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Theory of two-photon down-conversion in the presence of mirrors
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A theory of two-photon down-conversion in the presence of mirrors is developed and applied to recent
observations of Herzogt al. [Phys. Rev. Lett.72, 629 (1994]. The experimentally observed results for
counting and coincidence rates as functions of mirror-crystal separations are obtained, and it is shown how the
same results may be derived in a simplified formulation that presumes phase-matched signal and idler modes.
We account for the observed effects of the finite coherence length of the pump field as well as the signal and
idler coherence lengths, which are much shorter than the pump coherence length and have a different physical
origin. Our analysis also supports the interpretation of the phenomena observed as being analogous to the
modification of single photon spontaneous emission of atoms in cavity QEM50-294{®6)09706-3

PACS numbd(s): 42.50.Ar

I. INTRODUCTION on the emission(The coherence length in this case is simply
c7, where 7 is the radiative lifetime. In other words, the
Recent experiments have demonstrated suppression aff@e-space radiation ratd=1/r must be small compared
enhancement of the rate at which entangled two-photon paiith the photon bounce ratedd in order for the atom to
are created by parametric down-conversion, depending orsee” the reflecting surfaces before emitting a photon as if
the positions of external mirrofd]. The mirrors allow for " free space. .
two indistinguishable ways by which each photon pair can be In the experiments on two-photon down-conversion, how-

created, and the interference between these alternatives pid e the interaction volume within the crystal has an extent

duces suppression or enhancement of the pair creation. ThinsUCh greater than the wavelengths of the pump or down-

interpretation, while allowing for a semiquantitative explana- onverted fields, and so the analogy to cavity QED s not
nterp P 9 q exp immediately obvious. Moreover, the coherence length of the
tion of the experimental results for counting and coincidenc

o : .~ down-converted light is very smalh few hundred microme-
rates, does not account for the finite extent of the mteracnoraers) compared with the distances between the crystal and the

region or for the partial coherence of the down-convertedsyiernal mirrors, and so again an essential feature of ordinary
light. The purpose of this paper is to present a more detailedayity QED is absent. Our analysis nevertheless validates the
theory of down-conversion in the presence of external mirinterpretation of the down-conversion experiments in the
rors. fashion of cavity QED.

The suppression or enhancement by mirrors of the rate of The experimental setup of interest here is indicated in Fig.
production of down-converted photons in the presence of d. In the following section we formulate the Hamiltonian and
steady pump beam is analogous, as previously ndtgdo  Heisenberg equations of motion that form the basis for the
the modification of single-photon spontaneous emission rata®st of the paper. In Secs. Ill and IV we calculate the depen-
[2]. In the latter, “cavity-QED-type” of experiment, the dence of the signal, idler, and coincidence counting rates on
emitting atoms have a spatial extent that is negligible comthe crystal-mirror separations, obtaining results in agreement
pared with the wavelength of the emitted light, so that an
atom can be positioned precisely at a point corresponding to  iD
a node or crest of thévacuum field at the emission wave-
length. Depending on whether the atom is at such a node or
crest, the spontaneous-emission rate is either suppressed or
enhanced compared with its free-space value. This is inter-
pretable as either a modification of the vacuum field interact-
ing with the atom, compared with the free-space vacuum
field, or as a modification of the atom’s radiation reaction
field compared with its free-space forf8]. The distances
d between the atom and the reflecting surfaces must be small gp
compared with the coherence length of the spontaneous ra-
diation in order for these surfaces to have a significant effect

SM

FIG. 1. Experimental configuration employed by Herzigal.
[1]. PM, SM, and IM are mirrors reflecting pump, signal, and idler
"Permanent address: Department of Physics, California State Unfields, respectively, and SD and ID are signal and idler photodetec-
versity, Fullerton, CA 92634-9480. tors, respectively.
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with the observations of Herzoet al. [1]. The analysis is so that
extended in Sec. V to account for the finite coherence lengths

of the pump, signal, and idler fields. Section VI briefly sum—

i3
i

. . _ 3/2 1/2
marizes our results and conclusions. Hmattert 2 ﬁ“’ya &3 (2mh) yzﬁa (0,0p0,)

Il. HAMILTONIAN AND HEISENBERG OPERATORS

fd XXIJk[a Uyl(x) a—y 'yl(x)]
In order to describe how the pump field interacts with the
nonlinear crystal we take as our starting point the basic  x[agU g (x)— aBUB](x)][a Uun(x)—alu*(x)]. (6)

— P-E interaction energy density and consider the change in

the induced dipole energy as the inducing field is broughHere theU,, are field mode functions whose form for the
from O to E: problem of interest is discussed later, ang, k denote their

s (B Cartesian components
W:_f d Xfo P(E)-dE, @ In the Heisenberg picture the operators are time depen-
dent. The photon annihilation operator for moge for in-
where P is the dipole moment density. In the linear casestance, satisfies the Heisenberg equation of motion
Pi=Xxi;E;, where the summation convention for repeated

indices is used. Then ] . ina (t)=[a,,H]=fho,a(t)- §f d*xxijla, EEEyl.
Wz—f dsxxijfo EidEiz—Ef d3xPE;. (2 (7)

. . o N
The factor; arises because the dipole densityniduced[4]. ow

In the case of a second-order nonlinear polarization
e JEiEE]= Ei]E;Ext+E; E ]E+ E;E; E
Pi= xijcE;Ex we have, similarly, (3, =2, EiEEFEla, BB ilay.Bd

=—i(2mhw,)"TUY (X Ej(X,1) Ex(X,t)
W= fds f P.dE = 1 B xii Ed(EiE'Ek) mhay) " “
3 i j
0 +ij(x)Ei(x,t)Ek(x,t)

= f d3xxij«Ei E; Ex. 3) U E (X, DEj(x,1)], (8)

S0
which differs from the form assumed by Hong and Mandel

[5]; in their formulation a factor; appears instead of the 5 —_j, a (t)
—1 of Eq. (3). Although the form(3) might in principle be 4 Y
taken as the appropriate one, the difference is immaterial, as 1270, V2 N .

different multiplicative factors can be reabsorbed into the 317 f d*Xxijk[ U5 0 Ej (X, D Ee(X,1)
definition of the nonlinear susceptibility. We will talgg; to

be independent of frequency, which is an excellent and fre- + U5 (0 Ei(X,DE(X,1) + UL Ei(x, ) Ej(X,1)]
quently employed approximation for pump, signal, and idler

frequencies far from any absorption resonances of the crys- ~lw,a,(t)
tal. 2mw.\ 12
The linear coupling between the matter and the field leads + 7 y) fd X xij UG (X )Ej(X" 1) Ep(X' 1),
among other things to different refractive indices inside and
outside the crystal. For simplicity, and following Hong and 9

Mandel[5], we ignore such differences in writing the Hamil-
tonian and assume we have vacuum outside the crystavhere we invoke permutation symmetry gfjc [6]. This
Then, assuming only aonlinearcoupling between the crys- equation can be formally integrated to give

tal and the field, we use the Hamiltonian "

1 _ —iw,t
H :Hmatter+ Hfield_ §f dSXXijkEiEjEk ay(t)_a‘)’(o)e r+ J d X XI]kUyl(X )

t
e (! t! I tryal o, —t)
Hmaner+2 ﬁwya a,— _J' PxxEEE (@) xfodt Ej(x',t")EW (X', t")e'r . (10)

Wherea anda are the usual photon annihilation and cre- The total electric field has two parts—the free field corre-
ation operators respectively, for mogleTheith component  sPonding to the homogeneous solution of the operator Max-

of the electric field operator can be written as well equations, and the source field associated with the non-
linear susceptibilityy;;, . We are primarily concerned here
E (1) =i 2 (Zthy)llz[ay(t)in(x)—aT(t)U’;i(X)], with the source term, denoted by the supers@ipthis term

may be written, using the second term of EtD) in Eq. (5),
(5) as
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(s) 3 ! : * jw. (t'—t * —iw,(t'—t
Ex (x,t>=J d x’xijkfodt'Ej<x',t')Ek<x',t')IZ (2mw,)[U,n(x)UZi(x el 70— U3 () U i(x" e Y]
b

t
EJ d3x’J'Odt'Gm(X,t;X’,t’))(ijkEj(X’,t’)Ek(X’,t’), (11

where we define the Green function for the nth Cartesian component of the electric-field opera-
tor. We will be interested specifically in the case of type-l
phase matchinf6] in a negative uniaxial crystal. The signal
and idler fields, which of course are defined arbitrarily in this
context, are polarized as ordinary waves and the pump is
— U*;n(x)Uyi(x’)e““’v(t/‘“]. (12)  polarized as an extraordinary wave. Then for notational con-
venience we can drop the subscripts on the field$1B):
Our expression foE{¥(x,t) is generally valid for any three- Ej(x',t") is replaced by the pump fieldEp(x'.1),
wave mixing process involving the nonlinear susceptibility Ek(X',t") by the idler fieldE,(x",t"), and E,(x,t) by the
Xijx - Moreover, all fields thus far are fully quantized and noSignal field Eg(x,t), each of these fields corresponding to
assumptions have been made about the mode functionsPecific Cartesian components taking part in the phase-
From Eq.(10) and the general expressiH) for the electric- Matched down-conversion. Thus
field operator we find for the free field, in the absence of the =0
crystal or other sources, Es(x)=Es"(x.1)

Gni(X, X', 1) =12 (270,)[U,,n(x)U%(x")elent 0
Y

t
. + | d3x’ fdt’G Xt tEp(X' t)E (X' ,t"),
EEO)(XJ):iEy (ZWﬁwy)l’z[ay(O)e"‘“thyn(x) J' X 0 ( ) P( ) I( )

H0)e U, ()] (13) 1o
—a (0)e'“r X)].
y m where

From the canonical commutation relatio[ay,ai,] _
=4, for the mode annihilation and creation operators it G(x,t;x’,t’)ziz (was)[Us(x)Ug(x’)e'“’s“'*“
follows straightforwardly that the Green functiqh2) can s
also be written as —UX(x)Ug(x)eiest’ ~1] (17)

Gr(xtx t')= i—[Ego)(x,t),Ei(O)(x’,t’)]. (14) a_nd the subscrips now distinguishes among all possible
f signal modes.
_ _ The quantity of interest for the signal counting(ig$
In the case of free space, for which the mode functions, x t)E()(x,t)), where(+) and (~) designate positive-
U,i(x)e,iexplk,-x), with €, a unit polarization vector, anq negative-frequency parts, respectively, of the signal field

the commutator is the well known “Pauli-Jordan commuta-gnerator. The positive-frequency part of the first term on the
tor” [3]. In the case of interest here the free-space mOdﬁghthand side of Eq(16) is simply

functions are modified by reflections off the signal, pump,

and idler mirrors(Fig. 1), and the Green function will be i .
more complicated. E(sO’H(X,t):'zS: (2mhwg)ay(0)Us(x)e s, (18)

1. SIGNAL AND IDLER COUNTS The positive-frequency part of the secofmburce term in
) N Eqg. (16) is approximately
Let us now apply these expressions specifically to the

signal field in the three-wave mixing process in which pump 3ur [t A (oot V() ot $ ()i wr 17
radiation is down-converted in frequency to signal and idler d°x Xfodt GGt U)ER (X ) E (X t),
radiation. The mode functions, and therefore the Green func- (19)
tion in Eq. (11), will remain unspecified until we apply our

results to the situation illustrated in Fig. 1. From E¢El)  where

and(13) we have

G X ) =12 (2w Ug(x)UE (x')elst' 0,
S
(20

t
_ (0 3y ’ T
=Ey, (th)+f d°x fodt G 5X ) Xij This identification of the positive-frequency part of the sig-
nal field operator assumes that the initial state of the pump
XEj(x",t")EW(X',t") (15 field has a narrow distribution of initially occupied states,

En(x,)=EQ(x,t) + E¥(x,t)
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and furthermore for given emission directions that phasés in effect slowly varying as exp-i(wp— w,— w )t'] for a
matching and energy conservation limit the range of signatjuasimonochromatic pump and phase-matched down-
and idler frequencies to narrow widths abaug and w;, ~ conversion, so that the operatd®) varies predominantly as
respectively, wheress+ w, = wp, wp being the central fre- exp(—iwst) with og~ws. Then, since

qguency of the quasimonochromatic pump. In other words, (04) _ (0-) _

we anticipate that Es™ (x0[¢)=(4[Es (x,1)=0 (22

(ot oot vrr i’ for an initial field state ) with no occupied signal modes,
Ep /(X' ,t")E; (X' t")e's (21)  we have for such a state

t t
(ES (6 DES”(x,0)= f *x'x f x'x f ‘“'J dt'G 06Xt * G X X E)(E (X t)ER (X t)ER”
0 0

X (X" tE{ (X", t")). (23

The lowest-order approximation to E®3) involves the replacement of the field operators in the integrand by the corre-
spondingfree fields. This amounts to ignoring pump depletion and retaining only terms up to second order in the nonlinear
susceptibility. In this approximation

(EE+)(X, ,t,)Eg::)(X, ,t/)Eg;r)(X/l,t/l)EI(*)(X//,t//)>_)<E=O,+)(Xr,tI)ESDO,*)(X/ ,t/)EgjO,Jr)(X//,t//)EI(O,*)(XH’tH)>
— <E§;O'_)(XI ,t/)Eg)O,+)(X//’tH)E§0,+)(X/ ,t/)EI(O,—)(X//'t//)>’ (24)

where we have used the fact that the free-field operators for different modes commute. For the initial figld) state no
occupied idler(or signa) modes we have

EC¢CGELT ()= X (2mhe) YA 2mhien) U (XU (X)ai(0)al (0)e e )

=2 (2mhonUi(x)UF () y), (25
wherei labels different possible idler modes. Thus

(BT 1B EL (¢ t)ET (X))

=> (2wﬁwi)ui<x')ui*(x")eiwi“”*’); > (2mhwp) A 2mhey,) YU (X )Uy (X @ ~or ) (ylal(0)ay, (0)] )
| p/

=2 D (2aho)(2mhwy) Ui(X )UF (X)UE (X )U (X )Npe! (@t (26)
ip

whereN, is the photon number expectation value for pump mpdever the initial field stat¢y). We are assuming that the
pump field has no mode-mode correlations, so (mdag(O)ap,(O)W):5pp,<¢|a;‘,(0)ap(0)|¢>=5pp,Np. Equation(23)
therefore becomes

(ES (X DES (x,1))
:(27Tﬁ)22i }p‘, wiprpf d3x'Xf d3X" Y Ui(x" ) UF (XU (X" )Up(X")
><J:dt’f;dt”ei(“’p*“’i)“'*”G(“(x,t;x’,t’)*G‘“(x,t;x”,t”)
=(27sz)in wif d3x’)(f d3x”XUi(x')Ui*(x”)f;dt’fotdt”G(*)(x,t;x’,t’)*G(“

><(x,t;x”,t”)e’i“‘i(t'*'”Ep NpwpU% (X" )Up(x") el ~t), (27)
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The most important experimental results of Herebd@l.[1]  chosen arbitrarily without affecting any of our results, which
can be obtained with some substantial simplifications ofonly involve differences of the distances, d,, andds.)
these general results, as we now show. We can write(28) equivalently as

A. Mode functions Up(x)=C[e'e X~ e %pe ko], (29

We will make the simplifying assumption of normal inci- _ LA i
dence of the fields at all mirror surfacé@M, SM, and IM Wrr;esrseioﬁps_azwrd?o/(;hznsdi kr%)a_l l;';]zd iI(Ej;;a;crtrI]%;;Sa}logous ex
shown in Fig. 1. Because small-aperture collimating diaP pply 9 '

phragms are employed in the experimefity we will as-
sume that each pump, signal, and idler mode is characterized
by one direction of propagatiork] plus the reflected, oppo- B KX i ik x
site direction. Thus the pump mode, for instance, is assumed Ui(x)=Ci[e™"—e%ie ], 31
to have the form

Ug(x)=CgeksX—gldsg ks ], (30)

_ _ where¢,=2wds/c, ¢;=2w;d,/c, dgandd, being the dis-
Up(x)=Cle'p?—elkp(2dp=2)], (28)  tances from the crystal to the signal and idler mirrors, respec-
tively.
where C,, is a normalization factor andp is the distance Y
from the crystal to the pump mirror PM in Fig. 1. The modes
(28) correspond simply to the incident pump plus its reflec-
tion, and are taken to vanish at the surface of the pump Let us assume, to begin with, that the pump field is mono-
mirror, wherez=d; . (The origin of coordinates here may be chromatic, so that

B. Energy conservation

22 NpwgUp () Up(x) &0 =NpwpUp () Up(x")e Pt 1. (32
Then

t t
(ES (6 DES(x,1)) = (27%)®Npwp >, wif d3x'Xf d3x”XUi(x’)Ui*(x”)U’F‘,(x’)UP(x”)J dt’f dt'g*)
i 0 0

X(X,t;X,,t,)* G(+>(X,t;X”,t”)ei(wP_wi)(t/_t”>

t ) ’ 2
=(2mh)°NpwpY, o) fd3x’)(Ui*(x’)Up(x’)fodt’G”)(x,t;x’,t’)e*'(“'P*“’i)t , (33
|
where, from Eq(20),
t B !
f d3x’)(Ui*(x’)Up(x’)J' dt’ G (x,t;x’,t")e wpm @it
0
) t . ,
=272 wSUS(x)e"‘”S‘f dSX’XUi*(x’)Ug(x’)Up(x’)f dt’e”!(wpmeimes)t
S 0
) ) SiNg (wp— wj— wy)t
=271 3, U (x)e st e wogt 2 S fd3x’xur(x’)uz(x’)up(x’). (34
s 2(wp— i~ wy)

The integration time multiplied by any field frequency of interest is assumed to be very large, and so the dominant
contribution to(34) comes from frequencias;= wp— w; . We therefore make the familiar replacement of the sinc function by
T wp— Wi — wg):

2
f A Y UF (x)UE(X)Up(X)| |
(35

t . ’ 2
“ d®x’ xUF (x")Up(x') f dt' G (x,tix' t)e (@rm et (242)2w2|Ug(x)[2
0
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where the subscript $i” is used to indicate that the . .

ws-dependent quantities are to be evaluated at N !
Ws= Wp ™ W= Wgj. (36)

Of course, this is just the condition of energy conservation in /\

the downconversiomwp— ws+ w; . With this condition Eq.

(33) becomes 0

<E(Sf)(x,t)E(S+)(x,t)>= (4773h)2NPwPE, wiw§i| Usi(x)]?

2 Fe--F---- optic axis
x| | d3 xUF (X YUE(X)Up(X")] .
(37)
A
C. Momentum conservation(phase matching
The mode function$29)—(31) give
f A3’ YU} (X' )UE(X)Up(X") e
5 ) k) FIG. 2. The anglé® between the created signal and idler fields
=Cf CéiCpr d3x/[e!Kpksimki)x is determined by angle phase matching in which the pump is lin-
v early polarized as an extraordinary wave, incident at 90° to the
— @l (dp—dsi— d) g~ i(Kp—kgi—kj) X’ optic axis of the crystal, and the signal and idler waves are linearly

polarized ordinary waves.
+ @i (8p— s @i (Kp—ksitki)-x' _ oidpg=i(Kp+ksi+ki)-x’
determined from the tabulations of Eime al. [7], for in-
+-]. (38)  stance. Therefore, to the extent that and® are precisely
determined, Egs(36) and (41) uniquely determinew;= w,
Here [\ denotes integration over the volurieof the crystal, and wi=ws=wp— w,, and thereforek,=Kg and k;=K;
or more precisely the nonlinear interaction region bathed bysee Sec. Y And if (40) is satisfied, the contributions {88)
the pump field, an& is the wave vector for the monochro- from all other terms but the first two in brackets will be

matic pump field under consideration. non-phase-matched and negligible. That is,
We can write the integral of the first term in brackets, for
instance, as f d3x’ xUF (X" )UE (X )Up(X")
. sinAk,L, sinAk,L, sinAk,L
’ —kei=ki)-x' _ a: X=X yy z-z .

J et < 2 ik, Ak S CECICHVIL-ele s (42
39
39 and therefore

where Ak, = (Kp—Ksi—ki)m, m=X,y,z, and themth Car- (ES(xDES ) (x,1))

tesian dimension of the interaction region is assumed to run

from —L, to L,,. For Ak,=0, m=x,y,z, this integral is =(47%1)?Npwpw w3 Ug(X)|?

8iL,L,L,, whereas forAk,#0 its maximal value is 5 o (bom b )12

8i/| Ak Ak Ak,|. ForLp>1/Aky|, therefore, the contribu- X|C\CsCpl“x*V1—e!(?Pm9s7 2|2 (43)

tion to (39) from values ofAk,# 0 is small compared with

the contribution fromAk,,= 0. This means that the dominant D. Signal and idler counting rates

contribution to(38) comes from wave vectors satisfying the

momentum conservation condition Equation(43) implies the signal counting rate

Kp=KsiTk;. (40) Rs=As(1~cos), (44
. . .. . . prdp ZdeS 2(,U|d|
This phase-matching condition implies 0=dp— dps— = c ¢ ¢
ndwd=wini+ w?n?+2ngnjogwicod, (41 o g
=4 L _S_2!
whereng, ng;, andn; are the refractive indices of the crystal _477( Ap As N (45)

for frequencieswp, wsj, and w;, and ® is the angle be-

tweenkg; andk; (Fig. 2). In the experiment$l] the angle  For our purposes herdyg is an uninteresting constant. The
is fixed by the positions of the mirrors and diaphragms,analogous considerations for the idler counting rate give
and the pump frequencyp corresponds to the 351.1-nm likewise

line of an argon ion laser. The refractive indiggs, ng;, and

n; for the LilO5 crystal employed in the experiments may be R (1—cos). (46)
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The derivation just given involves interfering probability
amplitudes for the two ways by which a signal photon can
appear at SD, and of course the same result is obtained by
considering the two interfering paths by which an idler pho-
ton can appear at ID. Because the signal and idler photons
are created in pairs, as discussed further in the following
section, we can obtain the same result by considering the two
distinct ways in which a pump photon can be annihilated and
the created signal and idler photobsth appear at their re-
spective detectors. One way is for the pump photon to be
annihilated in the crystal without first reflecting off PM; the
signal and idler photon then reflect off SM and IM and
propagate to SD and ID, respectively. The amplitude for this
process is, say;-be/(?st4) [8]. Alternatively, the pump
photon can pass through the crystal, reflect off PM, and then
create the signal-idler pair, and for this process we can take
the amplitude to b&e'#P. Adding these two amplitudes and
squaring the modulus of the result then gives the signal/idler
coincidenceprobability o<1 — coss.

In the derivation of44)—(46) we have integrated over the
interaction region inside the crystal, whereas the simplified
derivations just given for thé dependence of the counting
rates assume in effect a point interaction. The more detailed
derivation leading t@44)—(46) gives, through the integration

FIG. 3. Two distinct processes leading to the detection of aover both time and interaction volume, the energy and mo-

signal photon at SD. I@ the signal photon to be detected is mentum conservation conditiori86) and (40), respectively.

created by the forward-propagating pump, reflects off SM, anolThese conditions arassumedn the simplified derivation

propagates back through the crystal to SD(Hnthe signal photon just given. A second s!mpllfled derivation, ba.s.ed on field
is created by the backward-propagating pump that has reflected offPe€rators, can be obtained when these conditions are pre-
PM, and propagates directly to SD. (@ the signal is generated by Sumed: write

the mixing of the pump with a vacuum, forward-propagating idler B T _ 0

field, and in(b) by the mixing of the backward-propagating pump as=astBapedig, B=y(1-€"), (48)

with a vacuum, backward-propagating idler field.

a=a o+ Bapealy, (49)
These sinusoidal variations of the signal and idler count

rates with the crystal-mirror separatiogis, ds, andd, have whereag anda, are the photon annihilation operators for the

been observed in the experiments of Herzoal. [1]. specifie_d, phase-matched signal ar_1d idler _moﬂ%nd !,
respectively, andy for our purposes is an unimportant con-

o _ S . stant associated with these modes and the crystal. The opera-
E. Physical interpretation and simplified formulation torsagy, ajg, andapo are the free, unperturbed mode anni-

These results can be interpreted as follows. The totdfilation operators, satisfyindasy|#)=ao|#y)=0 for the
probability amplitude for a photon to be counted at the dednitial field state|) with no signal or idler photons. Equa-
tector SD(Fig. 1) is the sum of amplitudes for two distinct tions (48) and(49) contain the essential physical content of
and indistinguishable processes. In the first of these pro@ur more complicated equations for the full electric-field op-
cesses the incoming pump mixes with an incoming vacuun@rators$(x,t) when the energy and momentum conserva-
idler to generate a signal photon which then propagates tton conditions are invokea priori and when all largely
SM and is reflected back through the crystal to §fy.  irrelevant constants are effectively lumped togethey.in
3(a)]. The amplitude for this process may be taken to be For the initial statd #) we obtain by trivial algebra the
A;=bé€%s. In the second process a signal photon is create@xpectation value
when the pump beam reflected from PM mixes with a + . " ot
vacuum idler field reflected from IM to generate a signal (asas)=|B|*(apoaroiodio) = | Bl*(apoaro)
photon that then propagates from the crystal to [Fy. —Np|y|Z1-€'¥2 (50)
3(b)]. Since it involves pump and idler phase changes asso- PIY
ciated with propagation between the prystal and the 'mirrorsand likewise
but not such phase change for the signal, the amplitude for
the second process &,= —be/(*?~%) [8]. Thus the prob- (alya,0)=Np| ¥ 1—ei?2. (51)
ability of counting a signal photon at SD is

2 (2l aibe (b2 The signal and idler counting rates are proportional to these
|A1+A;|*=|b|*|e'?s— e PP W%l —cos,  (47) quantities in this simplified formulation, which therefore also
produces the experimentally observed variations with
in agreement with{44). crystal-mirror separations.
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IV. SIGNAL-IDLER COINCIDENCE RATE |an|?=laiol*+ 1 BI?| apol *| aso| *+ 2 Re Barpo o)

The simplified formation based dd8) and(49) can also _pl2 2 25]1—glf]2 5
be used to calculate the signal-idler coincidence rate: Bl tpol | sl "<| | 67
(2) jatat if we take ap=0 but apy, agy#0. That is, we can obtain
Rsi=(asajaas). 2 the same variation ofa,|? with 6 as is obtained quantum
We assume thd{3|2Np<1, which is consistent with the as- mechanically for the idler photon count if we assume that
sumption of an undepleted pump beam. Then some simpl@ere is initially no idler energy but that the initial signal and

algebra gives the result, under this assumption, pump fields are both nonvanishing. _
We will not elaborate further on classical then@$ ex-
R(S2|>oc| ﬁ|2<a’g,0apoal OalToaI oa|To>: | B|Np cept to note that a coinc_idence rate analogou$& cannot .
5 12 be inferred from a consistent classical theory. The classical
=Np|y[71-€"|% (53 counterpart oR?) is

This result exhibits exactly the sinusoidal variations of the
coincidence rate with crystal-mirror separations observed ex-
perimentally[1]. Since the more detailed theory leading to +2 R apgayall B12(| 0|2+ Blasl?)]
(44)—(46) merely reproduces this result of the simplified for-

mulation, we will not bother to carry it through. It should be (58)

emphasized, however, that the coincidence rate is directl% the same approximation made (63) of retaining onl
proportional to the single-photon counting rate, and in par- fms up to qup;%ratic iny. It is evident from theseg resu{ts

ticular has the same dependence on the mirror-crystal sep t & classical th consistentl i I ¢
rations, showing clearly that we are dealing with a photon- fatha ¢ ass;ca eorﬁ/ cr_;mr} n§|s entiycap ltmﬁ a baspec;
pair effect whereby photons are created in pairs. of the quantum-mechanica e;n exp%rlzmen ally o zservg re-
sults. Thus, we obtain|a|?=|1—€'’* and |a||*|ag
oc|1—e‘9‘2 by choosinga =0, but then we do not get
|as|?oc[1—-€""%
Some aspects of these results are understandable classi-
cally. In a classical field formulation the operatag and

a, are replaced bg numbersag and «, . The classical ana-

larg|?] ) |2=] arsp|?] 0] *+ | axpol ?| BI* (| eti ol * + | ol )

Classical formulation

V. EFFECTS OF PARTIAL TEMPORAL COHERENCE

logs of expression§48) and(49) are In obtaining the results for the variations of the signal,
N idler, and coincidence counts with crystal-mirror separations,
as=aspt Bapoaio, (54 e have assumed that the pump is perfectly monochromatic
. and that the signal and idler photons are monochromatic and
@ = a0t Bapoasy. (55 independent of the filters and diaphragms employed in the

actual experiments. We will now consider what happens
when the pump has finite temporal coherence and when there
is some frequency spread in the measured signal and idler

The classical quantity corresponding to E@O) is the
squared modulus of the signal field amplitude:

|ars]2= | gl 2+ BI2| apol 2] etio| >+ 2 RE Barpoaparly) photons[10]. Both these effects will reduce the interference
. between the two processes indicated in Fig. 3. Since they are
=|B|?| apo|?| a0 ?*|1—€'|? (56)  physically distinct effects, we will consider them separately.

if ag=0, i.e., if the signal field is initially zero while both

the idler and pump fields have some initial energy. In other

words, if we assume that the initial signal field is zero, then Beginning with Eq.(32), our analysis in Sec. IV assumed

we can obtain classically the same variation of the generatetdhat the pump field incident on the crystal has a precisely

signal energy withd as is obtained quantum mechanically defined frequencwp and wave vectoK . Suppose instead

for the signal photon count. that there is a distribution of pump frequencies about
Similarly, from (55), We write w,= wp+ A, and replace32) by

A. Pump coherence

% NpwpU% (X' )U 5(x")e st~ = Npwpe et ~1" f_wdApg(A,»uS(x’)up(x”>emp<"—"’>, (59
whereg(A ) is some narrow, normalized distribution function, peakind gt 0, whose width is a measure of the degree of
nonmonochromaticity and temporal incoherence of the incident pump field.

It is straightforward to carry through the analysis of Sec. IV starting ft68) instead 0f(32). We obtain instead of37),
for instance, the expression

2
Jd3x’XUi*(x’)U§i(x’)Up(x’) , (60

(ES (X DES" (x, 1) =(47%)*Npwp J dApg(Ap) 2 wiwd|Ug(0)|?
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where energy conservation now takes the form wst 0= wp, (66)
it 5= wpt Ap. (61) N2w3=n2wi+nZw?+2ngh, wsw,cog (67)

The integral over the crystal interaction volume leads simi- o )

larly to the momentum conservation condition determiningws and w, . In the experiments of Herzoegt al.
ki+ks=K,, where K, now has magnitude [1] the angle® is such that a 351.1-nm pump generates
N(wp) wp/c=n(wp)(wp+A,)/c. (We assume that all wave 632.8- and 788.7-n_m s!gnal and idler fields, respectlvely._ A
vectors associated with the incident pump point in the sam&/P€- phase matching is employed, such that the pump is a
direction) With these energy and momentum conservatior/ineéarly polarized extraordinary wave incident at 90° to the

conditions, Eq(60) takes the form

(ES (X DES(x 1) f T da,0(A[1-cosi(A,)],
(62
0(Ap)=2(wp+Ay)dp/c—2wd/c—2wgds/c. (63)

It is convenient to writew; = w,+A; and wsj= wgt+Ag,
W|th ws+ W= wp, SO that
Aj+Ag=A,. (64
Assuming |A;|/w;,|Ag|/wg<1, and ng=ng, nj=n,, the
momentum conservation condition on the frequendigand
A can be obtained frontd1) by differentiation:

NpwpA,=nNZwsA s+ Nl A;+ng (oA + w,AS)co. |
65

Equations(64) and (65) determine the deviationd¢ and
A; of the created signal and idler photons frasg and w, ,
given the deviationA, of the pump frequency from
wp=wst w.

Before calculating\s andA; in terms ofA, let us return
to the equations

optic axis, while the signal and idler are both linearly polar-
ized ordinary wavesFig. 2). For these wavelengths and po-
larizations we calculate, from the data of Eimetlal. [7],
np=1.7197,ng=1.8810, andh,=1.8657 for LilO;. Then
we can infer the angl® from Eq. (67):
®=cos %(0.6797=47.2°. (69)
Knowing ®, we can now solve Eq$64) and(65) relating
AsandA; to Ay, the result being

Ag=0.56Ap =&, (69
Aj=0.44A ,=&A,. (70)
Thus
0(Ap)=2(wp+Apdp/c—2(wstAgds/c
—2(w+A)d, /c
=0+2A,(dp—&d, — &sdg)/c, (7D

whered=2wpdp/c—2wgds/C—2w,d, /c is the value of the
net phase difference when the pump is perfectly monochro-
matic. Expressiori62) is then

(ES (X DES (x, 1)) f dApgmp)—Re( e'f f dApg(Ap>e2iAp<dp—fsds—adwc)

=1- Re( eief_wdApg(Ap)ezmp(dP_‘fst_fidl)/C) .

In order to have a simple integral we take the frequency

distribution of the pump to be Lorentzian:

B Bplm

g(Ap) m, (73

where 8, is the bandwidtfHWHM). This gives
J‘oo dApg(Ap)eziAp(dP—gsdsfgid,)/c

— g~ 2Bpldp—&ds—&d)l/c — g~ |dp—£sds—&id)] Itp,
(74

and therefore

(72

(ES (X, DES” (x,)y=1—e Idp~&ds™&idil Lpcogy,
(79

where we definé ,=c/23, to be the coherence length of the
pump field. Note that iig=d,=d, then

|dp— ésds— &d) |[/Lc=[dp— (&5+ §i)d|/|—c5|dp_d|/|—(c7-6)

These results for the effect of the pump coherence length are
consistent with the observation of Herzegal. that “the
crystal-mirror path length for the pump should not differ by
more than the coherence length of the pu@pew meters in
[the] experiment from the distances from the crystal to the
signal and idler mirror”[1].
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B. Signal-idler coherence length

In the experiments[1] two diaphragms of diameter
~0.8 mm, separated by 90 cm, are placed in the paths of
both the signal and idler fields between the crystal and the
detectors. This ensures that the detected signal and idler
modes propagate nearly unidirectionally. Nevertheless there
remains some effective spread\® ~(0.4/900)4.45
X 10" * rad in the anglé. This spread allows a distribution
of phase-matched signal and idler frequency paigsand

If we assume again a monochromatic puntpe.,
A,=0), so thatA;=— A4 [Eq. (64)], then(41) implies

0=niwsAg+niw A +ngn (wsA;+ w Ag) coB
- nSI’I,wa,Sin@A
=[ngws—Nfw+ng; (0~ ws)COPM A

—NgN wswSINBAG. (77

In other words, the deviatioA from wg of signal photons,
arising from a deviatiom® from the angle® for which
there is phase matching fars and w, photons, is
FIG. 4. Apertures are placed in both the signal and idler paths in
NgN wsw,SINGA G the experiments of Herzogt al.[1]. The diameter of each aperture

As=— 5 =7A0, (79 is 0.8 mm, and each aperture pair is separated by 90 cm. This gives
Nsws—Njo;+ gy (@, — ws)cosH an angular spreafl® ~0.4/900=4.45x 10~* rad that in turn gives
rise to finite bandwidths of phase-matched signal-idler pairs.
and consequentlA;=—»A®. Based on the numbers al-
ready used for the angl® and the refractive indices, we
iny=2.3x10%s"1 heref -
obtain 3%x10* s~1 and therefore <E(s )(x,t)E(S“(x,t))
Ag=(2.3x10'° s71)(4.45<10" %) =1.0x 10" s 1, - .
s ( )( ) (79) Ocl_R€< e|Hf_diSf(As)e—ZIAS(dS—d|)/C
giving the order-of-magnitude estimater2/A~189 um =1— e 2Adds~dillccog, (82
for the signal-idler coherence length, in qualitative agree-
ment with the experimental resu#260 um [1]. which replaceg44) when the bandwidtiBs=0. Hereg; is

To see how this signal-idler coherence length affects théhe width of the Lorentzian functiof(A.), analogous to the
measured counts as a function of mirror-crystal separationgyidth BB, of (73). Our result is consistent with the experi-
we return to Eq(37). The integration over volume, together mental observation of Herzoet al: “itis ... the relative
with the fact that there is now a distribution of phase-position of signal and idler mirror which has to lie within the
matchedk vectors and therefore a distribution of createdcoherence length of the spontaneously emitted down-
signal and idler frequency pairs according1®), leads from  converted light €260 wm in our experiment [1].

(37) to
VI. SUMMARY

(ES (X DES (X)) j_mdAsf(AS)M—e' 192, Starting from the Hamiltonia®) for general three-wave

(80) mixing, and treating all fields quantum mechanically, we
have derived the experimentally observed results of Herzog
et al. [1] for the variation with crystal-mirror separations of

0(As)=dp—2(0stAg)ds/C=2(w —Ag)d signal and idler counts and coincidence counts. Allowing for

= ¢p— ps— ¢ —2A4(ds—d,)/c nonmonochromaticity of the incident pump, and a distribu-
tion of phase-matched signal and idler frequency pairs asso-
=60—-2A4(ds—d))/c, (81)  ciated with a spread in phase-matching angles, we have also

accounted for the observed dependences of the counting rates
instead of the resul{43) obtained under the assumption on the pump and signal-idler coherence lengths.
A®=0. We have introduced if80) a normalized distribu- The theory presented here, which allows for a finite inter-
tion function f(A) for the frequency deviationd4 consis-  action volume, validates the interpretation of Herzal.
tent with phase matching. Once again we assume a Lorentfl] that the experiment indicated in Fig. 1 represents a gen-
ian and obtain eralization of cavity QED experiments to a situation where
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