convenient to start
X p(— (x—X )) (x", ) from (3.7), and define
and the transformed Langevin force operator has the simple Ci& (ke @t= lim J' . wyei(w)
boson commutation relation M ei(0) 0 k?c’— v’ (o)
[f(X,0),f1(X,0)]=8x—x)S(w—w'). (3.13 X f(k,w)e e, (3.18
The commutation relations of the operato(s, ) at differ- whereC; is a constant of proportionality to be determined,
ent positions are easily obtained frd®12 as w; is the frequency of the polariton in brangh which is
. atior A At assumed to possess a well-defined relation with the wave
[Cr(X,®),Cr(X",0") J=[CL(X",@"),C (X, ®)] vector in the lossless dielectric, ag(k) is the polariton
: annihilation operator in the dispersive medium. The constant
ion(w) . ; .
=8(w—w')ex (x—x") C, is determined by calculating the commutator of the polar-
¢ iton creation and annihilation operators,
wk(w) , tede
g X=X ] G oy 00,8 (k)= o(k—k') lim f =
gj(w)—0 0o w
and
gi(w)
[Er(X,0),&[ (X", 0")]=[EL(X",0"),Ek(X, )] [er(w)— K0P+ X (o)
2 (3.19
:5(w—w')¢9(x—x')ﬂ
() where(3.5) has been used. We assume initially that the van-
wn(w) ishing of the imaginary part of the dielectric function is as-
X sin (x—=x") sociated with a zero extinction coefficient, so that
& (w)=7n*(w) from (2.1). Taking advantage of a standard
wk(w) representation of the Dirag function, we have
X ;{— |x—x’|).
2ra At o [de oo 2
315 |GITE0.E(K)I=ok=k) | — ol n*(w)~(ke/w)?].
. . . (3.20
The form of vector potential operator given {i3.11)
agrees with previous workl,2], where it was derived by a The § function is developed using the identi{y2]
Green’s-function formalism, using the standard relation
—w
5(f(w)= E )'|) (329
w;

A+(x,w)=sfwdx'e(x,x',w)j+(x’,w). (3.16

where w; are the roots of thé-function argument, and the
The Green’s function is determined from the Helmholtzprime denotes differentiation with respect to this argument.
equation(2.12 by solution of The simplest example of a dielectric function is provided
by the Lorentz model of a material with a single resonance

7 ? [13]. In the limit of zero damping, the dielectric function
—_ - ! — . ’
e Texe) o2 ) Gxx',w) takes the form
(3.17 W2 — 2 02— w2
i . X . L . L T
The Green’s-function formalism is used in subsequent sec- &€(®)= 22 T, {8(0—w7)+ 80+ w1},
tions to treat dielectric systems with boundaries. T T (3.22
B. Lossless dielectric wherew- is the transverse resonance frequencyands the

The introduction of loss, which gives a complex part toassouated longitudinal frequency. This function conforms to
the crossing relation irf2.2), and it is real in the positive

the dielectric function, establishes the noise-current ﬂucw?}requency range except at the single frequensy The ar-
tion and provides the quantization of the field. The imaginar gument of thes function in(3.20 thus give the usual polar-

part of the dielectric function plays a key role in this ap-: . ) .
proach, as if the whole formalism would collapse in its ab-'on dispersion relatiofi13)]

sence. However, despite the requirement that a dispersive 2 2.2 2 2_ 2

. . D o , we(w) o'7(ew) o o~
dielectric must inevitably be lossy, the quantization of the k2= = —=————>. (3.23
electromagnetic field in a nondissipative medium is a well- c c ¢ or~w
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results into(3.7), the quantized vector potential operator in a
nondissipative dispersive medium can be written as

A hoo\Y2 0.
o ™~ A= ( Adme os) j —o dk
" X ( Vg ( wJ ) ) 1/2
£ o7 (0) vp(w))

x{c¢;(k)exd —i(wt—kx)]+H.c}. (3.28

This expression agrees with the results of previous Wbk
based on the diagonalization of a Hamiltonian for the
coupled system of dielectric and electromagnetic field, apart
k from a phase factor, which can be adjusted in the definition
of the constants of proportionality i{8.27).

The quantized field in a lossless dielectric can also be
“obtained by taking an appropriate limit in the alternative for-
malism expressed i3.11). Thus with x(w) set equal to
zero, the commutation relations i8.14 simplify while
There are two allowed frequencies for each valué,oénd those 'n(g".lat vamshf, and.th(? _p(()jlarltor:j o;iebrators can t:e
the labelj in (3.20 and (3.21) takes the two values-, expressed in terms of a pair of independent boson operators

corresponding to the two branches of the polariton dispersioﬁR(w) andc, (w) according to

FIG. 1. Polariton dispersion curves, showing the two frequen
ciesw, andw_ for each value of the wave vecthr The stop band
lies between the frequencies; and w, .

curve, which we label byw_ and w, as in Fig. 1. The lim Cg(X,w)=Cr(w)explion(w)/c),
limiting procedure in(3.18 has therefore restored the usual ei(0)—0
polariton dispersion relation, which is a distinguishing fea- (3.29
ture of the lossless dielectric. Note that there are no propa- L R .
gating excitations for frequencies within the stop band that lim CL(X,w)=C (w)exp(—iwn(w)/c).
extends fromwr t0 w, . zi(@)—0
Itis straightforward to show that The substitution 0f3.29 into (3.11) yields
d kzcz) 2cn(w-) 12
—| P(w)— — =, 3.2 - h
aw(ﬂ ( o), . wxvg(w=) (3:29 Axt= | do dreogCon(w)S
wherevy(w) = dw/dK is the usual group velocity. Thus with | &n(w)exd —iw| t— ()X
the assumption of a single transverse resonaf&20 can RL® @ c
be rewritten as ()
X
+C (w)exg —iw| t+ ne +H.c.q,
2ra ~t Vg(wi) C
|C.[*Cx(k),CL(k")]=mo(k—K") ) ;
20+ (w:)Vp(w:) (3.30

(3.29

wherev,(w) = w/k is the phase velocity. The polariton cre-
ation and destruction operators are assumed to satisfy t
independent boson commutation relations

in agreement with previous resul(ts0,14].

The limit ¢;(w)—0 of a lossless dielectric is assumed
Néhove to be equivalent to the limif( w)—0 of a vanishing
extinction coefficient, and this is valid for most frequencies
. However, there is also the possibility that the limit is
equivalent to a vanishing refractive index(w)— 0. For ex-
(3.2 ample, the refractive index obtained frof®.23 is defined
only for the frequency ranges <wt and v, <w, and the
integration in(3.30 is restricted to these ranges. For the
remaining frequencies within the stop barg<w<w,, it
is the refractive indexy(w) that vanishes and the extinction

[E+(k),eL(k)]=[E (k),eL(k")]=8(k—k')

[E+(k),eL(k)]=[E-(k),EL(K")]=0,

and the constantS.. are thus determined froif8.25 as

Tvg(@.) 112 coefficients(w) is nonzero, so that the appropriate limits are
= — . 3.2
=\ 202 (@) vplws) (329 ()0,
The occurrence of the two sets of dressed operators results ei(w)—0,
from the one-to-two relation between the wave vector and Ve (w)— *ik(w). (3.31)

frequency in the dispersive medium, which appears as the
two branches of the dispersion curve separated by the stofphe traveling-wave nature in the dielectric is thus replaced
band betweemt andw, in Fig. 1. On substitution of these by a decay behavior. The quantized field obtained f(8r#)
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1/2

is zero for these frequencies within the stop band, in accor- . +o0 R
f {a(k)exg —i(wt—kx)]

dance with the vanishing field correlation function and A(X,t)= dk
power spectrum found i83.31) and (3.34) of Ref. [2] for *
frequencies where(w) =0. A similar behavior occurs in the +H.cl, (3.39
three-dimensional theory of an absorbing dieledttis—17,
and it leads to a vanishing spontaneous emission rate at fretherew=c|k|. This reproduces the well-known form of the
guencies within the stop band. free-space operatdb]. The free-space limit of the form of
A one-component plasma is a special case of the singlesector potential operator given i{8.30 is readily found to
resonance dielectric medium obtained by taking—0 and  be
1/2 R i wX
| aR(w)exy{ T)

h
4aeoclk|S

w_— wp, Wherewp is the plasma frequency. The real part of .
the plasma dielectric function is accordingly obtained from A+(x t):J dw(

(3.22 as degoCwS
wé’ 2 lwX —iwt
er(w)=1-—. (3.32 +ta(w)exp ——— e, (3.36

The plasma dielectric function is positive wher wp, and where the rightwards- and leftwards-traveling operators now
in this domain of frequencies the quantized field expressiofiefer to photons in free space.
is the same ag3.30), provided that thev integration covers

the frequency range fromp to infinity. The dielectric func- IV. TWO ADJACENT SEMI-INFINITE
tion is negative whem< wp, and the discussion of the pre- LOSSY DISPERSIVE MEDIA
vious paragraph applies in this frequency range. A. Field quantization

The expression for the quantized field in homogeneous _ . _ _ o
free space can also be obtained from the above general for- In this section we consider the field quantization in a
malism, provided that a suitable limit is employed. The ap-SPace that is occupied half and half by two different absorb-
propriate limit for this case takes the form ing media with different dielectric functions. The complete

dielectric function is therefore

cak)e'“=[im ) _ )
o exl@)=ni0)=Lni(o) Firs()F, x>0
sr(@)—1 e(X0)=1 g,(w)=nX(w)=[ 7o) +iks(w)]?, Xx<O.
e Vej(w) -« i
<yt ey e ™ o

Hereafter in this section we label all quantities with subscript
(333 indices 1 and 2, corresponding to the media with dielectric

wherea(k) is the photon annihilation operator. The constantfunctionse; () ande,(w). The inhomogeneous nature of
the problem requires the imposition of boundary conditions

C is determined by calculating the commutator of this anni—On the spatial mode functions in the two media. The vector
hilation operator with its creation counterpart, and we find potential is determined then l§g.16), with the Green'’s func-
C=(ar/2c|k|) Y2 (3.34  tion obtained by the solution dB.17), subject to the dielec-
tric function (4.1). Though the calculation is rather lengthy,
Therefore, by substitution int@3.7), we obtain the vector it is straightforward, and the final expressions for the

potential operator coordinate-space Green'’s functions are
|
GWM’@FW(&(M“F{W +ex;{w ] x>0
_ 280Cwinz(w)STR(w)eXp(iw[nl(w)xc— nz(w)x’]) <0 w2
for the positivex domain, and
G(X,X",w)= —ZSOCwinz(w)S[ RR(w)exp< - —i wnZ(w():(XJFX’) +ex;<—i wnZ(wC)IX_XW) ] x'<0
:WTL(w)exp<— iw[nZ(w)Xc_nl(w)X,]) x>0 4.3
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for the negativex domain, whereT(w) and R(w) are the It is convenient to retain forn(3.11) for the positive-
usual amplitude transmission and reflection coefficients, refrequency part of the complete quantized vector potential.
spectively, and the subscript indic€s and L refer to the This is now written as
light incident on the interface from the right or left. These
coefficients are given by . de ( B (@) )1,2

(0= 0 @ drmegCwe , (w)S

Ni(w)—nNy(w)

)T (o) gl

(4.4
X{Car(X, )+ Cor (X, @) el (4.6
and

T (0) Trlo) 2 wherea=1 and 2 refers to quantities in media 1 and 2. The
L - R (4.5 complete expressions for the operatocs, (X,w) and
Cir(X,0) in the positivex domain are determined by the

,g'nsertion of(4.2) into (3.16 as

N(w) Nye) ny(w)+nye)

The two kinds of terms in the large brackets of the Green
functions (4.2 and (4.3) for the domainsx,x’>0 and
X,x" <0, respectively, are typical of the interface system. ~ ]
Thus the first terms correspond to communication between ClL(Xvw):|<
pointsx andx’ via reflection in the interface, while the sec-

dx’

C

Zwkl(w)) V2 oo
X

ond terms correspond to direct communication between the ion; () .

two points. The reflection terms tend to zero when the ob- Xexp{ - T(x—x’))f(x’,w) (4.7
servation point is far enough from the interface, while the

direct term reproduces the form for an infinite homogeneous

dielectric. and

1/2 P ’
élR(X,w):{i(zwnZ(w)KZ(w)) nl(w) TR((,()) fj) dX,eXF( — W)%(X',wﬂ—i

20k ()| Y?

cn1(w) N2(w)

RL(w)rwdx’exp( —Iwnl((:w)x )?(x’,w)+ fxdx’exp( - —Iwnl((:w)x )%(X’,w)
0 0

] F{iwnl(w)x)
exp ———|,
Cc

4.9

X

where the modified Langevin force operators obey the commutation rel&8d® for all x’. The contribution in

¢, (X, ), which represents leftwards-traveling noise in dielectric 1 is unaffected by the presence of the interfabe and

its form in the same a€3.12). The contribution inc,r(X, ), which represents rightwards-traveling noise in dielectric 1, has
transmitted noise from medium 2 into medium 1, reflected noise from medium 1, and rightwards-traveling noise generated
within medium 1. The later expression reduces to the f¢8mi2 obtained for the infinite homogeneous dielectric when
wk(w)x/ic>1.

A similar calculation can be performed to obtain the vector potential opei@rin the domainx<<0, by the substitution
of (4.3) into the(3.16. The complete expressions for the operafegx, w) andc, (x,) are the same &4.7) and(4.8) with
the changes &2, LR, x— —X, andx’ — —x’ [except inf(x’,w)]. As expected¢,r(X, ) is unaffected by the presence of
the interface, while there are additional term<in(x, ) that result from the presence of the interfacea0. The notation
for these rightwards- and leftwards-traveling operators is illustrated in Fig. 2.

The evaluation of the canonical commutation relatidri3 is more complicated in this system as the field operators have
more complicated structures compared to the infinite homogeneous case. Though there are two regions to consider, on taking
symmetry considerations into account it is sufficient to check the required equal-time commutation relation in the domain
x>0. The commutator of the operatarss(x,») and éIR(x,w) is obtained from(4.8), on employing(3.13), with the result

iw’?l(w)(x_x')—le(w)|X—x’|)

[61R<x,w>,éIR<x’,w’>]=6<w—w’>[exp( c
—c.c.H. (4.9

Kl(w)[ ;{iwnl(w)(erx’)
yexp —————

c
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The corresponding relation far, (x,w) is the same as i63.15. The commutation relations between the leftwards and
rightwards annihilation and creation operators are

[81r(X,®),8] (X, 0")]=[Ey (X', 0"),Elr(X,®)]*

F{iwnl(w)(x—kx’)
C

=5(w—w’)(R|_(w)eX +0(x—x")

2Kk1(w) (wm(w)(x—X’))
SIN|
71(w) c
F{ wk(w)(X+Xx")
xXexp ——m—mmm

c

]. (4.10

The canonical commutation relatio®.13 can now be which determines the reflected field produced by an incident
evaluated with use of expressioh.6) for the vector poten- field. Thus causality requires that the function can have no
tial operator, together with the commutators given above. Ipoles in the upper half of the complexplane[18]. Further-

is straightforward to show that more, in view 0of(2.1) and(2.3), R, (w) has the property that

R (w)—0 for w—o. (4.12

[A(X,t),— g0E(X',t)]=

i [+
zwcsf,x | Ru(w)

exgion(w)(x+x")/c]

Thus, when the contribution of the first term in the large
brackets is evaluated by conversion to polar coordinates, the
integral vanishes on the semicircle at infinity, and this term is

ny(w) zero. The canonical commutator thus has the expected form
exp[iwnl(w)|x—x’|/c]] (2.13. Wh.en one position goc_erinate Iie; in medium 1 and
the other in medium 2, a similar calculation shows that the
ny(w) canonical commutator vanishes.
2iegh (= The formalism of the present section can be developed, on
= Jo do o IMG(X,X',w), employing an appropriate limit to the general fo(g11) of

the vector potential operator and the destruction operators
(4.12) (4.7 and(4.8), to derive the quantized field in a space where

the halfx<<0 is occupied by free space and the haif0 by
where(2.2) and (4.2) have been used, and the general rela-a lossy dielectric medium. The leftwards-traveling annihila-
tion between the canonical commutator and the Green'sion operator in domaix<0 can be considered in this case
function is discussed in the Appendix. The integrals can beas the sum of two terms—the complementary function and
evaluated by the same method as used previously, and ithe particular integral parts—determined by the usual bound-
deed the second term in the large brackef4fll) repro- ary conditions and the appropriate Green’s function. This
duces the desired result for the canonical commutator. Fasigrees with previous resulfg].
the first term in the large bracket, we use the property that

R (w) defined in(4.4) is itself a linear-response function, B. Vacuum field fluctuations

The contribution to the electromagnetic field fluctuations
from the modes that propagate perpendicular to the interface
is obtained with the use of the associated Green'’s functions
in the domainsx,x’>0 andx,x’<0. The value of the cor-
relation function at a common spatial position determines the
power spectrun®(x, ) of the field fluctuations according to

(0|E(X,0)E(X,0")|0)=S(X,0)d(w—w'). (4.13

The power spectrum needed for substitution(4ril3 is de-
termined by the fluctuation-dissipation theorem as

S(X,0) =2h w?’IMG(X,X, ), (4.14
FIG. 2. Representation of the notation for the annihilation op-
erators used in the definition of the vector potential operator for twcand insertion of the Green’s functions fro@#.2) and (4.3)
adjacent dielectrics. gives
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ho 1 —2iwny(w)X <0
socSR —nz(w) Rr(w)ex S )+1 , X

SX,@)=1{ #e 1 +2iwn;(w)X (4.19
Re{ [RL(w)eXF(f)—FlH, x>0.

80CS nl(w)

Alternatively, the same expressions for the power spectra canithin the stop band betwean; and w, . The properties of
be obtained without use of the fluctuation-dissipation theothe dielectric function in this case are specified(8y81) and
rem by substitution of the electric-field operators given bythe power spectrun4.15 takes the form

(2.11) and(4.6) into (4.13. The result for an infinite homo-

geneous medium is reproduced @15 far away from the

dielectric interface atx=0, where wx (w)|x|/c>1, with 2hw [cog wx/c)— k(w)sin(wx/c)]?

a=1 and 2. The continuity of the electric field through the =S 1+ <o) , x<O0
interface requires the fluctuations to be continuoug-=ao, e
where both expressions i@.15 give S(X@)=1\ 2w ex —2wk(w)x/c] «=0
o (0)+ my(@) £oCS 1+ k%(w) ' '
o 7(w)T 17 0
S(0,0) = (4.16 (4.17)

~ £0CS[ny(w) +ny(w)]*

This result is in agreement with the infinite homogeneous
case[2] whenn;(w)=n,(w). The fluctuations therefore vanish deep inside the lossless di-

The spatial variation of the fluctuations is shown in Fig. 3electric for frequencies within the stop band, in accordance
for representative values of the refractive indices and extincwith the discussion following3.31). The nonvanishing spec-
tion coefficients. The magnitude of the fluctuation is normal-trum close to the interface is caused by the transmission of
ized to its free-space value. The oscillations far from thefluctuations generated in the free-space regior<a. The
interface decay to the values for the homogeneous dieledtuctuations vanish everywhere in the dielectric in the limit
trics, and the influence of the interface is evanescent. li(w)—o, and they acquire a standing-wave form in the
should be emphasized that the fluctuations illustrated argee-space region.
only those associated with the modes that propagate perpen-
dicular to the interface.

_ The vacuum field _fluctuatlon spectrum in a lossy dlelet_:- V. ONE-DIMENSIONAL CAVITY
tric at an interface with free space reduces to an expression
derived in[2], and the spatial dependence is illustrated in A. Field quantization

g'tg 2 IOf this. r:aferencer.] Hovyeve(;,d_r:_eretw?hconsider t?e ad- The procedure of Sec. IV, for the field quantization in a
ional Special case where, in addition to the assumption 0gpace that is occupied half and half by two different lossy

dielectric media, can also be used to quantize the electromag-

free space for dielectric 2, we also assume that dielectric 1 i
lossless and that the fluctuation frequengyof interest lies netic field in a cavity. To take advantage of the symmetry of
the problem, we define the dielectric function as

8(0)=n2(w)=[ p(w) +ix(w)]? [x>]

e(X0)=11, —l<x<+l.
(5.

Though the two semi-infinite dielectric media on either side
of the cavity are the same, it is convenient to label them by
different indices to avoid any notational ambiguity. The no-
tation for this geometry is illustrated in Fig. 4. The subscripts
P andN refer to the dielectric media located on the positive
and negative domains of

relative vacuum fluctuation

-4 2 0 2 4

(distance)/ (wavelength in free space) Since the leftwards field in the positive-domain, and

rightwards field in the negative-domain are both incoming
FIG. 3. Spatial variation of the spectrudx, ») of the vacuum fields inside the dielectric media, there is no need for the
electric-field fluctuations, normalized to the free-space spectrungomplementary function parts in this system and the particu-

hiwleocS, for the complex refractive indices;=2.0+i0.3 and lar integral parts give the complete field expresdiph The
n,=1.5+i0.1. appropriate Green’s function for the domair-| is
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ag (@)

a, (o)

FIG. 4. Representation of the notation for the annihilation op-
erators used in the definition of the vector potential operator for the

cavity system.

;o i F{iwn(m)(x+x’)
G(X,x ,a))—m{Rc(w)eX f

F(iwn(w)|x—x’|)}
exp ———( X' >1

i p(iwn(w)(x—x’))
w)exg ————

- ZsOCwn(w)STC( c

x'<—1, (5.2

4577

The contribution in Cpr(X,w), Wwhich represents the
rightwards-traveling annihilation operator in the dielectric
has a structure similar to that ¢4.8),

Tc(w)ﬁ:dx'

20k(w)\ Y]
C

épR(x,w)z{i(
ion(w)Xx"\ ~
><exp( — T) f(X",w)+Rc(w)

X dex’exy{ M) f(x’,w)
+1

C

x _iwn(w)x’ s,
+L|dx exp( r— )f(x )

F{iwn(w)x)
expg—————|.
C

The commutation relation of the operaims (X, ) with its
creation counterpart is the same ag3nl4. The commuta-
tion relation of the operatorgsr(X,») andchy(X, ) is ob-

|

(5.7

whereT¢(w) andRc(w) are the transmission and reflection tained from(5.7), by using(5.3) and(5.4), and the result is
coefficients of the cavity. It is evident that the symmetricalidentical to(4.9 when the subscripts are removed from the
nature of the cavity requires these coefficients to be the samsomplex refractive index and the reflection coefficient is re-
for light incident from the left and right toward the cavity, placed by its cavity counterpafb.4). The commutation re-

and their explicit forms are

_4n(a)) 4_2iw[n(w)—1]|

Tc(w)—DC(w)eX c

) (5.3

n(w)—1 2iwn(w)l
ot 2

r{4iw|)
l-exp —
c

(5.9

where the denominatdd(w) is

De(w)=[n(w)+1]?>—[n(w)—1]%expdiwl/c).
(5.5

The Green'’s functiorf5.2) has the same structure @s?2),

but with the particular forms of the transmission and reflec-

lation between the leftwards- and rightwards-traveling anni-
hilation and creation operators is likewise identica(4dl0).
The canonical commutation relatig®.13 can be calculated
therefore with the use of the expressi@h6) for the vector
potential operator. The result is clearly the samg4al),
and on taking advantage of the natureRpf(w) as a linear-
response function with the same analytic properties as
R_(w), one finds the required equal-time canonical commu-
tation relation. Very similar calculations apply to the dielec-
tric located in the negative-domain. The structure of this
calculation is in fact the same as that given for medium 2 in
Sec. IV, and there is no need to repeat the details.

In the domain—|<x< +1, the appropriate Green’s func-
tion is

iw[x—n(w)x’])

i
G(x,x’,w)=m[vc(w)ex;{i c

tion coefficients associated with the geometry of the prob-

lem. In the limitl —0, (5.2 reproduces the infinite homoge-
neous Green'’s function rather th&d.2), because the two
semi-infinite media involved in this problem are the same.

+wc(w)exp( :—'w[Hz(w)X ]) } NGE:)

As in the semi-infinite case, it is convenient to retain thewhere the upper and lower signs refer to the ranges @n
form (4.6) for the vector potential inside the material me- the left and right of the cavity, respectively,

dium. The positive frequency part of the vector potential

operator is determined by the substitution®2) and(3.16).
The contribution in Cp (X,w), Wwhich

cated at the positive-domain, has a form identical {8.12,

12 ¢ 4o
?:p,_(x,w)=|< f dx’
X

Xexr{ - iwnc(a)) (x—x")

2wK(w))
Cc

f(x',0). (5.6

represents the
leftwards-traveling annihilation operator in the dielectric lo-

(5.9)

2[n(w)—1] io[n(w)-3]l
Wel@)==—"p @) ™A~ ¢ |
andDc(w) is given by(5.5).

The positive-frequency part of the vector potential opera-
tor inside the cavity is determined by the substitutiori8)
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into (3.16. On using the conventional forr(8.36 of the
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the semicircle at infinity in the upper half-plane. The final

vector potential operator in free space and employing theesult is obtained on takin@.3) into account. It is straight-
modified Langevin force operator, the complete expressionforward to show that the only nonvanishing term in the inte-

for the operatoréig(w) anda, (w) are

12 _
An(w)=i W) ‘Vc(w)f;dx'
xex;n(—%)?(x’,w)
+oo ion(w)x’\
JrWC(w)J’+I dx’exr{T)f(x',w)]
(5.10
and
1/2 —
a ()= M) [Wc(w)f;dx’
xexp(— lwn(w)x )%(X’,w)

+

+Vc(w)J+lxdx’exp( W)%(x’,m} .

It is not difficult, with the help 0f5.9) to (5.11), to show that

gral is of the form

A A i [+ iw(X—x")
[A(X,t),—SOE(X/,t)]ZFCS - dw ex;{T)
J— iﬁ !
—g&(x—x ), (5.19

and that the canonical commutation relation is again verified.
Some results for the cavity system considered here have
been obtained independently using similar metHd®s, and
using an explicit diagonalization of a Hamiltonian for the
electromagnetic and dielectric polarization fie[@D]. The
diagonalization method generalizes earlier work on the infi-
nite dielectrid 3,4], but the forms of the results make a direct
comparison of the quantized field expressions difficult. A
different cavity model, consisting of absorbing dielectric
mirrors of infinitesimal thickness, has also been trefgddt
the destruction and creation operator commutators were de-
rived, and their consistency with the canonical commutation
relation(2.13 was demonstrated.

B. Vacuum field fluctuations

To employ the fluctuation-dissipation theorem and Ku-
bo’s formula to calculate the vacuum field fluctuation in the

the rightwards- and leftwards-traveling photon Operatorscavity, one needs the explicit form of the Green’s function

possess the commutation relation

[n(w)—1]?

RS

[&(0),8](0")]=8(w—o")

ot

(5.12

+cC.C.

and the commutation relations between the two operators are

[aR(@), 8] (0")]=[3(»),ak(w")]

when both the source and observation poinendx’ are in
each of the three domains illustrated in Fig. 4. Expression
(5.2), together with the symmetrical configuration of the cav-
ity, shows that the appropriate forms of the Green’s func-
tions in the dielectric media on either side are

o i F<+iwn(w)(x+x’)
G(X,X ’w)_ZSOTn(w)S Rc(w)ex _f

;{iwn(cu)|x—x’|“
exp ———— | {,
c

(5.19

, [n%(w)—1] where the plus and minus signs refer to the media on the
=o' - " Deo(w) right and left of the cavity, respectively. The form of the
i) Green'’s function, when bothandx’ are inside the cavity, is
iw
><e><F<? +C-C-}- (5.13 , i 1-n?(w) iw(2l+x+x")
CxX0)= 5 5wS| De(w) Xp(f
The verification of the canonical commutation relati@nl3 _
inside the cavity may seem to be difficult compared to the +ex;{lw(2| —X—X'))
calculation inside the dielectric media, but this is not in fact c
the case. The nature &:(w) as a linear-response function 5 ] ,
ensures that the expressibr. () has no zeros in the upper [1-n(w)] F{'“’(‘” +x=x")
half of the complex» plane, and therefore all expressions in De(w) C
which D¢(w) is in the denominator can have no poles in the (41— x+X') o|x—x'|
upper half of the complew plane. On changing the variable +exp{ ) ex;{ ki H )
of integration fromw to —w in those terms in which c c

D¢&(w) is in the denominator, it is not difficult to show that (5.16
the whole integral can be converted to the range

—oo< w<+o0, with an integrand which has no poles in the  The power spectrum obtained fro@®.14) is rather com-
upper half of the complew plane. The latter integral along plicated, on account of the complicated form of the Green's
the realw axis is therefore the negative of the integral aroundfunction, and we do not write down the general expressions.
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FIG. 5. Spatial variation of the spectruB(x,w) of vacuum  F|G. 7. Spatial variation of the spectrus(x,®) of vacuum
electric-field fluctuations in the cavity system, normalized to theirelectric-field fluctuations in the cavity system, normalized to their
free-space value, fora2l/c=6.57 andn=1.5+i0.02. free-space  value, for @ /c=8w+tan '31=8.49r and

_ . o . ~ n=15+i0.02.

The typical form of spatial variation of the field fluctuations
is shown in Fig. 5. The oscillations inside the cavity have theyhich the cavity length exactly equals an integer number of
partial standing-wave character of the field excitation, whilen|f-wavelengths. They can be visualized as the frequencies
this figure resembles the field fluctuation at the interface bege cavity. A spatial variation similar to that shown in Fig. 6
tween an absorbing dielectric and free space, shown in Fig. gccurs in the spontaneous radiative decay rate of an atom
of Ref.[2]. However, the cavity geometry also displays quitep|aced in the cavity when the emission is restricted to modes
a rich variety of distinctive spatial behaviors that occur forinat propagate perpendicular to the mirrf2g].
certain specific frequencies. ~ There are analogous frequencies for which the vacuum

Consider first the transmission resonances of the cavityfj,ctuations inside the cavity have no spatial-oscillatory char-
which can be identified from expressiéhi4). Itis clear that  acter. These are obtained by setting the oscillatory terms in

quenciesw = wp,, Wherewy, is defined by and the detailed calculation shows that the required frequen-
cies satisfy
2wpllc=ma, m=0,12.... (5.17
o 20l 21
Therefore at these frequencies, it is clear from the form of izmwﬂarrl %) =0,1,2,....
K\w

(5.195 that the vacuum fluctuations on both sides of the cav-
ity have no spatial-oscillatory character, and their values are

equal to that for the infinite homogeneous dielectric. This ) ) ) )
behavior is demonstrated in Fig. 6 for=8, and the param- These are the frequencies for which there is no interference

eter values given in the figure caption,, are the resonant (€M between the rightwards- and leftwards-traveling field
frequencies of a cavity with perfectly reflecting mirrors, for Perators inside the cavity. For high-reflectivity dielectric

materials withk(w)> n(w) and k(w)>1, the inverse tan-
gent in(5.18 tends tow/2, and the frequencies defined by
this equation lie midway between the resonant frequencies
oy defined by(5.17. The same values of the frequency
occur in the limit of low-loss dielectric media with
k(w)<|n(w)|?—1 [20]. Figure 7 shows the spatial behavior
of the power spectrum for the quite low-loss parameter val-
ues given in the caption.

The properties of the system approach those of a high-
finesse Fabry-Ret cavity in the limit of high-reflectivity
dielectric mirrors. A mirror reflection coefficient of the form
£e'?, for example withé=0.99 ands=0.1[22], corresponds
to the surface of a dielectric medium whose refractive index
and extinction coefficient arg=2 andx= 20, respectively.

In the limit of x(w)> n(w), itis evident from(5.15 that the
Green’s-function expression on either side of the cavity falls

FIG. 6. Spatial variation of the spectru(x,w) of vacuum rapidly to zero, with very small vacuum fluctuations inside
electric-field fluctuations in the cavity system, normalized to theirthe material media. This corresponds to the quenching of the
free-space value, for@l/c=8m andn=1.5+i0.02. electromagnetic field in a conducting medium. In this limit,

(5.18

relative vacuum fluctuation

-2 0 2 4
(distance)/ (wavelength in free space)
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the Green'’s function inside the cavity given 8:16) shows

a series of very sharp peaks centered on frequengjes § 100
slightly below thew,, defined in(5.17). With the use of a g
suitable expansion in powers ofidkw) around the peak fre- 3
guencies, the power spectrum can be written as S
§ 50
2 marX §
S hop(w) cos| 73 s k
X,w)= D
£0CSK% () modd(w—w,'n)2|2+ 7°(w) £ 9 .
o2 (@) 0 3 6 9 12
2o l/c
- marx
sinf| ——
N 2 (5.19 FIG. 8. Normalized spectrum of vacuum electric-field fluctua-
meven(w—wr'n)2|2 772(w) ) : tlo_nzs gg/(c)eraged over position for the cavity system with
2 B n=2+i20.
K w)
VI. CONCLUSIONS
where . . . .
The results derived in this paper amplify and extend the
Langevin noise current method for electromagnetic field
¢ (5.20 quantization in absorbing dielectrics developed previously
@m= @m k(og)!l’ ' [1,2]. The first aim has been to explore the properties of the

basic noise sources used in the quantization scheme, and to
The spectrum therefore consists of a series of equally spacéiow how the quantized field operators conform with earlier
Lorentzians of maximum height derivations for special cases, particularly the results found in
the absence of dielectric absorption. Thus the position-
momentum commutator for the underlying charged particles
(5.21) that generate the quantum noise is determined2i23),
£oCSy(wp) ' which establishes the role of the imaginary part of the mac-
roscopic dielectric function in controlling the magnitude of
the noise currents. Alternative general foriis7), (3.11),
and (3.16 of the vector potential operator in an infinite ho-
mogeneous dielectric medium derived from the Langevin
for m odd force approa}ch have beer_\ related_and com_pared to prev_ious
m results obtained by a microscopic canonical quantization
schemd3,4]. For the quantization in a lossless dielectric, we
for m even have used the simple example of a single-resonance dielec-
tric function given by(3.22 in the limit of zero damping. It
(5.22 has been shown that the polariton form of field operator is
recovered, in complete agreement with earlier wigKL0].
The lossless dielectric possesses an absolute stop band be-
tween its transverse and longitudinal frequencies, where the
effects of the noise currents are completely quenched and the

_ ﬁwmkz(wm)

S(Xm s wm) =
at the positions

21 _(m=1)l

0x—, ...,
m

Xm= +(m—l)l

r—,*

3|«

I
m 1
of the antinodes in the cavity. The full widths of the Lorent-

zians at half maximum height are

_ 2cy(wm)
- le(wm) .

Aw (5.23

200

Note that these results are valid only to leading order in
1/k(w), and that the correction of this order in the positions
of the antinodes, obtained fro(6.20), has been omitted. The
variations of the field fluctuations for a cavity witj=2 and
x=20 are illustrated in Figs. 8 and 9. Figure 8 shows the
spectrum after averaging over the spatial positignwith
sharp Lorenzian contributions centered on the peak frequen-
ciesw,, given by(5.20. Figure 9 shows the fluctuation as a
function of position for a fixed frequency that coincides with
one of thew/, . It is seen that the field fluctuation vanishes on
the walls of the cavity. These field fluctuations are clearly FIG. 9. Spatial variation of the normalized spectrum of vacuum
associated wigh the usual standing-wave mode of a highelectric-field fluctuations for @l/c=87—0.1 in the same cavity
finesse Fabry-Ret cavity. system as Fig. 8.

100

relative vacuum fluctuation

-4 2 0 2 4

(distance)/ (wavelength in free space)
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field operators vanish. The field-operator spectrum is thereplane-parallel beams through perpendicular optical compo-

fore restricted to the frequency ranges that lie above andents. Extensions to three dimensions, currently under way,

below the stop band. are needed for the calculation of such quantities as sponta-
The method of field quantization used here applies genemeous emission rates or Casimir forces, where there is no

ally to one-dimensional propagation through a series of abexperimental control of the spatial modes of the electromag-

sorbing dielectric materials for whickh(x,w) is a piecewise netic field that participate in the process.

constant, with abrupt changes occurring at the interfaces be-

tween different media. The method was applied in Refs. ACKNOWLEDGMENTS

[1,2] to the interface between free space and a semi-infinite ) _

dielectric and to a dielectric slab surrounded by free space. We thank S. M. Barnett for helpful discussions, and C. H.

The second aim of the present paper has been to apply thgenry for the proof of the relation for the canonical commu-

method to further examples of dielectric configuration. Thetator given in the Appendix. R.M. thanks the Iranian Minis-

vector potential Green’s functions and the field operatord’y of Culture and Higher Education and University of Ker-

have accordingly been determined for the system of two difman for financial support.

ferent semi-infinite absorbing dielectric materials in contact,

and for the free-space optical cavity formed from two sepa- APPENDIX

rated semi-infinite dielectric samples. It has been verified

that the canonical commutation relation is satisfied by con- égr:htlﬁeAggre]Qgil)c(a\:vioomutlr;:?aigf g;?jozh(g tg?ezraenl’a;“(f)gngteién
jugate field operators for both systems, and the operatog.v

have been used to determine the spectra and the spatial gfgven in(4.11). The canonical commutator can be expressed

tributions of the vacuum field fluctuations. For two dielec-" the form
trics in contact, the vacuum field fluctuations show charac- A i 625S -
teristic spatial oscillations that have a maximum amplitude at [ A(x,t), — eoE(x’,t)]= 0 f d“’f dX' w3e(X", »)
the interface and decay to the values for the individual bulk 0 -
dielectrics on either side. For the free-space cavity, the " *ior un
vacuum field fluctuations show a variety of behaviors for X{GxX", )G (X X", )
different choices of optical frequency. Thus in general there +G*(X,X",0)G(X' X", )}, (Al)
are spatial oscillations of a partial standing-wave nature in-
side the cavity, and oscillations that decay with distance in
the dielectrics on either side. However, the oscillations inwhere (2.11), (2.24), and (3.16 have been used. It follows
either the cavity or the dielectrics disappear for suitableéby manipulations of the Green’s-function equatid8sl7)
choices of frequency that remove interference effects. In théor G(x',x",w) and its complex conjugate for
limit of the high-finesse cavity formed from dielectrics with G* (x,x”,w), similar to the procedure in Appendix B {f],
large values of the extinction coefficient, the vacuum fieldtogether with the symmetry of the Green’s function under
fluctuation spectrum has a succession of sharply peakedterchange of its first two arguments, that
Lorenzian lines characteristic of a Fabryrftecavity. In the
extreme limit of a lossless dielectric where the refractive
index vanishes but the extinction coefficient is nonzero for
frequencies within a stop band, the intrinsic noise fields in-
side the dielectric are totally quenched, as discussed above, 1 ImG , A2
but vacuum field fluctuations can penetrate some way into N go_Sm (X.x', ). (A2)
the dielectric by transmission across interfaces with free
space or with other dielectrics of nonzero refractive index.

The one-dimensional theory used here is adequate for thBubstitution into(Al) now leads to the general relation for
treatment of propagation of light along optical fibers or ofthe canonical commutator given {4.11).

wzf dxX"e;(X",w)G(X,X",0)G* (X' X", w)
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