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We propose the reconstruction of the quantum state of light from the homodyne photocounting statistics of
a single, realistic photodetector. Contrary to the development of homodyning over the last decade, our ap-
proach is based on unbalanced detection with a weak local oscillator. Representing the quantum state in terms
of s-parametrized quasiprobability distributions, the method even allows one to determine the Wigner function
provided the quantum efficiency of the detector is sufficiently large. We show that perturbing effects due to
classical noise of the local oscillator are small.@S1050-2947~96!07006-0#

PACS number~s!: 42.50.Ar, 03.65.Bz, 42.50.Dv

I. INTRODUCTION

One of the most fundamental problems of optical mea-
surements is the reconstruction of the full information on the
quantum state of a given light field. Its solution is the pre-
requisite for many fundamental experiments in quantum op-
tics. The maximum amount of information that can be ob-
tained from the statistics of the photoelectric counts of a
photodetector is the photon number distribution@1–3#. Its
direct measurement, however, would require an idealized
photodetector with a quantum efficiency of unity. In more
realistic cases, the determination of the photon statistics re-
quires a reconstruction procedure to eliminate the effects of
nonideal detection@4–6#.

For getting insight into phase-sensitive properties of light,
it is convenient to use homodyne detection schemes@7,8#.
Usually the signal field is superimposed by a strong local
oscillator before it is measured. However, even small classi-
cal fluctuations of the strong local oscillator can alter the
measured data significantly. To solve this problem balanced
homodyne detection has been proposed, where the difference
statistics of the events in two channels is recorded@9,10#.
This method has been applied in squeezed-light experiments
@11,12#.

Recently it has been demonstrated experimentally that
balanced homodyning can be used to reconstruct the quan-
tum state of light via optical homodyne tomography@13,14#.
A four-port homodyne detection scheme is used to measure
the statistics of difference events in the two output channels
of the device for various values of the phase difference be-
tween local oscillator and signal field. The measured distri-
butions have been used to reconstruct the Wigner function
and the density matrix by inverse Radon transform, which
effectively corresponds to various integrations of the mea-
sured data@15#. Related work has been performed to deter-
mine the quantum state of a molecular vibration@16#. In both
kinds of experiments the data include the effects of imperfect
detection with quantum efficiencies significantly smaller
than one, so that ‘‘smoothed’’ Wigner functions are recon-
structed. A deconvolution procedure is required to eliminate
these perturbations. This would include the multiplication of
the data with exponentially rising functions@17–20#, so that
sampling noise may become crucial. To our knowledge, a

general solution of this problem does not exist yet. A recent
proposal of a tomographic method for determining the quan-
tum mechanical state of a trapped ion is free of such prob-
lems @21#. This method is based on the detection of the
ground-state occupation of a weak electronic transition,
which can be measured with extremely high sensitivity@22#.

Alternatively to the tomographic methods, more compli-
cated homodyne detection schemes could be used for deter-
mining the quantum state of light. For example, eight-port
schemes@23,24# allow one to determine the quantum state in
terms of theQ function @25,26#. For nonideal detectors the
recorded distributions are further smoothed@27#, so that
s-parametrized quasiprobability distributions@28# are mea-
sured, which are broader than theQ function. More recently
it has been shown that the same information is accessible by
using a six-port homodyne detection scheme@29#.

In the present paper we will show that a simple unbal-
anced homodyne detection scheme is feasible to reconstruct
the quantum state of light from the measured photocounting
statistics. The reconstruction is particularly simple for a rep-
resentation of the quantum states in terms of
s-parametrized quasiprobability distributions, which are ob-
tained by summing up the measured counting statistics with
appropriate weight factors. This approach includes the de-
convolution needed for any realistic detector. Numerical
simulations demonstrate the applicability of the method.
Eventually we will show that classical noise of the local
oscillator is not crucial for the technique under study.

The paper is organized as follows. In Sec. II we introduce
the unbalanced detection scheme considered in our approach.
The quantum-state reconstruction from the photoelectron sta-
tistics recorded in the unbalanced scheme is studied in Sec.
III, including some numerical simulations. The effects of lo-
cal oscillator noise in this unbalanced reconstruction method
are treated in Sec. IV. A summary and some conclusions are
given in Sec. V.

II. UNBALANCED DETECTION SCHEME

Let us consider the unbalanced homodyne detection
scheme given in Fig. 1. A beam splitter combines the signal
field with the local oscillator field. The superimposed light
can be described by the beam splitter transformation@30#
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âsl5Tâ1Rb̂; ~1!

â, b̂, and âsl are the photon annihilation operators of the
signal field, the local oscillator field, and the superimposed
field, respectively.T andR are the complex amplitude trans-
mission and reflection coefficients of the beam splitter, re-
spectively, which obey the familiar relations

uTu21uRu251, ~2!

arg~T!2arg~R!56p/2. ~3!

This yields the photon number operator of the superimposed
light field as

n̂sl5uTu2S â1
R

T
b̂D †S â1

R

T
b̂D . ~4!

The probabilitypn of recordingn counts with a photode-
tector of quantum efficiencyz is given by@1–3#

pn5 K : ~zn̂sl!
n

n!
e2zn̂sl: L , ~5!

where the :: symbol denotes normal ordering. We assume
that the local oscillator is prepared in a coherent stateub&,
b̂ub&5bub&. Thus we may rewrite the counting statistics as

pn~a;h!5K : @hN̂~a!#n

n!
e2hN̂~a!:L , ~6!

whereN̂(a) is the displaced~signal-field! number operator,

N̂~a!5D̂~a!â†âD̂~a!†, ~7!

D̂(a) being the coherent displacement operator. The coher-
ent amplitudea reads as

a52
R

T
b, ~8!

and the overall quantum efficiencyh is given by

h5zuTu2. ~9!

In order to keep the overall efficiencyh as large as possible,
the beam splitter should fulfill the relationuRu2!1.

It will be seen in the following that for reconstructing the
quantum state of the signal field from the photocounting sta-

tistics recorded in an unbalanced scheme, the dependence of
this measured statistics on the coherent amplitudea and the
value of the overall quantum efficiencyh are of relevance.
For this reason we have introduced in Eq.~6! these depen-
dencies explicitly in the notation of the counting statistics.

III. QUASIPROBABILITY DISTRIBUTIONS
FROM PHOTOELECTRON STATISTICS

For relating the statistics measured in this scheme to the
quantum state of the signal field in terms of the
s-parametrized quasiprobability distributionsP(a;s), we
start with the relation@28#

P~a;s!5
2

p~s82s!
E d2b expS 2

2ua2bu2

s82s DP~b;s8!.

~10!

It allows one to express anys-parametrized distribution in
terms of another distribution of parameters8, provided that
s,s8. Choosing s851, where P(b;1) is the Glauber-
Sudarshan distribution, this result yields any quasiprobability
distribution with s,1, including the Wigner function
(s50) and theQ function (s521). In this particular case
the right-hand side of Eq.~10! can be rewritten as a normally
ordered expectation value of the form

P~a;s!5
2

p~12s! K :expS 2
2

12s
N̂~a! D : L . ~11!

Comparing this result with Eq.~6! we see that the quasiprob-
ability distribution at the phase-space pointa is formally
related to the zero-count probabilityp0 of a photodetector
with efficiencyhv52/(12s):

P~a;s![
2

p~12s!
p0S a;

2

12sD . ~12!

In general this efficiencyhv may only be considered as those
of a virtual photodetector, since it may attain unphysical val-
ues larger than unity when one is interested in quasiprobabil-
ity distributions with ordering parameterss.21. For ex-
ample, the direct determination of the Wigner function from
the zero-count distributions would require a virtual detector
of efficiencyhv52. For determining theQ function we ar-
rive athv51. Consequently, this distribution could be mea-
sured directly with a perfect detector (h51) by recording
the probability of zero counts in dependence on the complex
amplitude of the local oscillator. More realistically, the zero-
count probability of a detector of overall efficiencyh di-
rectly yields the quasiprobability distributions for
s5122/h. However, quasiprobability distributions of this
type are rather smooth and the most interesting structures of
the quantum states are hidden therein. For this reason it is of
great interest to obtain the distributions withs.122/h from
measured quantities.

Although in practice zero-count probabilities with effi-
ciencieshv>1 are not accessible, they can be reconstructed
from the full photoelectron statistics measured with a realis-
tic photodetector of efficiencyh,1. The solution of this
problem turns out to be rather simple. The exponent appear-

FIG. 1. Unbalanced homodyne detection scheme for the recon-
struction of the quantum state of light; BS, beam splitter; LO, local
oscillator; SI, signal field; SL, superimposed light field; and PD,
photodetector.
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ing in Eq. ~11! is decomposed into the sum of the term
2hN̂(a) containing the physical efficiencyh and a residual
term as follows:

P~a;s!5
2p21

12s K :expF2
22h~12s!

12s
N̂~a!Ge2hN̂~a!: L .

~13!

Expanding the residual term into a power series we get

P~a;s!5
2

p~12s! (n50

` F2
22h~12s!

h~12s! Gnpn~a;h!,

~14!

which yields the quasiprobabilities as a weighted sum over
the homodyne counting distributionspn(a;h) @31#. This re-
sult allows one to reconstruct quasiprobability distributions
for s.122/h from the data measured with a realistic detec-
tor. The simple summation replaces phase-space integrations
over the measured data as used in recent experiments@13–
16#. Whereas in these experiments the chosen grid of mea-
sured data essentially determines the quality of reconstruc-
tion, our method allows the reconstruction of the distribution
in each point of the phase space independently. Thus the
resolution can be improved point by point without repeating
the whole reconstruction.

From the theoretical point of view Eq.~14! would allow
one to determine any quasiprobability distribution with
s,1 by homodyne photocounting measurements with a re-
alistic detector. In practice, however, the data are noisy and
the quality of the reconstruction crucially depends on this
noise. In the limitss→1 and/orh→0 the weighting factors
appearing in Eq.~14! in the sum over the counting statistics
are seen to become divergent. Thus the noise is amplified
and the method is expected to fail. Another practical problem
consists in the fact that presently available photomultipliers
have small efficiencies@32#, so that the applicability of our
method might be presently limited to the reconstruction of
rather smooth quasiprobability distributions. However, since
only probabilities for rather small numbers of counts are de-
sired @cf. Eqs. ~12! and ~14!#, a possible solution of this
problem could be the use of an array of highly efficient ava-
lanche photodiodes@33#. This renders it possible to defocus
the light to be measured in order to achieve a sufficiently
small probability that a single photodiode is illuminated by
more than one photon within its response time. Processing
the individual outputs of the photodiodes allows the mea-
surement of the photoelectron statistics close to the level of
high quantum efficiency of the individual avalanche photo-
diodes.

Let us give some numerical simulations to demonstrate
the possibilities of reconstructing quasiprobability distribu-
tions from the photoelectric counting statistics in unbalanced
homodyne detection. The method works very well when the
s values fulfill the conditions<121/h, so that the weight-
ing factors improve the convergence of the series. When the
equal sign holds, an efficiency ofh50.5 is feasible to recon-
struct theQ function. The simulation of such an example is
given in Fig. 2, where each counting statistics is simulated
with a sample of 103 events. We demonstrate the method for
an odd coherent state@34,35#,

ua2&5N~ ua&2u2a&), ~15!

with ua& being a coherent state andN a normalization con-
stant. States of this type exhibit quantum interferences giving
rise to negative values and sharp structures in the Wigner
function, so that their reconstruction necessitates particular
care. In theQ function, however, these effects are lost. In
Fig. 3 we consider the situation for an efficiency ofh50.8
and reconstruct the distribution withs520.25. In this case
the quantum interferences are seen clearly.

It is important to note that the conditions<121/h gives
no ultimate limit for the reliability of our method. For larger
s values one usually needs a larger sample of data. That is,
even the Wigner function can be obtained from the data re-
corded with a nonideal detector. For example, in Fig. 4 we
have simulated the reconstruction of the Wigner function for
a quantum efficiency ofh50.95 using a sample of 53103

FIG. 2. Simulation of the reconstruction of theQ function for an
odd coherent state witha51.6, quantum efficiencyh50.5, and
103 sampling events for each point of the 21315 grid.

FIG. 3. Simulation of the reconstruction ofP(a;s520.25) for
the same state as in Fig. 2, quantum efficiencyh50.8, and 103

sampling events for each point of the grid. Quantum interferences
are seen clearly, which lead to negative values of the distribution.
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events. Note that the simulated distributions throughout are
in suitable agreement with the corresponding exact ones.

IV. LOCAL OSCILLATOR NOISE

Let us finally consider the influence of the classical noise
of the local oscillator on the method under consideration.
This point is of great importance since it was the reason for
the development of balanced homodyne detection. However,
the noise problems in unbalanced schemes are closely related
to the use of a strong local oscillator. In the context of ho-
modyne correlation measurements it has recently been
shown that the noise effects of the local oscillator become
meaningless when the strength of the local oscillator is com-
parable to those of the signal field@36#. This is just the rel-
evant situation in our scheme of quantum state reconstruc-
tion based on unbalanced homodyne detection. To
understand this point, we first give a simple, suggestive ar-
gument. Let us return to the formal expression of the qua-
siprobability distributions in terms of the zero-count prob-
abilities in Eq. ~12!. Usually the quantum state under
consideration is localized in a certain phase-space area. The
leading contributions to the zero-count probability are ex-
pected to arise when the local oscillator just displaces the
phase-space distribution of the signal field towards the origin
of the phase space. To achieve this, the part of the local
oscillator incident on the detector@characterized by the value
a in Eq. ~8!# should be comparable to the strength of the
signal field and is therefore weak.

A more rigorous treatment of the effects of local oscillator
noise requires a statistical averaging over the value ofa in
Eq. ~14!. For this purpose let us consider a simple fluctuation
model, where the fluctuations of the local oscillator are de-
scribed by a Gaussian~Glauber-Sudarshan! P function of the
type

P~b!5
1

pnth
expS 2

ub2b̄u2

nth
D . ~16!

In this model the local oscillator amplitude~of mean value
b̄ ) is superimposed by thermal noise characterized by the
mean thermal photon numbernth . We supposenth to be
proportional toub̄u2, so that for decreasing amplitudes of the
local oscillator its fluctuations also decrease.

In order to include the classical fluctuations of the local
oscillator in the theory, we have to average the measured
photoelectron statisticspn(a;h) over the noise distribution
P(b). Since the averaged statisticspn(a;h) for generalh
values can be given as

pn~a;h!5 (
m50

` S n1m
n Dhn~12h!mpn1m~a;1!, ~17!

we may confine ourselves to the case of a perfect detector
with h51,

pn~a;1!5K : N̂~a!n

n!
e2N̂~a!:L

5E d2bP~b!K : N̂~a!n

n!
e2N̂~a!:L . ~18!

After some lengthy but straightforward algebra we derive
from Eqs. ~16! and ~18! an expression for the averaged
counting statistics in the form

pm~a;1!5 (
n50

`

Fm,n~n fl!K : N̂~ ā !n

n!
e2N̂~ ā !:L

5 (
n50

`

Fm,n~nfl!pn~ ā;1!. ~19!

The matrixFm,n(nfl) describes the effects of the fluctuations
of the local oscillator and is given by

Fm,n~nfl!5
nfl

um2nu

11nfl
Pn

~ um2nu,0!S 11nfl
2

12nfl
2D

3H ~12nfl!
n

~11nfl!
m for m>n

~12nfl!
m

~11nfl!
n for m,n,

~20!

with Pn
(k,l )(x) being the Jacobi polynomials and the quantity

nfl5(uRu/uTu)2nth being that part of the thermal photons in-
cident on the detector. Note that the fluctuation matrix fulfills
the relation

lim
nfl→0

Fm,n~nfl!5dm,n , ~21!

so that we retain an identical transformation when the noise
vanishes.

In Fig. 5 we show a simulation of the reconstruction of
the Wigner function with a nonideal detector and in the pres-
ence of rather strong fluctuations of the local oscillator:
nfl /uāu250.1. For this purpose we apply

FIG. 4. Simulation of the reconstruction of the Wigner function
for the same state as in Fig. 2, quantum efficiencyh50.95, and
53103 sampling events for each point of the grid. The negative
values of the distribution are a signature of the nonclassical prop-
erties of the state.
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P~a;s!5
2

p~12s! (n50

` F2
22h~12s!

h~12s! Gnpn~a;h!,

~22!

with pn(a;h) from Eqs.~17! and~19!. Since the fluctuations
grow with increasing local oscillator amplitude, the recon-
struction of the quasiprobability in the origin of phase space
is not disturbed, while with increasing distance from the ori-
gin the distribution is smeared out by the averaging effect of
the fluctuations. In order to show their effects clearly, in the
example chosen we have assumed much stronger fluctuations
than would usually occur in experiments with stabilized la-
sers.

V. SUMMARY AND CONCLUSIONS

In the present paper we have shown that the full informa-
tion on the quantum state of light can be determined from the
photocounting statistics recorded by an unbalanced homo-
dyne detection scheme. This is the simplest scheme presently
known that allows one to derive the full quantum statistical
information on a radiation mode from the measured data.

The reconstruction procedure is particularly simple when the
quantum state is represented in terms of thes-parametrized
quasiprobability distributions of Cahill and Glauber. We
have found that any such quasiprobability distribution can be
formally expressed in terms of the zero-count probability of
a virtual detector of a quantum efficiency that may exceed
the ideal value of one. The limit of an ideal detector would
directly allow one to measure theQ function by recording
the zero-count probability as a function of the complex am-
plitude of the local oscillator. For a realistic detector the
quasiprobability distribution recorded in this manner is more
smooth than theQ function.

We further show that the zero-count distribution of a vir-
tual detector with a quantum efficiency larger than one can
be expressed in terms of a weighted sum of the counting
statistics recorded with a realistic detector of quantum effi-
ciency smaller than one. This gives a very simple expression
for thes-parametrized quasiprobability distributions in terms
of measured quantities. Results of simulations show that the
deconvolution of data can be included in the reconstruction
in appropriate limits, depending on the number of sampling
events. In particular we demonstrate that the method allows
one to reconstruct distributions that contain significantly
more structures than theQ function. When a large quantum
efficiency can be realized it even becomes possible to recon-
struct the Wigner function in a rather simple manner. In view
of the fact that photomultipliers have small efficiencies,
present technology may limit the method to the reconstruc-
tion of rather smooth quasiprobability distributions. A way to
overcome these limitations could be the appropriate use of an
array of highly efficient avalanche photodiodes.

Another important problem in the context of unbalanced
homodyning is the fact that classical noise of the local oscil-
lator may substantially disturb the measured statistics. In our
method the leading contributions to the quasiprobability dis-
tributions are observed with a weak local oscillator so that
the classical noise effects are very small. This intuitive argu-
ment is confirmed by detailed calculations of the noise ef-
fects, which are based on a particular model of the superpo-
sition of the coherent local oscillator by thermal noise.
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