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Unbalanced homodyning for quantum state measurements
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We propose the reconstruction of the quantum state of light from the homodyne photocounting statistics of
a single, realistic photodetector. Contrary to the development of homodyning over the last decade, our ap-
proach is based on unbalanced detection with a weak local oscillator. Representing the quantum state in terms
of s-parametrized quasiprobability distributions, the method even allows one to determine the Wigner function
provided the quantum efficiency of the detector is sufficiently large. We show that perturbing effects due to
classical noise of the local oscillator are smg#1050-294706)07006-0

PACS numbdps): 42.50.Ar, 03.65.Bz, 42.50.Dv

[. INTRODUCTION general solution of this problem does not exist yet. A recent
proposal of a tomographic method for determining the quan-
One of the most fundamental problems of optical meatum mechanical state of a trapped ion is free of such prob-
surements is the reconstruction of the full information on thdems [21]. This method is based on the detection of the
quantum state of a given light field. Its solution is the pre-ground-state occupation of a weak electronic transition,
requisite for many fundamental experiments in quantum opWhich can be measured with extremely high sensitif/2].
tics. The maximum amount of information that can be ob- Alternatively to the tomographic methods, more compli-
tained from the statistics of the photoelectric counts of acated homodyne detection schemes could be used for deter-
photodetector is the photon number distributidn-3]. Its ~ Mining the quantum state of light. For example, eight-port
direct measurement, however, would require an idealize§cheme$23,24 allow one to determine the quantum state in
photodetector with a quantum efficiency of unity. In more terms of theQ function[25,26. For nonideal detectors the
realistic cases, the determination of the photon statistics réecorded distributions are further smoothg2i7], so that

quires a reconstruction procedure to eliminate the effects o¥-parametrized quasiprobability distributiof28] are mea-
nonideal detectiof4—6]. sured, which are broader than tQefunction. More recently

For getting insight into phase-sensitive properties of light,it has been shown that the same information is accessible by

it is convenient to use homodyne detection schefifed.  Using a six-port homodyne detection scheli2e].
Usually the signal field is superimposed by a strong local In the present paper we will show that a simple unbal-
oscillator before it is measured. However, even small classianced homodyne detection scheme is feasible to reconstruct
cal fluctuations of the strong local oscillator can alter thethe quantum state of light from the measured photocounting
measured data significantly. To solve this problem balancegtatistics. The reconstruction is particularly simple for a rep-
homodyne detection has been proposed, where the differené@sentation of the quantum states in terms of
statistics of the events in two channels is recorfiedd]. s-parametrized quasiprobability distributions, which are ob-
This method has been applied in squeezed-light experimentgined by summing up the measured counting statistics with
[11,12. appropriate weight factors. This approach includes the de-
Recently it has been demonstrated experimentally thagonvolution needed for any realistic detector. Numerical
balanced homodyning can be used to reconstruct the quafimulations demonstrate the applicability of the method.
tum state of light via optical homodyne tomogragh,14. Eventually we will show that classical noise of the local
A four-port homodyne detection scheme is used to measurescillator is not crucial for the technique under study.
the statistics of difference events in the two output channels The paper is organized as follows. In Sec. Il we introduce
of the device for various values of the phase difference bethe unbalanced detection scheme considered in our approach.
tween local oscillator and signal field. The measured distri-The quantum-state reconstruction from the photoelectron sta-
butions have been used to reconstruct the Wigner functiofistics recorded in the unbalanced scheme is studied in Sec.
and the density matrix by inverse Radon transform, whicHll, including some numerical simulations. The effects of lo-
effectively corresponds to various integrations of the meacal oscillator noise in this unbalanced reconstruction method
sured datd15]. Related work has been performed to deter-are treated in Sec. IV. A summary and some conclusions are
mine the quantum state of a molecular vibratj@é]. In both ~ given in Sec. V.
kinds of experiments the data include the effects of imperfect
detection with quantum efficienpies signif_icantly smaller Il UNBALANCED DETECTION SCHEME
than one, so that “smoothed” Wigner functions are recon-
structed. A deconvolution procedure is required to eliminate Let us consider the unbalanced homodyne detection
these perturbations. This would include the multiplication ofscheme given in Fig. 1. A beam splitter combines the signal
the data with exponentially rising functioh$7—-20, so that field with the local oscillator field. The superimposed light
sampling noise may become crucial. To our knowledge, a&an be described by the beam splitter transform&taih
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tistics recorded in an unbalanced scheme, the dependence of
this measured statistics on the coherent amplidad the
value of the overall quantum efficienay are of relevance.

For this reason we have introduced in Ef) these depen-
dencies explicitly in the notation of the counting statistics.

BS

SI

+ Ill. QUASIPROBABILITY DISTRIBUTIONS
LO FROM PHOTOELECTRON STATISTICS

FIG. 1. Unbalanced homodyne detection scheme for the recon-
struction of the quantum state of light; BS, beam splitter; LO, local
oscillator; Sl, signal field; SL, superimposed light field; and PD,
photodetector.

For relating the statistics measured in this scheme to the
guantum state of the signal field in terms of the
s-parametrized quasiprobability distributior®(«;s), we
start with the relatior}28]
ag=Ta+Rb; 1) 2 2|a— |2

. P(a;S)=,—f d’g exp(—,—) P(B:s’).
a, b, andag are the photon annihilation operators of the m(s'—9) S=Ss
signal field, the local oscillator field, and the superimposed (10

field, respectivelyT andR are the complex amplitude trans- + g10ws one to express ams-parametrized distribution in

mission and reflection coefficients of the beam splitter, '®erms of another distribution of parametgr, provided that
spectively, which obey the familiar relations s<s'. Choosings'=1, where P(8;1) is the Glauber-

IT|2+|R|2=1 ) Sudarshan distribution, this result yields any quasiprobability
’ distribution with s<1, including the Wigner function
arg T)—argR) = =+ /2. 3y (s=0) and theQ function (s=—1). In this particular case

the right-hand side of Eq10) can be rewritten as a normally
This yields the photon number operator of the superimposedrdered expectation value of the form

light field as 5 2
P(a;S)=m<ZeXF‘<—rSN(a’))Z>. (11)

B _ _ Comparing this result with Ed6) we see that the quasiprob-
The probabilityp,, of recordingn counts with a photode- ability distribution at the phase-space poimtis formally

. o~ R\ Ry
ng=|T| a+?b a+?b

: (4)

tector of quantum efficiency is given by[1-3] related to the zero-count probability, of a photodetector
A with efficiency n,=2/(1-5s):
_(§n5|)n o Y ( )
Pn= .Te sl ), (5)

2 2
) . P(a,S)—ﬂ_(l_S) p0<a,l_s). (12
where the :: symbol denotes normal ordering. We assume
that the local oscillator is prepared in a coherent st&e | general this efficiency), may only be considered as those
b| B)= | B). Thus we may rewrite the counting statistics asof a virtual photodetector, since it may attain unphysical val-
N N ues larger than unity when one is interested in quasiprobabil-
pn(a§77):<1[77 ()] . nN(a):>, (6) ity distributions with ordering parametess>—1. For ex-
n! ample, the direct determination of the Wigner function from
- the zero-count distributions would require a virtual detector
whereN(a) is the displacedsignal-field number operator,  of efficiency 5,= 2. For determining th& function we ar-
~ A atal . ot rive at ,=1. Consequently, this distribution could be mea-
N(a)=D(a)a’ab(a), (™ sured directly with a perfect detecton€1) by recording
A . : the probability of zero counts in dependence on the complex
([e)rw(tazin?ali?t? dgerggzzrggt displacement operator. The COherétmplitude of the local oscillator. More realistically, the zero-
count probability of a detector of overall efficiency di-
R rectly vyields the quasiprobability distributions for
a=— ?,8, (8) s=1-2/n. However, quasiprobability distributions of this
type are rather smooth and the most interesting structures of
the quantum states are hidden therein. For this reason it is of
great interest to obtain the distributions with 1 — 2/7 from
n={|T|% (9)  measured quantities.
Although in practice zero-count probabilities with effi-
In order to keep the overall efficiency as large as possible, cienciesy,=1 are not accessible, they can be reconstructed
the beam splitter should fulfill the relatidiR|?<1. from the full photoelectron statistics measured with a realis-
It will be seen in the following that for reconstructing the tic photodetector of efficiencyy<<1. The solution of this
guantum state of the signal field from the photocounting staproblem turns out to be rather simple. The exponent appear-

and the overall quantum efficiency is given by
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ing in Eqg. (11) is decomposed into the sum of the term (
— yN(«a) containing the physical efficiency and a residual
term as follows:

o, —1)

) 0.15
27 2—n(1-5) - -
‘o) — . _ = 7N(a).
P(a;s) = <.exr{ 1-s N(a) e : o1l =
(13
Expanding the residual term into a power series we get ~ °-9°
. 2 o[ 2-p(1-9)]" 0
P(a.S)—mnzo[—m Pn(a;n), <
(14 0
Im(a) = 3 . T 5
which yields the quasiprobabilities as a weighted sum over -2 -1
the homodyne counting distributioms,(a; %) [31]. This re- Re(a)

sult allows one to reconstruct quasiprobability distributions
for s>1- 2/ from the data measured with a realistic detec- q
tor. The simple summation replaces phase-space integratioﬁ%
over the measured data as used in recent experimg8ts

16]. Whereas in these experiments the chosen grid of mea-
sured data essentially determines the quality of reconstruc- la_Yy=N(]a)—|—a)), (15
tion, our method allows the reconstruction of the distribution
in each point of the phase space independently. Thus the

resolution can be improved point by point without repeatingWIth |@) being a (_:oherent state anta no_rmallzatlon con-.
. stant. States of this type exhibit quantum interferences giving
the whole reconstruction.

From the theoretical point of view Eq14) would allow rise to negative valu_es G sharp structures in the Wigner
. . o S .. function, so that their reconstruction necessitates particular
one to determine any quasiprobability distribution with

s<1 by homodyne photocounting measurements with a resare. In theQ function, however, these effects are lost. In

alistic detector. In practice, however, the data are noisy ang'g' 3 we consider the situation for an efficiency »f0.8

the quality of the reconstruction crucially depends on '[hisand reconstruct the distribution wig= —0.25. In this case

noise. In the limitss—1 and/or»— 0 the weighting factors thel tqig?rTu(r)T;t;]r:te[LeL%?getiairtehzeceonng:g;gi— 1/7 dives
appearing in Eq(14) in the sum over the counting statistics > Importar - 79
are seen to become divergent. Thus the noise is amplifie'ao ultimate limit for the reliability of our method. For larger

and the method is expected to fail. Another practical problen? values one usually needs a larger sample of data. That is,

consists in the fact that presently available photomultiplierseven the Wigner function can be obtained from the data re-

have small efficiencieg32], so that the applicability of our corded' with a nonideal detectqr. For example, n F|g: 4 we
method might be presently limited to the reconstruction thave 5|mulateq fche reconstruction .Of the Wigner function for
rather smooth quasiprobability distributions. However, since® guantum efficiency ofy=0.95 using a sample 0f§10°
only probabilities for rather small numbers of counts are de-
sired [cf. Egs. (12) and (14)], a possible solution of this
problem could be the use of an array of highly efficient ava-
lanche photodiodel33]. This renders it possible to defocus
the light to be measured in order to achieve a sufficiently 0.2}
small probability that a single photodiode is illuminated by
more than one photon within its response time. Processing .1}
the individual outputs of the photodiodes allows the mea-
surement of the photoelectron statistics close to the level of 0
high quantum efficiency of the individual avalanche photo-
diodes. -0.1}
Let us give some numerical simulations to demonstrate
the possibilities of reconstructing quasiprobability distribu-
tions from the photoelectric counting statistics in unbalanced -
homodyne detection. The method works very well when the Im(c) 0 ‘ , .
s values fulfill the conditiors<1—1/%, so that the weight- 1T, -1 0 1 2
ing factors improve the convergence of the series. When the Re(a)
equal sign holds, an efficiency gf=0.5 is feasible to recon-
struct theQ function. The simulation of such an example is  FIG. 3. Simulation of the reconstruction B a;s= — 0.25) for
given in Fig. 2, where each counting statistics is simulatedhe same state as in Fig. 2, quantum efficiengy 0.8, and 18
with a sample of 1devents. We demonstrate the method forsampling events for each point of the grid. Quantum interferences
an odd coherent staf&4,35, are seen clearly, which lead to negative values of the distribution.

FIG. 2. Simulation of the reconstruction of tlefunction for an
coherent state with=1.6, quantum efficiency;=0.5, and
sampling events for each point of the>15 grid.

P(a; —0.25)
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In this model the local oscillator amplitudef mean value

B) is superimposed by thermal noise characterized by the
mean thermal photon number,. We supposeny, to be
proportional to| 8|2, so that for decreasing amplitudes of the
local oscillator its fluctuations also decrease.

In order to include the classical fluctuations of the local
oscillator in the theory, we have to average the measured
photoelectron statisticp,(«; %) over the noise distribution
P(B). Since the averaged statistipg(«; ) for generalyn
values can be given as

- & [n+m S
pn(a;n)=20( n )vn(l—ﬂ)mpnm(a;l). 17

M=
Re(a) we may confine ourselves to the case of a perfect detector
with =1,
FIG. 4. Simulation of the reconstruction of the Wigner function ~ -
for the same state as in Fig. 2, quantum efficiemcy0.95, and — _N(a) “N(a).
5% 10° sampling events for each point of the grid. The negative Pa(a;1)= n! € )

values of the distribution are a signature of the nonclassical prop- .

erties of the state. B f dZBP(,B)< N(a)" - N(a).> .
Tl o).

events. Note that the simulated distributions throughout are

in suitable agreement with the corresponding exact ones. afiar some lengthy but straightforward algebra we derive

from Egs. (16) and (18) an expression for the averaged
IV. LOCAL OSCILLATOR NOISE counting statistics in the form

Let us finally consider the influence of the classical noise o N
of the local oscillator on the method under consideration. mzz F. (N N(e) e-N(I).
This point is of great importance since it was the reason for me o MU '
the development of balanced homodyne detection. However, .
the noise problems in unbalanced schemes are closely related B —
to the use of a strong local oscillator. In the context of ho- —nZaO Fmna(Np)pn(a;1). (19
modyne correlation measurements it has recently been
shown that the noise effects of the local oscillator becomerpe matrixF . (ng) describes the effects of the fluctuations
meaningless when the strength of the local oscillator is cOMas the 10cal oscillator and is given by
parable to those of the signal fiel@6]. This is just the rel-

evant situation in our scheme of quantum state reconstruc- plm=nl 1+ na2

tion based on unbalanced homodyne detection. To Fmn(Ng) = f Pgmnl,O)( "2
understand this point, we first give a simple, suggestive ar- ' 1+ng 1-nq

gument. Let us return to the formal expression of the qua- (1—ny)"

siprobability distributions in terms of the zero-count prob- ———= for m=n

abilities in Eg. (12). Usually the quantum state under % (1+ng) (20)
consideration is localized in a certain phase-space area. The (1—ngm

leading contributions to the zero-count probability are ex- [T for m<n,

pected to arise when the local oscillator just displaces the

phase-space distribution of the signal field towards the Orig"\‘/vith PE]k,I)(X) being the Jacobi polynomials and the quantity

of the phase space. To achieve this, the part of the IoceH _ 2 ; :

X =" . 4= (|R|/|T|)?ny, being that part of the thermal photons in-
os_cnlator incident on the detectpeharacterized by the value cident on the detector. Note that the fluctuation matrix fulfills
a in Eq. (8)] should be comparable to the strength of thethe relation

signal field and is therefore weak.

A more rigorous treatment of the effects of local oscillator
noise requires a statistical averaging over the value af
Eq. (14). For this purpose let us consider a simple fluctuation

model, where the fluctuations of the local oscillator are de<q that we retain an identical transformation when the noise
scribed by a GaussiaGlauber-Sudarsharf® function of the

lim Fm,n(nfl)zém,nr (21)

nﬂﬂo

vanishes.
type In Fig. 5 we show a simulation of the reconstruction of
1 |,3—,3_|2 the Wigner function with a nonideal detector and in thg pres-
P(B)Z—GXF<— ) (16) ence of rather strong fluctuations of the local oscillator:
TNty Nin ng/|a[?=0.1. For this purpose we apply
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The reconstruction procedure is particularly simple when the
quantum state is represented in terms of shgarametrized
quasiprobability distributions of Cahill and Glauber. We
have found that any such quasiprobability distribution can be
formally expressed in terms of the zero-count probability of
a virtual detector of a quantum efficiency that may exceed
the ideal value of one. The limit of an ideal detector would
directly allow one to measure th@ function by recording
the zero-count probability as a function of the complex am-
0. plitude of the local oscillator. For a realistic detector the
quasiprobability distribution recorded in this manner is more
smooth than th&) function.

0 We further show that the zero-count distribution of a vir-
Im(a) h s ) 5 1 . tual detector with a quantum efficiency larger than one can
2 Re(a) be expressed in terms of a weighted sum of the counting
el

statistics recorded with a realistic detector of quantum effi-

FIG. 5. Simulation of the reconstruction of the Wigner function %??ﬁg ss—m:rllier‘:](tar:ﬁ;‘e%neﬁ;—shiIsrgtl)\;ebsili? Vgirs){[ristl)rStFi)(l)?]se)i(r?:ifr?gn
for the same situation as in Fig. 4, but with a noisy local oscillator P q P Y

of relative intensity fluctuationsy /[a[2=0.1. of measure_d guantities. Result.s of simu_Iations show that_the
deconvolution of data can be included in the reconstruction

5 . 5 1 n in appropriate limits, depending on the number of sampling
P(a;s)= D [_ 7(1-9) m events. In particular we o_lem_onstrate that the_ me_tho_d_ allows

’ m(1—s)i=o 7(1—s) mee one to reconstruct distributions that contain significantly

(22 more structures than th@ function. When a large quantum
- efficiency can be realized it even becomes possible to recon-
with pp(e; 77) from Egs.(17) and(19). Since the fluctuations  stryct the Wigner function in a rather simple manner. In view
grow with increasing local oscillator amplitude, the recon-of the fact that photomultipliers have small efficiencies,
struction of the quasiprobability in the origin of phase spaceyresent technology may limit the method to the reconstruc-
is not disturbed, while with increasing distance from the ori-tion of rather smooth quasiprobability distributions. A way to
gin the distribution is smeared out by the averaging effect obvercome these limitations could be the appropriate use of an
the fluctuations. In order to show their effects clearly, in thearray of highly efficient avalanche photodiodes.
example chosen we have assumed much stronger fluctuations Another important problem in the context of unbalanced
than would usually occur in experiments with stabilized la-homodyning is the fact that classical noise of the local oscil-
Sers. lator may substantially disturb the measured statistics. In our
method the leading contributions to the quasiprobability dis-
V. SUMMARY AND CONCLUSIONS tributions are observed with a weak local oscillator so that

. the classical noise effects are very small. This intuitive argu-
In the present paper we have shown that the full informa- Y 9

tion on the quantum state of light can be determined from th ment is confirmed by detailed calculations of the noise ef-

photocounting statistics recorded by an unbalanced homc??CtS’ which are based on a particular model of the superpo-

. o . t?ition of the coherent local oscillator by thermal noise.
dyne detection scheme. This is the simplest scheme presently
known that allows one to derive the full quantum statistical This research was supported by the Deutsche Forschungs-
information on a radiation mode from the measured datagemeinschaft.
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