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Traveling-wave states and secondary instabilities in optical parametric oscillators
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A complex order-parameter description of pattern formation in large aspect ratio optical parametric oscilla-
tors (OPOg with flat end reflectors and uniform pumping is presented starting from the mean-field model of
the OPO equationigs.-L. Oppoet al, Phys. Rev. A49, 2028(1994]. It is shown that, in the nondegenerate
case, the full OPO equations have an exact continuum family of traveling-@amg solutions, which are
preferred to standing-wa\&W) states found in the degenerate case. These solutions correspond to an off-axis
emission for both signal and idler fields along two symmetric directions to satisfy momentum conservation in
the parametric conversion process. Stability of TW versus SW solutions is investigated by deriving two
coupled Newell-Whitehead-Segel equations describing the growth of SW or TW close to threshold. Analytical
expressions for long-wavelength phase instabilities of the TW states above threshold are obtained from the
coefficients of a Cross-Newell phase equation, and are shown to be the same for OPOs with high or low finesse
for the pump field. By direct linear stability analysis of the TW solutions, it is also shown that the appearance
of amplitude instabilities may reduce the region of stable TW states in the case of OPOs with a high finesse for
the pump field[S1050-29476)01406-0

PACS numbgs): 42.65.Ky, 47.20-k, 52.35.Mw

[. INTRODUCTION equations which describe the growth of standing or traveling
waves close to threshold,7]. In particular, a combination
Pattern formation in nonlinear optical systems has beewnf two opposing waves, a standing wai®W), is unstable,
the object of extensive investigations in recent yddisin  collapsing to a single TW. Pattern formation in optical para-
particular, theoretical and experimental studies of transversmetric oscillators(OPOs with flat end reflectors has also
laser dynamics have revealed the appearance of a new kifmten investigated, and threshold lowering due to the appear-
of instabilities leading to spatial pattern formation, ance of roll patterns has been predicted in the degenerate
symmetry-breaking bifurcations, and complex space-timease and for negative detunings of the signal fi@d11].
patterns[2—8]. Early studies in this field were mainly fo- Although the phenomenon which makes the threshold inde-
cused on small aspect ratio systems, in which a small numbgrendent of the signal detuning in the negative side is quite
of transverse modes may be excif@d In more recent stud- similar to the appearance of TW states in lasers, off-axis
ies, large aspect ratio systems, usually obtained by consideemission in OPOs manifests itself as roll patterns. Physi-
ing cavities with plane mirrors of infinite transverse exten-cally, the roll solution originates from interference between
sion and plane-wave pumping, have introduced a host afiwo symmetric TWs which are simultaneously generated in
interesting additional phenomena related to the existence dhe parametric conversion of the pump photons due to mo-
universal pattern instabilitis8—8]. The central new feature mentum conservatiof9]. From a mathematical point of
obtained by going to large aspect ratio systems is the possiew, the tendency to yield roll patterns instead of traveling
bility of reducing the nonlinear transverse dynamics to a uniwaves is related to the possibility of reducing the OPO dy-
versal form, providing a connection between pattern formanamics to an order parameter equation which is sensitive to
tion phenomena in optics and in other physical fieldsthe phase field11]. However, when operating in the nonde-
particularly in hydrodynamic$5,6,8. In the laser case, it generate case, or when signal and idler fields are degenerate
was shown that the full Maxwell-Bloch equations admit of in frequency but are polarized along two orthogonal direc-
exact traveling-wave solutions, and that the nature of thdions [12], we expect that momentum conservation can be
solution above threshold strongly depends on the sign of theatisfied without producing interference, which is the basic
detuning between the atomic resonance frequency and threason for roll formation. In this paper we show indeed that
longitudinal cavity ond4]. For positive detunings, threshold the full OPO equations with uniform pumping previously
lowering associated to an off-axis emission is predictecconsidered in Ref{10] admit of stable TW states for both
[4,6]. Because of the rotational symmetry in the transverseignal and idler fields. A remarkable feature of these equa-
plane, a whole annulus of wave vectors may become activéons analogous to the laser case is that, when removing the
near threshold, and pattern selection is governed by the nowlegeneracy constraint, a continuumesfctsolutions exists
linear competition among these modes. The fact that, abovabove the neutral stability curve. These solutions are repre-
threshold, only a single wave vecfaorresponding to a pure sented by twesymmetricTWs for signal and idler fields, and
traveling-wave(TW) solution] is able to dominate and to by a homogeneous plane wave for the pump field. Note that
suppress all others, at least within local patcf@sis quite  the fact that idler and signal photons are emitted along two
remarkable. The process by which a pure TW state is sesymmetric directions is a consequence of momentum conser-
lected is governed by the nonlinear terms in the amplitudevation, whereas the uniformity of the pump field also above
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threshold is due to the absence of interference between thegen = [ — (1+iA;)A;+ia,;V2A;+ uA% 1+ y,A5B, (1b)
TWs. The preference of TW versus SW states is here ad-

dressed by deriving the amplitude equations of the syste T . . 2 * *

an approach of weakly nonlinear analysis that now has brg?‘Az vl = (1+142)Ar 18V Az AT+ 72A1B. (10
come standarfl13,14]. These equations are expressed in the . B
form of two coupled Newell-Whitehead equations, and de-N these equations=~Ao—u, Ao, Ay, andA, are the nor-
scribe the growth of SW or TW close to threshold. Abover_nallzed SIOW'Y varying enve_lopes for p2ur_np, signal, and !dler
threshold, the TW states may be destabilized due to the afi€lds: respectivelyu=E(1—i1,)/(1+Ap) is the parametric

pearance of both phase and amplitude instabilities. The st@@/N, andE is the normalized amplitude of the plane-wave

bility domain of the TW solutions corresponds to what hasPUmP ian!t field. The Qetuning parameters for pump, signal,
been called thBusse balloorior convective systemfdl5], a and idler fields are defined by

terminology recently introduced also in the optical context

[8]. The existence of exact TW solutions of the full OPO _WoT W A _ 01T oy A _ W2 Py
equations allows for a direct determination of the Busse bal- 0 Yo o ! V1 ' 2 V2
loon boundaries by use of standard linear stability methods.

This is the most powerful technique as it omits no classes oivhere y,, v;, and vy, are the cavity decay rates of the three
instability. However, it is inevitably numerical in practice fields, wy, w;, and w, are the three longitudinal cavity fre-
and offers little physical insight into the problem. Further quencies close to the pump frequeney, the signal fre-
analytical results are obtained, as in the laser case, by deriquency v, , and the idler frequency,w, , respectively,
ing a phase diffusion equation of the underlying pattern. Thisand »;+»,=1 for energy conservation in the parametric in-
equation permits testing of stability of the TW solution teraction. The diffraction parameteag, a;, anda, for the
against long-wavelength transverse sideband perturbationtree fields are defined by

identifying both Eckhaus and zigzag stability boundaries.

These instabilities could lead to defect formation and there- C c c

fore may play an important role in the transition to complex aozﬂ,
temporal patterns. It is shown that the boundaries of the sta- 270

bility domain as obtained by the phase diffusion equation arg, e ¢ s the velocity of light andk, is the longitudinal
independenbf the cavity decay rate of the pump field. How- wave vector of the field at frequenay, . Without loss of

ever, a comparison.of the Bussc_a balloon domain, as Obtains(éjenerality, we may assume that the parametric gamEgs.
by direct computation of the elgenvall_Jes n th? I|nea_r|ze 1), which plays the role of bifurcation parameter, be real and
problem and by use of.the phase equation, puts into evidengeysitive. Besides the trivial zero solution, corresponding to
the existence of amplitude instabilities, which may reduc he OPO being below threshold, Eq$) have anexactcon-

th? stability doma_in to a small region in_side the d_omain Oftinuum family of traveling-wave solutions, dependent on the
existence of TWs in the case of OPOs with a high finesse fof, o\ erse wave vectdr (the family parameter given by
the pump field.

The paper is organized as follows. In Sec. Il we review

Q=5—7—, =5,
! 2v1K,y1 2 2v5K, v,

the model set of equations for the problem of a nondegener- B — B _
ate OPO with infinitely extended plane parallel mirrft§], A =| Aexpik-r+iot) |, 2
presenting an exact family of TW solutions for these equa- Az Asexp —ik-r—iwt)

tions. In Sec. Il we discuss the threshold problem and derive

two coupled amplitude equations in the negative detuningvhere

case, showing how TW solutions are preferred to SW ones.

Finally, in Sec. IV we discuss the stability problem of the _ Cexpliy)
TW solutions both by standard linear stability analysis and Ty
by deriving a Cross-Newell phase equation. Exact expres- 0
sions of the phaséckhaus and zigzagtability boundaries _
are presented, and emergence of amplitude instabilities is A,=1C, (3b)
also briefly investigated.

(3a

A,=/C exgliy). (30)
Il. BASIC OPO EQUATIONS

AND TRAVELING-WAVE SOLUTIONS In Egs.(3), ¥ is the phase difference between idler and signal

The starting point of our analysis is provided by a set offields, and_C>O represents the intensity of the TW solution;
three coupled equations describing the dynamics of signafhey are given by
idler, and pump waves in an optical parametric oscillator _
with flat end mirrors, generalized to include diffraction ef- —(pr—pid) =V u?p,— (pi+p,A)2
fects. These equations were derived in previous papers = P ' (4a)
[9-11]] to study pattern formation in OPO systems. With the '
same notations as in Rdf10], in the nondegenerate case,
they are given by

cosp=(1+p,C)/ u, (4b)

aB=1y[—(1+iAg)B+iagV?B]— yoA1A,, (1@  where we have set
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pr=(1+A9"Y  pi=pAo,

Y101+ yoA o+ K3 (y1a1+ yoa,)

A=
Y1t vz

andk=|k|. Finally, in Eq.(2) the frequencyw is given by

oo Y1yl A=A+ K3 (a—ay)]

, 5
Y1t y2 ®

Parametric Gain 1)

which defines the relation dispersian=w(k) for TW solu-
tions. The domain of existence of TWs in the pldkge) can 0 L
be determined from Eq4a by makingC=>0. It should be -3.00 -1.00 1.00 3.00
noted that, fop, — p;A>0, only the positive sign in Eq4a) Wave Number k

is acceptable, and the TW exists f@r>u,, where ug

=1+ A2 On the other hand, for wave vectdessuch that 10

p,—p;A becomes negative, the TW solution exists for

w> e, Where we=\1+A%—(p,—piA)2/p,; in this case, < 3

whenu varies in the range.<u<pug, there are two accept- .g

able solutions of Eqi4a), indicating the emergence of bista- 3 6

bility. This is a generalization of the bistable behavior previ- g

ously studied for a degenerate OPO model without % 4

diffraction [16]. As is briefly shown in Appendix A, the TW £

solution corresponding to the lower branch of the bistable ~

loop is unstable, and therefore we will neglect this solution. 2

Physically, the TW solution given by E@2) describes off- B 7
axis emission of idler and signal photons along two opposite 93 00’ ' |-1|00' ' '11)0‘ ' '3 00
directions and at frequencies equally detuned, in opposite ‘ W'ave Numbt;,rk ‘

sides, from the reference frequencies. These features are a
consequence of energy and momentum conservation in the
parametric conversion of pump photons. It should be noted FIG. 1. Neutral stability curvésolid line) and boundary of ex-
that, when idler and signal fields agegenerate both in fre- istence of traveling waveglashed lingfor (a) A;=A,=—2, and(b)
quency and polarizationEgs. (1) must be solved with the A,=A,=2. For wave numbers where the dashed line is not ob-
further conditionA;=A.,. In this case, the TW states given Scured by the solid one, traveling-wave solutions may exist below
by Eq.(2) are no longer good solutions of the problem, angthreshold for oscillation. The other parameters gge y1=y,=1,

S staies, uhose expression can b caluated nly by i 2 L e ot faues gt
proximate methodf9], are in fact selected. '

U(ypa0) ™2

[ll. LINEAR STABILITY ANALYSIS OF NONLASING
SOLUTION AND WEAKLY NONLINEAR ANALYSIS
NEAR THRESHOLD

and transverse modes form a continuum. Then the most gen-
eral solution of Eqs(6b) and(6¢) is given by a linear com-
bination of solutions of the form

A. Neutral stability curve and threshold condition

A
The threshold for oscillation is determined by linearizing (A’%) cexpAt+ik-r),
Egs. (1) around the trivial zero solution and looking for ex- 2
ponential growth of the perturbations. The linearized equa

x wherek is the transverse wave vector of the perturbation and
tions are

\ is an eigenvalue of the linear problem. For a given wave
B= o[ — (1+iAg)B+iagV2B], 6 numberk, the real part of one of the two eigenvalues, say
B=7ol ~(1+140)B+1a,V"B] (63 Re(\,), crosses zero from negative asis increased. Thus
A=yl —(1+iAD A+ 27+ uA* Re(\)=0 gives the neutral stability curve=puq(k), and
HA= il —(AHTAD ATV AL uAz ], (BD) w=Im(\,) defines the frequency of the Hopf bifurcation. We

atAz:‘}’2[—(1—iA2)A’2‘—ia2V2A5+MAl], (60) find
2 2\ 112
where, for convenience, we have written Eg) in terms of oK) = ( 14 v1A 1+ voA,+ KA (yra,+ v,ay)
A3 . As can be seen, the dynamics of the pump perturbation Y1t 2
B is decoupled from that of the signal and idler fields, and _ \/1_+ZE .

does not lead to instability for any value of the parametric
gain u. We concentrate therefore on the last two equations of [A,— A +KX(a,—ay)]
the linearized system. We assume that the transverse plane is o= YA Z27 21 2 UL ®)
sufficiently large so that we can neglect boundary conditions Y1t 72
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Note that the neutral stability curve coincides with the curve B. Amplitude equations

of existence of TW solutions wheg, — p;A>0, and the fre-

quency of the Hopf bifurcation is exactly that given by Eq.  The nonlinear dynamics of the OPO equations close to
(5). Minimizing ug(k) with respect tok gives the threshold threshold can be captured analytically by deriving universal
for oscillation uy,= uo(ke) with critical wave numbek: and  amplitude equations for the systdi4]. The derivation of
frequencywc= w(kc). The behavior of the neutral stability the amplitude equations is based on a multiple-scale expan-
curve, shown in Fig. 1, strongly depends on the sign of theion[13,14] and is valid when bifurcation to the lasing state
“effective” detuning A=(yA;+%A)/(71+7,). As previ-  near onset is supercritical. We concentrate here on the deri-
ously reported in Refs[9, 10], for A>0 the threshold is vation of the amplitude equations in the negative detuning
given by =1+ AZ and corresponds to the critical wave case(A<0), where bifurcation is always supercritical. In the
numberkc=0 and frequencyc=y17,(A,—A)/(y1+7,). On  positive detuning case, derivation of an amplitude equation
the other hand, fon<O0, threshold lowering to the value might be a nontrivial matter because bifurcation could be-
mn=1is predicted, corresponding to a critical wave numbercome subcritical; hence fax>0 it appears more convenient
ke=V—A(y1+72)/(ary1+a27,). It should be noted that, to address the stability problem of TW states by direct linear
in the latter case, threshold condition for oscillation COi”'stabiIity analysis of the full OPO equations or by deriving a
cides with that for existence of the TW solution with wave phase diffusion equation. Fak<0, due to the rotational

numberk., and bifurcation of the trivial zero solution is symmetry in the transverse plane, any modes with wave

supercritical. On the contrary, in the former case the homo'number|k|mkc can be excited near threshold: however, non-

geneous TW stat'e may exist 'b'elow thresholq for c?SC.'”""t'Or]inear interactions among these modes usually select regular
whenever the bistable conditiop, —p;A<0 is satisfied. solutions formed by a superposition of a few TY14]. Here
Therefore the bifurcation to the homogeneous TW solution, o 0,q on the derivation of the amplitude equations con-
may be subcritical ar superprltlcal. R_estrlctlng now our alt'sidering the competition between two TW states propagating
tention to the case of nege}twe detunin@s<0), the depen- along thex axis with opposite directions. Such equations will
dence of the neutral stability curve only on modulus of ey, o6 1o establish whether traveling- or standing-wave
transverse wave vect@not its direction, introduces a rota- states are preferrefll7]. To this aim, it is convenient to
tlonall:I’ degenerat(_:y, S_If)hthat a w(;mle annulus OL;Nave ve<f:tor§ nsider the complex conjugate of Ed.c) instead of Eq.
can become active. The same degeneracy problem was foun : :

for the laser equatior{$]. In that case, both numerical simu- (10, and to rewrite Eqsi1) in the compact form
lations of the equations and weakly nonlinear analysis close R
to threshold showed that a pure TW state is able to dominate dv=LVv+N, 9
and to suppress all othefi§]. By use of amplitude equations,

we will show here that for the OPO equations the SW solu-

tion (roll patterr), obtained by superposition of two TW where the vectov=(B,A,, 5)T contains the field vari-
states propagating in opposite directions, is also unstable arablesL is the linear operator, ard is the nonlinear operator

a pure exact TW state is preferred. of the system,
— yo(1+iA0) +i702,V? 0 0 —Y0A1A2
L= 0 —y1(1+iAy) +iya,V? V1M , N=[ 7AB
0 Yol —¥2(1=iA5) =i y,a,V? 72A1B*
|
We expandvs as an asymptotic series in a small parameter V2=092 +&(95+ 20y dx)+&2d%.
0 0
v=evD+e2v@ 4 g3y ... (10)

Substituting Eqs(10) and(11) into Eq.(9) yields a hierarchy
where 82=,LL—1 provides a measure of the distance abovepf equations for successive correctionsvof
threshold. The next step is to introduce a multiple-scale ex-
pansion for space and time variables. As in the laser [&lse
an inspection of the diagram in Fig(&l suggests the follow-
ing choice of multiple scales fdr, x, andy:

(d1,~LovP=0for O(e),

LV =— g v [y 2
t=To+eTi+e2Tot o, x=Xo+eX, y=el2Y. (Fry "LV == 97 VA LA N, for O,

Using the chain rule for differentiation, one has the substitu-

tion (aTO_ Lo)V(a) = — &Tlv(z)_ aTZV(l) + le(Z) + L2V(l) + N3

_ 2
dy=dr,tedr el tee (11 for O(g?),
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Whereﬂo is the linear operator of the system at threshakl, for u=1), N, andN; are the nonlinear terms ax(=?) andO(&>),
and

iagyo(d5+2dxdx,) 0 0
L= 0 a1 y1(95+2dxdx,) 0 :
0 0 —ia,y (d5+ 20xdx,)
iayY0d% 0 0
L= 0 iayy,9% Y1
0 Y2 —iazy20%

At leading order, we find the linearized system studied inconditions expressed by the Fredholm alternative theorem
Sec. Il A, whose solution may be written as a superpositiormust be satisfied. Specifically, the solvability conditions re-
of two TWs propagating along the axis with opposite di- quire that the right-hand side term&,=L,v(V+N,

reCtionS: - aTlv(l) at 0(82) and ng le(z)"f‘ |:2V(1)+ N3_ (9T1V(2)
B(D —&Tzv(l) at O(¢% be orthogonal to the two eigenvectors
vO={ AP | 1AL (XY, Ty, To)exdi(keXo+ cTo)] Uz 2= (0,72, %) "expli (= keXo+ wcTo)] of the adjoint opera-
AX(D Y tor of (ér,~ Lo). Applying the solvability condition a®(&?),
2 .
we find

+A_(X,Y, Ty, To)exdi(—keXo

0 iyiya(ai—a)  ,
+ocTo)lH 1]. (12) A= (0y*2ikedx)As (13
1

In order to solve equations &(g?) and O(&%), solvability — and the solution at this order is given by

a+,8+eXF(2ikao)+[)’,eXF(_2ikcx0) )

V(z) = 13+EXFXikCX0+ i wcTo) + 'ﬂ,exq - ich0+ i wcTo) (14)
0
[
where (Y1t v2)d1,AL=—y2d7 Do+ a1 y172(95+ 2ikcdx) O
b +i(a1-82) 717205A +27172A-
a:_w (159 |A |2+|A |2
1+ido —2v172 +—27
1+A§
Asl?
ALAL + 1A A 1
B+= = (15b) 1+ (Ag+4agks)?| (16)

T 1+i(Agt+4agkd)’

Cayyitazyy, L, The total time and space derivatives of the amplitudes are
V=i Tyt v, (O£ 2iKcdx)Ax - (159 given bydA.=edr A +e?drAs, dyA.=c"9yA. , and
AL =edxA. . Then, combining Eq913) and (16), using
Eq. (150, and changing variablesA. =S. , we finally ob-
The £3-order solvability condition reads explicitly tain the followingamplitude equations



i(a;—ay)
7(0:Sy +v40xSy) = —

+6°S, —(p;|S;[*+0[S_[9)S,, (179

V2S, — A(d5+ 2ikcdy) S,

i(a;—ay)

T(hS_—v4dxS_)= >

V2S_— A(d5—2ikedy)S_

+&2S_—(p/|S_|*+d]S: %S,
(17b)

where we have set

Y1t v
T
2y172
A:E ay1t+azy,)?
2 Y1t y2
2Kcy1y2(a1—ay)
vg=

Y1ty

1 1 1
1+A2 " 1+ (Ag+4akd)? P 1+ (Ag+4agk?)?

o
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The most stringent limit of the amplitude equation is that it
describe the nonlinear behavior of the system near threshold.
This constraint can be removed by deriving a Cross-Newell
phase equation, which gives an exact description of long-
wavelength phase instabilities both near and well above
threshold. The derivation of the phase equation will be done
in Sec. IVB. Higher-order phase instabilities or amplitude
instabilities cannot, however, be predicted by the phase
equation, and analysis of the matrix eigenvalues in the lin-
earized problem is needed. Examples of amplitude instabili-
ties for the OPO equations in one transverse dimension will
be presented in Sec. IVC.

A. Linear stability analysis of TW states

In this section we will work out the linear stability analy-
sis of the TW solutions of the OPO equations. Because of the
complex nature of the field variables, we will consider, to-
gether with the original Eqs(1), their complex conjugate
equations, and we will assunigA;,A,,B* A7 A} as in-
dependent variables. Using standard linear stability methods,
we write

B=Bg(1+b),

B* = BX(1+b*),

These equations are two coupled complex Newell-

Whitehead-Segel equations similar to those obtained for la-

ser system§6], and describe the growth of standing or trav-
eling waves moving in opposite directions with group
velocities*v 4. There are two families of stationary homo-
geneous solutions: TWE, =0, S_#0 or vice versa and
SWs (S, |=]S_|), the last solution corresponding to roll
patterns(stripes. Using the same technique as in Ref], it

A=A 5(1+Xy),
AT =ATs(1+x7),
Ar=Aog(1+X%y),

As =A5(1+x3),

may easily be shown by linearizing the amplitude equations
around the SW solution that this solution is always unstablewhereBg,A;s,A,g correspond to the TW solution given by

This is closely related to the fact that>p, in Egs. (17);
SWs are in fact favored for<<p, [14].

IV. STABILITY OF TRAVELING WAVES:
SECONDARY INSTABILITIES

Up to now it has been shown that, in the nondegenerate
case, the OPO equations admit of exact TW solutions which
are preferred to roll patterns just above threshold. The central
guestion is now to determine the region of stable TW states

(the Busse ballogrbeyond the neutral stability curve. As in
laser system$6], the more global stability analysis of TW

Eq. (2) (BS,Als,Ass are their complex conjugate and

b,b*,x,, ... areperturbations. The most general solution of
the perturbations in the linearized system is a superposition
of solutions of the form

b
b*
X
*
X1
X2

*
X3

xexpM+iQ,x+iQyy),

solutions can be performed by linearizing the full OPO equa-
tions about these exact solutions, and this method is sketchethereA=\(Q,,Q,) is one of the eigenvalues of a& ma-
in Sec. IV A. Although this is the most powerful approach astrix, whose expression is given in Appendix A, and

it omits no classes of instability, it involves finding the ei-
genvalues of a complex>&6 matrix, and therefore this study

Q=(Qx.Q,) is the transverse wave vector of the perturba-
tion. Instability of the TW solution to the growth of trans-

can be only numerical. Further analytical and physical in-verse modulation with wave vect® arises when the real
sights into the stability problem can be nevertheless obtainepgart of at least one matrix eigenvalue becomes positive. The
by deriving amplitude and phase equations of the system. Aranslational invariance of Eqél) ensures the existence of a
detailed discussion of these approaches can be found in Refseutral mode with zero eigenvalue @&=0, and this is also

[6, 14]. Amplitude equations were derived in the precedingdirectly shown in Appendix A. This permits classification of
section in the negative detuning case to study competitiothe pattern forming instabilities in two classg#iase insta-
between traveling- and standing-wave states. Since SWs ahdlities, which are instabilities arising from this neutral stable
unstable, we can deal with only one amplitude equation, saygigenvalue as the transverse wave vecis allowed to

that forS, , setting zero the other amplitu& in Eq. (173.

vary, andamplitude instabilitieswhich correspond to modes
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any phase variation, a diffusion equation for the phase field
¥ can be obtained as a solvability condition in a multiple-
scale expansion. The derivation of the phase equation is
rather involved, and details of the calculations are reported in
Appendix B. Assuming that the wave vector of the TW is
oriented along the& axis, the phase diffusion equation reads

=)}

1 1
_+_
Y1 72

((?tﬁ_w)zDECkﬁxx—i_ Dzigﬁyy, (18)

Parametric Gain [L
=

[\

where the diffusion coefficients are given by

0 1 ) Do .——4a k2$ﬁ2+4_k2 dy dw+2k2A(a1+a2) dC
Wave Number k Eck 2% dk V2 di? di? C dk?
o
FIG. 2. Instability domair(gray area of traveling waves to the 2k°A (i_ i) d_(é d_w +Z(a1+ a,) (193
growth of perturbations with zero transverse wave vector. System C Y1 72/ dk dk® ’
parameters argp=0.1, y1=v,=1, Ag=A;=A,=—2, andv,=0.4. -
In the figure, the solid line is the neutral stability curve, and the D,ig=A(a;+ay). (19b)

dashed line defines the boundary of existence of traveling waves.
In Eq. (198, dC/dk? dy/dk? anddw/dk? are the deriva-

that are not neutral &)=0. A detailed discussion of these
pattern forming instabilities can be found in Rg8]. With

respect to the laser case, the situation for the OPO equatio

tives of the TW parameter§, ¢, and w, respectively, with
respect tdk?; they can be easily calculated from E¢#) and

e

is further complicated by the fact that there might be un-
stable eigenvalues =0, as indicated in Fig. 2. The figure
shows, in the planék,w), the domain of TW solutions where

Eq. (A1), given in Appendix A, has one eigenvalue with
positive real part. This type of instability was previously
studied for a degenerate OPO model in the absence of trans-
verse degrees of freedom, and is related to the appearance of
a self-pulsing behaviof16]. Because we are mainly inter-
ested in the study of transverse pattern instabilities, we will
consider parameter values where such instability is absent.

dC  yia;+y,@, Cpi—A

di ity p(CH+1)—pA
dy _ Pr dC (20b)
dk? A-Cp; dk?’
dw Y172
a2~ 31+ 7, (az—ay). (209

Even so, the instability scenario which arises in the numeri-
cal study of the matrix eigenvalues is quite complex, due torhe boundaries of the phase instabilities arising from long-
the presence of amplitude instabilities both longitudinal andvavelength perturbations can be determined analytically
transversal to the wave vector of the TW solution. Althoughfrom the phase equatiofi8). In fact, the stability require-
a detailed analysis of these instabilities is complicated andnent for the TW solution with wave numbke=(k,0) is sim-
goes beyond the purpose of this work, we will present in Secply Dgq(K)>0,D,i((k)>0. The passage oDgy through
IVC a few examples of amplitude instabilities. Universal zero signals the Eckhaus stability boundary, ng passing
phase instabilities which arise from long-wavelength perturthrough zero gives the zigzag stability boundary. Since the
bations are, however, more dangerous in destabilizing thevave vectok has been chosen in thedirection, it follows
underlying TW pattern in the case of OPOs with low finessethat the Eckhaus instability corresponds to compression or
for the pump field. Stability boundaries of Eckhaus and zig-dilation of the TW state, whereas the zigzag instability cor-
zag phase instabilities are calculated in Sec. IV B. responds to the bending of the TW. An interesting feature of
the diffusion coefficients in the phase equation is that they do
not depend on the cavity decay rate of the pump field,
and therefore the Eckhaus and zigzag stability boundaries are
The exact boundaries of the pha&khaus and zigzag the same for OPOs with high or low finesse for the pump
instabilities can be obtained analytically by deriving thefield. In particular, forA<O, we note that the zigzag unstable
Cross-Newell phase equation for the TW solutions of theband always lies to the immediate left of the like ke and
OPO equations. This approach was introduced in hydrodyextends all of the way to the left boundary out to the neutral
namics by Cross and Newell for the study of convectivestability curve. On the contrary, the Eckhaus stability bound-
patterns[18], and has been recently applied in the opticalary strongly depends on the sign of the pump deturiigg
context to study phase instabilities in the Maxwell-Bloch This is shown in Fig. 3, where the Eckhaus stability domain
model of the laser equatior{$,8]. The basic idea of the is reported for three different values of the pump detuning.
method is to allow the phasé of the field, whose wave Note that, as the pump detuning becomes positiig. 3(c)],
vector k=V9 and frequencyw=4,9 are constants for the the Eckhaus stability domain enlarges even below the neutral
pure TW state, to vary slowly in both time and space. As-stability curve. The TW solution with maximum emission
suming further that the field amplitude adiabatically follows corresponds, in the(k,u) plane, to the line u=1+

B. The Cross-Newell phase equation
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FIG. 3. Eckhaus stability domaifgray are® as computed from
the Cross-Newell phase equation, far Ag=—2, (b) Ag=0, and(c)
Ap=2; the other parameters afg=A,=—-2, yy=y=7=1, and
v1=0.4. In the figures, the solid lines are the neutral stability
curves, and the dashed lines define the boundaries of existence
traveling waves; in(b) the dashed curve is completely obscured by
the solid one.

(v1a1+ ¥28,) (K2 —k2)[Ao(y1+ 75)]; the equation of this
curve can be obtained by settid@/dk?=0, i.e., by looking
for the wave numbek which maximizes the TW intensity
for a given value of the parametric gain. Note that, Ag«0,

this line falls entirely in the unstable zigzag band, whereas

for Ag>0 it lies within the Eckhaus and zigzag stability
boundaries.
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FIG. 4. Results of the stability analysis for traveling waves in
one transverse dimension. The solid line is the neutral stability
curve, the gray area is the stability domain as computed from the
phase equation, and the dashed line is the boundary for emergence
of amplitude instabilities as computed from numerical analysis of
the matrix eigenvalues. Traveling waves on the right of this curve
undergo an amplitude instability. Parameters ag=A,=-2,

Ag=0, yi=7%=1, v,=0.4, andy,=10.

C. Amplitude instabilities

Although the phase diffusion equation has showed that
long-wavelength phase instabilities are independent of the
cavity decay rate of the pump field, numerical analysis of the
matrix eigenvalues in the linearized problem shows that a
more complex instability scenario appears when considering
OPOs with a high finesse for the pump field. In this case, in
fact, amplitude instabilities at short wavelengths, arising
from modes that are not neutral@t=0, take place, reducing
the Busse balloon to a small region around the kmek, .

For simplicity, we consider here only one transverse dimen-
sion, i.e., we consider only perturbations with wave vector
parallel to that of the TW state. As an example, Figs. 4 and 5
show the Busse balloon as computed from the phase diffu-
sion equation and from the numerical analysis of the matrix
eigenvalues for two different values of the pump decay rate
in the cavity. As can be seen, in the low finesse d¢&sg 4),
long-wavelength Eckhau$ phase instabilities are more dan-
gerous, and amplitude instabilities appear only well above

20
3.
15
of g
&)
=
s 10
g
5]
= s
0
0.50 1.00 1.50
Wave Number k
FIG. 5. Same as Fig. 4 withy=1.
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FIG. 6. Largest real part of any eigenvalue in the linearized
problem as a function of the perturbing wave numisgrfor
k=1.125, u=5. Parameter values are the same as in Fig. 5.

threshold for wave numbers larger than the critical wave
number. On the contrary, in the high finesse d&sg. 5), the
Busse balloon boundary at high wave numbers is strongly
pushed toward the link=k.. The nature of the instability,
which reduces the Busse balloon as the pump decay rate
decreases, is a short-wavelength amplitude instability longi-
tudinal to the wave vector of the TW state. This is shown in
Fig. 6, where the real part of the eigenvalue with maximum
growth rate is reported as a function of the perturbing wave
numberQ at the incipient instability pointk=1.125, u=5)

for the case of Fig. 5; similar behaviors were found when
analyzing other instability points near the instability bound-
ary.

V. CONCLUSIONS

It has been demonstrated that the three wave equations
describing nonlinear transverse effects in optical parametric
oscillators have a family of exact TW solutions when either
polarization or frequency degeneracy constraint is removed.
These states correspond to an off-axis emission for both sig-
nal and idler fields along two symmetric transverse direc-
tions due to momentum conservation, and are preferred to
SW states previously found in the degenerate case. The ten-
dency to emit TWs instead of SWs has been demonstrated by
deriving, with standard weakly nonlinear analysis, two
coupled Newell-Whitehead-Segel equations which describe
the growth of traveling or standing waves close to threshold.
Stability of the TW states above threshold has been investi-
gated by standard linear stability analysis and by deriving a
Cross-Newell phase equation, and analytical expressions of
Eckhaus and zigzag phase instabilities have been derived
from the coefficients of the phase equation. The appearance
of amplitude instabilities in OPOs with high finesse for the
pump field has also been briefly discussed.

APPENDIX A: LINEAR STABILITY ANALYSIS

The matrix of the equations obtained by linearizing the
OPO equations about the TW solution is
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where pt:(Qxikx)2+(Qyi ky)2 and Q2:Q>2<+Q)2/- In k=V,0=V0, (B2
order to prove that the TW solution corresponding to the
lower sign in Eqg.(4a) is always unstable, let us restrict our
analysis to considering perturbations with zero transverse
wave vector, i.e., let us assur@e=0. In this case, it may be
shown that the eigenvalues of the matkixare the roots of WhereV, (Vy) means the gradient with respect to fesow)
the following sixth-order algebraic equation: space variables, and=dy O is the wave frequency. Let us
now expand the field variabld, A, andA, in powers ofe:

6tﬂ=8Tl®+8&T2®=w+8&T2®, (BS)

NS+ N+ N3+ A2+ e +65)=0,  (Al)
=R (1)
where the explicit expressions of tkieal) polynomial coef- B=BT(d.X,T)+eBH (3 X, T)+---
ficients are
A=AL(9,X,T)+eAM(9,X,T)+---, (B4
C1=2(yot y1t 72),
~ — A0 +eAD +eee
Co= Yo+ Vot ¥+ A% (71— v2) 2+ Y3AG+ 2y172+ 472%0 Ao=Ag (9 X T)+ oA (9. XD+
+4v190+2Cy170+2Cy072, where X(T) is a global notation foiX andY (T, and T,).
Note that, in expansio(B4), we treat the phase variabieas
an independent variable, and derivatives of any function
f=f(9,X,T) act according to the rule

cs=4 2C(y1+72)(1+C—AoA
5= 471720 Crt P o8) af=wiyf+edyfir O@+eor f+eirf, (B
(we have also evaluated explicitly the expressionscénd
C4, but the formulas are too cumbersome to be given here
a%d are not needed for our purpps€he existencegof one Vil =&Vt +2ek- Vx(9yf )+ 20, Vi k+K255f. (BE)
zero eigenvalue agrees with the translational invariance oW
Egs.(1), and phase instabilities arise from this neutral eigen-
value when the transverse wave vector of the perturbation i
taken away from zero. Stability of the TW solutions against
the growth of homogeneous perturbations requires negative RO (0) ) )
real part of all other eigenvalues. Becessarycondition is o — 99BP=—(1+iAy)B” A +iagk?d5B O
that all the coefficient,,...,c5 be positive. In particular,
from the conditioncs>0 it follows that the TW solution
corresponding to the lower sign in E is always un- ]
swbler on in Eaa / 7 A= = (LA DAL+ AP +iankPTiAL

e now substitute Eq$B4)—(B6) into Egs.(1) and collect
Eerms at each order is. At O(°) we have

APPENDIX B: DERIVATION "
OF THE CROSS-NEWELL EQUATION 2 oA = — (141 A AL + LAL* +iak2RAL

In this appendix we outline the derivation of the phase
equation for the TW solutions of the OPO equations in theyhose solution is the exact TW solution
nondegenerate case. A detailed description of the procedure
can be found in Refg6, 8, 14, 18. The method consists in

looking for a solution of the dynamic equations in the form BO = _ CLMEQO)' (B7)

of a TW state whose wave vect&=V,d and frequency 1+iAg

w=2¢;¥ are allowed to vary slowly in space and time; hére

denotes the phase of the TW state. This is done by introduc- 0)_ () PR

ing slow time-space coordinates by setting Ar= VC expli ) =Ar"expli9), (B8)
X=¢egx, Y=gy, Ti=et, T2=82t, (B1) A(zo)z\/Eexp(i¢)exp(—iﬁ)EA_(2°)exp(—iﬁ), (B9)

where the small parameter is a bookkeeping parameter whereC, i, andw are given by Eqs(4) and(5) in the text.
which organizes the perturbation expansion. Its inverset O(e), we get

specifies the long length scale over which pattern reorienta-

tion occursz. Note that, as in the laser c§6g besides the 0

diffusive &¢° time scaling, another time scal&;=«¢t is - (1 _ i (D) 4ig.-k252B(D _ A0 A (L)
needed to capture slow evolution which occurs at the group Yo 958 (114087 +iaok™dyB ATAZ
velocity of the wave packet. Because we want the wave vec- 1

tor k=V, ¥ to depend orX, Y, T,, andT,, we introduce a ~APAL =" 5. BO), (B10)
scaled phase variab®(X,Y,T,,T,)=¢ed, so that Yo !
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w *
gAY~ (LA AY Hiagke ALY + A =gl -2+ §+ % ,
(0)* p(1) (L)* p(0) .~ X
TATBTAATE B=(1+iX)exyip).

— . (0) (0) .
12,[2K- Vx(d9A17) +5A1 V xK] The solvability conditon of Eg. (B16) requires

1 1 Im[g exp(i #)/11=0, which reads explicitly
+— 09AP01 0+ — o ALY, (B11)
Y1 S 1 1 1 ~
—+ —|91.0=—=2a,k-Vyyp+ — o1 y+A{ (a;+a,)
. R L0 K- Vi ™ T, ¥t A (artay
— — AN = (1+iA) AP +iak23 A + uAY*
Vo k-V4C
X c +Vy-k
+A(10)* B(1)+Ag_l)* B(O)
= —j (0) (0) 1 1 1
—_|a2[2k‘Vx((919A2 )+(919A2 ka] + —— — &T C;. (Bl?)
2C\y1 vy2) 1
1 1
+ 7 519A(20)5’T2® + o (9T1A<20)- (B12  Assuming that the field amplitudes follow adiabatically any

change of the phas®, the dependence & and ¢ on the

The phase-diffusion equation is derived as a solvability conSIOW variablesX, Y, and T, is implied in Egs.(4) through
dition of the system of these equations. In fact, the associateff =|Vx®[*. Using the derivatives rules

homogeneous systefobtained by setting equal to zero the

right-hand sides of Eqs(B10)—(B12)] has a nontrivial 9 szd_c K. ﬁzzd_Cd_“’

solution, which is simply the translation mode 1 dik? ™ oTy “dk® dk?
(05B©,0,A,0,A)T. This result follows from the

translational invariance of the original OPO equatidfs dC )
Hence the solvability condition requires that the right-hand k-VxC= dK? K-Vxk
sides of Eqs(B10)—(B12) not drive this translation mode.

To obtain the solvability condition in a simple way, let us (and similar formulas fowy), after observing that
look for a solution of Eqs(B10)—(B12) of the form

(k- Vyk?),

V- k=0xx+0yy,

BY=BW, (B13)
_ K- V k%= 2[KZO yx+ 2Keky Oy +KIO vy ],
A;=AVexpi ), (B14)
L wherek=(k,,k,), Eq.(B17) takes the form
AL =APexp —i9), (B15)
- _ 1 B d¢ 2 d¢ do
whereB®, AY andASY may depend oiX andT, but not on PR Ir,0=2) —28, o+ 5, diZ diZ
9. Putting Egs.(B13)—(B15) into Egs. (B10)—(B12) and _
eliminating the variableBY andA%Y from the linear system ~(a;ta,) dC A1
of equations so obtained, we have + C W‘L Cly
AL+ A =g exp(i )/, (B16) _ 1) dCdw 26t 2k K ©
Y2 dk2dk2 (x XX xRy~ XY
where
5 5 +K;Oyy) +(ag+ay)
g=91—(1—;)gzexp(—i¢)+;g’éeXp(—it//), XA(Oxx+Oyy). (B18)
P L In order to capture the various phase instabilities more eas-
91=—A(10)3T ®+a1[2k-VxA<1°)+A(1°)VX~k] ily, let us choose thex coordinate axis along thk wave
71 2 vector of the TW solution, i.e., let us assurkg=0 in Eq.
1 o A% o (B18). Using &tﬁzw-l—so?TZ@ and the relations
+— (9T1A(10)+ ﬁ &TlB<°), £Oxx=Vyx, £Oyy= I, we finally get from Eq(B18) the
" Yo 0 Cross-Newell equation
LA 0 a2k VAL + ALY,k 1.1
92——% 2 01,0 =2 2K- VxAy 2 Vxk] Z"‘% (949 — ) =Degexi¥xx+ Dyigyy,
1 - A(0)* - . i . -
+— 91 AR+ ! o7 B where the expressions of the phase diffusion coefficients
l L}

Yo(1+i4dp) 2 Deek and D4 are those given in the tekEqgs. (19)].
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