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Lang and Kobayashi phase equation
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Lang and Kobayashi equations for a semiconductor laser subject to optical feedback are investigated by
using asymptotic methods. Our analysis is based on the values of two key parameters, namely, the small ratio
of the photon and carrier lifetimes and the relatively large value of the linewidth enhancement factor. For low
feedback levels, we derive a third-order delay-differential equation for the phase of the laser field. We then
show analytically and numerically that this equation admits coexisting branches of stable periodic solutions
that appear at different and almost constant amplitudes. These amplitudes are proportional to the roots of the
Bessel functiord;(x). The bifurcation diagram of the phase equation is in good agreement with the numerical
bifurcation diagram of the original Lang and Kobayashi equations. We interpret the onset of the periodic
solutions as the emergence of a new set of external cavity modes with a more complicated time dependence.
[S1050-294®@6)05005-4

PACS numbds): 42.55.Px

I. INTRODUCTION In Egs.(1.19 and (1.1b), time is s=t/7, where 7, is the
o . photon lifetime.(} is the dimensionless angular frequency of
Applications of semiconductor lasers span a broad rangghe solitary laserT=r 7, is the ratio of the carrier and
of areas from optical communication to optical ranging andyoton lifetimes.g=1/r, is the ratio of the external cavity
sensing. Semiconductor lasers are extremely sensitive to OB5und-trip time and thepphoton lifetim®. is the dimension-
tical feedback, which results from undesired reflections from, ¢ pumping current above threshotg:0 is the strength of
optical elements and detectors. A small amount of optic he feedback and our bifurcation par.ameteris the line-

feedback is sufficient to produce chaotic instabilities that . .
lead to higher intensity orpfrequency noik&]. Models of width enhancement factor. Typical values of the parameters

semiconductor lasers subject to optical feedback are formtf—‘reT:O(lOB)’ 6=0(10"), |P[<1, Qémod2m) is O(1),

~ = — 2 i
lated by coupled delay-differential equations that are difficult® 5, andz=0(10"7). W'.thOUt t_he delay term, Eq$l.1e?
to explore analytically or even numerically. As a result, little 21d (1.1D are the usual dimensionless equations considered

is known on the bifurcation mechanisms leading to thesd°r the semiconductor laser subject to optical injection or for
chaotic responses. In 1980, Lang and Kobaydkki) [2]  arrays of coupled lasers. In the Appendix, we consider the
formulated a simple model consisting of two ordinary delay-LK equation as introduced 5] and show how to formulate
differential equations for the complex electrical field and theEds.(1.1a and(1.1b.

carrier number. Computer simulations have shown that the A basic solution of these equations called an external cav-
LK equations correctly describe the dominant effects ob4ity mode solution is a periodic solution of the form

served experimentally. This includes the occurrence of mode

hopping[3,4], low-frequency fluctuationgs—7], the onset of _ ; _

coﬁgre%E:e gollap{@,g], ang coexisting %ttra]ctors exhibiting Y=Ae exXHi€)es) and Z=2, 1.2
time-periodic intensitie§9—-11].

In dimensionless form, LK equatiofig] for the complex ~WhereA;, )., andZ, are constants. Its linear stability can
electrical fieldY and the excess carrier numbgrare given be analyzed and approximations of Hopf bifurcation points
by have been determined analyticall{2,14. For very low

4y feedback levels, it is reasonable to assume that the intensity
a1 : . _ of the laser field is almost a constant and that the phase of the
ds =(1+ia)ZY+y exp(—iQ6)Y(s=6), (1.13 laser field is the main dynamical variable. This approxima-
tion has led to the formulation of phase equatiphd5,19
(1.10 that reproduced the mode hopping phenomena but never
' showed the oscillatory regimes predicted by the linear stabil-
ity analysis of(1.2). The main purpose of this paper is to
derive a phase equation from the LK equatigfhsla and
*Electronic address: alsing@arom.plk.af.mil (1.1b that exhibits time-periodic intensity solutions. To this
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In this paper we show that branches of time-periodic in-cation point were obtained by first formulating the linearized
tensity solutions emerge from either Hopf bifurcation pointsLK equations and then taking the limit lar§eand largec.
or from limit points (saddle-node bifurcation pointsAs a In this section, we propose an alternative strategy. We
result, coexistence of stable periodic states is possible as wéisst approximate the nonlinear LK equations for largand
suspected in earlier studigs,10]. In [18], the coexistence of then determine the Hopf point from the linearized theory
periodic states has been analyzed in terms of two successiusing largeT. To facilitate our analysis, we introduce a new
Hopf bifurcations branches. In this paper, we examine a difbasic time defined as
ferent mechanism involving isolated branches of solutions.
We interpret the onset of the periodic solutions as the emer- S=ws 2.7
gence of a new set of external cavity modes with a time . . .
dependence more complicated than that of simple plan@nd seek a solution of the LK equations in terms of the

waves. These modes arise when the intracavity field reprd€Sc@led carrier number density electric fieldy, and the

duces itself after one round trip, up to a scale factor. phase® defined by means of the following relations:

The paper is organized as follows. In Sec. Il, we derive a Z=xowla 2.9
phase equation starting from LK equatiqdslg and(1.1b. ' '
In Sec. lll, we study this phase equation and determine y= \/5(1+y/a)exp:i(<D—Qs)] 2.9

branches of periodic solutions. In Sec. 1V, we examine the

validity of our analytical predictions by determining numeri- after inserting the expression.7), (2.8), and (2.9) into
cally the bifurcation diagrams of the original LK equations Egs. (1.1a and (1.1b, we neglect allO(« 1) small terms

and the approximate LK phase equation. In Sec. V, we disznd obtain the following problem fox, y, and®:
cuss our main results. In the Appendix we introduce the LK

equations with all the relevant definitions of the parameters. dx
ds” —y— wéX, (2.109
. ASYMPTOTIC ANALYSIS
We first analyze the behavior of the single-mode solution ﬂ =x+A co§®(S—-0)-Pd(9)], (2.10b
(1.2) and its linear stability forT large anda large. We ds
consider the following range of values of the feedback rate: 4o
7=0(T la H)—O(T ¥ 1 (2.1 gs - Atx (2.109
and find thaf14] where the control parametdrand the fixed paramet€, A,
and ¢ are defined by
Ze=0(7n) and A,.=P¥?+0(7). (2.2)
A=anlw, (2.1)
Furthermore, if we assume
O0=0w=0(1), (2.12
Q=0(T ) and §=0(T*?), (2.3
Q 6(mod2m)
thenQ, is O(T~ 3 and its leading approximation satisfies A=——7—=00), (2.13
the implicit equation
1+2P
e 2.4 &= >p 0O(1). (2.19

=7 & co40.0)
Equation(2.4) admits several branches of solutions and theirEI'mm""t.Ing y, we fmd_ thatx sgﬂsfles the equation for a
) ; . harmonic oscillator driven nonlinearly by the phabe We
number increases agincreases. A stable single-mode solu- furth limi d obtai hird-order diff al
tion may change stability ag surpasses a critical valug, may further eliminatex and obtain a third-order differentia
) equation ford only given by
given by[14]
D"+ w&P"+P'—A+A co§gP(S—-0)—-D(S)]=0,
(2.5 (2.19
where the prime means differentiation with respecstdhe
where coéwf)—1+#0 andw is the laser relaxation frequency second term is small because= O(T 9 is small. If the

1+2P 1
M= T o Sin(Qe0)[coswh) —1]"

defined by pumpingP is too small, the asymptotic approximation may
fail. Mathematically,§=0(1) means that=£(P) is fixed
w=+2P/T. (2.6) as we take the limifT—o. Numerically, our analysis re-

mains valid if the coefficientoé remains small. We are cur-
The condition#,>0 requires the inequality sif).#)<0. rently investigating the double limit—c« andP—0 and we
We also note from our analysis of the Hopf bifurcation con-expect the failure of the phase equation for very BwNote
ditions that the frequency,, at the Hopf point is close te@  that ®(S) can be unbounded &— but ®'(S) must be
for large T. These asymptotic properties of the Hopf bifur- bounded as a consequence of EfJ109 and the fact thak
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is a physically bounded function of time. Equati¢hl5) is

the main point of this paper. In the subsequent sections we
describe both analytical and numerical results that show thggolvability of the®; equation requires thab 5 is bounded
Eg. (2.195 captures the coexistence of periodic attractors exwith respect td5. This implies that we eliminate in the right-

D=2A sin(0/2). (3.8

hibited by the full LK model, Eq(1.1).

Ill. PERIODIC SOLUTIONS

In this section, we analyze EQ.15 in detail. We have
verified that the particular solutiod = .S/ w satisfies Eq.
(2.19, where() . satisfieg2.4) now in terms ofA=azn/w. In

hand side of Eq(3.5 the terms multiplying cog+v) and
sin(S+v). As a result, we obtain two conditions given by

PO A—A; sin(A©)J;(D)sin(0/2)

5 (3.9

and

addition, the linearized phase equation leads to a Hopf bifur-

cation point that matches the expressi@rb). The analysis

of the condition for a single external mode solution and its

linear stability motivates an exploration of E¢.15 for
periodic solutions in the regim& =0(w).

We apply a two-time perturbation methftd] and seek a
solution of Eq.(2.15 of the form

CD(S,g,w)Z(I)O(S,f)-Fwq)l(S,{)-l-'" ’ (31)
where{ is a slow time defined by
{=wS. (3.2

We considerS and ¢ as two independent time variables,

which implies the chain rule®’=®g+w®, and the
expansion P(S-0)=P(S-0,{—wO)=D(S-0,0)

—0Od,(S-0,{)+--- . We also expand the control pa-

rameterA as

A=w(Ag+---). (3.3

After introducing(3.2), (3.2), and (3.3) into Eq. (2.15, we
obtain a sequence of linear problems g, ®, .... The
two first problems are given by

Possst Pos=A (3.9
and
Pis555t P1s=—3Posg— Po;~ £Poss
—A; 0§ Po(S=6,0)—Do(S,0)].
(3.9
The solution of the first problem is
Dy=A({)co§S+v({)]+AS+B(Q), (3.6

where A, B, andv are unknown functions of. We next
introduce(3.6) into the right-hand sidéRHS) of Eq. (3.5).

Expanding the trigonometric function and using Bessel func-
tion identities[20] we find that the right-hand side has the

form
RHS=2A' cogS+v)—2Av’ sin(S+v)—B’
+£&A cogS+uv)—A4[cogAO)Iy(D)

+2SiAO)JL(D)siN(S+v—0/2)+---], (3.7

v’=—%sin(A6)J1(D)cos{6/2). (3.10

Furthermore, we determine an equation Boby eliminating
the constant term in Eq3.7). The equation foB is

B'=—A,; cogA0)Jy(D). (3.11

ThusB is passively related t8 and is obtained by integrat-
ing Eqg. (3.1). Equation(3.9) is an equation for the ampli-
tudeA (the bifurcation equation Equation(3.10 is an equa-
tion for the frequency correction. If sin(©/2)=0 [or is
O(w) small], the perturbation analysis needs to be modified.
This is a case of resonance that appears when the delay time
6 is close to a multiple of the laser relaxation oscillation
period Py=27/w (i.e., Po0~2n7/w). Similarly, the case
sin(A©)=0 or O(w) small requires a different perturbation
analysis. This case corresponds to the maximum or minimum
power mode.

We now analyze the amplitude equati@9) in detail. Its
steady state represents the amplitude of a periodic solution of
the original LK equations. It satisfies the implicit relation

EA
~ 2siA0)J(D)sin6/2)

A= (3.12

By taking the limitA—0 in (3.12, we note that a branch of
periodic solutions emerges from a Hopf bifurcation point
located atA ;= A whereA, is defined by

3
~ 2siNAO)sIg(0/2)

A= (3.13
A14>0 implies sifA©)<0. Equation(3.13 is identical to
Eq. (2.5 rewritten in terms ofA = an/w=wA 1,y. The Hopf
bifurcation is the classical mechanism leading to a periodic
state. Expanding3.12 for small A we find that

A 2 Al_AlH 1/2
| sirf(0/2) Ay

(3.19

asA;— A,4—0. The bifurcation is always supercritic@le.,
defined only forA>A,4), and according to Hopf theorem,
the periodic solution is stable. The behavior of the periodic
solution near its bifurcation point has been first examined in
[13] using a different method. The expressi@12 shows
that A approaches a constant amplitudeAgs-o. This con-
stant amplitude is denoted y=A* and satisfies the con-

where we have omitted the higher-order harmonic functiongjjtion

of S; Jo(D) andJ;(D) denote Bessel functionB. is defined
by

J.[D(A*)]=0. (3.1
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Thus,A=A* corresponds to the first zero of the Bessel func-Using Egs(3.1) and(3.6), we find that the extrema of are,

tion J;(D) with D#0. But Eg. (3.15 admits additional in first approximation, given byt A. A Hopf bifurcation
roots. Equivalently, (3.12 predicts additional, isolated, appears atA,=0.023 and is well approximated by
branches of solutions that appear from limit points. ThisA,=wA, whereA,y is given by Eq(3.13. The values of
branching phenomenon is the second mechanism leading the parameters are given B®~0.75, T=2000,A=1.5, and
periodic states in the LK problem. Fro(8.12 and the con- ©O=s. At the Hopf bifurcation point, a branch of periodic
dition A1(A)=0, we find that the amplitude at these limit solutions appears that then saturates at a constant amplitude

points satisfies the equation

J1(D)—2AJ(D)sin(0/2)=2J,(D) —DJy(D)=0.

as A increases. This constant is well predicted by our analy-
sis, which givesA=A*=1.9. The value ofA* verifies the
Bessel function condition Ed3.15.

All other branches appear through limit points. Solving

(3.1
Eq. (3.16 numerically and then using E¢3.12, we find

The linear stability of the steady state can be analyze@PProximations for the limit points X,A)=(ALn,Ap)

from Eg. (3.9. We eliminateA; in the expression of the listed in Table I. The QiﬁerenALn are indipated in Fig. 1
growth rate by using3.12 and obtain and match the numerical estimates obtained from the LK

phase equation E@2.15. From each of these limit points a
stable branch and an unstable branch of solutions appear.
Only the stable branches are shown in Fig. 1. These branches
quickly saturate at constant amplitudes. Again, these con-
(3.17 stants verify, in first approximation, Eq3.15. They are

shown as dotted lines in Fig. 1 At =(5.08,8.23,11.38..).
Stability meansr<0, which is verified for the HOpf bifurca- For A>1.05, we observe a Change of the first branch of
tion branch. Note that-=0 at the limit points since substi- periodic solutions that exhibits low-amplitude oscillations.
tuting (3.16) into (3.17) giveso=0. From these limit points & Note that there exists only one single external cavity mode
stable branch and an unstable branch of the periodic solusolution for 6<A<1.5 and no new Hopf bifurcations points
tions appear as the feedback raténcreases. have been observed for k5 <2.0.

Figure 2 shows the bifurcation diagram of the original LK

¢ . »D)] _ J,(D)
o=-3 1-2A sin(©/2) 3,(D) =—£¢A sin(O/2) 3,(D)°

IV. NUMERICAL BIFURCATION DIAGRAMS TABLE |I. Numerical values of the Ilimit

In all our numerical computations we used fourth-order(AA)=(ALn.An) obtained from Eq(3.16 and Eq.(3.12.
Runge-Kutta with fixed step size. Figure 1 shows the bifur-

points

cation diagram of the LK phase equati@15. The figure n Atn Atn

exhibits the extrema of the electric field. From Egs. 1 0.35 4.2

(2.109—(2.100, we know thaty is related tod as 2 0.82 74
3 1.39 10.6

y=—-®"+0(w). 4.9
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equationg1.19 and(1.1b. We represeny as a function of been derived for other semiconductor laser probléh?s.
A, which are related to the original variables used in Eqs. Our asymptotic analysis of the LK equations concentrated

(1.13 and(1.1b by the following expressions: on periodic solutions that appear at low feedback rate. We
have shown that, in addition to a Hopf bifurcation, periodic
Y| an solutions branch out from limit points. This allows the coex-

y=a \/_5_ 1/, A= o (4.2 istence of multiple periodic states. Furthermore, our analysis

shows that the amplitude of all periodic states saturates at
constant values as the feedback rate increases. In this section,

The bifurcation diagram is in good agreement with the diaye priefly describe these periodic states as a family of exter-
gram of the approximate LK equation previously shown ing cavity modes.

Fig. 1. Successive coexisting branches of periodic solutions The periodic solutions obtained in Sec. Il have the form
appear through Hopf bifurcations or limit point mechanisms.

We have verified that these branches numerically overlap the
branches shown in Fig. 1 obtained from the phase equation
(2.15. We also found that higher-amplitude periodic states . . . . .
predicted from the phase equation are difficult to obtain dué("here the index is associated with the solution correspond-

to their small basins of attractions. Figure 2 also shows ahg to thenth root 0fJ,(D)=0. A, andB, are _constants{]t .
period-doubling bifurcation for near 1. We did not inves- Is apparent that the frequency of the oscillation of the domi-

tigate this bifurcation. As\ is further increased from 1 the nant mode has.been shift¢d|t can be ea_si!y demonstrated
LK equations(1.18 and (1.1b exhibit a series of higher- that these solutions satisfy the reproducibility relation

order instabilities leading to chaos. We did not investigate if

Y, (S)=+/P expi AB,S)exfiA,cogS)],

the phase equatiof2.15 captures these higher-order bifur- Yn(S)=AyYn(S-6),
cations. Figure 2 shows the bifurcation diagram fer/0<1
for clarity only. where\ , is some complex constant. These solutions can be

interpreted as a set of approximate eigenfunctions of the ex-
ternal cavity that exhibit a time dependence more compli-
V. DISCUSSION cated than that of simple plane waves.

We have derived a third-order differential equation for the

phase of the laser field that is simpler than the original LK ACKNOWLEDGMENTS
equations and that allows a systematic bifurcation analysis.
This equation is equivalent to the system of equati@0 This research was supported by the U.S. Air Force Office

that shows that the leading approximation of the LK problemof Scientific Research Grant No. AFOSR-93-1-0084, the Na-
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by the phase. This results from the relatively large value ofFonds National de la Recherche ScientifigBelgium), and
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7sGn
APPENDIX Y=y E (A%)

The LK equations are two equations for the slowly vary-

ing complex envelope electric field(t) and the carrier den- G
sity N(t) given by[5] ZE( "2 N)(N—Nth). (A5)
e _1 1+ia)Gy(N= Ny E+ — e~ %0’E
Gt~ 3 (1+1@)Gn(N=Ny) e (t—7), .
(A1) =—. (AB)
Tp
dN B N 1 )
dt ° o T_p+GN(N_Nth) |EI*. (A2) 15 terms of(7.4), (7.5), and(7.6) Egs.(7.1) and(7.2) can be

rewritten as Eqs(1.19 and(1.1b), where
In these equationss,, 7,, 7, and 7 are the photon lifetime,
the round-trip time in the laser cavity, the round trip time in

the external cavity, and the carrier lifetime, respectivefy. pP= M (i_ ) (A7)
is the power reflected from the external cavity relative to the 2 Jin

power reflected from the laser mirrat.is the linewidth en-

hancement factor and is the pumping term. The solitary Jin=Ny/ 7, (A8)

laser is assumed to oscillate in a single longitudinal mode

with angular frequency,, Ny, is the threshold carrier den-

sity for the solitary laser, an®y, is a constant defined as n=kTplTin, (A9)
GN=(dG/IN)y,, whereG(N) is the gain per unit time:

1 o=1l7,, (A10)
G(N)=G(Nip) + Gn(N=Ngp) = —+Gn(N—Nypy).
" (A3) 0=0wor,. (AL1)
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