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Transverse mode competition in a CQ laser
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Pattern formation resulting from transverse mode competition has been observed lasé@ with a large
transverse section and a stable near-degenerate optical cavity. The pattern properties ruled by transverse hole
burning are analyzed experimentally as a function of the Fresnel number, the frequency intermode spacing, and
the symmetry breaking induced by the astigmatic cavity. It is shown that mode competition imposes selection
rules amid modes belonging to the largest transverse mode family allowed to osHIE180-29476)05405-

4]

PACS numbes): 42.60.Jf, 42.65.Sf, 42.55.Lt

Transverse patterns in lasers have been observed since flition and is nonlinear, it provides pattern intensity distribu-
earliest days of laser physics, as, e.g., in 1964 when thefjons with a typical uncertainty of 20%. Another important
were reported for the first time on the transverse structures gfoint is the presence in the cavity of Brewster windows in-

a HeNe lasef1], but transverse dynamics studies developedroducing astigmatism. This induces that the cylindrical
only in the past decade. Two approaches have been followegymmetry of the cavity is broken to a rectangular symmetry,
depending essentially on the number of transverse degrees ® that the Hermite-Gauss basis TEM becomes relevant,
freedom of the system, i.e., on the Fresnel number. At lowand(ii) the frequency degeneracy of modes having the same
Fresnel number, it has been shown that modal expansion 6f=m-+n index is lifted. Pertinent parameters to characterize
the field on a suitable basis of empty cavity modes is welthe cavity are the generalized Fresnel numbeg and the
adapted to explain the main properties of the various statiorratio R, of the free spectral range to the transverse mode
ary and dynamical regimeg®,3]. At high Fresnel number, spacing. The former is a measure of the transverse degrees of
Coulletet al. demonstrated theoretically the existence of op-freedom and the latter rules the interactions between the
tical turbulence induced by defects, also called optical vortitransverse modes. [8], it was shown that foR,~15 and
ces, and suggested describing complex spatiotemporal dyalues of/ ¢ up to 30, the laser exhibits ordered time aver-
namics as a function of such vorticgd]. Unfortunately, —aged intensity patterngFigs. Xa)—(c)] with the following
although phase singularities similar to optical vortices aregproperties:(i) patterns may be described as lattices of dark
common in the transverse patterns of lasers, and may foritor bright spots distributed on concentric rings. For sake of
complex disordered patteri8,5—§, optical turbulence in simplicity, dark (bright) spots will be referred to as holes
lasers has not yet been experimentally evidenced. Complegpots in the following. (i) Along the two main axes and
patterns have also been observed in a liquid-crystal devicg, the patterns exhibit either a row of bright spots or a row of
with optical feedback9], and turbulence has been evidencedholes. Thus, a pattern may be denoted by the symppgl

in optical oscillators with photorefractive gajit0]. where x andy can take the valuén (holeg or s (spots

In CO, lasers, the limiting factor of the experimental depending on what is found on the respective axis, ramsl
analysis is the detection, as there is no technical solution tthe number of spot rings. For example, the patterns shown in
record patterns at a cadence of 1 MHz or higher, which is the
typical scale of the dynamics. Therefore, the observations or
laser transverse patterns are limited to the time averaged in
tensity[8]. The preliminary results 8] showed that among
a wide variety of patterns, the transverse profile of the
CO, laser could exhibit self-organization, even at Fresnel
numbers as large as 40. We show in this paper that in this
situation, it is still possible to describe experimentally the
patterns as a function of the modes of the empty cavity. Such
an analysis allows us to evidence that patterns are combina
tions of a few modes among those present in the gain profile.
The selection mechanism is shown to be transverse spatia
hole burning, in good agreement with recent theoretical stud-
ies[11]. These results provide an alternative interpretation of
laser patterns to that given by Feeal. in terms of standing
waves[12].

The experimental setup is essentially the one described in FIG. 1. Comparison of experimentéd)—(c) and reconstructed
[8]. The detection consists in phosphorescent plates and (@)—(f) patternshh,, ss,, andhs, in the CO; laser. Patterngd)—
video camera. Unfortunately, as this system has a low resa#) follow the rules given in Table II.
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Figs. 1a—(c) are denotedhh,, ss,, andhs,, respectively. TABLE I. Coefficientsa of the modal expansion applied on the
(ii ) Each ring contains 2(2-i+1) equidistant holes, where Hermite-Gauss modes TE}},, obtained by least square fit of the
| is the ring index and=0 (1) for hs andsh (hh andss) pattern shown in Fig. (8. « is normalized to the weight of the
patterns. These patterns obey the following scaling ldiys: Strongest mode and only modes with-0.05 are reportedr is the
the numben of rings is proportional to/ &, (ii) the number ~ Standard deviation.

of holes (or spot$ evolves as,/J///}Z:, and (iii) the distance

. . . . - m,n a o
between successive rings is proportionaltd: */2.

These scaling laws are also displayed by eigenmodes of 7,1 1.00 0.28
the empty cavity[13]. This is a good indication that the 0,8 0.93 0.15
experimental patterns can be expanded on such a basis, prob- 1,7 0.82 0.28
ably as a function of a few modes. Unfortunately, in the 53 0.69 0.38
present experiment, there is no straightforward projection 35 057 0.38
method. Indeed, our experimental setup does not provide a 8.0 0.55 0.15
stable enough local oscillator to analyze the output field am- 6:2 0.40 0.34
plitude of the laser. Moreover, as the two-dimensiof2ab) 26 0.34 0.34
detectors have a nonlinear response, methods such as least 0.0 0.09 0.07
square applied on the intensity pattern need careful interpre- 0:1 0.07 012
tation. . . 4,4 0.06 0.39

However, as mentioned above, the presence of astigma- 14 0.06 038

tism in the cavity allows us to limit our investigations to the
Hermite-Gauss basis. If we use the extra hypothesis that,
because of the frequency degeneracy lift, all modes have e same family, withq~./"=: (ii) in this family, only
different frequency, it becomes possible to use a least squae following the rules OfF Table Il are prese(ilij;) all

é .
> Tl Agelert
=

method to build up. time averagecj patterns ad_ding intenSitieﬁwodes have equal weight. Some examples of reconstructed
.Of modes. Ind_eed, i modes coexist, the total time averaged patterns are given in Figs(d) and Xe) and show excellent
intensity{1) will be agreement with the experimental observations of Fi¢m—1
1(c).
2
(1y= (1a) To interpret this behavior, let us consider the “free en-
ergy” = of the laser defined as the difference between the
total energy of modes and the “mode overlapping energy’:
— (> [f2,) + il £, A el @i at) ) o< _
<2k| k| k> <2|]2|” I|| ]| 173 |( ) ::izlcii_zij;&icij with CljszdXdylllj,
1b -
2
: S 5 where¢ is the number of modes arld the intensity of the
with spatial distributionA(x,y) and 1, =|Ay". If @i#; i mode. With an adequate normalization of the free energy,
for j#i, the second term in Eqlb) vanishes and the total the first member in Eq(2) reduces ta and Eq.(2) becomes
average intensity pattern is just the sum of the intensity of

wheref (1) is the complex modal amplitude of th¢h mode

each mode. In this situation, the concept of a relevant basis is C..
fundamental. Indeed, if all modes have different frequencies E=§—Z 2 CH 3
in a basis, this is not necessarily the case in another one. REIRN ey

Thus, the hypothesis that the Hermite-Gauss basis is the rel- h lculatecE I il binati f
evant one, is essential. This conjecture is confirmed by thd/€ have calculatecs for all possible combinations o

results of the least square analyses, as the residues are alwﬁggdes W't_hq< 10. It appears that the comblnatlon_s OEeylng
larger when another basis, as, e.g., Laguerre-Gauss, is uséfi€ Selection rules of Table Il correspond to maxima=of
Starting from these hypotheses, expansion coefficients fdr/9Ure 2 shows as an example the values takeE Hyr all
each mode in the pattern have been determined by a leate combinations of modes of tiyg=4 family. The selection
square method. A typical result is shown in Table I, whereru,les givenin Table Il |n.d|cate that two patterns may e?<|st in
only the strongest modes are reported. These results must BiS family, corresponding tan,n both even or odd, i.e.,
taken with great care because of detector nonlinearity. How?N2 andss,. The two maxima in Fig. 2 correspond to these
ever, it appears clearly in Table | that 75% of the energy is
concentrated in six modes whose coefficients are larger than 'ABLE !l TEM ,, modes needed to reconstruct tag, pat-
half the largest one. These modes belong to the same famil§fjms'
with g~./¢. This last property has already been observedryloe

experimentally in a high power CQOaser[14] and was also m n Additional modes
encountered in a theoretical treatment of the laser just abouen odd odd TEMy+TEMy,
threshold[11]. Taking into account the imperfections of the ss even even

detection, we finally found that patterns of the typg, can  hs even odd TEM,o

be reconstructed with a good approximation using fewsh odd even TEM,

modes obeying the following rulesi) all modes belong to
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ch jdxdyAf(x,y)D(X,y,T)—(lJriai)},
(40)

0”:K

aij,i;ﬁj:KZCJ fdXdyA}(X,Y)Ai*(XaY)D(X%T).
(4d)

whereD(x,y, ) is the population inversionc andy are the
relaxation rates of the field and of the population inversion,
respectively. Relaxation rates and time are in units of the
relaxation rate of the polarizationQis the pump parameter
anda;=(v;—vg)k * gives the losses of the modeof fre-
quencyvy; . vg is an arbitrary reference frequency. Note that
0,; represents the well known ‘“‘gain minus losses” term of
the modei while 6;; is a cross saturation term between
modesi andj.

To put in evidence that in such a system, overlapping
occurs through the mode intensities, let us consider the sta-
tionary state of Eq(4), just above threshold. In this situation,
Eq. (40 gives for mode [15]:

FIG. 2. Values of= for the different combinations of modes in
thegq=4 family. The combinations are indicated on thexis with
the m value of each TEN,,, mode.n may be deduced from the
relationn+m=q=4. For example, the first column with=0 and
m=1 corresponds to the superposition of modes TEMnd
TEM, 3. The two emphasized valuéblack columng which are 1
the highest values taken kg, correspond to the patterihd, and E |fk|2f J dxdykl,=1— PTok (5)
SS,. k

two particular patterns. So it is clear that transverse modedote that at this point of the calculation, it already appears
associate in the laser to maximize energy and simultaneousiat the coupling between modes occurs through their inten-
minimize overlapping between their intensity distribution. Slty Equation(5) is a system of equations with variables
This “transverse hole burning” has to be compared with |tsfk—Xk

counterpart for longitudinal modes, where the arrangement

of modes occurs also through a coupling of the intensities of E CoXo=
each mode. The origin of this coupling can be found quali- k7K
tatively in a simple model of ring clad3 laser at resonance.

In such a laser, the model proposed by Lugiatal. [15]  Direct calculation of theC;, coefficients for mode families
using a modal expansion of the field gives up toq=28 shows that their sum ovéris quasiconstant. As
the right-hand side of Eqg6) is the same for all equations,
it results that the unknown quantitie§, are almost equal:
X = f2~f2. Adding the¢ equations(6), we obtain:

1
1_E' (6)

dD(x,y, 7-)
dr

y| D(X,y,7)—1

2 1

(4a) f2= (1——)(2 > c,k) . 7

+

Zi f(DAXY)| DY, 7)|,

dfi(7) The maximum for the total energy of the pattern is obtained
“dr 0,,f|(7-)+2 6ijfi(7), (4b) g £f2 is maximum. Starting from E¢(7) and separating in
the denominator the tern@;; andCjy \..;, we obtain at the
with first order inC;y, :

FIG. 3. (&) Experimental imperfect circular
lattice observed for parameters slightly different
from those of thehs; pattern.(b) Numerically
reconstructed pattern using theg rules modified
as indicated in text.
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These patterns remain symmetrical with respect taxthed
) (8 y axes but do not form regular arragig. 3). With a method
similar to the previous one, we observed that these patterns
where can be derived fromxy, ones by suppressing or substituting
some modes of the sangefamily. For example, the pattern

1 2
E':§f222<§— -2 2 Ci

1 k#i

(= }2 C. ©) shown in Fig. 8a) results from the substitution of modes
e T TEMy30, TEMg,, TEM,9, and TEM,;; by modes
TEM 3 0and TEM; 1, in patternhsg, as shown in Fig. @).
This equation is an unnormalized version of E§). Al- A gvlobal scenario of the morphogenesis in the O@ser

though it has been established in a situation far from thenay e proposed on the basis of the results presented here.
experimental conditions, it shows that the coupling betweerg, o given Fresnel number, possible patterns arexife
modes occurs through their intensity rather than their ﬁeldones. We have shown that these patterns may be described as

amplitude, and that they arrange together following a prin-a function of the modes of the empty cavity, through a dras-
ciple of transverse hole burning, minimizing the overlap be- '

tween modes. in spite of the fact that experimental atterntic selection due to transverse hole burning. But these pat-
' P b b terns form islands of order in the parameter space. Starting

are not stationary. Indeed, S.UCh a p.“.”c'p.'e Is rather IntUItIVefrom these points, order disappears progressively through
in a stationary pattern but is surprising in a pattern where

modes could be not present at the same time, and so couiHOde subst|;cjut|ons. For 'parametersbfatr)l frgr;; thosfe(yn‘ h
minimize their energy overlapping through, e.g., a Winner—pattems’ modes arrange in a way probably different from that

takes-all dynamics. described in this paper. The composition of these highly dis-

Let us recall that regulaxy,, patterns as those of Fig. 1 ordered patterns will be investigated in the near future, to-

are not the only ones observed, but coexist with a wide Vagether with the temporal dynamics of all patterns, which

riety of disordered ones. Usually, starting from an orderedCOUId give important informations on the temporal arrange-
) ment of modes.

pattern and changing a control parameter such as the cawPQ

length, the transition from axy,, distribution to a disordered This work was supported by DRET Contract No. 92101.

one occurs through changes in the intensity distributionWe want to express our gratitude to J. Lega and J. R.

whose first steps give rise to patterns with lattice defe8fs  Tredicce for helpful discussions.
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