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A quantization scheme for the electromagnetic field in absorbing dielectrics developed previously is ex-
tended to cover more complicated arrangements of dielectric media and to investigate various limiting cases of
the general formalism. The limiting cases include media that have vanishing imaginary parts in their dielectric
functions, because either the refractive index or the extinction coefficient vanishes. The further limit of a unit
real dielectric function establishes the connection of the formalism with the well-known quantized field ex-
pressions in free space. Detailed calculations are presented for the quantization in the system of two different
absorbing dielectrics in contact at a plane interface and for the cavity formed in the free space between two
separated absorbing dielectrics. The forms of the field operators are determined for both systems, the canonical
commutation relations are verified, and the spectra of the vacuum field fluctuations are calculated and illus-
trated. The calculations are restricted throughout to fields that propagate perpendicular to the dielectric inter-
faces.@S1050-2947~96!10706-X#

PACS number~s!: 42.50.2p, 12.20.2m

I. INTRODUCTION

One of the main recent developments in quantum optics
has been the study of processes, for example spontaneous
emission, that take place inside, or adjacent to, material bod-
ies. The need to interpret the growing body of experimental
results has stimulated attempts to quantize the electromag-
netic field in materials of increasingly general properties.
Thus methods have recently been developed for the quanti-
zation of the electromagnetic field in dielectric media that
simultaneously display the three properties of absorption,
dispersion, and finite extent, in the special case where the
sample has plane-parallel boundary surfaces@1,2#. The quan-
tization scheme covers propagation perpendicular to the in-
terfaces, and it is therefore applicable to a range of problems
in which parallel light beams propagate through optical sys-
tems in a direction perpendicular to the surfaces of the com-
ponents. It includes as special cases a range of earlier calcu-
lations that apply to dielectric media with only some of the
three properties listed above~see@2# for a review of previous
work!. The formalism particularly generalizes earlier theo-
ries that apply to homogeneous absorbing dielectrics without
any boundaries@3–6#.

The presence of absorption has the effect of coupling the
electromagnetic field to a reservoir, whose oscillators act as
noise sources, and these are conveniently represented by
Langevin forces that act on the fields~see@7# for a review!.
It has been shown that this representation leads to a straight-
forward quantization of the electromagnetic field, which has
been applied to dielectrics with the spatial forms of an infi-
nite medium, a semi-infinite medium with a flat surface, and
a parallel-sided slab@1,2#. The aims of the present paper are,
first, to make closer contact between this work and some of
the previous calculations, and, second, to extend the results
to more complicated systems.

In terms of the first aim, we show in Sec. II how the

properties of the Langevin forces are related to the underly-
ing noise spectrum of the microscopic oscillators of the par-
ticles that make up the dielectric medium. In Sec. III we
show that the quantized field reduces to known forms when
first the absorption and then the dispersion are removed, and
we finally show that the well-known free-space result is ob-
tained when the dielectric function is set equal to unity. The
lossless medium is also considered in the case of frequencies
within a stop band, for example a dielectric for frequencies
between a transverse resonance and its associated longitudi-
nal mode, or a plasma for frequencies lower than the plasma
frequency, where the real part of the refractive index van-
ishes but its imaginary part, or extinction coefficient, is non-
zero.

In terms of the second aim, in Secs. IV and V we consider
the field quantization for two different lossy dielectrics in
contact at a flat interface, and for an optical cavity formed
from the region of free space between two parallel semi-
infinite dielectric media. In both cases we derive expressions
for the quantized field operators for propagation perpendicu-
lar to the interfaces, and we evaluate the vacuum field fluc-
tuations in the different spatial regions. It is verified that the
canonical commutation relation is satisfied in all spatial re-
gions, and this forms a check on the validity of the quanti-
zation. The reduction of the general results to those for spe-
cial cases derived previously is also confirmed. Particular
attention is paid to the important practical case of an optical
cavity formed from highly reflecting boundaries. The main
conclusions are summarized in Sec. VI.

II. BASIC FORMALISM

A. Field equations

The formalism is the same as we used before@1,2# and it
is only necessary to summarize here the basic equations and
notation. In classical macroscopic electrodynamics, a linear
nonmagnetic medium is described completely by the con-
tinuum approximation in which the medium is characterized
by a dielectric function. A dielectric that shows dispersion
must inevitably be lossy, in accordance with Kramers-
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Kronig relations, and the dielectric function must necessarily
be complex. The complex refractive indexn(v) is related to
the material dielectric function«(v) in the usual way,

«~v!5« r~v!1 i« i~v!5n2~v!5@h~v!1 ik~v!#2,
~2.1!

where the real and imaginary parts of«(v) are denoted by
subscripts, andh(v) andk(v) are the real refractive index
and extinction coefficient, respectively.

Though these functions are defined for positive frequen-
cies, nevertheless their negative-frequency values can be de-
duced from the crossing relations@8#

«~2v!5«* ~v!, n~2v!5n* ~v!. ~2.2!

The form of«(v) in the upper half of the complexv plane
is restricted by causality considerations to have neither poles
nor zeros, and it also conforms to the limit@8#

«~v!→1 for v→` in any manner. ~2.3!

We consider linearly polarized electromagnetic waves
that propagate parallel to thex axis with their transverse
electric and magnetic vector operatorsÊ(x,t) and B̂(x,t)
parallel to they andz axes, respectively. The field operators
satisfy Maxwell’s equations in the forms

]Ê~x,t !

]x
52

]B̂~x,t !

]t
~2.4!

and

2
]B̂~x,t !

]x
5m0

]D̂~x,t !

]t
1m0Ĵ~x,t !, ~2.5!

where D̂(x,t) is the electric displacement operator. In the
absence of an externally applied current, the transverse op-
erator Ĵ(x,t) plays the role of a Langevin force associated
with the noise reservoir. The field operators are separated
into positive- and negative-frequency components in the
usual way,

Ê~x,t !5Ê1~x,t !1Ê2~x,t !, ~2.6!

and the frequency-space Fourier transform operators are de-
fined according to

Ê1~x,t !5
1

A2p
E
0

`

dvÊ1~x,v!e2 ivt, ~2.7!

with similar separations and transforms for the magnetic in-
duction, electric displacement, and noise current operators.
The negative-frequency components are provided by the
Hermitian conjugates of the positive-frequency operators.

The Fourier transform displacement operator for a system
in which the dielectric function, denoted«(x,v), varies with
both the frequency and thex coordinate, is determined by

D̂1~x,v!5«0«~x,v!Ê1~x,v!, ~2.8!

and the frequency-domain Maxwell’s equations are obtained
from ~2.4! and ~2.5! as

]Ê1~x,v!

]x
5 ivB̂1~x,v! ~2.9!

and

2
]B̂1~x,v!

]x
52

iv«~x,v!

c2
Ê1~x,v!1

1

«0c
2 Ĵ

1~x,v!.

~2.10!

It is convenient to express the field operators in terms of a
vector potential operatorÂ(x,t), which has decompositions
similar to ~2.6! and ~2.7!, using the relations

Ê1~x,v!5 ivÂ1~x,v!,

~2.11!

B̂1~x,v!5
]Â1~x,v!

]x
.

The omission of the scalar potential is permitted by the one-
dimensional nature of the system, where it is possible to
choose a gauge in which only the transverse part of the vec-
tor potential participates in the quantization. The first Max-
well equation~2.9! is automatically satisfied when these ex-
pressions are substituted, while the second Maxwell equation
~2.10! gives

]2Â1~x,v!

]x2
1«~x,v!

v2

c2
Â1~x,v!52

1

«0c
2 Ĵ

1~x,v!.

~2.12!

The spatial dependence of the quantized vector potential is
determined by this inhomogeneous Helmholtz differential
equation.

The form of the generalized momentum operator that is
conjugate to the vector potential in the quantized field theory
is determined by the usual techniques of Lagrangian me-
chanics. The conjugate momentum takes different forms for
different transverse gauges, but we particularly consider the
Coulomb gauge where its form is2«0Ê(x,t) and the ca-
nonical commutation relation is

@Â~x,t !,2«0Ê~x8,t !#5~ i\/S!d~x2x8!, ~2.13!

whereS is an area of quantization in theyz plane, perpen-
dicular to the direction of propagation.

B. Langevin force commutator

The presence of fluctuations in the vacuum state of the
electromagnetic field is apparent from the existence of the
zero-point energy. What is not always appreciated is that a
material medium, necessarily with complex dielectric func-
tion, also introduces a fluctuating noise current of the
vacuum. The former demonstrates a characteristic property
of the free-space electromagnetic field, while the latter re-
flects the same feature for the medium. This can be under-
stood from the form of the relation

P̂1~x,v!5«0@«~x,v!21#Êext
1 ~x,v! ~2.14!
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for the noise reservoir polarization operatorP̂1(x,v) in-
duced by an externally applied electric fieldÊext

1 (x,v). Thus
if one regards the electric field as theperturbing force,, then
the electromagnetic energy expression shows that there-
sponding quantityis the polarization, and the function
«0@«(x,v)21# is the appropriategeneralized susceptibility.
The vacuum-state noise polarization correlation function can
therefore be calculated by the help of the fluctuation-
dissipation theorem and Kubo’s formula@9# as

^0uP̂1~x,v!P̂2~x8,v8!u0&5
2\

S
«0« i~x,v!d~x2x8!

3d~v2v8!, ~2.15!

where the factorS in the denominator results from the con-
finement of the quantization to a finite area in theyz plane.

The noise reservoir current density and polarization op-
erators are related by

Ĵ1~x,v!52 iv P̂1~x,v!, ~2.16!

and insertion into~2.15! gives

^0uĴ1~x,v!Ĵ2~x8,v8!u0&5
2\

S
v2«0« i~x,v!d~x2x8!

3d~v2v8!. ~2.17!

Since

^0uĴ2~x8,v8!Ĵ1~x,v!u0&50, ~2.18!

we find the vacuum expectation value of the noise-current
commutator to be

^0u@ Ĵ1~x,v!,Ĵ2~x8,v8!#u0&5
2\

S
v2«0« i~x,v!d~x2x8!

3d~v2v8!. ~2.19!

The correlation between polarization and current density can
also be found by inserting~2.16! into ~2.19!, and we find that

^0u@ P̂1~x,v!,Ĵ2~x8,v8!#u0&5
2\

S
iv«0« i~x,v!d~x2x8!

3d~v2v8!. ~2.20!

The noise operators can be related to the spatial coordi-
nates of the particles that make up the dielectric reservoir.
Thus the polarization operator is defined in terms of the po-
sition operators for the charged particles by

P̂1~x,v!52e(
i51

n

r̂ i
1~x,v!, ~2.21!

wheren is the number of charged particles per unit volume.
Similarly, the current density operator is defined in terms of
the charged particle momentum operators by

Ĵ2~x,v!52
e

m(
i51

n

p̂i
2~x,v!, ~2.22!

wheree andm are the charge and mass of the carriers, re-
spectively. Herep̂i are the usual canonical particle momen-
tum operators, including the vector potential contributions.
On inserting~2.21! and ~2.22! into ~2.20!, we have that

^0u@ r̂ i
1~x,v!,p̂ j

2~x8,v8!#u0&5 i
2\v

S

m«0
ne2

« i~x,v!

3d i jd~x2x8!d~v2v8!.

~2.23!

As we see, an immediate outcome of the noise-current fluc-
tuation is the expectation value of the commutation relation
between the charged particle position and momentum opera-
tors. The noise-current fluctuation thus reflects the character-
istic properties of the medium through an expression that
incorporates its loss spectrum. The noise-current fluctuation
can alternatively be considered as a consequence of the in-
trinsic quantum-mechanical natures of the position and mo-
mentum operators of the charged particles that constitute the
dielectric reservoir. In this view, it is the commutation rela-
tions among the positions and momenta of the charged par-
ticles that are transmitted to the noise current and establish
the noise-current fluctuations.

The field commutation relations are closely related to the
commutation properties of the noise-current operator, or
Langevin force, in~2.12!. For noise that is uncorrelated at
different frequencies, the latter commutation relations are
taken in the forms

@ Ĵ1~x,v!,Ĵ2~x8,v8!#5
2«0\v2

S
« i~x,v!d~x2x8!

3d~v2v8!,
~2.24!

@ Ĵ1~x,v!,Ĵ1~x8,v8!#5@ Ĵ2~x,v!,Ĵ2~x8,v8!#50,

consistent with~2.19!. The noise current properties derived
here agree with the results of the formalism presented in@7#.

III. FIELD QUANTIZATION

A. Infinite homogeneous dielectric

The complete solution to the problem of quantization in a
dispersive lossy dielectric can be obtained from~2.12!, pro-
vided that the noise-current commutation relations~2.24! are
satisfied. In the homogeneous case, in which the dielectric
function has no spatial dependence, it is advantageous to
convert the differential equation~2.12! into an algebraic
equation. The wave-vector space Fourier transforms of
Â1(x,v) and Ĵ1(x,v) are defined by

Â1~x,v!5
1

A2p
E

2`

1`

dk Â1~k,v!eikx,

~3.1!

Ĵ1~x,v!5
1

A2p
E

2`

1`

dk Ĵ1~k,v!eikx,

and conversion of~2.12! gives
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2k2Â1~k,v!1«~v!
v2

c2
Â1~k,v!52

1

«0c
2 Ĵ

1~k,v!.

~3.2!

Insertion of the solution for the vector potential operator into
~3.1! gives

Â1~x,v!5
1

A2p«0
E

2`

1`

dk
1

k2c22v2«~v!
Ĵ1~k,v!

3exp~ ikx!. ~3.3!

It is convenient to rewrite the above expression in terms
of a boson-type operator as replacement for the noise-current
operator@2#. We thus define a modified Langevin force op-
erator in wave-vector space by

f̂ ~k,v!5 Ĵ1~k,v!AS/2«0\v2« i~v!, ~3.4!

whose commutation relation from~2.24! has the form

@ f̂ ~k,v!, f̂ †~k8,v8!#5d~k2k8!d~v2v8!. ~3.5!

By the substitution of~3.4! into ~3.3!, the positive frequency
part of the vector potential operator can be rewritten as

Â1~x,v!5S \v2« i~v!

p«0S
D 1/2E

2`

1`

dk
1

k2c22v2«~v!

3 f̂ ~k,v!exp~ ikx!, ~3.6!

and the form of the complete operator is

Â~x,t !5S \

2p2«0S
D 1/2E

0

1`

dvE
2`

1`

dk

3H vA« i~v!

k2c22v2«~v!
f̂ ~k,v!exp@2 i ~vt2kx!#

1H.c.J . ~3.7!

It is not difficult to show that~3.7!, with ~3.5!, is equivalent
to expressions given previously@3,4,6#.

The required commutation relation~2.13! between the
vector potential operator and its conjugate momentum is eas-
ily checked. The one-dimensional vector potential derived
above is valid for a three-dimensional system in which the
noise-current density operatorĴ(x,t) acts over an idealized
surface which is perpendicular to the direction of propaga-
tion. Evidently, if Ĵ(x,t) is produced by a flat dipole layer,
the longitudinal part of the electric field is identically zero, or
equivalently, the scalar potential is a constant. The transverse
electric field derived from the vector potential~3.7! with the
use of~2.11! is then

Ê~x,t !5 i S \

2p2«0S
D 1/2E

0

1`

dvE
2`

1`

dkH v2A« i~v!

k2c22v2«~v!

3 f̂ ~k,v!exp@2 i ~vt2kx!#2H.c.J , ~3.8!

and the equal-time commutator~2.13! is

@Â~x,t !,2«0Ê~x8,t !#5
i\

2p2SE2`

1`

dk exp@ ik~x2x8!#

3E
2`

1`

dv
v3« i~v!

uk2c22v2«~v!u2
,

~3.9!

where the commutation relation~3.5! has been used. The
analyticity of«(v) in the upper half of the complexv plane
makes it possible to show that@4#

E
2`

1`

dv
v3« i~v!

uk2c22v2«~v!u2
5p, ~3.10!

and insertion of this result into~3.9! then reproduces the
canonical form~2.13!.

It is worth emphasizing that by introducing an imaginary
part for the dielectric function, which reflects the lossy nature
of the medium, we lose the usual polariton dispersion rela-
tion in which a limited number of discrete frequenciesv are
associated with each wave vectork @see Ref.@10# or Eq.
~3.23! below#. The above formalism shows that for eachk
there is now an infinite continuous range of positive frequen-
cies, and thusk andv must be considered as independent
real variables. A polariton dispersion relation can still be
defined in this case, but it takes the form of a condition for
the frequenciesv at which the field fluctuations with wave
vectork have maximum values@11#.

The forms of vector potential operator given in~3.3! and
~3.6! are useful for displaying the underlying polariton nature
of the dielectric excitations, and they are used in Sec. III B to
derive the quantization in a lossless dielectric. However, for
the dielectric systems with boundaries treated later in the
paper, the magnitude of the wave vector varies from one
region of space to another. Since the boundary conditions are
imposed on the monochromatic field operators at the inter-
faces, it is the frequency and spatial coordinates that are the
fundamental variables. The integrand in~3.3! has simple
poles atk56vn(v)/c, and, with the noise operator Fourier
transformed as in~3.1!, it is straightforward to perform the
contour integration. The complete vector potential operator
~3.7! is accordingly replaced by

Â1~x,t !5E
0

1`

dvS \h~v!

4p«0cv«~v!SD
1/2

3$ĉR~x,v!1 ĉL~x,v!%e2 ivt, ~3.11!

where the rightwards- and leftwards-traveling polariton an-
nihilation operators are defined by

ĉR~x,v!5 i S 2vk~v!

c D 1/2E
2`

x

dx8

3expS ivn~v!

c
~x2x8! D f̂ ~x8,v!, ~3.12!
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ĉL~x,v!5 i S 2vk~v!

c D 1/2E
x

1`

dx8

3expS 2
ivn~v!

c
~x2x8! D f̂ ~x8,v!,

and the transformed Langevin force operator has the simple
boson commutation relation

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!. ~3.13!

The commutation relations of the operatorsĉ(x,v) at differ-
ent positions are easily obtained from~3.12! as

@ ĉR~x,v!,ĉR
†~x8,v8!#5@ ĉL~x8,v8!,ĉL

†~x,v!#

5d~v2v8!expH ivh~v!

c
~x2x8!

2
vk~v!

c
ux2x8uJ ~3.14!

and

@ ĉR~x,v!,ĉL
†~x8,v8!#5@ ĉL~x8,v8!,ĉR

†~x,v!#

5d~v2v8!u~x2x8!
2k~v!

h~v!

3sinS vh~v!

c
~x2x8! D

3expS 2
vk~v!

c
ux2x8u D .

~3.15!

The form of vector potential operator given in~3.11!
agrees with previous work@1,2#, where it was derived by a
Green’s-function formalism, using the standard relation

Â1~x,v!5SE
2`

1`

dx8G~x,x8,v!Ĵ1~x8,v!. ~3.16!

The Green’s function is determined from the Helmholtz
equation~2.12! by solution of

S ]2

]x2
1«~x,v!

v2

c2 DG~x,x8,v!52
1

«0c
2S

d~x2x8!.

~3.17!

The Green’s-function formalism is used in subsequent sec-
tions to treat dielectric systems with boundaries.

B. Lossless dielectric

The introduction of loss, which gives a complex part to
the dielectric function, establishes the noise-current fluctua-
tion and provides the quantization of the field. The imaginary
part of the dielectric function plays a key role in this ap-
proach, as if the whole formalism would collapse in its ab-
sence. However, despite the requirement that a dispersive
dielectric must inevitably be lossy, the quantization of the
electromagnetic field in a nondissipative medium is a well-

known problem in the literature. According to causality con-
siderations, this problem must be considered in principle as a
limiting case of the lossy dispersive formalism.

In order to calculate the limit, it is convenient to start
from ~3.7!, and define

Cjĉj~k!e2 iv j t5 lim
« i ~v!→0

E
0

1`

dv
vA« i~v!

k2c22v2«~v!

3 f̂ ~k,v!e2 ivt, ~3.18!

whereCj is a constant of proportionality to be determined,
v j is the frequency of the polariton in branchj , which is
assumed to possess a well-defined relation with the wave
vector in the lossless dielectric, andĉ j (k) is the polariton
annihilation operator in the dispersive medium. The constant
Cj is determined by calculating the commutator of the polar-
iton creation and annihilation operators,

uCj u2@ ĉ j~k!,ĉ j
†~k8!#5d~k2k8! lim

« i ~v!→0
E
0

1`dv

v2

3
« i~v!

@« r~v!2k2c2/v2#21« i
2~v!

,

~3.19!

where~3.5! has been used. We assume initially that the van-
ishing of the imaginary part of the dielectric function is as-
sociated with a zero extinction coefficient, so that
« r(v)5h2(v) from ~2.1!. Taking advantage of a standard
representation of the Diracd function, we have

uCj u2@ ĉ j~k!,ĉ j
†~k8!#5d~k2k8!E dv

v2 d@h2~v!2~kc/v!2#.

~3.20!

The d function is developed using the identity@12#

d„f ~v!…5(
j

d~v2v j !

u f 8~v j !u
, ~3.21!

wherev j are the roots of thed-function argument, and the
prime denotes differentiation with respect to this argument.

The simplest example of a dielectric function is provided
by the Lorentz model of a material with a single resonance
@13#. In the limit of zero damping, the dielectric function
takes the form

«~v!5
vL
22v2

vT
22v2 1 ip

vL
22vT

2

2vT
$d~v2vT!1d~v1vT!%,

~3.22!

wherevT is the transverse resonance frequency andvL is the
associated longitudinal frequency. This function conforms to
the crossing relation in~2.2!, and it is real in the positive
frequency range except at the single frequencyvT . The ar-
gument of thed function in ~3.20! thus give the usual polar-
iton dispersion relation@13#.

k25
v2« r~v!

c2
5

v2h2~v!

c2
5

v2

c2
vL
22v2

vT
22v2 . ~3.23!
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There are two allowed frequencies for each value ofk, and
the label j in ~3.20! and ~3.21! takes the two values6,
corresponding to the two branches of the polariton dispersion
curve, which we label byv2 and v1 as in Fig. 1. The
limiting procedure in~3.18! has therefore restored the usual
polariton dispersion relation, which is a distinguishing fea-
ture of the lossless dielectric. Note that there are no propa-
gating excitations for frequencies within the stop band that
extends fromvT to vL .

It is straightforward to show that

]

]v S h2~v!2
k2c2

v2 D
v5v6

5
2ch~v6!

v6ng~v6!
, ~3.24!

whereng(v)5]v/]k is the usual group velocity. Thus with
the assumption of a single transverse resonance,~3.20! can
be rewritten as

uC6u2@ ĉ6~k!,ĉ6
† ~k8!#5pd~k2k8!

ng~v6!

2v6h2~v6!np~v6!
,

~3.25!

wherenp(v)5v/k is the phase velocity. The polariton cre-
ation and destruction operators are assumed to satisfy the
independent boson commutation relations

@ ĉ1~k!,ĉ1
† ~k8!#5@ ĉ2~k!,ĉ2

† ~k8!#5d~k2k8!

~3.26!

@ ĉ1~k!,ĉ2
† ~k8!#5@ ĉ2~k!,ĉ1

† ~k8!#50,

and the constantsC6 are thus determined from~3.25! as

C65S png~v6!

2v6h2~v6!np~v6! D
1/2

. ~3.27!

The occurrence of the two sets of dressed operators results
from the one-to-two relation between the wave vector and
frequency in the dispersive medium, which appears as the
two branches of the dispersion curve separated by the stop
band betweenvT andvL in Fig. 1. On substitution of these

results into~3.7!, the quantized vector potential operator in a
nondissipative dispersive medium can be written as

Â~x,t !5S \

4p«0S
D 1/2E

2`

1`

dk

3 (
j56

S ng~v j !

v jh
2~v j !np~v j !

D 1/2
3$ĉ j~k!exp@2 i ~vt2kx!#1H.c.%. ~3.28!

This expression agrees with the results of previous work@10#
based on the diagonalization of a Hamiltonian for the
coupled system of dielectric and electromagnetic field, apart
from a phase factor, which can be adjusted in the definition
of the constants of proportionality in~3.27!.

The quantized field in a lossless dielectric can also be
obtained by taking an appropriate limit in the alternative for-
malism expressed in~3.11!. Thus with k(v) set equal to
zero, the commutation relations in~3.14! simplify while
those in ~3.15! vanish, and the polariton operators can be
expressed in terms of a pair of independent boson operators
ĉR(v) and ĉL(v) according to

lim
« i ~v!→0

ĉR~x,v!5 ĉR~v!exp„ivh~v!/c…,

~3.29!

lim
« i ~v!→0

ĉL~x,v!5 ĉL~v!exp„2 ivh~v!/c….

The substitution of~3.29! into ~3.11! yields

Â~x,t !5E dvS \

4p«0cvh~v!SD
1/2

3H ĉR~v!expF2 ivS t2 h~v!x

c D G
1 ĉL~v!expF2 ivS t1 h~v!x

c D G1H.c.J ,
~3.30!

in agreement with previous results@10,14#.
The limit « i(v)→0 of a lossless dielectric is assumed

above to be equivalent to the limitk(v)→0 of a vanishing
extinction coefficient, and this is valid for most frequencies
v. However, there is also the possibility that the limit is
equivalent to a vanishing refractive index,h(v)→0. For ex-
ample, the refractive index obtained from~3.23! is defined
only for the frequency rangesv,vT andvL,v, and the
integration in ~3.30! is restricted to these ranges. For the
remaining frequencies within the stop band,vT,v,vL , it
is the refractive indexh(v) that vanishes and the extinction
coefficientk(v) is nonzero, so that the appropriate limits are

h~v!→0,

« i~v!→0,

A« r~v!→6 ik~v!. ~3.31!

The traveling-wave nature in the dielectric is thus replaced
by a decay behavior. The quantized field obtained from~3.7!

FIG. 1. Polariton dispersion curves, showing the two frequen-
ciesv1 andv2 for each value of the wave vectork. The stop band
lies between the frequenciesvT andvL .
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is zero for these frequencies within the stop band, in accor-
dance with the vanishing field correlation function and
power spectrum found in~3.31! and ~3.34! of Ref. @2# for
frequencies whereh(v)50. A similar behavior occurs in the
three-dimensional theory of an absorbing dielectric@15–17#,
and it leads to a vanishing spontaneous emission rate at fre-
quencies within the stop band.

A one-component plasma is a special case of the single-
resonance dielectric medium obtained by takingvT→0 and
vL→vP , wherevP is the plasma frequency. The real part of
the plasma dielectric function is accordingly obtained from
~3.22! as

« r~v!512
vP
2

v2 . ~3.32!

The plasma dielectric function is positive whenv.vP , and
in this domain of frequencies the quantized field expression
is the same as~3.30!, provided that thev integration covers
the frequency range fromvP to infinity. The dielectric func-
tion is negative whenv,vP , and the discussion of the pre-
vious paragraph applies in this frequency range.

The expression for the quantized field in homogeneous
free space can also be obtained from the above general for-
malism, provided that a suitable limit is employed. The ap-
propriate limit for this case takes the form

Câ~k!e2 ivkt5 lim
« i ~v!→0
«r ~v!→1

3E
0

1`

dv
vA« i~v!

k2c22v2«~v!
f̂ ~k,v!e2 ivt,

~3.33!

whereâ(k) is the photon annihilation operator. The constant
C is determined by calculating the commutator of this anni-
hilation operator with its creation counterpart, and we find

C5~p/2cuku!1/2. ~3.34!

Therefore, by substitution into~3.7!, we obtain the vector
potential operator

Â~x,t !5E
2`

1`

dkS \

4p«0cukuSD
1/2

$â~k!exp@2 i ~vt2kx!#

1H.c.%, ~3.35!

wherev5cuku. This reproduces the well-known form of the
free-space operator@6#. The free-space limit of the form of
vector potential operator given in~3.30! is readily found to
be

Â1~x,t !5E
0

1`

dvS \

4p«0cvSD
1/2H âR~v!expS ivxc D

1âL~v!expS 2
ivx

c D J e2 ivt, ~3.36!

where the rightwards- and leftwards-traveling operators now
refer to photons in free space.

IV. TWO ADJACENT SEMI-INFINITE
LOSSY DISPERSIVE MEDIA

A. Field quantization

In this section we consider the field quantization in a
space that is occupied half and half by two different absorb-
ing media with different dielectric functions. The complete
dielectric function is therefore

«~x,v!5H «1~v!5n1
2~v!5@h1~v!1 ik1~v!#2, x.0

«2~v!5n2
2~v!5@h2~v!1 ik2~v!#2, x,0.

~4.1!

Hereafter in this section we label all quantities with subscript
indices 1 and 2, corresponding to the media with dielectric
functions«1(v) and «2(v). The inhomogeneous nature of
the problem requires the imposition of boundary conditions
on the spatial mode functions in the two media. The vector
potential is determined then by~3.16!, with the Green’s func-
tion obtained by the solution of~3.17!, subject to the dielec-
tric function ~4.1!. Though the calculation is rather lengthy,
it is straightforward, and the final expressions for the
coordinate-space Green’s functions are

G~x,x8,v!5
i

2«0cvn1~v!SHRL~v!expS ivn1~v!~x1x8!

c D1expS ivn1~v!ux2x8u
c D J x8.0

5
i

2«0cvn2~v!S
TR~v!expS iv@n1~v!x2n2~v!x8#

c D x8,0 ~4.2!

for the positive-x domain, and

G~x,x8,v!5
i

2«0cvn2~v!SHRR~v!expS 2
ivn2~v!~x1x8!

c D1expS ivn2~v!ux2x8u
c D J x8,0

5
i

2«0cvn1~v!S
TL~v!expS 2

iv@n2~v!x2n1~v!x8#

c D x8.0 ~4.3!
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for the negative-x domain, whereT(v) andR(v) are the
usual amplitude transmission and reflection coefficients, re-
spectively, and the subscript indicesR and L refer to the
light incident on the interface from the right or left. These
coefficients are given by

RL~v!52RR~v!5
n1~v!2n2~v!

n1~v!1n2~v!
~4.4!

and

TL~v!

n1~v!
5
TR~v!

n2~v!
5

2

n1~v!1n2~v!
. ~4.5!

The two kinds of terms in the large brackets of the Green’s
functions ~4.2! and ~4.3! for the domainsx,x8.0 and
x,x8,0, respectively, are typical of the interface system.
Thus the first terms correspond to communication between
pointsx andx8 via reflection in the interface, while the sec-
ond terms correspond to direct communication between the
two points. The reflection terms tend to zero when the ob-
servation point is far enough from the interface, while the
direct term reproduces the form for an infinite homogeneous
dielectric.

It is convenient to retain form~3.11! for the positive-
frequency part of the complete quantized vector potential.
This is now written as

Âa
1~x,t !5E

0

1`

dvS \ha~v!

4p«0cv«a~v!SD
1/2

3$ĉaR~x,v!1 ĉaL~x,v!%e2 ivt, ~4.6!

wherea51 and 2 refers to quantities in media 1 and 2. The
complete expressions for the operatorsĉ1L(x,v) and
ĉ1R(x,v) in the positive-x domain are determined by the
insertion of~4.2! into ~3.16! as

ĉ1L~x,v!5 i S 2vk1~v!

c D 1/2E
x

1`

dx8

3expS 2
ivn1~v!

c
~x2x8! D f̂ ~x8,v! ~4.7!

and

ĉ1R~x,v!5H i S 2vh2~v!k2~v!

ch1~v! D 1/2n1~v!

n2~v!
TR~v!E

2`

0

dx8expS 2
ivn2~v!x8

c D f̂ ~x8,v!1 i S 2vk1~v!

c D 1/2
3FRL~v!E

0

1`

dx8expS ivn1~v!x8

c D f̂ ~x8,v!1E
0

x

dx8expS 2
ivn1~v!x8

c D f̂ ~x8,v!G J expS ivn1~v!x

c D ,
~4.8!

where the modified Langevin force operators obey the commutation relation~3.13! for all x8. The contribution in
ĉ1L(x,v), which represents leftwards-traveling noise in dielectric 1 is unaffected by the presence of the interface atx50, and
its form in the same as~3.12!. The contribution inĉ1R(x,v), which represents rightwards-traveling noise in dielectric 1, has
transmitted noise from medium 2 into medium 1, reflected noise from medium 1, and rightwards-traveling noise generated
within medium 1. The later expression reduces to the form~3.12! obtained for the infinite homogeneous dielectric when
vk1(v)x/c@1.

A similar calculation can be performed to obtain the vector potential operator~4.6! in the domainx,0, by the substitution
of ~4.3! into the~3.16!. The complete expressions for the operatorsĉ2R(x,v) andĉ2L(x,v) are the same as~4.7! and~4.8! with
the changes 1↔2, L↔R, x→2x, andx8→2x8 @except inf̂ (x8,v)#. As expected,ĉ2R(x,v) is unaffected by the presence of
the interface, while there are additional terms inĉ2L(x,v) that result from the presence of the interface atx50. The notation
for these rightwards- and leftwards-traveling operators is illustrated in Fig. 2.

The evaluation of the canonical commutation relation~2.13! is more complicated in this system as the field operators have
more complicated structures compared to the infinite homogeneous case. Though there are two regions to consider, on taking
symmetry considerations into account it is sufficient to check the required equal-time commutation relation in the domain
x.0. The commutator of the operatorsĉ1R(x,v) and ĉ1R

† (x,v) is obtained from~4.8!, on employing~3.13!, with the result

@ ĉ1R~x,v!,ĉ1R
† ~x8,v8!#5d~v2v8!H expS ivh1~v!~x2x8!2vk1~v!ux2x8u

c D
2 i

k1~v!

h1~v! FRL~v!expS ivn1~v!~x1x8!

c D2c.c.G J . ~4.9!
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The corresponding relation forĉ1L(x,v) is the same as in~3.15!. The commutation relations between the leftwards and
rightwards annihilation and creation operators are

@ ĉ1R~x,v!,ĉ1L
† ~x8,v8!#5@ ĉ1L~x8,v8!,ĉ1R

† ~x,v!#*

5d~v2v8!HRL~v!expS ivn1~v!~x1x8!

c D1u~x2x8!
2k1~v!

h1~v!
sinS vh1~v!~x2x8!

c D
3expS 2

vk1~v!~x1x8!

c D J . ~4.10!

The canonical commutation relation~2.13! can now be
evaluated with use of expression~4.6! for the vector poten-
tial operator, together with the commutators given above. It
is straightforward to show that

@Â~x,t !,2«0Ê~x8,t !#5
i\

2pcSE2`

1`

dvHRL~v!

3
exp@ ivn1~v!~x1x8!/c#

n1~v!

1
exp@ ivn1~v!ux2x8u/c#

n1~v! J
5
2i«0\

p E
0

`

dv v ImG~x,x8,v!,

~4.11!

where~2.2! and ~4.2! have been used, and the general rela-
tion between the canonical commutator and the Green’s
function is discussed in the Appendix. The integrals can be
evaluated by the same method as used previously, and in-
deed the second term in the large bracket of~4.11! repro-
duces the desired result for the canonical commutator. For
the first term in the large bracket, we use the property that
RL(v) defined in~4.4! is itself a linear-response function,

which determines the reflected field produced by an incident
field. Thus causality requires that the function can have no
poles in the upper half of the complexv plane@18#. Further-
more, in view of~2.1! and~2.3!, RL(v) has the property that

RL~v!→0 for v→`. ~4.12!

Thus, when the contribution of the first term in the large
brackets is evaluated by conversion to polar coordinates, the
integral vanishes on the semicircle at infinity, and this term is
zero. The canonical commutator thus has the expected form
~2.13!. When one position coordinate lies in medium 1 and
the other in medium 2, a similar calculation shows that the
canonical commutator vanishes.

The formalism of the present section can be developed, on
employing an appropriate limit to the general form~3.11! of
the vector potential operator and the destruction operators
~4.7! and~4.8!, to derive the quantized field in a space where
the halfx,0 is occupied by free space and the halfx.0 by
a lossy dielectric medium. The leftwards-traveling annihila-
tion operator in domainx,0 can be considered in this case
as the sum of two terms—the complementary function and
the particular integral parts—determined by the usual bound-
ary conditions and the appropriate Green’s function. This
agrees with previous results@2#.

B. Vacuum field fluctuations

The contribution to the electromagnetic field fluctuations
from the modes that propagate perpendicular to the interface
is obtained with the use of the associated Green’s functions
in the domainsx,x8.0 andx,x8,0. The value of the cor-
relation function at a common spatial position determines the
power spectrumS(x,v) of the field fluctuations according to

^0uÊ~x,v!Ê~x,v8!u0&5S~x,v!d~v2v8!. ~4.13!

The power spectrum needed for substitution in~4.13! is de-
termined by the fluctuation-dissipation theorem as

S~x,v!52\v2ImG~x,x,v!, ~4.14!

and insertion of the Green’s functions from~4.2! and ~4.3!
gives

FIG. 2. Representation of the notation for the annihilation op-
erators used in the definition of the vector potential operator for two
adjacent dielectrics.
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S~x,v!55
\v

«0cS
ReH 1

n2~v! FRR~v!expS 22ivn2~v!x

c D11G J , x,0

\v

«0cS
ReH 1

n1~v! FRL~v!expS 12ivn1~v!x

c D11G J , x.0.
~4.15!

Alternatively, the same expressions for the power spectra can
be obtained without use of the fluctuation-dissipation theo-
rem by substitution of the electric-field operators given by
~2.11! and ~4.6! into ~4.13!. The result for an infinite homo-
geneous medium is reproduced by~4.15! far away from the
dielectric interface atx50, wherevka(v)uxu/c@1, with
a51 and 2. The continuity of the electric field through the
interface requires the fluctuations to be continuous atx50,
where both expressions in~4.15! give

S~0,v!5
2\v

«0cS

h1~v!1h2~v!

un1~v!1n2~v!u2
. ~4.16!

This result is in agreement with the infinite homogeneous
case@2# whenn1(v)5n2(v).

The spatial variation of the fluctuations is shown in Fig. 3
for representative values of the refractive indices and extinc-
tion coefficients. The magnitude of the fluctuation is normal-
ized to its free-space value. The oscillations far from the
interface decay to the values for the homogeneous dielec-
trics, and the influence of the interface is evanescent. It
should be emphasized that the fluctuations illustrated are
only those associated with the modes that propagate perpen-
dicular to the interface.

The vacuum field fluctuation spectrum in a lossy dielec-
tric at an interface with free space reduces to an expression
derived in @2#, and the spatial dependence is illustrated in
Fig. 2 of this reference. However, here we consider the ad-
ditional special case where, in addition to the assumption of
free space for dielectric 2, we also assume that dielectric 1 is
lossless and that the fluctuation frequencyv of interest lies

within the stop band betweenvT andvL . The properties of
the dielectric function in this case are specified by~3.31! and
the power spectrum~4.15! takes the form

S~x,v!55
2\v

«0cS

@cos~vx/c!2k~v!sin~vx/c!#2

11k2~v!
, x,0

2\v

«0cS

exp@22vk~v!x/c#

11k2~v!
, x.0.

~4.17!

The fluctuations therefore vanish deep inside the lossless di-
electric for frequencies within the stop band, in accordance
with the discussion following~3.31!. The nonvanishing spec-
trum close to the interface is caused by the transmission of
fluctuations generated in the free-space region atx,0. The
fluctuations vanish everywhere in the dielectric in the limit
k(v)→`, and they acquire a standing-wave form in the
free-space region.

V. ONE-DIMENSIONAL CAVITY

A. Field quantization

The procedure of Sec. IV, for the field quantization in a
space that is occupied half and half by two different lossy
dielectric media, can also be used to quantize the electromag-
netic field in a cavity. To take advantage of the symmetry of
the problem, we define the dielectric function as

«~x,v!5H «~v!5n2~v!5@h~v!1 ik~v!#2, uxu. l

1, 2l,x,1l.
~5.1!

Though the two semi-infinite dielectric media on either side
of the cavity are the same, it is convenient to label them by
different indices to avoid any notational ambiguity. The no-
tation for this geometry is illustrated in Fig. 4. The subscripts
P andN refer to the dielectric media located on the positive
and negative domains ofx.

Since the leftwards field in the positive-x domain, and
rightwards field in the negative-x domain are both incoming
fields inside the dielectric media, there is no need for the
complementary function parts in this system and the particu-
lar integral parts give the complete field expression@2#. The
appropriate Green’s function for the domainx. l is

FIG. 3. Spatial variation of the spectrumS(x,v) of the vacuum
electric-field fluctuations, normalized to the free-space spectrum
\v/«0cS, for the complex refractive indicesn152.01 i0.3 and
n251.51 i0.1.
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G~x,x8,v!5
i

2«0cvn~v!SHRC~v!expS ivn~v!~x1x8!

c D
1expS ivn~v!ux2x8u

c D J x8. l

5
i

2«0cvn~v!S
TC~v!expS ivn~v!~x2x8!

c D
x8,2 l , ~5.2!

whereTC(v) andRC(v) are the transmission and reflection
coefficients of the cavity. It is evident that the symmetrical
nature of the cavity requires these coefficients to be the same
for light incident from the left and right toward the cavity,
and their explicit forms are

TC~v!5
4n~v!

DC~v!
expS 2

2iv@n~v!21# l

c D ~5.3!

and

RC~v!5
n2~v!21

DC~v!
expS 2

2ivn~v!l

c D F12expS 4iv lc D G ,
~5.4!

where the denominatorDC(v) is

DC~v!5@n~v!11#22@n~v!21#2exp~4iv l /c!.
~5.5!

The Green’s function~5.2! has the same structure as~4.2!,
but with the particular forms of the transmission and reflec-
tion coefficients associated with the geometry of the prob-
lem. In the limit l→0, ~5.2! reproduces the infinite homoge-
neous Green’s function rather than~4.2!, because the two
semi-infinite media involved in this problem are the same.

As in the semi-infinite case, it is convenient to retain the
form ~4.6! for the vector potential inside the material me-
dium. The positive frequency part of the vector potential
operator is determined by the substitution of~5.2! and~3.16!.
The contribution in ĉPL(x,v), which represents the
leftwards-traveling annihilation operator in the dielectric lo-
cated at the positive-x domain, has a form identical to~3.12!,

ĉPL~x,v!5 i S 2vk~v!

c D 1/2E
x

1`

dx8

3expS 2
ivn~v!

c
~x2x8! D f̂ ~x8,v!. ~5.6!

The contribution in ĉPR(x,v), which represents the
rightwards-traveling annihilation operator in the dielectric
has a structure similar to that of~4.8!,

ĉPR~x,v!5H i S 2vk~v!

c D 1/2FTC~v!E
2`

2 l

dx8

3expS 2
ivn~v!x8

c D f̂ ~x8,v!1RC~v!

3E
1 l

1`

dx8expS ivn~v!x8

c D f̂ ~x8,v!

1E
1 l

x

dx8expS 2
ivn~v!x8

c D f̂ ~x8,v!G J
3expS ivn~v!x

c D . ~5.7!

The commutation relation of the operatorĉPL(x,v) with its
creation counterpart is the same as in~3.14!. The commuta-
tion relation of the operatorsĉPR(x,v) and ĉPR

† (x,v) is ob-
tained from~5.7!, by using~5.3! and ~5.4!, and the result is
identical to~4.9! when the subscripts are removed from the
complex refractive index and the reflection coefficient is re-
placed by its cavity counterpart~5.4!. The commutation re-
lation between the leftwards- and rightwards-traveling anni-
hilation and creation operators is likewise identical to~4.10!.
The canonical commutation relation~2.13! can be calculated
therefore with the use of the expression~4.6! for the vector
potential operator. The result is clearly the same as~4.11!,
and on taking advantage of the nature ofRC(v) as a linear-
response function with the same analytic properties as
RL(v), one finds the required equal-time canonical commu-
tation relation. Very similar calculations apply to the dielec-
tric located in the negative-x domain. The structure of this
calculation is in fact the same as that given for medium 2 in
Sec. IV, and there is no need to repeat the details.

In the domain2 l,x,1 l , the appropriate Green’s func-
tion is

G~x,x8,v!5
i

2«0cvSHVC~v!expS 6
iv@x2n~v!x8#

c D
1WC~v!expS 7

iv@x1n~v!x8#

c D J , ~5.8!

where the upper and lower signs refer to the ranges ofx8 on
the left and right of the cavity, respectively,

VC~v!5
2@n~v!11#

DC~v!
expS 2

iv@n~v!21# l

c D ,
~5.9!

WC~v!52
2@n~v!21#

DC~v!
expS 2

iv@n~v!23# l

c D ,
andDC(v) is given by~5.5!.

The positive-frequency part of the vector potential opera-
tor inside the cavity is determined by the substitution of~5.8!

FIG. 4. Representation of the notation for the annihilation op-
erators used in the definition of the vector potential operator for the
cavity system.
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into ~3.16!. On using the conventional form~3.36! of the
vector potential operator in free space and employing the
modified Langevin force operator, the complete expressions
for the operatorsâR(v) and âL(v) are

âR~v!5 i S 2vh~v!k~v!

c D 1/2HVC~v!E
2`

2 l

dx8

3expS 2
ivn~v!x8

c D f̂ ~x8,v!

1WC~v!E
1 l

1`

dx8expS ivn~v!x8

c D f̂ ~x8,v!J
~5.10!

and

âL~v!5 i S 2vh~v!k~v!

c D 1/2HWC~v!E
2`

2 l

dx8

3expS 2
ivn~v!x8

c D f̂ ~x8,v!

1VC~v!E
1 l

1`

dx8expS ivn~v!x8

c D f̂ ~x8,v!J .
~5.11!

It is not difficult, with the help of~5.9! to ~5.11!, to show that
the rightwards- and leftwards-traveling photon operators
possess the commutation relation

@ âI~v!,âI
†~v8!#5d~v2v8!H 11F @n~v!21#2

DC~v!
expS 4iv lc D

1c.c.G J , I5R,L, ~5.12!

and the commutation relations between the two operators are

@ âR~v!,âL
†~v8!#5@ âL~v!,âR

†~v8!#

5d~v2v8!H 2F @n2~v!21#

DC~v!

3expS 2iv lc D1c.c.G J . ~5.13!

The verification of the canonical commutation relation~2.13!
inside the cavity may seem to be difficult compared to the
calculation inside the dielectric media, but this is not in fact
the case. The nature ofRC(v) as a linear-response function
ensures that the expressionDC(v) has no zeros in the upper
half of the complexv plane, and therefore all expressions in
whichDC(v) is in the denominator can have no poles in the
upper half of the complexv plane. On changing the variable
of integration from v to 2v in those terms in which
DC* (v) is in the denominator, it is not difficult to show that
the whole integral can be converted to the range
2`,v,1`, with an integrand which has no poles in the
upper half of the complexv plane. The latter integral along
the realv axis is therefore the negative of the integral around

the semicircle at infinity in the upper half-plane. The final
result is obtained on taking~2.3! into account. It is straight-
forward to show that the only nonvanishing term in the inte-
gral is of the form

@Â~x,t !,2«0Ê~x8,t !#5
i\

2pcSE2`

1`

dv expS iv~x2x8!

c D
5
i\

S
d~x2x8!, ~5.14!

and that the canonical commutation relation is again verified.
Some results for the cavity system considered here have

been obtained independently using similar methods@19#, and
using an explicit diagonalization of a Hamiltonian for the
electromagnetic and dielectric polarization fields@20#. The
diagonalization method generalizes earlier work on the infi-
nite dielectric@3,4#, but the forms of the results make a direct
comparison of the quantized field expressions difficult. A
different cavity model, consisting of absorbing dielectric
mirrors of infinitesimal thickness, has also been treated@21#;
the destruction and creation operator commutators were de-
rived, and their consistency with the canonical commutation
relation ~2.13! was demonstrated.

B. Vacuum field fluctuations

To employ the fluctuation-dissipation theorem and Ku-
bo’s formula to calculate the vacuum field fluctuation in the
cavity, one needs the explicit form of the Green’s function
when both the source and observation pointsx andx8 are in
each of the three domains illustrated in Fig. 4. Expression
~5.2!, together with the symmetrical configuration of the cav-
ity, shows that the appropriate forms of the Green’s func-
tions in the dielectric media on either side are

G~x,x8,v!5
i

2«0cvn~v!SHRC~v!expS 6
ivn~v!~x1x8!

c D
1expS ivn~v!ux2x8u

c D J , ~5.15!

where the plus and minus signs refer to the media on the
right and left of the cavity, respectively. The form of the
Green’s function, when bothx andx8 are inside the cavity, is

G~x,x8,v!5
i

2«0cvSH 12n2~v!

DC~v! FexpS iv~2l1x1x8!

c D
1expS iv~2l2x2x8!

c D G
1

@12n~v!#2

DC~v! FexpS iv~4l1x2x8!

c D
1expS iv~4l2x1x8!

c D G1expS ivux2x8u
c D J .

~5.16!

The power spectrum obtained from~4.14! is rather com-
plicated, on account of the complicated form of the Green’s
function, and we do not write down the general expressions.
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The typical form of spatial variation of the field fluctuations
is shown in Fig. 5. The oscillations inside the cavity have the
partial standing-wave character of the field excitation, while
on either side of the cavity they show oscillatory decay to the
value for the infinite homogeneous dielectric. Each half of
this figure resembles the field fluctuation at the interface be-
tween an absorbing dielectric and free space, shown in Fig. 2
of Ref. @2#. However, the cavity geometry also displays quite
a rich variety of distinctive spatial behaviors that occur for
certain specific frequencies.

Consider first the transmission resonances of the cavity,
which can be identified from expression~5.4!. It is clear that
the cavity reflection coefficientRC(v) vanishes at the fre-
quenciesv5vm , wherevm is defined by

2vml /c5mp, m50,1,2 . . . . ~5.17!

Therefore at these frequencies, it is clear from the form of
~5.15! that the vacuum fluctuations on both sides of the cav-
ity have no spatial-oscillatory character, and their values are
equal to that for the infinite homogeneous dielectric. This
behavior is demonstrated in Fig. 6 form58, and the param-
eter values given in the figure caption.vm are the resonant
frequencies of a cavity with perfectly reflecting mirrors, for

which the cavity length exactly equals an integer number of
half-wavelengths. They can be visualized as the frequencies
for which there is no interference term between the
rightwards- and leftwards-traveling field operators outside
the cavity. A spatial variation similar to that shown in Fig. 6
occurs in the spontaneous radiative decay rate of an atom
placed in the cavity when the emission is restricted to modes
that propagate perpendicular to the mirrors@20#.

There are analogous frequencies for which the vacuum
fluctuations inside the cavity have no spatial-oscillatory char-
acter. These are obtained by setting the oscillatory terms in
the power spectrum given by~4.14! and~5.16! equal to zero,
and the detailed calculation shows that the required frequen-
cies satisfy

2v l

c
5mp1tan21S un~v!u221

2k~v! D , m50,1,2,. . . .

~5.18!

These are the frequencies for which there is no interference
term between the rightwards- and leftwards-traveling field
operators inside the cavity. For high-reflectivity dielectric
materials withk(v)@h(v) and k(v)@1, the inverse tan-
gent in ~5.18! tends top/2, and the frequencies defined by
this equation lie midway between the resonant frequencies
vm defined by ~5.17!. The same values of the frequency
occur in the limit of low-loss dielectric media with
k(v)!un(v)u221 @20#. Figure 7 shows the spatial behavior
of the power spectrum for the quite low-loss parameter val-
ues given in the caption.

The properties of the system approach those of a high-
finesse Fabry-Pe´rot cavity in the limit of high-reflectivity
dielectric mirrors. A mirror reflection coefficient of the form
jeid, for example withj50.99 andd50.1 @22#, corresponds
to the surface of a dielectric medium whose refractive index
and extinction coefficient areh52 andk520, respectively.
In the limit of k(v)@h(v), it is evident from~5.15! that the
Green’s-function expression on either side of the cavity falls
rapidly to zero, with very small vacuum fluctuations inside
the material media. This corresponds to the quenching of the
electromagnetic field in a conducting medium. In this limit,

FIG. 5. Spatial variation of the spectrumS(x,v) of vacuum
electric-field fluctuations in the cavity system, normalized to their
free-space value, for 2v l /c56.5p andn51.51 i0.02.

FIG. 6. Spatial variation of the spectrumS(x,v) of vacuum
electric-field fluctuations in the cavity system, normalized to their
free-space value, for 2v l /c58p andn51.51 i0.02.

FIG. 7. Spatial variation of the spectrumS(x,v) of vacuum
electric-field fluctuations in the cavity system, normalized to their
free-space value, for 2v l /c58p1tan213158.49p and
n51.51 i0.02.
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the Green’s function inside the cavity given by~5.16! shows
a series of very sharp peaks centered on frequenciesvm8 ,
slightly below thevm defined in~5.17!. With the use of a
suitable expansion in powers of 1/k(v) around the peak fre-
quencies, the power spectrum can be written as

S~x,v!5
\vh~v!

«0cSk2~v! H (
m odd

cos2Smpx

2l D
~v2vm8 !2l 2

c2
1

h2~v!

k4~v!

1 (
m even

sin2Smpx

2l D
~v2vm8 !2l 2

c2
1

h2~v!

k4~v!

J , ~5.19!

where

vm8 5vm2
c

k~vm!l
. ~5.20!

The spectrum therefore consists of a series of equally spaced
Lorentzians of maximum height

S~xm ,vm!5
\vmk2~vm!

«0cSh~vm!
~5.21!

at the positions

xm55 0,6
2l

m
, . . . ,6

~m21!l

m
for m odd

6
l

m
,6

3l

m
, . . . ,6

~m21!l

m
for m even

~5.22!

of the antinodes in the cavity. The full widths of the Lorent-
zians at half maximum height are

Dv5
2ch~vm!

lk2~vm!
. ~5.23!

Note that these results are valid only to leading order in
1/k(v), and that the correction of this order in the positions
of the antinodes, obtained from~5.20!, has been omitted. The
variations of the field fluctuations for a cavity withh52 and
k520 are illustrated in Figs. 8 and 9. Figure 8 shows the
spectrum after averaging over the spatial positionx, with
sharp Lorenzian contributions centered on the peak frequen-
ciesvm8 given by~5.20!. Figure 9 shows the fluctuation as a
function of position for a fixed frequency that coincides with
one of thevm8 . It is seen that the field fluctuation vanishes on
the walls of the cavity. These field fluctuations are clearly
associated with the usual standing-wave mode of a high-
finesse Fabry-Pe´rot cavity.

VI. CONCLUSIONS

The results derived in this paper amplify and extend the
Langevin noise current method for electromagnetic field
quantization in absorbing dielectrics developed previously
@1,2#. The first aim has been to explore the properties of the
basic noise sources used in the quantization scheme, and to
show how the quantized field operators conform with earlier
derivations for special cases, particularly the results found in
the absence of dielectric absorption. Thus the position-
momentum commutator for the underlying charged particles
that generate the quantum noise is determined in~2.23!,
which establishes the role of the imaginary part of the mac-
roscopic dielectric function in controlling the magnitude of
the noise currents. Alternative general forms~3.7!, ~3.11!,
and ~3.16! of the vector potential operator in an infinite ho-
mogeneous dielectric medium derived from the Langevin
force approach have been related and compared to previous
results obtained by a microscopic canonical quantization
scheme@3,4#. For the quantization in a lossless dielectric, we
have used the simple example of a single-resonance dielec-
tric function given by~3.22! in the limit of zero damping. It
has been shown that the polariton form of field operator is
recovered, in complete agreement with earlier work@5,10#.
The lossless dielectric possesses an absolute stop band be-
tween its transverse and longitudinal frequencies, where the
effects of the noise currents are completely quenched and the

FIG. 8. Normalized spectrum of vacuum electric-field fluctua-
tions averaged over position for the cavity system with
n521 i20.

FIG. 9. Spatial variation of the normalized spectrum of vacuum
electric-field fluctuations for 2v l /c58p20.1 in the same cavity
system as Fig. 8.
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field operators vanish. The field-operator spectrum is there-
fore restricted to the frequency ranges that lie above and
below the stop band.

The method of field quantization used here applies gener-
ally to one-dimensional propagation through a series of ab-
sorbing dielectric materials for which«(x,v) is a piecewise
constant, with abrupt changes occurring at the interfaces be-
tween different media. The method was applied in Refs.
@1,2# to the interface between free space and a semi-infinite
dielectric and to a dielectric slab surrounded by free space.
The second aim of the present paper has been to apply the
method to further examples of dielectric configuration. The
vector potential Green’s functions and the field operators
have accordingly been determined for the system of two dif-
ferent semi-infinite absorbing dielectric materials in contact,
and for the free-space optical cavity formed from two sepa-
rated semi-infinite dielectric samples. It has been verified
that the canonical commutation relation is satisfied by con-
jugate field operators for both systems, and the operators
have been used to determine the spectra and the spatial dis-
tributions of the vacuum field fluctuations. For two dielec-
trics in contact, the vacuum field fluctuations show charac-
teristic spatial oscillations that have a maximum amplitude at
the interface and decay to the values for the individual bulk
dielectrics on either side. For the free-space cavity, the
vacuum field fluctuations show a variety of behaviors for
different choices of optical frequency. Thus in general there
are spatial oscillations of a partial standing-wave nature in-
side the cavity, and oscillations that decay with distance in
the dielectrics on either side. However, the oscillations in
either the cavity or the dielectrics disappear for suitable
choices of frequency that remove interference effects. In the
limit of the high-finesse cavity formed from dielectrics with
large values of the extinction coefficient, the vacuum field
fluctuation spectrum has a succession of sharply peaked
Lorenzian lines characteristic of a Fabry-Pe´rot cavity. In the
extreme limit of a lossless dielectric where the refractive
index vanishes but the extinction coefficient is nonzero for
frequencies within a stop band, the intrinsic noise fields in-
side the dielectric are totally quenched, as discussed above,
but vacuum field fluctuations can penetrate some way into
the dielectric by transmission across interfaces with free
space or with other dielectrics of nonzero refractive index.

The one-dimensional theory used here is adequate for the
treatment of propagation of light along optical fibers or of

plane-parallel beams through perpendicular optical compo-
nents. Extensions to three dimensions, currently under way,
are needed for the calculation of such quantities as sponta-
neous emission rates or Casimir forces, where there is no
experimental control of the spatial modes of the electromag-
netic field that participate in the process.
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APPENDIX

In this Appendix we outline the proof of the relation be-
tween the canonical commutator and the Green’s function
given in ~4.11!. The canonical commutator can be expressed
in the form

@Â~x,t !,2«0Ê~x8,t !#5
i«0

2\S

p E
0

`

dvE
2`

`

dx9v3« i~x9,v!

3$G~x,x9,v!G* ~x8,x9,v!

1G* ~x,x9,v!G~x8,x9,v!%, ~A1!

where ~2.11!, ~2.24!, and ~3.16! have been used. It follows
by manipulations of the Green’s-function equations~3.17!
for G(x8,x9,v) and its complex conjugate for
G* (x,x9,v), similar to the procedure in Appendix B of@7#,
together with the symmetry of the Green’s function under
interchange of its first two arguments, that

v2E
2`

`

dx9« i~x9,v!G~x,x9,v!G* ~x8,x9,v!

5
1

«0S
ImG~x,x8,v!. ~A2!

Substitution into~A1! now leads to the general relation for
the canonical commutator given in~4.11!.
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