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We present multimode model calculations of doubly resonant infrared-visible sum-frequency generation
from adsorbed molecules with general harmonic potential surfaces that are valid for finite temperatures.
Numerical simulations of spectra recorded versus the frequency of the infrared or the visible sources have been
performed on a simple two-mode model with equilibrium position displacements, frequency shifts, and
Duschinsky rotation upon electronic excitation. It is argued that quadratic vibronic couplings need to be
included if the excited state potential well is to be reliably probed by these techniques.@S1050-
2947~96!03006-5#

PACS number~s!: 42.65.Ky, 63.35.Ja

I. INTRODUCTION

Molecules adsorbed at surfaces are being studied inten-
sively to understand physical as well as chemical processes.
The observation of vibrational spectra of adsorbed species is
the common feature of a variety of experimental methods
used to characterize many surface properties@1#. Identifying
adsorbed species, probing their orientations and interactions
with each other or with the substrate are all essential steps to
furthering our understanding of the physics and the chemis-
try of surfaces and interfaces. While doubly resonant
infrared-visible sum-frequency generation~DR IRVSFG!
also falls into the broad category of vibrational spectroscopy,
we will study it here in the context of a well defined appli-
cation, namely the probing of the excited state potential sur-
face of an adsorbed molecule. Here, the emphasis is less on
surface physics and chemistry than on the study of the prop-
erties of well oriented molecules in contact with an environ-
ment as a test case for optical properties of molecules in
condensed phases.

The use of DR IRVSFG, as well as that of difference-
frequency generation~DR IVDFG! to investigate the cou-
pling between electronic states and vibrational modes in
molecules on surfaces, has been recently proposed by Huang
and Shen@2#. These authors have shown that these tech-
niques are highly sensitive to the vibrational structure of the
adsorbed species while detecting the signal in the visible
frequency range. Compared to other techniques, one great
advantage of this type of experiments lies in its high surface
specificity. In their theoretical description, Huang and Shen
have only considered the case of the linear vibronic cou-
pling.

In the field of Raman spectroscopy, the developments of
the formal theory are often based on the expression derived
by Kramers, Heisenberg, and Dirac involving dipole-
moment matrix elements between vibronic states and energy
denominators. Within the usual approximations, the overlaps
between the vibrational states, i.e., the Frank-Condon fac-

tors, carry all the information about the relative shapes of the
ground and excited state potential wells. Heller@3# has
shown that an equivalent time-dependent theory focusing on
the motion of the wave packet created in the intermediate
excited state of the molecule provides a more intuitive de-
scription, especially if one wants to grasp the essential dif-
ferences between an off-resonance experiment and resonance
Raman scattering. In a sense, the closer to resonance one
performs the experiment, the larger the area of the excited
state potential surface that is being probed, so that general
harmonic surfaces need to be considered@4#. In the field of
infrared-visible sum-frequency generation~IVSFG! @5#, a
technique being used to study the ground state vibrational
properties of molecular adsorbates, the situation may be
quite analogous, although only experiments where the visible
excitation is off-resonance with respect to the electronic tran-
sition are routinely being carried out.

The papers by Mukamelet al. @6# and by Denget al. @7#
were among the pioneering works concerned with the influ-
ence of mode mixing within the Condon approximation on
the nonlinear optical susceptibilities and coherent Raman
line shapes in large molecules. A closed form expression of
two-dimensional Franck-Condon overlap integrals under
mode mixing has been derived recently@8#. Also, the struc-
tural and dynamical consequences of the rotational Duschin-
sky effect@9# on the absorption spectra of 2-pyridone have
been analyzed@10#. A few years ago, Hizhnyakov and Teh-
ver @11# had proposed a description of linear and quadratic
electron-phonon coupling in first-order resonance Raman
scattering. However, their approach, based on the density
matrix for a multidimensional harmonic oscillator, and remi-
niscent of a previous derivation of Kubo and Toyozawa of an
optical absorption time-correlation function for linear and
quadratic couplings@12#, is valid solely at zero temperature
as it includes transition amplitudes from the lowest vibra-
tional state only.

Pageet al. @13–19# have developed a general formalism
for treating vibrational mode mixing, also referred to as the
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Duschinsky rotation@9#, frequency shifts, and nuclear equi-
librium position shifts under electronic excitation. They have
demonstrated that the interpretation of resonance Raman
scattering~RRS! experiments requires the introduction of
quadratic coupling terms responsible for frequency shifts and
vibrational mode mixing@14–16#. We will take advantage of
the diagrammatic technique they developed for RRS@14–
19#, to derive analytical results which allow the evaluation of
DR IVSFG spectra for molecules with general harmonic po-
tential surfaces. Thus, we extend the model of Huang and
Shen to a linear plus quadratic vibrational Hamiltonian@20#.
Again, this approach is different from the standard sum-over-
state method with its overlap integrals, but it leads to ana-
lytical expressions which are not only exact, but valid for an
arbitrary number of modes and for finite temperatures.

It is the goal of the present work to give a complete ac-
count of second order optical responses of adsorbed molecu-
lar systems with general quadratic vibronic couplings that is
valid for finite temperatures. For simplicity, we have consid-
ered the case of a molecule characterized by two electronic
states and two vibrational modes. We will show that one
difficulty which must be overcome when interpreting experi-
mental spectra lies in the discrimination between linear and
quadratic effects. We will do so by simulating the problem of
parameter recovery from a set of model calculations@21#.
Our aim is to prove the ability of DR IVSFG experiments to
discriminate between linear and quadratic electron-phonon
couplings provided that one records a full set of spectra cor-
responding to all the active vibrational modes involved. With
the help of this information, one can then hope to get access
to the excited state potential wells of adsorbed species, thus
laying the groundwork for the study of excited state dynam-
ics in such systems.

The paper is organized as follows. In Sec. II, the formal
description of the molecular system and the SFG process is
presented. It involves the introduction of matrices to handle
properly the shifts in equilibrium positions, the changes in
vibrational frequency and the amount of mode mixing upon
electronic excitation, as well as the derivation of the expres-
sion of the SFG time correlator. In Sec. III, we briefly outline
the diagrammatic expansion of the SFG time correlator and
state the analytical expressions used in our study of DR
IRVSFG spectra. In Sec. IV, we first illustrate the effects of
the molecular parameters on these spectra with numerical
calculations on a simple model system, then we examine the
possibility of recovering linear and quadratic coupling con-
stants from such data, and last we look at the influence of
temperature. Finally, we state our conclusions in the final
section.

II. THEORY

The theoretical framework required to evaluate the SFG
signal emitted by molecules is introduced in the present sec-
tion. To this end, the dynamical evolution of the density
matrix r(t) corresponding to the molecular system interact-
ing with the light fields is governed by the Liouville equation
@6,22–28#

]r~ t !

]t
52

i

\
L08r~ t !2

i

\
Lv~ t !r~ t !, ~1!

whereL085L02 i\G. Here,L0 denotes the Liouville opera-
tor for the free system. It is given byL05@H0 ,#, and is built
on the molecular system HamiltonianH05Hgug&^gu
1Heue&^eu. The Hamiltonians of the ground and excited
electronic configurations are taken in the harmonic approxi-
mation, i.e.,

Hg5(
f

\vg, f~af
1af11/2!, ~2!

He5Hg1\veg1(
f
L fAf1

1

2(f f 8
Vf f 8AfAf 8, ~3!

whereAf5 i (af2af
1), \veg is the electronic transition en-

ergy, andvg, f is the frequency of modef in the ground
electronic configuration. The coefficientsL f are related to the
equilibrium position shifts for each mode in the linear cou-
pling scheme while the quadratic vibronic coupling constants
Vf f 8 lead to frequency shifts and mode mixing as schemati-
cally shown in Figs. 1 and 2. It has been clearly established
that the excited state normal coordinates represented by an
N-dimensional vectorde are related to those of the ground
statedg through the relationde5Rdg1D @7,19#. The matrix
R is an N3N orthogonal matrix (RR̃5I ) describing the
Duschinsky rotation and the vectorD represents the overall
equilibrium position displacement under electronic excitation
for the general quadratic model. These quantities are related
to the parametersL andV through the relations

FIG. 1. Level scheme of interest in the study of DR IRVSFG
process. The IR and visible transitions are represented, respectively,
by the arrows labeledv1 and v2 . The frequency of the output
signal isv11v2 . The states$ugv&% and $uev&% are, respectively,
the vibronic states of the ground (S0) and excited (S1) potential
energy surfaces.
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ve
25R@vg

212\21vg
1/2Vvg

1/2#R̃, D5~2/\!1/2ve
22Rvg

1/2L.
~4!

Notice thatve andvg areN3N diagonal matrices made up
of the frequencies of the vibrational modes, andR is the
orthogonal matrix which diagonalizes the expression
vg
212\21vg

1/2Vvg
1/2. The other operators in Eq.~1! areG,

the damping operator which takes into account the interac-
tions between the system and its environment, and
Lv(t)5@V(t),#, the Liouville operator for the system-
radiation field interaction.

To get any information on the molecular system in an
SFG experiment, the second order polarization is required.
This quantity is defined as the mean value of the dipole
moment, and can be written as

P~2!~ t !5Tr$r~2!~ t !m%. ~5!

Using a perturbation expansion, and with the introduction of
the notationr`5r(2`) andG0(t)5exp@2(i/\)L08(t)#, the

nondiagonal matrix elements ofr (2)(t) are easily deduced,
and the resulting polarization can be expressed as
P(2)(t)5( i51

2 Pi
(2)(t)1Pi

(2)* (t), where the various contribu-
tions correspond to

P1
~2!~ t !52

1

\2(
g,k,l

mgkrgg
` E

2`

t

dt1E
2`

t1
dt2

3G0kgkg~ t2t1!V~t1!klG0lglg~t12t2!V~t2! lg ,

~6!

P2
~2!~ t !5

1

\2(
g,k,l

mlkrgg
` E

2`

t

dt1E
2`

t1
dt2

3G0klkl~ t2t1!V~t1!kgG0glgl~t12t2!V~t2!gl .

~7!

Usually, the initial density matrixrgg
` 5(gPgug&^gu, corre-

sponds to a Boltzmann distribution of vibrational states of
the ground electronic configuration. In the dipole approxima-
tion, the operatorV(t) is given by the following expression:

V~ t !52m(
i51

2

Ei~ t !,

Ei~ t !5@E i~v i !e
2 iv i t1E i~2v i !e

iv i t#, ~8!

where m is the dipole operator, the quantitiesE1(t) and
E2(t), respectively, represent the infrared and the visible ra-
diation field. Of course, the amplitudes of the fieldE j (v j )
and E j (2v j ) are related by complex conjugation, i.e.,
E j (2v j )5E j

!(v j ).
In the present calculation, we are interested in experi-

ments where the infrared frequency is resonant with vibra-
tional motions and where the visible frequency is resonant
with electronic transitions as well. Consequently, only the
contributionP1

(2)(t) has to be taken into account. In an SFG
experiment, only the terms which oscillate as
exp@6i(vi1vj)t# contribute to the process. The terms with
phase factor exp@6i(vi2vj)t# correspond to the difference
frequency generation ~DFG! process. If we take
t25t2t22t1 andt15t2t1 , and if we perform the summa-
tion over the field subscripts, the second order contributions
Pj
(2)(t), j51,2 to the total polarization can be divided in two

componentsPj ,1
(2)(t)1Pj ,2

(2)(t), which oscillate with the phase
factor exp@2i(v11v2)t#. They are given by the following
quantities:

P1,1~2!
~2! ~ t !52

1

\2(
g,k,l

mgk„mkl•E2~1!~v2~1!!…„mlg•E1~2!~v1~2!!…rgg
` exp@2 i ~v11v2!t#

3E
0

`

dt1E
0

`

dt2exp@2 i ~vkg8 2v12v2!t1#exp@2 i ~v lg8 2v1~2!!t2#, ~9!

P2,1~2!
~2! ~ t !51

1

\2(
g,k,l

mlk„mkg•E2~1!~v2~1!!…„mgl•E1~2!~v1~2!!…rgg
` exp@2 i ~v11v2!t#

3E
0

`

dt1E
0

`

dt2exp@2 i ~vkl8 2v12v2!t1#exp@2 i ~vgl8 2v1~2!!t2#. ~10!

FIG. 2. Schematic representation of the equilibrium position
shift and Duschinsky rotation under electronic excitation. In the
case of a two-mode model depicted here, the normal coordinates
Qe,1 andQe,2 of the excited configuration are shifted by a vector
D and rotated by an angleu compared to the coordinatesQg,1 and
Qg,2 of the ground electronic configuration.

4510 53VALLET, BOEGLIN, LAVOINE, AND VILLAEYS



These expressions correspond, respectively, to the case
where the system interacts first with the field at frequency
v1 (v2), then with the second field at frequencyv2 (v1).
Notice that we have neglected the contributions which are
nonresonant assuming that the frequenciesv1 and v2 are
defined positive .

In the following, we consider two electronic configura-
tions with their corresponding vibrational states. The vi-
bronic states which belong to the ground electronic configu-
ration are denoted ugv& and ugv8&, while those
corresponding to the excited electronic configuration are la-
beleduev8& anduev9&. Hence, the states involved in resonant
contributions to Pj ,1

(2)(t) correspond to ug&→ugv&,
u l &→ugv8&, uk&→uev9&, and those participating inPj ,2

(2)(t)
are given byug&→ugv&, u l &→uev8&, uk&→uev9&. We further
consider that the electronic dephasing constants
Gev8gv5Geg and the vibrational dephasing constant
G iv8 iv5g i for i5$e,g%. From the time scales typical of mo-
lecular dynamics, we also introduce the approximation
g i!Geg . In this limit, Pj ,2

(2)(t) can be neglected beforePj ,1
(2)

3(t). Consequently, the second order polarization reduces
to the case where the infrared field interacts first with the
molecule. Next, we introduce the components of the second
order susceptibility defined by the expression

Pjx
~2!~ t !5(

y,z
x j1

~2!~vs f!xyzE1y~v1!E2z~v2!exp@2 i ~vs f!t#,

~11!

for j51, 2, and wherevs f5v11v2 . The third rank tensor
components can easily be deduced by the use of Eq.~9! and
Eq. ~11!. For v8Þv, they can be written as

x11
~2!~vs f!xyz52

1

\2 (
v,v8,v9

F 1
xyzrgvgv

` E
0

`

dt1E
0

`

dt2

3e2 i ~vev9gv2 iGeg2vs f!t12 i ~vgv8gv2 igg2v1!t2,

~12!

x21
~2!~vs f!xyz51

1

\2 (
v,v8,v9

F 2
xyzrgvgv

` E
0

`

dt1E
0

`

dt2

3e2 i ~vgv8ev92 iGge2vs f!t12 i ~vgvgv82 igg2v1!t2,

~13!

where we have introduced the following
notation: F 1

xyz5mgvev9
x mev9gv8

y mgv8gv
z and F 2

xyz

5mev9gv8
x mgvev9

y mgvgv8
z .

The evaluation of the vibronic dipole moment matrix el-
ements in Eq.~12! and Eq.~13! can be simplified by intro-
ducing a Born-Oppenheimer state representation based on
the adiabatic approximation. In this case, we have

mfv8 iv5^C fv8umuC iv&5^Q fv8umf i uQ iv&, ~14!

where the molecular states uC iv&5uF iQ iv& and
uC fv&5uF fQ fv& are, respectively, the products of the elec-
tronic and vibrational wave functions of the initial and final
states. Consequently, Eq.~12! and Eq.~13! reduce to

x11
~2!~vs f!xyz52

1

\2E
0

`

dtE
0

`

dt8ei ~vs f1 iGeg!tei ~v11 igg!t8

3^eitHg /\mge
x e2 i tHe /\meg

y e2 i t 8Hg /\

3mgg
z eit 8Hg /\&, ~15!

x21
~2!~vs f!xyz51

1

\2E
0

`

dtE
0

`

dt8ei ~vs f1 iGeg!tei ~v11 igg!t8

3^e2 i t 8Hg /\mgg
z eitHg /\eit 8Hg /\mge

x

3e2 i tHe /\meg
y &, ~16!

whereHg andHe are, respectively, the Hamiltonians of the
ground and excited electronic configuration, and where
^O&5Tr$Oe2bHg%/Tr$e2bHg% denotes the thermal average
of an operatorO. We also defined the SFG time correlators
Ceg
1 (t,t8) andCeg

2 (t,t8) by

Ceg
1 ~ t,t8!5^eitHg /\mge

x e2 i tHe /\meg
y e2 i t 8Hg /\mgg

z eit 8Hg /\&

5^m̃ ge
x ~ t !S1~ t !m̃ eg

y ~0!m̃ gg
z ~2t8!&, ~17!

Ceg
2 ~ t,t8!5^e2 i t 8Hg /\mgg

z eitHg /\eit 8Hg /\mge
x e2 i tHe /\meg

y &

5^m̃ gg
z ~2t8!m̃ ge

x ~ t !S1~ t !m̃ eg
y ~0!&, ~18!

where the operatorsS1(t) and m̃(t) are defined by

S1~ t !5eitHg /\e2 i tHe /\, m̃~ t !5eitHg /\me2 i tHg /\.
~19!

In these equations,m̃(t) is the dipole moment evaluated in
the interaction picture at timet, and the thermal average
^S1(t)& of the operatorS1(t) is the basic quantity used in
the calculation of the optical absorption of a molecular sys-
tem @13–16,19,29–31#.

Moreover, if the vibrational dipole momentsmgg , as well
as the electronic dipole momentsmeg , depend weakly on the

vibrational coordinateQf5 iA2vg f /\(af2af
1) for the mode

f , we expand the transition moments as@2,16#

mkl5mkl~0!1(
f

S ]mkl

]Qf
D
0

Qf

1
1

2(f , f 8
S ]2mkl

]Qf]Qf 8
D
0

QfQf 81•••. ~20!

In the Condon approximation, only the first termmkl(0) of
Eq. ~20! is kept. This term vanishes for a transition between
vibrational states. For our purpose, we only consider the sec-
ond term of Eq.~20! for vibrational transition, and only the
first one in the case of an electronic transition@2#. The dipo-
lar transition moments are given by

meg
x 5meg

x ~0!, mgg
z 5mgg

z ~0!S 11(
f
mf
zAf D , ~21!

and the SFG time correlators reduce to

Ceg
1 ~ t,t8!5mge

x ~0!meg
y ~0!^S1~ t !m̃ gg

z ~2t8!&, ~22!
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Ceg
2 ~ t,t8!5mge

x ~0!meg
y ~0!^m̃ gg

z ~2t8!S1~ t !&. ~23!

To evaluate these expressions, we consider the functions
Ceg
1 (l,t,t8) andCeg

2 (l,t,t8) defined by

Ceg
1 ~l,t,t8!5Mge

xyzK S1~ t !expS l(
f
mf
zAf~2t8! D L ,

~24!

Ceg
2 ~l,t,t8!5Mge

xyzK expS l(
f
mf
zAf~2t8! DS1~ t !L ,

~25!

where the parameterl has been introduced and
Mge

xyz5mge
x (0)meg

y (0)mgg
z (0). If we expandCeg

j (l,t,t8) in
first-order Taylor series, neglect the zero-order term, and set
l equal to 1, the SFG time correlatorCeg

j (t,t8) is recovered
@16#.

III. DIAGRAMMATIC EXPANSION

This section is devoted to the evaluation of the functions
Ceg
j (l,t,t8) by a diagrammatic expansion of the correspond-

ing time correlator. To this end, the generalization of Wick’s
theorem introduced by Page and Tonks@13#, as well as a
diagrammatic expansion similar to the one used in their cal-
culation of the Raman time correlatorA(t8,t,m), will be
employed@13,19,29#. The operatorS1(t) can be expressed
as a time-ordered exponential

S1~ t !5T1expF2 i /\E
0

t

dtVeg~t!G , ~26!

whereVeg(t) is the difference between the excited state and
the ground state Hamiltonians taken in the interaction pic-
ture. The time ordering operatorT1 places the operators of
later times to the left of those of earlier times@29#, and the
time correlatorsCeg

j (l,t,t8) can be written as

Ceg
1 ~l,t,t8!5Mge

xyzexp@2 ivegt#^Ttt8expF&, ~27!

Ceg
2 ~l,t,t8!5Mge

xyzexp@2 ivegt#^Tt8texpF&, ~28!

where Ttt8 is a generalized time-ordering operator which
keeps operators involving unprimed time evolution to the left
of those involving primed time evolution. Moreover, this
time-ordering operator orders unprimedVeg(t) with T1 .
The additional quantityF is defined as

F5l(
f
mf
zAf~2t8!2

i

\E0
t

dtS (
f
L fAf~t!

1
1

2(f f 8
Vf f 8Af~t!Af 8~t!D . ~29!

The time-ordered thermal average factor in Eq.~27! can be
developed in Taylor series, and takes the form
^Ttt8expF&5(k^Ttt8F

k&/k!. The application of the generalized
Wick’s theorem introduced in Appendix B of@13# allows us
to reducê Ttt8F

k& to a product of thermally averaged time-
ordered pairs.

The diagrammatic representation of^Ttt8F
k& is quite

similar to the one used by Tonks and Page in@19,29#. The
linear electron-vibration interaction vector2 i /\L and the
quadratic vibronic mode coupling matrix2 i /2\V are, re-
spectively, represented by dot and circle vertices with2
signs. The linear vectorlm, which lists the first-order non-
Condon dipole moment coefficients, is simply depicted by a
dot vertex surmounted by a (!). The time-ordered thermal
average in Eq.~27! reduces to

^Ttt8expF&5exp(
k

^Ttt8F
k& l /k!, ~30!

where the subscriptl refers to the ‘‘linked’’ diagrams in the
pictorial representation of̂Ttt8F

k&. If a supplementary fac-
tor 2 is incorporated in the matrix2( i /2\)V, the mean value
^Ttt8F

k& l /k! reduces to the following diagrammatic expres-
sions:

~31!

In @18,19,29#, Tonks and Page have derived analytical expressions for the sum of diagrams with2 vertices only, as well as
for their complex conjugates involving1 vertices. They have defined two functionsFc(t) and Fd(t), whose pictorial
representation is given by

~32!

~33!
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The algebraic forms of these functions reduce to

Fd~ t !5
1

2(f1f2 E0
t

dt1E
0

t

dt2~2 i /\L f1
!Sf1f2~ t,t1 ,t2!

3~2 i /\L f2
!, ~34!

Fc~ t !5
1

2(f1f2 E0
t

dt1Sf1f2~ t1 ,t1 ,t1!~2 i /\Vf2f1
!. ~35!

In the description of RRS experiments, the Raman time-
correlatorA(t8,t,m) is defined by

A~ t8,t,m!5^exp~ i t 8He /\!exp~ imHg /\!

3exp~2 i tH e /\!exp@ i ~m1t82t !Hg /\#&.

~36!

There is a close connection between Raman and optical ab-
sorption correlators@29#. This relation is given by

A~ t8,t,m!5h* ~ t8!h~ t !exp(
k51

`

gk~ t,t8,m!, ~37!

where the absorption time correlatorh(t) is written as

h~ t !5exp@2 ivegt#^T1expF&

5exp@2 ivegt1Fd~ t !1Fc~ t !#. ~38!

This function can be calculated exactly with the help of Eq.
~34!. Unfortunately, the Raman time-correlator itself cannot
be handled as easily because of the term exp(kgk(t,t8,m) in
Eq. ~37!. But it is possible to separate the RRS into orders.
Thenth order scattering is given by the summation of all the
terms)gk(t,t8,m) in the Taylor’s series expansion of the
preceding exponential, with the condition(k5n. At T50
K, the nth order scattering corresponds to the total intensity
of all n-phonon Stokes lines@29#.

In the case of the SFG time correlator@2,20#, on the other
hand, it is straightforward to show that the functions
Ceg
j (l,t,t8) can be factorized into products of a function

expcj(l,t,t8) by the absorption time correlatorh(t), namely,

Ceg
j ~l,t,t8!5Mge

xyzh~ t !expc j~l,t,t8!. ~39!

Notice that this expression can be evaluated exactly since the
functionc1(l,t,t8) is defined by the following diagrams:

~40!

and takes the algebraic form

c1~l,t,t8!5l(
f1

mf1
z E

0

t

dt1k f1
~ t,t1!hf1~ t11t8!, ~41!

with the vectorial functionk(t,t1) defined by

k f1
~ t,t1!5~2 i /\L f1

!1(
f2f3

E
0

t

dt2

3~2 i /\Vf1f2
!Sf2f3~ t,t1 ,t2!~2 i /\L f3

!. ~42!

In Eqs.~34! and~42!, the functionSf1f2(t,t1 ,t2) is the solu-
tion to a Dyson-like equation whose analytical expression
has been derived in@18,19,29#.

The scalar functionsFc(t) andFd(t) are given by

Fc~ t !5
1

2
i t Trv21N ln21

1

2
ln~det$vgve@ I2G21~0!#2%!

1
1

2
ln~det$2f1~ t !f2~ t !%!, ~43!

Fd~ t !5
1

2
i t L̃9vg

3ve
22L92L̃9vg

3/2ve
22RvgR̃@G21~ t !2I #

3f1~ t !@ I2u~2t !#ve
21vg

3/2L9, ~44!

where the following simplifying notations have been intro-
duced@16#:

f6~ t !5$@v26u~2t !v1#G21~ t !2@u~2t !v26v1#%21,

~45!

L9521/2vg
23/2Rvg

3/2j, j5~\vg!
21L, v65RvgR̃6ve ,

~46!

G21~ t !5exp@~2b\1 i t !RvgR̃#, u~ t !5exp~ i tve!.
~47!

An algebraic form for Eq.~41! can be obtained similarly. It
is given by the following closed-form expressions:

c1~l,t,t8!5lA2m̃zvg
1/2R̃@g~ t8!G21~ t !1g~2t8!#

3f1~ t !@ I2u~2t !#ve
21vg

3/2L9, ~48!

c2~l,t,t8!5lA2m̃zvg
1/2R̃@g~ t8!g~2 ib\!G21~ t !

1g~2t8!g~ ib\!#f1~ t !

3@ I2u~2t !#ve
21vg

3/2L9, ~49!

g~ t8!5exp~ i t 8RvgR̃!. ~50!

As stated in the preceding section, the SFG time correlator is
obtained from the first order term of the Taylor expansion of
the functionCeg

j (l,t,t8), settingl51. Thus we have

Ceg
j ~ t,t8!5Mge

xyzc j~1,t,t8!h~ t !. ~51!

In the approximation of molecular systems with general
harmonic potential surfaces, this function gives an exact
analytical expression for the time correlator needed to
calculate the SFG susceptibility of adsorbed molecules
x (2)(vs f)xyz5x11

(2)(vs f)xyz1x21
(2)(vs f)xyz,
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x~2!~vs f!xyz52
Mge

xyz

\2 E
0

`

dt@C1~ t !2C2~ t !#

3exp@ iDvt2Gegt1Fd~ t !1Fc~ t !#,

~52!

where Dv5v11v22veg , and the time dependent func-
tionsC1(2)(t) are given by the following closed formulas :

C j~ t !5 iA2m̃zvg
1/2@~v12vg1 igg!

21R̃g„ib\~ j21!…

1~v11vg1 igg!
21R̃g„2 ib\~ j21!…G21~ t !#

3f1~ t !@ I2u~2t !#ve
21vg

3/2L9. ~53!

Of course, if we setR5I andve5vg, i.e., take the limit of
no mode-mixing and no frequency-shift for DR IVSFG, the
results of the model by Huang and Shen@2# are easily recov-
ered.

Thus we have established the expressions needed to pro-
ceed to the numerical study of the DR IVSFG spectra. Our
model is valid for any given temperature and for an arbitrary
number of active vibrational modes. Let us mention at this
point that the main advantage of the diagrammatic theory
used here is the simplicity of the analytical expressions
which are easy to program on a computer. Though this ap-
proach may seem more abstract than the standard sum-over-
state method with its overlap integrals and energy denomi-
nators, it really is compendious. Indeed, for the DR IVSFG
process, it is possible to sum over all the diagrams, thus
obtaining analytical expressions which are exact, whereas for
RRS, in the presence of mode mixing, some contributions
have to be neglected leading to approximate results. Notice
that in the absence of Duschinsky rotation, i.e.,R5I but
veÞvg, the sum-over-state method also leads to an exact
result for RRS@22,32#.

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

To illustrate the basic features of SFG spectra as predicted
by our theoretical model, we consider a molecule having
only two electronic states with an energy gap\veg of 20 000
cm21, as well as only two vibrational modes. An electronic
transition dipole moment, that need not be specified numeri-
cally here, couples the system with the visible excitation
field while the modulations of the ground state permanent
dipole moment by the vibrations of the molecule
(]mgg /]Qf)0 , assumed identical for both modes in the fol-
lowing, will make them absorb infrared light. When the mol-
ecule is in its ground electronic state, the frequencies of the
vibrational modes have been chosen as 500 cm21 and 800
cm21, whereas in the excited state they change slightly to
520 cm21 and 790 cm21. In addition, the excited state po-
tential well equilibrium position is shifted with respect to the
ground state’s and its principal axes are rotated as schemati-
cally shown in Fig. 2. It is further assumed that the experi-
ment is being carried out at room temperature, i.e.,
kT5200 cm21, so that only the ground vibrational state is
predominantly populated before the external excitations are
switched on. Finally, the damping constants setting the
linewidths in the spectra have been chosen as follows: the

electronic dephasing constantGeg590 cm21, and the vibra-
tional dephasing constantsg i520 cm21. Before we present
our results, we need to point out that the SFG spectra have
been computed assuming parallel polarizations for the infra-
red and visible fields.

It is convenient to start our presentation of the numerical
simulations with spectra which are drawn as a function of the
frequency of the infrared excitation. In the case where the
excitation in the visible range is far from any resonance, one
can imagine the SFG experiment as infrared spectroscopy
with a built-in up-conversion scheme making it possible to
detect the signal in the visible range. However, when the
experiment is being carried out so that an electronic absorp-
tion band is excited resonantly, the DR IVSFG process
probes the excited state potential well as we shall see.

While the aforementioned parameters are being held
fixed, we present in Fig. 3 the results obtained for different
values of the Duschinsky rotation angleu as well as those for
the fixed angle of215° but for increasing wave numbers of
the visible excitation from 19 000 cm21 to 21 000 cm21 by
increments of 500 cm21. The dimensionless displacements
of the vibrational modes have been arbitrarily set to 0.5 in
this plot.

Examining the upper half of Fig. 3, we notice that the
mixing between modes results in marked distortions of the
resonances along with some changes in relative intensities of
the peaks. While all five curves seem to cross each other at
about the same point close to the center of the plot, the
sharpness of this feature depends on the exact value of the
parameters, but furthermore, it is specific to the two-mode
model. In the lower half of Fig. 3, we show that the exact
value of the frequency of the visible excitation strongly af-

FIG. 3. SFG spectra vs the infrared frequencyv1 for different
values of the mode mixing angleu in the upper half, and for dif-
ferent visible frequenciesv2 , with u5215°, in the lower half. The
labels A to E correspond to increasing values ofv2 from 19 000
cm21 to 21 000 cm21 by steps of 500 cm21. Other parameters as
indicated in the text.
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fects the overall intensity of the signal as well as the relative
heights of the peaks but alters the shape of the spectra to a
much lesser extent.

In Fig. 4, we represent the alternate situation where the
amount of mode mixing is held constant while the mode
displacements take different values. We see that, depending
on the mode being displaced, the line shapes may or may not
change while the intensities of the two resonances vary on a
scale comparable to that of the previous figure.

Let us first mention that the asymmetric line shapes
shown in the upper halves of Figs. 3 and 4 qualitatively look
very much like those determined experimentally by Shen
et al. @33# in the first observation of such an SFG vibrational
spectrum. In that experiment, the visible excitation was suf-
ficiently close to the shoulder of the visible absorption band
that some resonance enhancement helped in strengthening
the signal. The second point that we wish to make is that the
interpretation of Raman scattering data@10,15,16# as well as
the result from quantum chemistry computations@8,15,34#
seem to indicate that Duschinsky rotation angles of up to 15°
are not uncommon. In addition, the reduced equilibrium po-
sition displacements used here are rather normal as well. Yet
our study shows that both parameters may have comparable
effects. Hence, albeit the second order vibronic coupling is
smaller than the linear term, it may alter the DR IVSFG
spectra to a comparable, if not larger, extent.

Instead of recording DR IRVSFG spectra with respect to
the frequency of the infrared source, one may choose to keep
it close to a vibrational resonance and to record spectra with
respect to the wavelength of the visible excitation. This is the
experiment being simulated in Figs. 5 and 6 where we
present again spectra for various values of the mode mixing
angle and the dimensionless displacement of the lower fre-
quency mode.

Each figure consists of two parts, the upper half showing

the case where the infrared source resonantly excites the first
vibrational mode while in the lower half it excites the second
mode. Notice that we have chosen to plot the spectra versus
a linear function of the wave number of the visible excita-
tion, and notv2 itself, since we are really performing some
sort of vibrational spectroscopy. Here,veg denotes the elec-
tronic energy and not the vertical transition energy, so that

FIG. 4. SFG spectra vs the infrared frequency for different val-
ues of the displacements. In the upper halfj250.5 is fixed while
j1 varies. In the lower halfj150.5. The other parameters are iden-
tical to those of Fig. 3.

FIG. 5. SFG spectra vs the detuning of the visible excitation for
various values of the mode mixing angleu. The infrared excitation
is resonant withvg,1 transition in the upper half, and with the
vg,2 transition in the lower half.

FIG. 6. SFG spectra vs the detuning of the visible excitation for
various values of the 520 cm21 mode displacementj1 . The dis-
placement of the 790 cm21 mode j250.5, and the Duschinsky
angleu5215°. Infrared excitation as in Fig 5.
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the position of the various features are not affected by the
parameters, making the figure easier to read.

The origin of the axis represents the sum frequency cor-
responding to the 020 transition, the infrared excitation cre-
ating one quantum of vibration in one of the modes while the
visible source is resonant with the 120 transition for that
mode. Asv2 increases from there, the spectra display reso-
nant features every time we sweep over a specific vibronic
transition involving one or both modes.

In addition, between adjacent resonances the contribu-
tions of two vibronic transitions may interfere, leading to
sharp dips in the spectrum like the one observed in the upper
half of Fig. 6. Hence, this type of experiment results in much
richer spectra than those discussed previously. But we see
again that both the quadratic and the linear coupling terms,
i.e., the mode mixing and the displacements, affect the spec-
tra to the same extent, if not in the exact same way.

From the previous observations, it follows that we need to
address the problem of discriminating between linear and
quadratic effects when interpreting experimental spectra. In
the field of Raman spectroscopy, one can take advantage of a
relation between the optical absorption and the Raman spec-
tra which holds when the coupling is linear, to indentify the
situations where one needs to include quadratic terms in the
model. Unfortunately, this is not the case here and therefore
we cannot trust a model based on equilibrium position shifts
alone to interpret experimental data.

To illustrate this point, we have performed a series of
least square fits with the linear model of the results for the
optical absorption and both types of DR IRVSFG spec-
troscopies obtained for our model system with both linear
and quadratic parameters. The reference parameters are those
listed as entry I of Table I. They include the frequencies of

the normal modes in the ground electronic state, their dis-
placements in the excited state, their infrared absorption
strengths, their frequencies in the excited state, and the mode
mixing angle. When the model is being restricted to linear
vibronic couplings only, the frequencies of the vibrational
modes are identical in both electronic states and the Dushin-
sky rotation angle vanishes. This is the case for the last three
entries to Table I which show the numerical results obtained
from the least square fits. The spectra are drawn in Figs. 7–9,
where the full lines are being used to show the result from
the full quadratic model. The dotted lines correspond to the
set of linear parameters listed in Table I with the labels in-
dicated on the plots.

Let us first consider the visible absorption spectrum
shown in Fig. 7. Of course, the fit with the linear model does
not reproduce exactly the spectrum of our quadratic system,
but the difference is rather small. From Table I, we see that
this was achieved with normal mode frequencies closer to
the excited state values than to the ground state values of the
reference model, and by changing the displacements by up to
50%.

Next, we turn to the SFG spectra as a function of the
infrared frequency depicted in Fig. 8. The upper half of the
plot shows that the result of the fit with the linear model is
extremely satisfactory and Table I tells us that the frequen-

FIG. 7. Absorption spectra vs the detuning of the visible exci-
tation for the parameters given in the entries labeled I and II of
Table I.

FIG. 8. SFG spectra vs the infrared frequency, for the param-
eters given in the entries labeled I and III of Table I. The upper and
lower halves correspond, respectively, to a visible frequency of
20 000 cm21 and 20 500 cm21.

TABLE I. The parameters used in our simulations are given here. The values which correspond to the first
and the second normal mode are given in the form mode1umode2 , the vectorsj andm̃z are dimensionless.

vg, f ~cm21) j m̃z ve, f ~cm21) u ~degrees!

I 500u800 0.5u0.5 0.1u0.1 520u790 215
II 518.9u773.1 0.723u0.399 518.9u773.1 0
III 498.9u799.5 0.618u0.503 0.109u0.098 498.9u799.5 0
IV 515.8u701.2 0.725u0.434 0.116u20.274 515.8u701.2 0
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cies of the modes and the intensities of both infrared transi-
tions have been recovered very well. In fact, changing the
value of the displacement of the first vibrational mode has
been enough to make the two spectra agree. However, if we
keep the parameters that have been determined in this way,
and shift the frequency of the visible source by 500 cm21,
then the linear and the quadratic models lead to completely
different relative intensities of the peaks. This is what is
being shown in the lower part of Fig. 8. Conversely, had we
performed the fit in the second situation, we would have
obtained parameters which would not suit the first experi-
ment at all. Hence, in principle at least, it appears that it is
possible to determine the need for a quadratic model pro-
vided that one performs several such spectra for different
wavelengths of the visible excitation.

Finally, in Fig. 9, we represent DR IRVSFG spectra
drawn vs a linear function of the frequency of the visible
beam, the infrared source exciting resonantly one or the
other vibrational mode. This type of spectroscopy leading to
more resonance features, the fit shown in the upper half of
the plot is somewhat more difficult to achieve but it succeeds
to a good extent. However, Table I shows that the parameters
found differ greatly from the first entry. The frequency of the
second mode is off by a wide margin and the derivative of
the permanent dipole moment with respect to the relevant
normal coordinate has doubled in absolute value and even
changed sign. In the lower part of Fig. 9 we show that the
linear parameter set is inconsistent with the spectra recorded
while resonantly exciting the second mode. We are thus led
to the conclusion that while the second type of spectroscopy
is more sensitive to changes in parameters, it still requires us
to perform fits of several spectra to determine whether qua-
dratic effects are present. More importantly, a single spec-
trum may accommodate the linear model sufficiently well,
but lead to erroneous values for the parameters.

Let us mention here that we have also performed least
square fits with the full set of both linear and quadratic pa-
rameters, typically using the values obtained from the previ-
ous fits as initial guesses, to verify that the program always
converged back to the initially chosen quadratic model.

To close this section on numerical simulations, let us ex-
amine the behavior of DR IVSFG spectra as a function of
temperature. In order to work with a reasonable temperature
scale, the frequencies of the vibrational modes have been
divided by 5 in the following simulations. All the other pa-
rameters are as in entry I of Table I. The SFG spectrum vs
the infrared frequency is depicted in Fig. 10 for five different
temperatures as indicated on the plot. Notice that the elec-
tronic and vibrational dephasing constants introduced in the
beginning of this section have also been divided by 5 and do
not depend on temperature. Hence, the widths of the reso-
nance features in the spectra do not change, and the effect of

FIG. 10. SFG spectra vs the infrared frequency for various val-
ues of the thermal energy kT. The set of parameters used here are
those of Fig. 3 divided by a factor 5, except the electronic transition
frequency.

FIG. 11. SFG spectra vs the detuning of the visible frequency
for different temperatures presented as in Fig. 10.

FIG. 9. SFG spectra vs the detuning of the visible frequency.
The infrared excitation is resonant withvg,15500 cm21 transition
in the upper half, and with thevg,25800 cm21 transition in the
lower half. The other parameters are given in the caption and in the
entries labeled I and IV of Table I.
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the temperature as depicted here reflects only the changes in
populations of the various vibrational levels of the molecule.

We observe an overall decrease in intensity of the signal
with increasing temperature linked to the diminishing differ-
ence in population between a given vibronic state and the
state with just one more quantum of vibration. We further
notice that the peak corresponding to the 100 cm21 mode is
affected more than the resonance due to the 160 cm21 mode,
as expected. This observation helps to understand the SFG
spectra vs the frequency of the visible excitation drawn in
Fig. 11. Again, in addition to an overall decrease in intensity
of the signal, we observe changes in the relative heights of
the various peaks, the resonances corresponding to the higher
frequency mode being less sensitive to an increase in tem-
perature.

V. CONCLUSION

In the present work we have presented a general theoreti-
cal approach to evaluate doubly resonant infrared-visible
sum-frequency generation from adsorbed species with gen-
eral quadratic couplings. The model is valid at any tempera-
ture and may include as many vibrational modes as neces-
sary. In the case of a model system restricted to two normal
modes, we have shown that quadratic vibronic couplings
may have an effect on the spectra that is comparable to that
of linear parameters. We have considered both cases where
either the infrared or the visible sources are tunable, and
have shown that spectra plotted vs the frequency of the vis-
ible excitation are more sensitive to the coupling parameters
mainly because of their richer features. However, it may be

expected that should there be many close lying active vibra-
tional modes, it would be advantageous to consider the sim-
pler infrared spectroscopy.

Concerning the problem of parameter recovery from ex-
perimental data, we can conclude that we have shown the
ability of DR IRVSF spectra to make it possible to discrimi-
nate between linear and quadratic vibronic coupling
schemes, provided that one has access to a set of spectra
corresponding to different wavelengths of the fixed fre-
quency source. Indeed, we have demonstrated that a fit of
one given spectrum with a linear model may very well ap-
pear to succeed while giving the wrong parameters. It fol-
lows that it is generally necessary to include the second-
order terms of the vibrational Hamiltonian, namely the
frequency shifts and the Duschinsky rotation. One can then
hope to characterize the excited state potential surface of
adsorbed species, provided that it remains harmonic. And
should anharmonicity play a role, then one will need to show
that the general quadratic Hamiltonian is inadequate to ex-
plain the results. This is an important step to take before
using time resolved experiments to study the dynamics in the
excited states of such systems.
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