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A theory of two-photon down-conversion in the presence of mirrors is developed and applied to recent
observations of Herzoget al. @Phys. Rev. Lett.72, 629 ~1994!#. The experimentally observed results for
counting and coincidence rates as functions of mirror-crystal separations are obtained, and it is shown how the
same results may be derived in a simplified formulation that presumes phase-matched signal and idler modes.
We account for the observed effects of the finite coherence length of the pump field as well as the signal and
idler coherence lengths, which are much shorter than the pump coherence length and have a different physical
origin. Our analysis also supports the interpretation of the phenomena observed as being analogous to the
modification of single photon spontaneous emission of atoms in cavity QED.@S1050-2947~96!09706-5#

PACS number~s!: 42.50.Ar

I. INTRODUCTION

Recent experiments have demonstrated suppression and
enhancement of the rate at which entangled two-photon pairs
are created by parametric down-conversion, depending on
the positions of external mirrors@1#. The mirrors allow for
two indistinguishable ways by which each photon pair can be
created, and the interference between these alternatives pro-
duces suppression or enhancement of the pair creation. This
interpretation, while allowing for a semiquantitative explana-
tion of the experimental results for counting and coincidence
rates, does not account for the finite extent of the interaction
region or for the partial coherence of the down-converted
light. The purpose of this paper is to present a more detailed
theory of down-conversion in the presence of external mir-
rors.

The suppression or enhancement by mirrors of the rate of
production of down-converted photons in the presence of a
steady pump beam is analogous, as previously noted@1#, to
the modification of single-photon spontaneous emission rates
@2#. In the latter, ‘‘cavity-QED-type’’ of experiment, the
emitting atoms have a spatial extent that is negligible com-
pared with the wavelength of the emitted light, so that an
atom can be positioned precisely at a point corresponding to
a node or crest of the~vacuum! field at the emission wave-
length. Depending on whether the atom is at such a node or
crest, the spontaneous-emission rate is either suppressed or
enhanced compared with its free-space value. This is inter-
pretable as either a modification of the vacuum field interact-
ing with the atom, compared with the free-space vacuum
field, or as a modification of the atom’s radiation reaction
field compared with its free-space form@3#. The distances
d between the atom and the reflecting surfaces must be small
compared with the coherence length of the spontaneous ra-
diation in order for these surfaces to have a significant effect

on the emission.~The coherence length in this case is simply
ct, wheret is the radiative lifetime.! In other words, the
free-space radiation rateA51/t must be small compared
with the photon bounce ratesc/d in order for the atom to
‘‘see’’ the reflecting surfaces before emitting a photon as if
in free space.

In the experiments on two-photon down-conversion, how-
ever, the interaction volume within the crystal has an extent
much greater than the wavelengths of the pump or down-
converted fields, and so the analogy to cavity QED is not
immediately obvious. Moreover, the coherence length of the
down-converted light is very small~a few hundred microme-
ters! compared with the distances between the crystal and the
external mirrors, and so again an essential feature of ordinary
cavity QED is absent. Our analysis nevertheless validates the
interpretation of the down-conversion experiments in the
fashion of cavity QED.

The experimental setup of interest here is indicated in Fig.
1. In the following section we formulate the Hamiltonian and
Heisenberg equations of motion that form the basis for the
rest of the paper. In Secs. III and IV we calculate the depen-
dence of the signal, idler, and coincidence counting rates on
the crystal-mirror separations, obtaining results in agreement
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FIG. 1. Experimental configuration employed by Herzoget al.
@1#. PM, SM, and IM are mirrors reflecting pump, signal, and idler
fields, respectively, and SD and ID are signal and idler photodetec-
tors, respectively.
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with the observations of Herzoget al. @1#. The analysis is
extended in Sec. V to account for the finite coherence lengths
of the pump, signal, and idler fields. Section VI briefly sum-
marizes our results and conclusions.

II. HAMILTONIAN AND HEISENBERG OPERATORS

In order to describe how the pump field interacts with the
nonlinear crystal we take as our starting point the basic
2P•E interaction energy density and consider the change in
the induced dipole energy as the inducing field is brought
from 0 toE:

W52E d3xE
0

E
P~E!•dE, ~1!

whereP is the dipole moment density. In the linear case
Pi5x i j Ej , where the summation convention for repeated
indices is used. Then

W52E d3xx i j E
0

E
EjdEi52

1

2E d3xPiEi . ~2!

The factor12 arises because the dipole density isinduced@4#.
In the case of a second-order nonlinear polarization
Pi5x i jkEjEk we have, similarly,

W52E d3xE
0

E
PidEi52

1

3E d3xx i jkE
0

E
d~EiEjEk!

52
1

3E d3xx i jkEiEjEk , ~3!

which differs from the form assumed by Hong and Mandel
@5#; in their formulation a factor12 appears instead of the
2 1

3 of Eq. ~3!. Although the form~3! might in principle be
taken as the appropriate one, the difference is immaterial, as
different multiplicative factors can be reabsorbed into the
definition of the nonlinear susceptibility. We will takex i jk to
be independent of frequency, which is an excellent and fre-
quently employed approximation for pump, signal, and idler
frequencies far from any absorption resonances of the crys-
tal.

The linear coupling between the matter and the field leads
among other things to different refractive indices inside and
outside the crystal. For simplicity, and following Hong and
Mandel@5#, we ignore such differences in writing the Hamil-
tonian and assume we have vacuum outside the crystal.
Then, assuming only anonlinearcoupling between the crys-
tal and the field, we use the Hamiltonian

H5Hmatter1Hfield2
1

3E d3xx i jkEiEjEk

5Hmatter1(
g

\vgag
†ag2

1

3E d3xx i jkEiEjEk , ~4!

whereag andag
† are the usual photon annihilation and cre-

ation operators, respectively, for modeg. The i th component
of the electric field operator can be written as

Ei~x,t !5 i(
g

~2p\vg!1/2@ag~ t !Ug i~x!2ag
†~ t !Ug i* ~x!#,

~5!

so that

H5Hmatter1(
g

\vgag
†ag2

i 3

3
~2p\!3/2(

gba
~vgvbva!1/2

3E d3xx i jk@agUg i~x!2ag
†Ug i* ~x!#

3@abUb j~x!2ab
†Ub j* ~x!#@aaUak~x!2aa

†Uak* ~x!#. ~6!

Here theUg are field mode functions whose form for the
problem of interest is discussed later, andi , j , k denote their
Cartesian components.

In the Heisenberg picture the operators are time depen-
dent. The photon annihilation operator for modeg, for in-
stance, satisfies the Heisenberg equation of motion

i\ȧg~ t !5@ag ,H#5\vgag~ t !2
1

3E d3xx i jk@ag ,EiEjEk#.

~7!

Now

@ag ,EiEjEk#5@ag ,Ei #EjEk1Ei@ag ,Ej #Ek1EiEj@ag ,Ek#

52 i ~2p\vg!1/2@Ug i* ~x!Ej~x,t !Ek~x,t !

1Ug j* ~x!Ei~x,t !Ek~x,t !

1Ugk* ~x!Ei~x,t !Ej~x,t !#, ~8!

and so

ȧg52 ivgag~ t !

1
1

3 S 2pvg

\ D 1/2E d3xx i jk@Ug i* ~x!Ej~x,t !Ek~x,t !

1Ug j* ~x!Ei~x,t !Ek~x,t !1Ugk* ~x!Ei~x,t !Ej~x,t !#

52 ivgag~ t !

1S 2pvg

\ D 1/2E d3x8x i jkUg i* ~x8!Ej~x8,t !Ek~x8,t !,

~9!

where we invoke permutation symmetry ofx i jk @6#. This
equation can be formally integrated to give

ag~ t !5ag~0!e2 ivgt1S 2pvg

\ D 1/2E d3x8x i jkUg i* ~x8!

3E
0

t

dt8Ej~x8,t8!Ek~x8,t8!eivg~ t82t !. ~10!

The total electric field has two parts—the free field corre-
sponding to the homogeneous solution of the operator Max-
well equations, and the source field associated with the non-
linear susceptibilityx i jk . We are primarily concerned here
with the source term, denoted by the superscripts. This term
may be written, using the second term of Eq.~10! in Eq. ~5!,
as
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En
~s!~x,t !5E d3x8x i jkE

0

t

dt8Ej~x8,t8!Ek~x8,t8!i(
g

~2pvg!@Ugn~x!Ug i* ~x8!eivg~ t82t !2Ugn* ~x!Ug i~x8!e2 ivg~ t82t !#

[E d3x8E
0

t

dt8Gni~x,t;x8,t8!x i jkEj~x8,t8!Ek~x8,t8!, ~11!

where we define the Green function

Gni~x,t;x8,t8!5 i(
g

~2pvg!@Ugn~x!Ug i* ~x8!eivg~ t82t !

2Ugn* ~x!Ug i~x8!e2 ivg~ t82t !#. ~12!

Our expression forEn
(s)(x,t) is generally valid for any three-

wave mixing process involving the nonlinear susceptibility
x i jk . Moreover, all fields thus far are fully quantized and no
assumptions have been made about the mode functions.
From Eq.~10! and the general expression~5! for the electric-
field operator we find for the free field, in the absence of the
crystal or other sources,

En
~0!~x,t !5 i(

g
~2p\vg!1/2@ag~0!e2 ivgtUgn~x!

2ag
†~0!eivgtUgn* ~x!#. ~13!

From the canonical commutation relation@ag ,ag8
†

#
5dgg8 for the mode annihilation and creation operators it
follows straightforwardly that the Green function~12! can
also be written as

Gni~x,t;x8,t8!5
i

\
@En

~0!~x,t !,Ei
~0!~x8,t8!#. ~14!

In the case of free space, for which the mode functions
Ug i(x)}eg iexp(ikg•x), with êg a unit polarization vector,
the commutator is the well known ‘‘Pauli-Jordan commuta-
tor’’ @3#. In the case of interest here the free-space mode
functions are modified by reflections off the signal, pump,
and idler mirrors~Fig. 1!, and the Green function will be
more complicated.

III. SIGNAL AND IDLER COUNTS

Let us now apply these expressions specifically to the
signal field in the three-wave mixing process in which pump
radiation is down-converted in frequency to signal and idler
radiation. The mode functions, and therefore the Green func-
tion in Eq. ~11!, will remain unspecified until we apply our
results to the situation illustrated in Fig. 1. From Eqs.~11!
and ~13! we have

En~x,t !5En
~0!~x,t !1En

~s!~x,t !

5En
~0!~x,t !1E d3x8E

0

t

dt8Gni~x,t;x8,t8!x i jk

3Ej~x8,t8!Ek~x8,t8! ~15!

for the nth Cartesian component of the electric-field opera-
tor. We will be interested specifically in the case of type-I
phase matching@6# in a negative uniaxial crystal. The signal
and idler fields, which of course are defined arbitrarily in this
context, are polarized as ordinary waves and the pump is
polarized as an extraordinary wave. Then for notational con-
venience we can drop the subscripts on the fields in~15!:
Ej (x8,t8) is replaced by the pump fieldEP(x8,t),
Ek(x8,t8) by the idler fieldEI(x8,t8), andEn(x,t) by the
signal fieldES(x,t), each of these fields corresponding to
specific Cartesian components taking part in the phase-
matched down-conversion. Thus

ES~x,t !5ES
~0!~x,t !

1E d3x8xE
0

t

dt8G~x,t;x8,t8!EP~x8,t8!EI~x8,t8!,

~16!

where

G~x,t;x8,t8!5 i(
s

~2pvs!@Us~x!Us* ~x8!eivs~ t82t !

2Us* ~x!Us~x8!e2 ivs~ t82t !# ~17!

and the subscripts now distinguishes among all possible
signalmodes.

The quantity of interest for the signal counting is^ES
(2)

3(x,t)ES
(1)(x,t)&, where ~1! and (2) designate positive-

and negative-frequency parts, respectively, of the signal field
operator. The positive-frequency part of the first term on the
righthand side of Eq.~16! is simply

ES
~0,1 !~x,t !5 i(

s
~2p\vs!

1/2as~0!Us~x!e2 ivst. ~18!

The positive-frequency part of the second~source! term in
Eq. ~16! is approximately

E d3x8xE
0

t

dt8G~1 !~x;t;x8,t8!EP
~1 !~x8,t8!EI

~2 !~x8,t8!,

~19!

where

G~1 !~x,t;x8,t8![ i(
s

~2pvs!Us~x!Us* ~x8!eivs~ t82t !.

~20!

This identification of the positive-frequency part of the sig-
nal field operator assumes that the initial state of the pump
field has a narrow distribution of initially occupied states,
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and furthermore for given emission directions that phase
matching and energy conservation limit the range of signal
and idler frequencies to narrow widths aboutvS and v I ,
respectively, wherevS1v I5vP , vP being the central fre-
quency of the quasimonochromatic pump. In other words,
we anticipate that

EP
~1 !~x8,t8!EI

~2 !~x8,t8!eivst8 ~21!

is in effect slowly varying as exp@2 i (vP2v I2vs)t8# for a
quasimonochromatic pump and phase-matched down-
conversion, so that the operator~19! varies predominantly as
exp(2 ivst) with vs'vS . Then, since

ES
~0,1 !~x,t !uc&5^cuES

~0,2 !~x,t !50 ~22!

for an initial field stateuc& with no occupied signal modes,
we have for such a state

^ES
~2 !~x,t !ES

~1 !~x,t !&5E d3x8xE d3x9xE
0

t

dt8E
0

t

dt9G~1 !~x,t;x8,t8!*G~1 !~x,t;x9,t9!^EI
~1 !~x8,t8!EP

~2 !~x8,t8!EP
~1 !

3~x9,t9!EI
~2 !~x9,t9!&. ~23!

The lowest-order approximation to Eq.~23! involves the replacement of the field operators in the integrand by the corre-
spondingfree fields. This amounts to ignoring pump depletion and retaining only terms up to second order in the nonlinear
susceptibility. In this approximation

^EI
~1 !~x8,t8!EP

~2 !~x8,t8!EP
~1 !~x9,t9!EI

~2 !~x9,t9!&→^EI
~0,1 !~x8,t8!EP

~0,2 !~x8,t8!EP
~0,1 !~x9,t9!EI

~0,2 !~x9,t9!&

5^EP
~0,2 !~x8,t8!EP

~0,1 !~x9,t9!EI
~0,1 !~x8,t8!EI

~0,2 !~x9,t9!&, ~24!

where we have used the fact that the free-field operators for different modes commute. For the initial field stateuc& with no
occupied idler~or signal! modes we have

EI
~0,1 !~x8,t8!EI

~0,2 !~x9,t9!uc&5(
i

(
i 8

~2p\v i !
1/2~2p\v i 8!

1/2Ui~x8!Ui 8
* ~x9!ai~0!ai 8

†
~0!eiv i 8t9e2 iv i t8uc&

5(
i

~2p\v i !Ui~x8!Ui* ~x9!eiv i ~ t92t8!uc&, ~25!

wherei labels different possible idler modes. Thus

^EP
~0,2 !~x8,t8!EP

~0,1 !~x9,t9!EI
~0,1 !~x8,t8!EI

~0,2 !~x9,t9!&

5(
i

~2p\v i !Ui~x8!Ui* ~x9!eiv i ~ t92t8!(
p

(
p8

~2p\vp!
1/2~2p\vp8!

1/2Up* ~x8!Up8~x9!ei ~vpt82vp8t9!^cuap
†~0!ap8

~0!uc&

5(
i

(
p

~2p\v i !~2p\vp!Ui~x8!Ui* ~x9!Up* ~x8!Up~x9!Npe
i ~vp2v i !~ t82t9!, ~26!

whereNp is the photon number expectation value for pump modep over the initial field stateuc&. We are assuming that the
pump field has no mode-mode correlations, so that^cuap

†(0)ap8(0)uc&5dpp8^cuap
†(0)ap(0)uc&5dpp8Np . Equation~23!

therefore becomes

^ES
~2 !~x,t !ES

~1 !~x,t !&

5~2p\!2(
i

(
p

v ivpNpE d3x8xE d3x9xUi~x8!Ui* ~x9!Up* ~x8!Up~x9!

3E
0

t

dt8E
0

t

dt9ei ~vp2v i !~ t82t9!G~1 !~x,t;x8,t8!*G~1 !~x,t;x9,t9!

5~2p\!2(
i

v iE d3x8xE d3x9xUi~x8!Ui* ~x9!E
0

t

dt8E
0

t

dt9G~1 !~x,t;x8,t8!*G~1 !

3~x,t;x9,t9!e2 iv i ~ t82t9!(
p
NpvpUp* ~x8!Up~x9!eivp~ t82t9!. ~27!
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The most important experimental results of Herzoget al. @1#
can be obtained with some substantial simplifications of
these general results, as we now show.

A. Mode functions

We will make the simplifying assumption of normal inci-
dence of the fields at all mirror surfaces~PM, SM, and IM!
shown in Fig. 1. Because small-aperture collimating dia-
phragms are employed in the experiments@1#, we will as-
sume that each pump, signal, and idler mode is characterized
by one direction of propagation (k) plus the reflected, oppo-
site direction. Thus the pump mode, for instance, is assumed
to have the form

Up~x!5Cp@e
ikpz2eikp~2dP2z!#, ~28!

whereCp is a normalization factor anddP is the distance
from the crystal to the pump mirror PM in Fig. 1. The modes
~28! correspond simply to the incident pump plus its reflec-
tion, and are taken to vanish at the surface of the pump
mirror, wherez5dP . ~The origin of coordinates here may be

chosen arbitrarily without affecting any of our results, which
only involve differences of the distancesdP , dI , anddS .)
We can write~28! equivalently as

Up~x!5Cp@e
ikp•x2eifpe2 ikp•x#, ~29!

wherefp52vpdP /c and kp5kpẑ. Exactly analogous ex-
pressions apply to the signal and idler modes:

Us~x!5Cs@e
iks•x2eifse2 iks•x#, ~30!

Ui~x!5Ci@e
iki•x2eif ie2 iki•x#, ~31!

wherefs52vsdS /c, f i52v idI /c, dS anddI being the dis-
tances from the crystal to the signal and idler mirrors, respec-
tively.

B. Energy conservation

Let us assume, to begin with, that the pump field is mono-
chromatic, so that

(
p
NpvpUp* ~x8!Up~x9!eivp~ t82t9!5NPvPUP* ~x8!UP~x9!eivP~ t82t9!. ~32!

Then

^ES
~2 !~x,t !ES

~1 !~x,t !&5~2p\!2NPvP(
i

v iE d3x8xE d3x9xUi~x8!Ui* ~x9!UP* ~x8!UP~x9!E
0

t

dt8E
0

t

dt9G~1 !

3~x,t;x8,t8!*G~1 !~x,t;x9,t9!ei ~vP2v i !~ t82t9!

5~2p\!2NPvP(
i

v iU E d3x8xUi* ~x8!UP~x8!E
0

t

dt8G~1 !~x,t;x8,t8!e2 i ~vP2v i !t8U2, ~33!

where, from Eq.~20!,

E d3x8xUi* ~x8!UP~x8!E
0

t

dt8G~1 !~x,t;x8,t8!e2 i ~vP2v i !t8

52p i(
s

vsUs~x!e2 ivstE d3x8xUi* ~x8!Us* ~x8!UP~x8!E
0

t

dt8e2 i ~vP2v i2vs!t8

52p i(
s

vsUs~x!e2 ivste2~ i!~vP2v i2vs!t
sin12 ~vP2v i2vs!t

1
2 ~vP2v i2vs!

E d3x8xUi* ~x8!Us* ~x8!UP~x8!. ~34!

The integration timet multiplied by any field frequency of interest is assumed to be very large, and so the dominant
contribution to~34! comes from frequenciesvs5vP2v i . We therefore make the familiar replacement of the sinc function by
pd(vP2v i2vs):

U E d3x8xUi* ~x8!UP~x8!E
0

t

dt8G~1 !~x,t;x8,t8!e2 i ~vP2v i !t8U2→~2p2!2vsi
2 uUsi~x!u2U E d3x8xUi* ~x8!Usi* ~x8!UP~x8!U2,

~35!
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where the subscript ‘‘si’’ is used to indicate that the
vs-dependent quantities are to be evaluated at

vs5vP2v i[vsi . ~36!

Of course, this is just the condition of energy conservation in
the downconversionvP→vs1v i . With this condition Eq.
~33! becomes

^ES
~2 !~x,t !ES

~1 !~x,t !&5~4p3\!2NPvP(
i

v ivsi
2 uUsi~x!u2

3UE d3x8xUi* ~x8!Usi* ~x8!UP~x8!U2.
~37!

C. Momentum conservation„phase matching…

The mode functions~29!–~31! give

E d3x8xUi* ~x8!Usi* ~x8!UP~x8!

5Ci*Csi*CPxE
V
d3x8@ei ~KP2ksi2ki !•x8

2ei ~fP2fsi2f i !e2 i ~KP2ksi2ki !•x8

1ei ~fP2fsi!e2 i ~KP2ksi1ki !•x82eifPe2 i ~KP1ksi1ki !•x8

1•••#. ~38!

Here*V denotes integration over the volumeV of the crystal,
or more precisely the nonlinear interaction region bathed by
the pump field, andKP is the wave vector for the monochro-
matic pump field under consideration.

We can write the integral of the first term in brackets, for
instance, as

E
V
d3x8ei ~KP2ksi2ki !•x858i

sinDkxLx
Dkx

sinDkyLy
Dky

sinDkzLz
Dkz

,

~39!

whereDkm5(KP2ksi2k i)m , m5x,y,z, and themth Car-
tesian dimension of the interaction region is assumed to run
from 2Lm to Lm . For Dkm50, m5x,y,z, this integral is
8iL xLyLz , whereas for DkmÞ0 its maximal value is
8i /uDkxDkyDkzu. For Lm@1/uDkmu, therefore, the contribu-
tion to ~39! from values ofDkmÞ0 is small compared with
the contribution fromDkm50. This means that the dominant
contribution to~38! comes from wave vectors satisfying the
momentum conservation condition

KP5ksi1k i . ~40!

This phase-matching condition implies

nP
2vP

25vsi
2 nsi

2 1v i
2ni

212nsinivsiv icosQ, ~41!

wherenP , nsi , andni are the refractive indices of the crystal
for frequenciesvP , vsi , andv i , andQ is the angle be-
tweenksi and k i ~Fig. 2!. In the experiments@1# the angle
Q is fixed by the positions of the mirrors and diaphragms,
and the pump frequencyvP corresponds to the 351.1-nm
line of an argon ion laser. The refractive indicesnP , nsi , and
ni for the LiIO3 crystal employed in the experiments may be

determined from the tabulations of Eimerlet al. @7#, for in-
stance. Therefore, to the extent thatvP andQ are precisely
determined, Eqs.~36! and ~41! uniquely determinev i[v I
and vsi[vS5vP2v I , and thereforeksi[KS and k i[K i
~see Sec. V!. And if ~40! is satisfied, the contributions to~38!
from all other terms but the first two in brackets will be
non-phase-matched and negligible. That is,

E d3x8xUi* ~x8!Usi* ~x8!UP~x8!

→CI*CS*CPxV@12ei ~fP2fS2f I !# ~42!

and therefore

^ES
~2 !~x,t !ES

~1 !~x,t !&

5~4p3\!2NPvPv IvS
2uUS~x!u2

3uCICSCPu2x2V2u12ei ~fP2fS2f I !u2. ~43!

D. Signal and idler counting rates

Equation~43! implies the signal counting rate

RS5AS~12cosu!, ~44!

u[fP2fS2f I5
2vPdP

c
2
2vSdS
c

2
2v IdI
c

54pS dPlP
2
dS
lS

2
dI
l I

D . ~45!

For our purposes here,AS is an uninteresting constant. The
analogous considerations for the idler counting rate give
likewise

RI}~12cosu!. ~46!

FIG. 2. The angleQ between the created signal and idler fields
is determined by angle phase matching in which the pump is lin-
early polarized as an extraordinary wave, incident at 90° to the
optic axis of the crystal, and the signal and idler waves are linearly
polarized ordinary waves.
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These sinusoidal variations of the signal and idler count
rates with the crystal-mirror separationsdP , dS , anddI have
been observed in the experiments of Herzoget al. @1#.

E. Physical interpretation and simplified formulation

These results can be interpreted as follows. The total
probability amplitude for a photon to be counted at the de-
tector SD~Fig. 1! is the sum of amplitudes for two distinct
and indistinguishable processes. In the first of these pro-
cesses the incoming pump mixes with an incoming vacuum
idler to generate a signal photon which then propagates to
SM and is reflected back through the crystal to SD@Fig.
3~a!#. The amplitude for this process may be taken to be
A15beifs. In the second process a signal photon is created
when the pump beam reflected from PM mixes with a
vacuum idler field reflected from IM to generate a signal
photon that then propagates from the crystal to SD@Fig.
3~b!#. Since it involves pump and idler phase changes asso-
ciated with propagation between the crystal and the mirrors,
but not such phase change for the signal, the amplitude for
the second process isA252bei (fP2f I ) @8#. Thus the prob-
ability of counting a signal photon at SD is

uA11A2u25ubu2ueifS2ei ~fP2f I !u2}12cosu, ~47!

in agreement with~44!.

The derivation just given involves interfering probability
amplitudes for the two ways by which a signal photon can
appear at SD, and of course the same result is obtained by
considering the two interfering paths by which an idler pho-
ton can appear at ID. Because the signal and idler photons
are created in pairs, as discussed further in the following
section, we can obtain the same result by considering the two
distinct ways in which a pump photon can be annihilated and
the created signal and idler photonsboth appear at their re-
spective detectors. One way is for the pump photon to be
annihilated in the crystal without first reflecting off PM; the
signal and idler photon then reflect off SM and IM and
propagate to SD and ID, respectively. The amplitude for this
process is, say,2bei (fS1f I ) @8#. Alternatively, the pump
photon can pass through the crystal, reflect off PM, and then
create the signal-idler pair, and for this process we can take
the amplitude to bebeifP. Adding these two amplitudes and
squaring the modulus of the result then gives the signal/idler
coincidenceprobability}12cosu.

In the derivation of~44!–~46! we have integrated over the
interaction region inside the crystal, whereas the simplified
derivations just given for theu dependence of the counting
rates assume in effect a point interaction. The more detailed
derivation leading to~44!–~46! gives, through the integration
over both time and interaction volume, the energy and mo-
mentum conservation conditions~36! and~40!, respectively.
These conditions areassumedin the simplified derivation
just given. A second simplified derivation, based on field
operators, can be obtained when these conditions are pre-
sumed: write

aS5aS01baP0aI0
† , b5g~12eiu!, ~48!

aI5aI01baP0aS0
† , ~49!

whereaS andaI are the photon annihilation operators for the
specified, phase-matched signal and idler modesS and I ,
respectively, andg for our purposes is an unimportant con-
stant associated with these modes and the crystal. The opera-
torsaS0 , aI0 , andaP0 are the free, unperturbed mode anni-
hilation operators, satisfyingaS0uc&5aI0uc&50 for the
initial field stateuc& with no signal or idler photons. Equa-
tions ~48! and ~49! contain the essential physical content of
our more complicated equations for the full electric-field op-
eratorsES,I

(1)(x,t) when the energy and momentum conserva-
tion conditions are invokeda priori and when all largely
irrelevant constants are effectively lumped together ing.

For the initial stateuc& we obtain by trivial algebra the
expectation value

^aS
†aS&5ubu2^aP0

† aP0aI0aI0
† &5ubu2^aP0

† aP0&

5NPugu2u12eiuu2 ~50!

and likewise

^aI0
† aI0&5NPugu2u12eiuu2. ~51!

The signal and idler counting rates are proportional to these
quantities in this simplified formulation, which therefore also
produces the experimentally observed variations with
crystal-mirror separations.

FIG. 3. Two distinct processes leading to the detection of a
signal photon at SD. In~a! the signal photon to be detected is
created by the forward-propagating pump, reflects off SM, and
propagates back through the crystal to SD. In~b! the signal photon
is created by the backward-propagating pump that has reflected off
PM, and propagates directly to SD. In~a! the signal is generated by
the mixing of the pump with a vacuum, forward-propagating idler
field, and in~b! by the mixing of the backward-propagating pump
with a vacuum, backward-propagating idler field.
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IV. SIGNAL-IDLER COINCIDENCE RATE

The simplified formation based on~48! and~49! can also
be used to calculate the signal-idler coincidence rate:

RSI
~2!}^aS

†aI
†aIaS&. ~52!

We assume thatubu2NP!1, which is consistent with the as-
sumption of an undepleted pump beam. Then some simple
algebra gives the result, under this assumption,

RSI
~2!}ubu2^aP0

† aP0aI0aI0
† aI0aI0

† &5ubu2NP

5NPugu2u12eiuu2. ~53!

This result exhibits exactly the sinusoidal variations of the
coincidence rate with crystal-mirror separations observed ex-
perimentally@1#. Since the more detailed theory leading to
~44!–~46! merely reproduces this result of the simplified for-
mulation, we will not bother to carry it through. It should be
emphasized, however, that the coincidence rate is directly
proportional to the single-photon counting rate, and in par-
ticular has the same dependence on the mirror-crystal sepa-
rations, showing clearly that we are dealing with a photon-
pair effect whereby photons are created in pairs.

Classical formulation

Some aspects of these results are understandable classi-
cally. In a classical field formulation the operatorsaS and
aI are replaced byc numbersaS anda I . The classical ana-
logs of expressions~48! and ~49! are

aS5aS01baP0a I0* , ~54!

a I5a I01baP0aS0* . ~55!

The classical quantity corresponding to Eq.~50! is the
squared modulus of the signal field amplitude:

uaSu25uaS0u21ubu2uaP0u2ua I0u212 Re~baP0aS0* a I0* !

5ubu2uaP0u2ua I0u2}u12eiuu2 ~56!

if aS050, i.e., if the signal field is initially zero while both
the idler and pump fields have some initial energy. In other
words, if we assume that the initial signal field is zero, then
we can obtain classically the same variation of the generated
signal energy withu as is obtained quantum mechanically
for the signal photon count.

Similarly, from ~55!,

ua I u25ua I0u21ubu2uaP0u2uaS0u212 Re~baP0a I0* aS0* !

5ubu2uaP0u2uaS0u2}u12eiuu2 ~57!

if we takea I050 but aP0 , aS0Þ0. That is, we can obtain
the same variation ofua I u2 with u as is obtained quantum
mechanically for the idler photon count if we assume that
there is initially no idler energy but that the initial signal and
pump fields are both nonvanishing.

We will not elaborate further on classical themes@9#, ex-
cept to note that a coincidence rate analogous to~53! cannot
be inferred from a consistent classical theory. The classical
counterpart ofRSI

(2) is

uaSu2ua I u2>uaS0u2ua I0u21uaP0u2ubu2~ ua I0u41uaS0u4!

12 Re@aP0aS0* a I0* ubu2~ ua I0u21buaS0u2!#

~58!

in the same approximation made in~53! of retaining only
terms up to quadratic inx. It is evident from these results
that a classical theory cannotconsistentlycapture all aspects
of the quantum-mechanical and experimentally observed re-
sults. Thus, we obtainua I u2}u12eiuu2 and ua I u2uaSu2

}u12eiuu2 by choosinga I050, but then we do not get
uaSu2}u12eiuu2.

V. EFFECTS OF PARTIAL TEMPORAL COHERENCE

In obtaining the results for the variations of the signal,
idler, and coincidence counts with crystal-mirror separations,
we have assumed that the pump is perfectly monochromatic
and that the signal and idler photons are monochromatic and
independent of the filters and diaphragms employed in the
actual experiments. We will now consider what happens
when the pump has finite temporal coherence and when there
is some frequency spread in the measured signal and idler
photons@10#. Both these effects will reduce the interference
between the two processes indicated in Fig. 3. Since they are
physically distinct effects, we will consider them separately.

A. Pump coherence

Beginning with Eq.~32!, our analysis in Sec. IV assumed
that the pump field incident on the crystal has a precisely
defined frequencyvP and wave vectorKP . Suppose instead
that there is a distribution of pump frequencies aboutvP .
We writevp5vP1Dp and replace~32! by

(
p
NpvpUp* ~x8!Up~x9!eivp~ t82t9!5NPvPe

ivP~ t82t9!E
2`

`

dDpg~Dp!Up* ~x8!Up~x9!eiDp~ t82t9!, ~59!

whereg(Dp) is some narrow, normalized distribution function, peaking atDp50, whose width is a measure of the degree of
nonmonochromaticity and temporal incoherence of the incident pump field.

It is straightforward to carry through the analysis of Sec. IV starting from~59! instead of~32!. We obtain instead of~37!,
for instance, the expression

^ES
~2 !~x,t !ES

~1 !~x,t !&5~4p3\!2NPvPE
2`

`

dDpg~Dp!(
i

v ivsi
2 uUsi~x!u2U E d3x8xUi* ~x8!Usi* ~x8!Up~x8!U2, ~60!
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where energy conservation now takes the form

v i1vsi5vP1Dp . ~61!

The integral over the crystal interaction volume leads simi-
larly to the momentum conservation condition
k i1ksi5K p , where K p now has magnitude
n(vp)vp/c>n(vP)(vP1Dp)/c. ~We assume that all wave
vectors associated with the incident pump point in the same
direction.! With these energy and momentum conservation
conditions, Eq.~60! takes the form

^ES
~2 !~x,t !ES

~1 !~x,t !&}E
2`

`

dDpg~Dp!@12cosu~Dp!#,

~62!

u~Dp![2~vP1Dp!dP /c22v idI /c22vsidS /c. ~63!

It is convenient to writev i5v I1D i andvsi5vS1Ds ,
with vS1v I5vP , so that

D i1Ds5Dp . ~64!

Assuming uD i u/v I ,uDs u/vS!1, and nsi>nS , ni>nI , the
momentum conservation condition on the frequenciesD i and
Ds can be obtained from~41! by differentiation:

nP
2vPDp5nS

2vSDs1nI
2v ID i1nSnI~vSD i1v IDs!cosQ.

~65!

Equations~64! and ~65! determine the deviationsDs and
D i of the created signal and idler photons fromvS andv I ,
given the deviationDp of the pump frequency from
vP5vS1v I .

Before calculatingDs andD i in terms ofDp , let us return
to the equations

vS1v I5vP , ~66!

nP
2vP

25nS
2vS

21nI
2v I

212nSnIvSv IcosQ ~67!

determiningvS andv I . In the experiments of Herzoget al.
@1# the angleQ is such that a 351.1-nm pump generates
632.8- and 788.7-nm signal and idler fields, respectively. A
type-I phase matching is employed, such that the pump is a
linearly polarized extraordinary wave incident at 90° to the
optic axis, while the signal and idler are both linearly polar-
ized ordinary waves~Fig. 2!. For these wavelengths and po-
larizations we calculate, from the data of Eimerlet al. @7#,
nP51.7197,nS51.8810, andnI51.8657 for LiIO3 . Then
we can infer the angleQ from Eq. ~67!:

Q5cos21~0.6797!547.2°. ~68!

KnowingQ, we can now solve Eqs.~64! and~65! relating
Ds andD i to Dp , the result being

Ds50.56Dp[jsDp , ~69!

D i50.44Dp[j iDp . ~70!

Thus

u~Dp!52~vP1Dp!dP /c22~vS1Ds!dS /c

22~v I1D i !dI /c

5u12Dp~dP2j idI2jsdS!/c, ~71!

whereu52vPdP /c22vSdS /c22v IdI /c is the value of the
net phase difference when the pump is perfectly monochro-
matic. Expression~62! is then

^ES
~2 !~x,t !ES

~1 !~x,t !&}E
2`

`

dDpg~Dp!2ReS eiuE
2`

`

dDpg~Dp!e
2iDp~dP2jsdS2j i dI !/cD

512ReS eiuE
2`

`

dDpg~Dp!e
2iDp~dP2jsdS2j i dI !/cD . ~72!

In order to have a simple integral we take the frequency
distribution of the pump to be Lorentzian:

g~Dp!5
bp /p

Dp
21bp

2 , ~73!

wherebp is the bandwidth~HWHM!. This gives

E
2`

`

dDpg~Dp!e
2iDp~dP2jsdS2j i dI !/c

5e22bpudp2jsdS2j i dI u/c5e2udP2jsdS2j i dI u /Lp,

~74!

and therefore

^ES
~2 !~x,t !ES

~1 !~x,t !&512e2udP2jsdS2j i dI u /Lpcosu,
~75!

where we defineLp5c/2bp to be the coherence length of the
pump field. Note that ifdS>dI[d, then

udP2jsdS2j idI u/Lc>udP2~js1j i !du/Lc>udP2du/Lc .
~76!

These results for the effect of the pump coherence length are
consistent with the observation of Herzoget al. that ‘‘the
crystal-mirror path length for the pump should not differ by
more than the coherence length of the pump~a few meters in
@the# experiment! from the distances from the crystal to the
signal and idler mirror’’@1#.
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B. Signal-idler coherence length

In the experiments@1# two diaphragms of diameter
'0.8 mm, separated by 90 cm, are placed in the paths of
both the signal and idler fields between the crystal and the
detectors. This ensures that the detected signal and idler
modes propagate nearly unidirectionally. Nevertheless there
remains some effective spreadDQ'(0.4/900)54.45
31024 rad in the angleQ. This spread allows a distribution
of phase-matched signal and idler frequency pairsvs and
v i ~Fig. 4!.

If we assume again a monochromatic pump~i.e.,
Dp50), so thatD i52Ds @Eq. ~64!#, then~41! implies

0>nS
2vSDS1nI

2v ID I1nSnI~vSD i1v IDs!cosQ

2nSnIvSv IsinQDQ

5@nS
2vS2nI

2v I1nSnI~v I2vS!cosQ#Ds

2nSnIvSv IsinQDQ. ~77!

In other words, the deviationDs from vS of signal photons,
arising from a deviationDQ from the angleQ for which
there is phase matching forvS andv I photons, is

Ds5
nSnIvSv IsinQDQ

nS
2vS2nI

2v I1nSnI~v I2vS!cosQ
[hDQ, ~78!

and consequentlyD i52hDQ. Based on the numbers al-
ready used for the angleQ and the refractive indices, we
obtainh>2.331016 s21 and therefore

Ds>~2.331016 s21!~4.4531024!51.031013 s21,
~79!

giving the order-of-magnitude estimate 2pc/Ds'189 mm
for the signal-idler coherence length, in qualitative agree-
ment with the experimental result'260 mm @1#.

To see how this signal-idler coherence length affects the
measured counts as a function of mirror-crystal separations,
we return to Eq.~37!. The integration over volume, together
with the fact that there is now a distribution of phase-
matchedk vectors and therefore a distribution of created
signal and idler frequency pairs according to~78!, leads from
~37! to

^ES
~2 !~x,t !ES

~2 !~x,t !&}E
2`

`

dDsf ~Ds!u12eiu~Ds!u2,

~80!

u~Ds![fP22~vS1Ds!dS /c22~v I2Ds!dI /c

5fP2fS2f I22Ds~dS2dI !/c

5u22Ds~dS2dI !/c, ~81!

instead of the result~43! obtained under the assumption
DQ50. We have introduced in~80! a normalized distribu-
tion function f (Ds) for the frequency deviationsDs consis-
tent with phase matching. Once again we assume a Lorentz-
ian and obtain

^ES
~2 !~x,t !ES

~1 !~x,t !&

}12ReS eiuE
2`

`

dDsf ~Ds!e
22iDs~dS2dI !/cD

512e22bsudS2dI u/ccosu, ~82!

which replaces~44! when the bandwidthbs50. Herebs is
the width of the Lorentzian functionf (Ds), analogous to the
width bp of ~73!. Our result is consistent with the experi-
mental observation of Herzoget al.: ‘‘it is . . . the relative
position of signal and idler mirror which has to lie within the
coherence length of the spontaneously emitted down-
converted light ('260 mm in our experiment!’’ @1#.

VI. SUMMARY

Starting from the Hamiltonian~4! for general three-wave
mixing, and treating all fields quantum mechanically, we
have derived the experimentally observed results of Herzog
et al. @1# for the variation with crystal-mirror separations of
signal and idler counts and coincidence counts. Allowing for
nonmonochromaticity of the incident pump, and a distribu-
tion of phase-matched signal and idler frequency pairs asso-
ciated with a spread in phase-matching angles, we have also
accounted for the observed dependences of the counting rates
on the pump and signal-idler coherence lengths.

The theory presented here, which allows for a finite inter-
action volume, validates the interpretation of Herzoget al.
@1# that the experiment indicated in Fig. 1 represents a gen-
eralization of cavity QED experiments to a situation where

FIG. 4. Apertures are placed in both the signal and idler paths in
the experiments of Herzoget al. @1#. The diameter of each aperture
is 0.8 mm, and each aperture pair is separated by 90 cm. This gives
an angular spreadDQ;0.4/90054.4531024 rad that in turn gives
rise to finite bandwidths of phase-matched signal-idler pairs.
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the separation between the emitter and mirrors greatly ex-
ceeds the wavelength. In a sense the emitter in this case still
acts as a point source, as in ordinary cavity QED; this is a
consequence of the phase-matching~momentum conserva-
tion! conditions ensuing from an integration over all ‘‘point
sources’’ in the volume where the three-wave mixing takes
place.
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