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A complex order-parameter description of pattern formation in large aspect ratio optical parametric oscilla-
tors ~OPOs! with flat end reflectors and uniform pumping is presented starting from the mean-field model of
the OPO equations@G.-L. Oppoet al., Phys. Rev. A49, 2028~1994!#. It is shown that, in the nondegenerate
case, the full OPO equations have an exact continuum family of traveling-wave~TW! solutions, which are
preferred to standing-wave~SW! states found in the degenerate case. These solutions correspond to an off-axis
emission for both signal and idler fields along two symmetric directions to satisfy momentum conservation in
the parametric conversion process. Stability of TW versus SW solutions is investigated by deriving two
coupled Newell-Whitehead-Segel equations describing the growth of SW or TW close to threshold. Analytical
expressions for long-wavelength phase instabilities of the TW states above threshold are obtained from the
coefficients of a Cross-Newell phase equation, and are shown to be the same for OPOs with high or low finesse
for the pump field. By direct linear stability analysis of the TW solutions, it is also shown that the appearance
of amplitude instabilities may reduce the region of stable TW states in the case of OPOs with a high finesse for
the pump field.@S1050-2947~96!01406-0#

PACS number~s!: 42.65.Ky, 47.20.2k, 52.35.Mw

I. INTRODUCTION

Pattern formation in nonlinear optical systems has been
the object of extensive investigations in recent years@1#. In
particular, theoretical and experimental studies of transverse
laser dynamics have revealed the appearance of a new kind
of instabilities leading to spatial pattern formation,
symmetry-breaking bifurcations, and complex space-time
patterns@2–8#. Early studies in this field were mainly fo-
cused on small aspect ratio systems, in which a small number
of transverse modes may be excited@2#. In more recent stud-
ies, large aspect ratio systems, usually obtained by consider-
ing cavities with plane mirrors of infinite transverse exten-
sion and plane-wave pumping, have introduced a host of
interesting additional phenomena related to the existence of
universal pattern instabilities@3–8#. The central new feature
obtained by going to large aspect ratio systems is the possi-
bility of reducing the nonlinear transverse dynamics to a uni-
versal form, providing a connection between pattern forma-
tion phenomena in optics and in other physical fields,
particularly in hydrodynamics@5,6,8#. In the laser case, it
was shown that the full Maxwell-Bloch equations admit of
exact traveling-wave solutions, and that the nature of the
solution above threshold strongly depends on the sign of the
detuning between the atomic resonance frequency and the
longitudinal cavity one@4#. For positive detunings, threshold
lowering associated to an off-axis emission is predicted
@4,6#. Because of the rotational symmetry in the transverse
plane, a whole annulus of wave vectors may become active
near threshold, and pattern selection is governed by the non-
linear competition among these modes. The fact that, above
threshold, only a single wave vector@corresponding to a pure
traveling-wave~TW! solution# is able to dominate and to
suppress all others, at least within local patches@6#, is quite
remarkable. The process by which a pure TW state is se-
lected is governed by the nonlinear terms in the amplitude

equations which describe the growth of standing or traveling
waves close to threshold@6,7#. In particular, a combination
of two opposing waves, a standing wave~SW!, is unstable,
collapsing to a single TW. Pattern formation in optical para-
metric oscillators~OPOs! with flat end reflectors has also
been investigated, and threshold lowering due to the appear-
ance of roll patterns has been predicted in the degenerate
case and for negative detunings of the signal field@9–11#.
Although the phenomenon which makes the threshold inde-
pendent of the signal detuning in the negative side is quite
similar to the appearance of TW states in lasers, off-axis
emission in OPOs manifests itself as roll patterns. Physi-
cally, the roll solution originates from interference between
two symmetric TWs which are simultaneously generated in
the parametric conversion of the pump photons due to mo-
mentum conservation@9#. From a mathematical point of
view, the tendency to yield roll patterns instead of traveling
waves is related to the possibility of reducing the OPO dy-
namics to an order parameter equation which is sensitive to
the phase field@11#. However, when operating in the nonde-
generate case, or when signal and idler fields are degenerate
in frequency but are polarized along two orthogonal direc-
tions @12#, we expect that momentum conservation can be
satisfied without producing interference, which is the basic
reason for roll formation. In this paper we show indeed that
the full OPO equations with uniform pumping previously
considered in Ref.@10# admit of stableTW states for both
signal and idler fields. A remarkable feature of these equa-
tions analogous to the laser case is that, when removing the
degeneracy constraint, a continuum ofexactsolutions exists
above the neutral stability curve. These solutions are repre-
sented by twosymmetricTWs for signal and idler fields, and
by a homogeneous plane wave for the pump field. Note that
the fact that idler and signal photons are emitted along two
symmetric directions is a consequence of momentum conser-
vation, whereas the uniformity of the pump field also above
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threshold is due to the absence of interference between these
TWs. The preference of TW versus SW states is here ad-
dressed by deriving the amplitude equations of the system,
an approach of weakly nonlinear analysis that now has be-
come standard@13,14#. These equations are expressed in the
form of two coupled Newell-Whitehead equations, and de-
scribe the growth of SW or TW close to threshold. Above
threshold, the TW states may be destabilized due to the ap-
pearance of both phase and amplitude instabilities. The sta-
bility domain of the TW solutions corresponds to what has
been called theBusse balloonfor convective systems@15#, a
terminology recently introduced also in the optical context
@8#. The existence of exact TW solutions of the full OPO
equations allows for a direct determination of the Busse bal-
loon boundaries by use of standard linear stability methods.
This is the most powerful technique as it omits no classes of
instability. However, it is inevitably numerical in practice
and offers little physical insight into the problem. Further
analytical results are obtained, as in the laser case, by deriv-
ing a phase diffusion equation of the underlying pattern. This
equation permits testing of stability of the TW solution
against long-wavelength transverse sideband perturbations,
identifying both Eckhaus and zigzag stability boundaries.
These instabilities could lead to defect formation and there-
fore may play an important role in the transition to complex
temporal patterns. It is shown that the boundaries of the sta-
bility domain as obtained by the phase diffusion equation are
independentof the cavity decay rate of the pump field. How-
ever, a comparison of the Busse balloon domain, as obtained
by direct computation of the eigenvalues in the linearized
problem and by use of the phase equation, puts into evidence
the existence of amplitude instabilities, which may reduce
the stability domain to a small region inside the domain of
existence of TWs in the case of OPOs with a high finesse for
the pump field.

The paper is organized as follows. In Sec. II we review
the model set of equations for the problem of a nondegener-
ate OPO with infinitely extended plane parallel mirrors@10#,
presenting an exact family of TW solutions for these equa-
tions. In Sec. III we discuss the threshold problem and derive
two coupled amplitude equations in the negative detuning
case, showing how TW solutions are preferred to SW ones.
Finally, in Sec. IV we discuss the stability problem of the
TW solutions both by standard linear stability analysis and
by deriving a Cross-Newell phase equation. Exact expres-
sions of the phase~Eckhaus and zigzag! stability boundaries
are presented, and emergence of amplitude instabilities is
also briefly investigated.

II. BASIC OPO EQUATIONS
AND TRAVELING-WAVE SOLUTIONS

The starting point of our analysis is provided by a set of
three coupled equations describing the dynamics of signal,
idler, and pump waves in an optical parametric oscillator
with flat end mirrors, generalized to include diffraction ef-
fects. These equations were derived in previous papers
@9–11# to study pattern formation in OPO systems. With the
same notations as in Ref.@10#, in the nondegenerate case,
they are given by

] tB5g0@2~11 iD0!B1 ia0¹
2B#2g0A1A2 , ~1a!

] tA15g1@2~11 iD1!A11 ia1¹
2A11mA2* #1g1A2*B, ~1b!

] tA25g2@2~11 iD2!A21 ia2¹
2A21mA1* #1g2A1*B. ~1c!

In these equations,B5A02m, A0, A1, andA2 are the nor-
malized slowly varying envelopes for pump, signal, and idler
fields, respectively,m5E(12 iD0)/~11D0

2! is the parametric
gain, andE is the normalized amplitude of the plane-wave
pump input field. The detuning parameters for pump, signal,
and idler fields are defined by

D05
v02vL

g0
, D15

v12n1vL

g1
, D25

v22n2vL

g2
,

whereg0, g1, andg2 are the cavity decay rates of the three
fields,v0, v1, andv2 are the three longitudinal cavity fre-
quencies close to the pump frequencyvL , the signal fre-
quency n1vL , and the idler frequencyn2vL , respectively,
andn11n251 for energy conservation in the parametric in-
teraction. The diffraction parametersa0, a1, anda2 for the
three fields are defined by

a05
c

2kzg0
, a15

c

2n1kzg1
, a25

c

2n2kzg2
,

where c is the velocity of light andkz is the longitudinal
wave vector of the field at frequencyvL . Without loss of
generality, we may assume that the parametric gainm in Eqs.
~1!, which plays the role of bifurcation parameter, be real and
positive. Besides the trivial zero solution, corresponding to
the OPO being below threshold, Eqs.~1! have anexactcon-
tinuum family of traveling-wave solutions, dependent on the
transverse wave vectork ~the family parameter!, given by

S B
A1

A2

D 5S B̄

Ā1exp~ ik•r1 ivt !

Ā2exp~2 ik•r2 ivt !
D , ~2!

where

B̄52
C exp~ ic!

11 iD0
, ~3a!

Ā15AC, ~3b!

Ā25AC exp~ ic!. ~3c!

In Eqs.~3!, c is the phase difference between idler and signal
fields, andC.0 represents the intensity of the TW solution;
they are given by

C5
2~r r2r iD̃!6Am2r r2~r i1r rD̃!2

r r
, ~4a!

cosc5~11r rC!/m, ~4b!

where we have set
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r r5~11D0
2!21, r i5r rD0 ,

D̃5
g1D11g2D21k2~g1a11g2a2!

g11g2
,

andk5uku. Finally, in Eq.~2! the frequencyv is given by

v5
g1g2@D22D11k2~a22a1!#

g11g2
, ~5!

which defines the relation dispersionv5v(k) for TW solu-
tions. The domain of existence of TWs in the plane~k,m! can
be determined from Eq.~4a! by makingC.0. It should be
noted that, forr r2r iD̃.0, only the positive sign in Eq.~4a!
is acceptable, and the TW exists form.m0, where m0

5A11D̃2. On the other hand, for wave vectorsk such that
r r2r iD̃ becomes negative, the TW solution exists for
m.me , where me5A11D̃22(r r2r iD̃)

2/r r ; in this case,
whenm varies in the rangeme,m,m0, there are two accept-
able solutions of Eq.~4a!, indicating the emergence of bista-
bility. This is a generalization of the bistable behavior previ-
ously studied for a degenerate OPO model without
diffraction @16#. As is briefly shown in Appendix A, the TW
solution corresponding to the lower branch of the bistable
loop is unstable, and therefore we will neglect this solution.
Physically, the TW solution given by Eq.~2! describes off-
axis emission of idler and signal photons along two opposite
directions and at frequencies equally detuned, in opposite
sides, from the reference frequencies. These features are a
consequence of energy and momentum conservation in the
parametric conversion of pump photons. It should be noted
that, when idler and signal fields aredegenerate both in fre-
quency and polarization, Eqs. ~1! must be solved with the
further conditionA15A2 . In this case, the TW states given
by Eq. ~2! are no longer good solutions of the problem, and
SW states, whose expression can be calculated only by ap-
proximate methods@9#, are in fact selected.

III. LINEAR STABILITY ANALYSIS OF NONLASING
SOLUTION AND WEAKLY NONLINEAR ANALYSIS

NEAR THRESHOLD

A. Neutral stability curve and threshold condition

The threshold for oscillation is determined by linearizing
Eqs.~1! around the trivial zero solution and looking for ex-
ponential growth of the perturbations. The linearized equa-
tions are

] tB5g0@2~11 iD0!B1 ia0¹
2B#, ~6a!

] tA15g1@2~11 iD1!A11 ia1¹
2A11mA2* #, ~6b!

] tA2*5g2@2~12 iD2!A2*2 ia2¹
2A2*1mA1#, ~6c!

where, for convenience, we have written Eq.~6c! in terms of
A2* . As can be seen, the dynamics of the pump perturbation
B is decoupled from that of the signal and idler fields, and
does not lead to instability for any value of the parametric
gainm. We concentrate therefore on the last two equations of
the linearized system. We assume that the transverse plane is
sufficiently large so that we can neglect boundary conditions

and transverse modes form a continuum. Then the most gen-
eral solution of Eqs.~6b! and ~6c! is given by a linear com-
bination of solutions of the form

S A1

A2*
D}exp~lt1 ik•r !,

wherek is the transverse wave vector of the perturbation and
l is an eigenvalue of the linear problem. For a given wave
numberk, the real part of one of the two eigenvalues, say
Re~l1!, crosses zero from negative asm is increased. Thus
Re~l1!50 gives the neutral stability curvem5m0(k), and
v5Im~l1! defines the frequency of the Hopf bifurcation. We
find

m0~k!5S 11Fg1D11g2D21k2~g1a11g2a2!

g11g2
G2D 1/2

5A11D̃2, ~7!

v5
g1g2@D22D11k2~a22a1!#

g11g2
. ~8!

FIG. 1. Neutral stability curve~solid line! and boundary of ex-
istence of traveling waves~dashed line! for ~a! D15D2522, and~b!
D15D252. For wave numbers where the dashed line is not ob-
scured by the solid one, traveling-wave solutions may exist below
threshold for oscillation. The other parameters areg05g15g251,
v150.4, andD052. In this figure, and in other figures throughout
this work as well, the wave vectork has been normalized to
1/~g0a0!

1/2.
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Note that the neutral stability curve coincides with the curve
of existence of TW solutions whenr r2r iD̃.0, and the fre-
quency of the Hopf bifurcation is exactly that given by Eq.
~5!. Minimizing m0(k) with respect tok gives the threshold
for oscillationmth5m0(kC) with critical wave numberkC and
frequencyvC5v(kC). The behavior of the neutral stability
curve, shown in Fig. 1, strongly depends on the sign of the
‘‘effective’’ detuning D5~g1D11g2D2!/~g11g2!. As previ-
ously reported in Refs.@9, 10#, for D.0 the threshold is
given bym th5A11D2 and corresponds to the critical wave
numberkC50 and frequencyvC5g1g2~D22D1!/~g11g2!. On
the other hand, forD,0, threshold lowering to the value
mth51 is predicted, corresponding to a critical wave number
kC5A2D(g11g2)/(a1g11a2g2). It should be noted that,
in the latter case, threshold condition for oscillation coin-
cides with that for existence of the TW solution with wave
numberkC , and bifurcation of the trivial zero solution is
supercritical. On the contrary, in the former case the homo-
geneous TW state may exist below threshold for oscillation
whenever the bistable conditionr r2r iD,0 is satisfied.
Therefore the bifurcation to the homogeneous TW solution
may be subcritical or supercritical. Restricting now our at-
tention to the case of negative detunings~D,0!, the depen-
dence of the neutral stability curve only on modulus of the
transverse wave vector~not its direction!, introduces a rota-
tional degeneracy, so that a whole annulus of wave vectors
can become active. The same degeneracy problem was found
for the laser equations@6#. In that case, both numerical simu-
lations of the equations and weakly nonlinear analysis close
to threshold showed that a pure TW state is able to dominate
and to suppress all others@6#. By use of amplitude equations,
we will show here that for the OPO equations the SW solu-
tion ~roll pattern!, obtained by superposition of two TW
states propagating in opposite directions, is also unstable and
a pure exact TW state is preferred.

B. Amplitude equations

The nonlinear dynamics of the OPO equations close to
threshold can be captured analytically by deriving universal
amplitude equations for the system@14#. The derivation of
the amplitude equations is based on a multiple-scale expan-
sion @13,14# and is valid when bifurcation to the lasing state
near onset is supercritical. We concentrate here on the deri-
vation of the amplitude equations in the negative detuning
case~D,0!, where bifurcation is always supercritical. In the
positive detuning case, derivation of an amplitude equation
might be a nontrivial matter because bifurcation could be-
come subcritical; hence forD.0 it appears more convenient
to address the stability problem of TW states by direct linear
stability analysis of the full OPO equations or by deriving a
phase diffusion equation. ForD,0, due to the rotational
symmetry in the transverse plane, any modes with wave
numberuku'kC can be excited near threshold; however, non-
linear interactions among these modes usually select regular
solutions formed by a superposition of a few TWs@14#. Here
we focus on the derivation of the amplitude equations con-
sidering the competition between two TW states propagating
along thex axis with opposite directions. Such equations will
be able to establish whether traveling- or standing-wave
states are preferred@17#. To this aim, it is convenient to
consider the complex conjugate of Eq.~1c! instead of Eq.
~1c!, and to rewrite Eqs.~1! in the compact form

] tv5L̂v1N, ~9!

where the vectorv5(B,A1 ,A2* )
T contains the field vari-

ables,L̂ is the linear operator, andN is the nonlinear operator
of the system,

L̂5S 2g0~11 iD0!1 ig0a0¹
2 0 0

0 2g1~11 iD1!1 ig1a1¹
2 g1m

0 g2m 2g2~12 iD2!2 ig2a2¹
2
D , N5S 2g0A1A2

g1A2*B
g2A1B*

D .
We expandv as an asymptotic series in a small parameter«,

v5«v~1!1«2v~2!1«3v~3!1••• , ~10!

where «25m21 provides a measure of the distance above
threshold. The next step is to introduce a multiple-scale ex-
pansion for space and time variables. As in the laser case@6#,
an inspection of the diagram in Fig. 1~a! suggests the follow-
ing choice of multiple scales fort, x, andy:

t5T01«T11«2T21••• , x5X01«X, y5«1/2Y.

Using the chain rule for differentiation, one has the substitu-
tion

] t5]T01«]T11«2]T21••• , ~11!

¹25]X0
2 1«~]Y

212]X0]X!1«2]X
2.

Substituting Eqs.~10! and~11! into Eq.~9! yields a hierarchy
of equations for successive corrections ofv:

~]T02L̂0!v
~1!50 for O~«!,

~]T02L̂0!v
~2!52]T1v

~1!1L̂1v
~1!1N2 for O~«2!,

~]T02L̂0!v
~3!52]T1v

~2!2]T2v
~1!1L̂1v

~2!1L̂2v
~1!1N3

for O~«3!,
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whereL̂0 is the linear operator of the system at threshold~i.e., form51!, N2 andN3 are the nonlinear terms atO~«2! andO~«3!,
and

L̂15S ia0g0~]Y
212]X]X0! 0 0

0 ia1g1~]Y
212]X]X0! 0

0 0 2 ia2g2~]Y
212]X]X0!

D ,

L̂25S ia0g0]X
2 0 0

0 ia1g1]X
2 g1

0 g2 2 ia2g2]X
2
D .

At leading order, we find the linearized system studied in
Sec. III A, whose solution may be written as a superposition
of two TWs propagating along thex axis with opposite di-
rections:

v~1!5S B~1!

A1
~1!

A2*
~1!
D 5$A1~X,Y,T1 ,T2!exp@ i ~kCX01vCT0!#

1A2~X,Y,T1 ,T2!exp@ i ~2kCX0

1vCT0!#%S 01
1
D . ~12!

In order to solve equations atO~«2! andO~«3!, solvability

conditions expressed by the Fredholm alternative theorem
must be satisfied. Specifically, the solvability conditions re-
quire that the right-hand side termsG25L̂1v

(1)1N2

2]T1v
(1) at O~«2! and G35L̂1v

(2)1L̂2v
(1)1N32]T1v

(2)

2]T2v
(1) at O~«3! be orthogonal to the two eigenvectors

u1,25~0,g2,g1!
Texp[i (6kCX01vCT0)] of the adjoint opera-

tor of (]T02L̂0). Applying the solvability condition atO~«2!,
we find

]T1A65
ig1g2~a12a2!

g11g2
~]Y

262ikC]X!A6 ~13!

and the solution at this order is given by

v~2!5S a1b1exp~2ikCX0!1b2exp~22ikCX0!

q1exp~ ikCX01 ivCT0!1q2exp~2 ikCX01 ivCT0!
0

D , ~14!

where

a52
uA1u21uA2u2

11 iD0
, ~15a!

b652
A6A7*

11 i ~D014a0kC
2 !
, ~15b!

q65 i
a1g11a2g2

g11g2
~]Y

262ikC]X!A6 . ~15c!

The «3-order solvability condition reads explicitly

~g11g2!]T2A652g2]T1q61 ia1g1g2~]Y
262ikC]X!q6

1 i ~a12a2!g1g2]X
2A612g1g2A6

22g1g2F uA1u21uA2u2

11D0
2

1
uA7u2

11~D014a0kC
2 !2GA6 . ~16!

The total time and space derivatives of the amplitudes are
given by] tA65«]T1A61«2]T2A6 , ]yA65«1/2]YA6 , and
]xA65«]XA6 . Then, combining Eqs.~13! and ~16!, using
Eq. ~15c!, and changing variables«A65S6 , we finally ob-
tain the followingamplitude equations:
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t~] tS11vg]xS1!5
i ~a12a2!

2
¹2S12L~]y

212ikC]x!
2S1

1«2S12~r r uS1u21suS2u2!S1 , ~17a!

t~] tS22vg]xS2!5
i ~a12a2!

2
¹2S22L~]y

222ikC]x!
2S2

1«2S22~r r uS2u21suS1u2!S2 ,

~17b!

where we have set

t5
g11g2

2g1g2
,

L5
1

2 S a1g11a2g2

g11g2
D 2,

vg5
2kCg1g2~a12a2!

g11g2
,

s5
1

11D0
2 1

1

11~D014a0kC
2 !2

5r r1
1

11~D014a0kC
2 !2

.

These equations are two coupled complex Newell-
Whitehead-Segel equations similar to those obtained for la-
ser systems@6#, and describe the growth of standing or trav-
eling waves moving in opposite directions with group
velocities6vg . There are two families of stationary homo-
geneous solutions: TWs~S150, S2Þ0 or vice versa! and
SWs (uS1u5uS2u), the last solution corresponding to roll
patterns~stripes!. Using the same technique as in Ref.@4#, it
may easily be shown by linearizing the amplitude equations
around the SW solution that this solution is always unstable.
This is closely related to the fact thats.rr in Eqs. ~17!;
SWs are in fact favored fors,rr @14#.

IV. STABILITY OF TRAVELING WAVES:
SECONDARY INSTABILITIES

Up to now it has been shown that, in the nondegenerate
case, the OPO equations admit of exact TW solutions which
are preferred to roll patterns just above threshold. The central
question is now to determine the region of stable TW states
~the Busse balloon! beyond the neutral stability curve. As in
laser systems@6#, the more global stability analysis of TW
solutions can be performed by linearizing the full OPO equa-
tions about these exact solutions, and this method is sketched
in Sec. IVA. Although this is the most powerful approach as
it omits no classes of instability, it involves finding the ei-
genvalues of a complex 636 matrix, and therefore this study
can be only numerical. Further analytical and physical in-
sights into the stability problem can be nevertheless obtained
by deriving amplitude and phase equations of the system. A
detailed discussion of these approaches can be found in Refs.
@6, 14#. Amplitude equations were derived in the preceding
section in the negative detuning case to study competition
between traveling- and standing-wave states. Since SWs are
unstable, we can deal with only one amplitude equation, say,
that forS1 , setting zero the other amplitudeS2 in Eq. ~17a!.

The most stringent limit of the amplitude equation is that it
describe the nonlinear behavior of the system near threshold.
This constraint can be removed by deriving a Cross-Newell
phase equation, which gives an exact description of long-
wavelength phase instabilities both near and well above
threshold. The derivation of the phase equation will be done
in Sec. IVB. Higher-order phase instabilities or amplitude
instabilities cannot, however, be predicted by the phase
equation, and analysis of the matrix eigenvalues in the lin-
earized problem is needed. Examples of amplitude instabili-
ties for the OPO equations in one transverse dimension will
be presented in Sec. IVC.

A. Linear stability analysis of TW states

In this section we will work out the linear stability analy-
sis of the TW solutions of the OPO equations. Because of the
complex nature of the field variables, we will consider, to-
gether with the original Eqs.~1!, their complex conjugate
equations, and we will assumeB,A1 ,A2 ,B* ,A1* ,A2* as in-
dependent variables. Using standard linear stability methods,
we write

B5BS~11b!,

B*5BS* ~11b* !,

A15A1S~11x1!,

A1*5A1S* ~11x1* !,

A25A2S~11x2!,

A2*5A2S* ~11x2* !,

whereBS ,A1S,A2S correspond to the TW solution given by
Eq. ~2! ~BS* ,A1S* ,A2S* are their complex conjugate!, and
b,b* ,x1 , . . . areperturbations. The most general solution of
the perturbations in the linearized system is a superposition
of solutions of the form

S b
b*
x1
x1*
x2
x2*

D }exp~lt1 iQxx1 iQyy!,

wherel5l(Qx ,Qy) is one of the eigenvalues of a 636 ma-
trix, whose expression is given in Appendix A, and
Q5(Qx ,Qy) is the transverse wave vector of the perturba-
tion. Instability of the TW solution to the growth of trans-
verse modulation with wave vectorQ arises when the real
part of at least one matrix eigenvalue becomes positive. The
translational invariance of Eqs.~1! ensures the existence of a
neutral mode with zero eigenvalue atQ50, and this is also
directly shown in Appendix A. This permits classification of
the pattern forming instabilities in two classes:phase insta-
bilities, which are instabilities arising from this neutral stable
eigenvalue as the transverse wave vectorQ is allowed to
vary, andamplitude instabilities, which correspond to modes
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that are not neutral atQ50. A detailed discussion of these
pattern forming instabilities can be found in Ref.@6#. With
respect to the laser case, the situation for the OPO equations
is further complicated by the fact that there might be un-
stable eigenvalues atQ50, as indicated in Fig. 2. The figure
shows, in the plane~k,m!, the domain of TW solutions where
Eq. ~A1!, given in Appendix A, has one eigenvalue with
positive real part. This type of instability was previously
studied for a degenerate OPO model in the absence of trans-
verse degrees of freedom, and is related to the appearance of
a self-pulsing behavior@16#. Because we are mainly inter-
ested in the study of transverse pattern instabilities, we will
consider parameter values where such instability is absent.
Even so, the instability scenario which arises in the numeri-
cal study of the matrix eigenvalues is quite complex, due to
the presence of amplitude instabilities both longitudinal and
transversal to the wave vector of the TW solution. Although
a detailed analysis of these instabilities is complicated and
goes beyond the purpose of this work, we will present in Sec.
IV C a few examples of amplitude instabilities. Universal
phase instabilities which arise from long-wavelength pertur-
bations are, however, more dangerous in destabilizing the
underlying TW pattern in the case of OPOs with low finesse
for the pump field. Stability boundaries of Eckhaus and zig-
zag phase instabilities are calculated in Sec. IV B.

B. The Cross-Newell phase equation

The exact boundaries of the phase~Eckhaus and zigzag!
instabilities can be obtained analytically by deriving the
Cross-Newell phase equation for the TW solutions of the
OPO equations. This approach was introduced in hydrody-
namics by Cross and Newell for the study of convective
patterns@18#, and has been recently applied in the optical
context to study phase instabilities in the Maxwell-Bloch
model of the laser equations@6,8#. The basic idea of the
method is to allow the phaseq of the field, whose wave
vector k5¹q and frequencyv5]tq are constants for the
pure TW state, to vary slowly in both time and space. As-
suming further that the field amplitude adiabatically follows

any phase variation, a diffusion equation for the phase field
q can be obtained as a solvability condition in a multiple-
scale expansion. The derivation of the phase equation is
rather involved, and details of the calculations are reported in
Appendix B. Assuming that the wave vector of the TW is
oriented along thex axis, the phase diffusion equation reads

S 1g1
1

1

g2
D ~] tq2v!5DEckqxx1Dzigqyy , ~18!

where the diffusion coefficients are given by

DEck524a2k
2
dc

dk2
1
4k2

g2

dc

dk2
dv

dk2
1
2k2D̃~a11a2!

C

dC

dk2

1
2k2D̃

C S 1g1
2

1

g2
D dC

dk2
dv

dk2
1D̃~a11a2!, ~19a!

Dzig5D̃~a11a2!. ~19b!

In Eq. ~19a!, dC/dk2, dc/dk2, anddv/dk2 are the deriva-
tives of the TW parametersC, c, andv, respectively, with
respect tok2; they can be easily calculated from Eqs.~4! and
~5!:

dC

dk2
5

g1a11g2a2

g11g2

Cr i2D̃

r r~C11!2r iD̃
, ~20a!

dc

dk2
5

r r

D̃2Cr i

dC

dk2
, ~20b!

dv

dk2
5

g1g2

g11g2
~a22a1!. ~20c!

The boundaries of the phase instabilities arising from long-
wavelength perturbations can be determined analytically
from the phase equation~18!. In fact, the stability require-
ment for the TW solution with wave numberk5~k,0! is sim-
ply DEck(k).0,Dzig(k).0. The passage ofDEck through
zero signals the Eckhaus stability boundary, andDzig passing
through zero gives the zigzag stability boundary. Since the
wave vectork has been chosen in thex direction, it follows
that the Eckhaus instability corresponds to compression or
dilation of the TW state, whereas the zigzag instability cor-
responds to the bending of the TW. An interesting feature of
the diffusion coefficients in the phase equation is that they do
not depend on the cavity decay rate of the pump field~g0!,
and therefore the Eckhaus and zigzag stability boundaries are
the same for OPOs with high or low finesse for the pump
field. In particular, forD,0, we note that the zigzag unstable
band always lies to the immediate left of the linek5kC and
extends all of the way to the left boundary out to the neutral
stability curve. On the contrary, the Eckhaus stability bound-
ary strongly depends on the sign of the pump detuningD0.
This is shown in Fig. 3, where the Eckhaus stability domain
is reported for three different values of the pump detuning.
Note that, as the pump detuning becomes positive@Fig. 3~c!#,
the Eckhaus stability domain enlarges even below the neutral
stability curve. The TW solution with maximum emission
corresponds, in the~k,m! plane, to the line m511

FIG. 2. Instability domain~gray area! of traveling waves to the
growth of perturbations with zero transverse wave vector. System
parameters areg050.1, g15g251, D05D15D2522, andv150.4.
In the figure, the solid line is the neutral stability curve, and the
dashed line defines the boundary of existence of traveling waves.
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(g1a11g2a2)(k
22k C

2 )/@D0~g11g2!#; the equation of this
curve can be obtained by settingdC/dk250, i.e., by looking
for the wave numberk which maximizes the TW intensity
for a given value of the parametric gain. Note that, forD0,0,
this line falls entirely in the unstable zigzag band, whereas
for D0.0 it lies within the Eckhaus and zigzag stability
boundaries.

C. Amplitude instabilities

Although the phase diffusion equation has showed that
long-wavelength phase instabilities are independent of the
cavity decay rate of the pump field, numerical analysis of the
matrix eigenvalues in the linearized problem shows that a
more complex instability scenario appears when considering
OPOs with a high finesse for the pump field. In this case, in
fact, amplitude instabilities at short wavelengths, arising
from modes that are not neutral atQ50, take place, reducing
the Busse balloon to a small region around the linek5kC .
For simplicity, we consider here only one transverse dimen-
sion, i.e., we consider only perturbations with wave vector
parallel to that of the TW state. As an example, Figs. 4 and 5
show the Busse balloon as computed from the phase diffu-
sion equation and from the numerical analysis of the matrix
eigenvalues for two different values of the pump decay rate
in the cavity. As can be seen, in the low finesse case~Fig. 4!,
long-wavelength~Eckhaus! phase instabilities are more dan-
gerous, and amplitude instabilities appear only well above

FIG. 5. Same as Fig. 4 withg051.

FIG. 3. Eckhaus stability domain~gray area!, as computed from
the Cross-Newell phase equation, for~a! D0522, ~b! D050, and~c!
D052; the other parameters areD15D2522, g05g15g251, and
v150.4. In the figures, the solid lines are the neutral stability
curves, and the dashed lines define the boundaries of existence of
traveling waves; in~b! the dashed curve is completely obscured by
the solid one.

FIG. 4. Results of the stability analysis for traveling waves in
one transverse dimension. The solid line is the neutral stability
curve, the gray area is the stability domain as computed from the
phase equation, and the dashed line is the boundary for emergence
of amplitude instabilities as computed from numerical analysis of
the matrix eigenvalues. Traveling waves on the right of this curve
undergo an amplitude instability. Parameters areD15D2522,
D050, g15g251, v150.4, andg0510.
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threshold for wave numbers larger than the critical wave
number. On the contrary, in the high finesse case~Fig. 5!, the
Busse balloon boundary at high wave numbers is strongly
pushed toward the linek5kC . The nature of the instability,
which reduces the Busse balloon as the pump decay rate
decreases, is a short-wavelength amplitude instability longi-
tudinal to the wave vector of the TW state. This is shown in
Fig. 6, where the real part of the eigenvalue with maximum
growth rate is reported as a function of the perturbing wave
numberQ at the incipient instability point~k51.125,m55!
for the case of Fig. 5; similar behaviors were found when
analyzing other instability points near the instability bound-
ary.

V. CONCLUSIONS

It has been demonstrated that the three wave equations
describing nonlinear transverse effects in optical parametric
oscillators have a family of exact TW solutions when either
polarization or frequency degeneracy constraint is removed.
These states correspond to an off-axis emission for both sig-
nal and idler fields along two symmetric transverse direc-
tions due to momentum conservation, and are preferred to
SW states previously found in the degenerate case. The ten-
dency to emit TWs instead of SWs has been demonstrated by
deriving, with standard weakly nonlinear analysis, two
coupled Newell-Whitehead-Segel equations which describe
the growth of traveling or standing waves close to threshold.
Stability of the TW states above threshold has been investi-
gated by standard linear stability analysis and by deriving a
Cross-Newell phase equation, and analytical expressions of
Eckhaus and zigzag phase instabilities have been derived
from the coefficients of the phase equation. The appearance
of amplitude instabilities in OPOs with high finesse for the
pump field has also been briefly discussed.

APPENDIX A: LINEAR STABILITY ANALYSIS

The matrix of the equations obtained by linearizing the
OPO equations about the TW solution is

FIG. 6. Largest real part of any eigenvalue in the linearized
problem as a function of the perturbing wave numberQ for
k51.125,m55. Parameter values are the same as in Fig. 5.
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where P65(Qx6kx)
21(Qy6ky)

2 and Q25Qx
21Qy

2. In
order to prove that the TW solution corresponding to the
lower sign in Eq.~4a! is always unstable, let us restrict our
analysis to considering perturbations with zero transverse
wave vector, i.e., let us assumeQ50. In this case, it may be
shown that the eigenvalues of the matrixM are the roots of
the following sixth-order algebraic equation:

l~l51c1l
41c2l

31c3l
21c4l1c5!50, ~A1!

where the explicit expressions of the~real! polynomial coef-
ficients are

c152~g01g11g2!,

c25g0
21g1

21g2
21D̃2~g12g2!

21g0
2D0

212g1g214g2g0

14g1g012Cg1g012Cg0g2 ,

A

c554g1g2g0
2C~g11g2!~11C2D0D̃!

~we have also evaluated explicitly the expressions ofc3 and
c4, but the formulas are too cumbersome to be given here
and are not needed for our purpose!. The existence of one
zero eigenvalue agrees with the translational invariance of
Eqs.~1!, and phase instabilities arise from this neutral eigen-
value when the transverse wave vector of the perturbation is
taken away from zero. Stability of the TW solutions against
the growth of homogeneous perturbations requires negative
real part of all other eigenvalues. Anecessarycondition is
that all the coefficientsc1 ,...,c5 be positive. In particular,
from the conditionc5.0 it follows that the TW solution
corresponding to the lower sign in Eq.~4a! is always un-
stable.

APPENDIX B: DERIVATION
OF THE CROSS-NEWELL EQUATION

In this appendix we outline the derivation of the phase
equation for the TW solutions of the OPO equations in the
nondegenerate case. A detailed description of the procedure
can be found in Refs.@6, 8, 14, 18#. The method consists in
looking for a solution of the dynamic equations in the form
of a TW state whose wave vectork5“xq and frequency
v5]tq are allowed to vary slowly in space and time; hereq
denotes the phase of the TW state. This is done by introduc-
ing slow time-space coordinates by setting

X5«x, Y5«y, T15«t, T25«2t, ~B1!

where the small parameter« is a bookkeeping parameter
which organizes the perturbation expansion. Its inverse
specifies the long length scale over which pattern reorienta-
tion occurs. Note that, as in the laser case@6#, besides the
diffusive «2 time scaling, another time scaleT15«t is
needed to capture slow evolution which occurs at the group
velocity of the wave packet. Because we want the wave vec-
tor k5“xq to depend onX, Y, T1, andT2, we introduce a
scaled phase variableQ(X,Y,T1 ,T2)5«q, so that

k5“xq5“XQ, ~B2!

] tq5]T1Q1«]T2Q5v1«]T2Q, ~B3!

where“x ~“X! means the gradient with respect to fast~slow!
space variables, andv5]T1Q is the wave frequency. Let us
now expand the field variablesB, A1, andA2 in powers of«:

B5B~0!~q,X,T!1«B~1!~q,X,T!1••• ,

A15A1
~0!~q,X,T!1«A1

~1!~q,X,T!1••• , ~B4!

A25A2
~0!~q,X,T!1«A2

~1!~q,X,T!1••• ,

whereX(T) is a global notation forX andY ~T1 andT2!.
Note that, in expansion~B4!, we treat the phase variableq as
an independent variable, and derivatives of any function
f5 f (q,X,T) act according to the rule

] t f5v]q f1«]q f ]T2Q1«]T1f1«2]T2f , ~B5!

¹x
2f5«2¹X

2 f12«k•“X~]q f !1«]q f“X•k1k2]q
2 f . ~B6!

We now substitute Eqs.~B4!–~B6! into Eqs.~1! and collect
terms at each order in«. At O~«0! we have

v

g0
]qB

~0!52~11 iD0!B
~0!2A1

~0!A2
~0!1 ia0k

2]q
2B~0!,

v

g1
]qA1

~0!52~11 iD1!A1
~0!1mA2

~0!*1 ia1k
2]q

2A1
~0! ,

v

g2
]qA2

~0!52~11 iD2!A2
~0!1mA1

~0!*1 ia2k
2]q

2A2
~0! ,

whose solution is the exact TW solution

B~0!52
C exp~ ic!

11 iD0
[B̄~0!, ~B7!

A1
~0!5AC exp~ iq![Ā1

~0!exp~ iq!, ~B8!

A2
~0!5AC exp~ ic!exp~2 iq![Ā2

~0!exp~2 iq!, ~B9!

whereC, c, andv are given by Eqs.~4! and~5! in the text.
At O~«!, we get

2
v

g0
]qB

~1!2~11 iD0!B
~1!1 ia0k

2]q
2B~1!2A1

~0!A2
~1!

2A2
~0!A1

~1!5
1

g0
]T1B

~0!, ~B10!
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2
v

g1
]qA1

~1!2~11 iD1!A1
~1!1 ia1k

2]q
2A1

~1!1mA2
~1!*

1A2
~0!*B~1!1A2

~1!*B~0!

52 ia1@2k•“X~]qA1
~0!!1]qA1

~0!
“X•k#

1
1

g1
]qA1

~0!]T2Q1
1

g1
]T1A1

~0! , ~B11!

2
v

g2
]qA2

~1!2~11 iD2!A2
~1!1 ia2k

2]q
2A2

~1!1mA1
~1!*

1A1
~0!*B~1!1A1

~1!*B~0!

52 ia2@2k•“X~]qA2
~0!!1]qA2

~0!
“X•k#

1
1

g2
]qA2

~0!]T2Q1
1

g2
]T1A2

~0! . ~B12!

The phase-diffusion equation is derived as a solvability con-
dition of the system of these equations. In fact, the associated
homogeneous system@obtained by setting equal to zero the
right-hand sides of Eqs.~B10!–~B12!# has a nontrivial
solution, which is simply the translation mode
(]qB

(0),]qA 1
(0) ,]qA 2

(0))T. This result follows from the
translational invariance of the original OPO equations~1!.
Hence the solvability condition requires that the right-hand
sides of Eqs.~B10!–~B12! not drive this translation mode.
To obtain the solvability condition in a simple way, let us
look for a solution of Eqs.~B10!–~B12! of the form

B~1!5B̄~1!, ~B13!

A15Ā1
~1!exp~ iq!, ~B14!

A2
~1!5Ā2

~1!exp~2 iq!, ~B15!

whereB̄~1!, Ā1
~1! , andĀ2

~1! may depend onX andT, but not on
q. Putting Eqs.~B13!–~B15! into Eqs. ~B10!–~B12! and
eliminating the variablesB̄~1! andĀ2

~1! from the linear system
of equations so obtained, we have

Ā1
~1!1Ā1

~1!*5g exp~ ic!/I , ~B16!

where

g5g12S 12
b

m Dg2exp~2 ic!1
b

m
g2* exp~2 ic!,

g15
i

g1
Ā1

~0!]T2Q1a1@2k•“XĀ1
~0!1Ā1

~0!
“X•k#

1
1

g1
]T1Ā1

~0!1
Ā2

~0!*

g0~11 iD0!
]T1B̄

~0!,

g252
i

g2
Ā2

~0!]T2Q2a2@2k•“XĀ2
~0!1Ā2

~0!
“X•k#

1
1

g2
]T1Ā2

~0!1
Ā1

~0!*

g0~11 iD0!
]T1B̄

~0!,

I5bS 221
b

m
1

b*

m D ,
b5~11 i D̃!exp~ ic!.

The solvability condition of Eq. ~B16! requires
Im@g exp(ic)/I #50, which reads explicitly

S 1g1
1

1

g2
D ]T2Q522a2k•“Xc1

1

g2
]T1c1D̃H ~a11a2!

3Fk•“XC

C
1“X•kG

1
1

2C S 1g1
2

1

g2
D ]T1CJ . ~B17!

Assuming that the field amplitudes follow adiabatically any
change of the phaseQ, the dependence ofC andc on the
slow variablesX, Y, andT1 is implied in Eqs.~4! through
k25u“XQu2. Using the derivatives rules

]T1C52
dC

dk2
k•

]k

]T1
52

dC

dk2
dv

dk2
~k•“Xk

2!,

k•“XC5
dC

dk2
k•“Xk

2

~and similar formulas forc!, after observing that

“X•k5QXX1QYY,

k•“Xk
252@kx

2QXX12kxkyQXY1ky
2QYY#,

wherek5(kx ,ky), Eq. ~B17! takes the form

S 1g1
1

1

g2
D ]T2Q52H 22a2

dc

dk2
1

2

g2

dc

dk2
dv

dk2

1D̃
~a11a2!

C

dC

dk2
1

D̃

C S 1g1

2
1

g2
D dC

dk2
dv

dk2 J ~kx
2QXX12kxkyQXY

1ky
2QYY!1~a11a2!

3D̃~QXX1QYY!. ~B18!

In order to capture the various phase instabilities more eas-
ily, let us choose thex coordinate axis along thek wave
vector of the TW solution, i.e., let us assumeky50 in Eq.
~B18!. Using ] tq5v1«]T2Q and the relations
«QXX5qxx , «QYY5qyy , we finally get from Eq.~B18! the
Cross-Newell equation

S 1g1
1

1

g2
D ~] tq2v!5DEckqxx1Dzigqyy ,

where the expressions of the phase diffusion coefficients
DEck andDzig are those given in the text@Eqs.~19!#.
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