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Lang and Kobayashi equations for a semiconductor laser subject to optical feedback are investigated by
using asymptotic methods. Our analysis is based on the values of two key parameters, namely, the small ratio
of the photon and carrier lifetimes and the relatively large value of the linewidth enhancement factor. For low
feedback levels, we derive a third-order delay-differential equation for the phase of the laser field. We then
show analytically and numerically that this equation admits coexisting branches of stable periodic solutions
that appear at different and almost constant amplitudes. These amplitudes are proportional to the roots of the
Bessel functionJ1(x). The bifurcation diagram of the phase equation is in good agreement with the numerical
bifurcation diagram of the original Lang and Kobayashi equations. We interpret the onset of the periodic
solutions as the emergence of a new set of external cavity modes with a more complicated time dependence.
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PACS number~s!: 42.55.Px

I. INTRODUCTION

Applications of semiconductor lasers span a broad range
of areas from optical communication to optical ranging and
sensing. Semiconductor lasers are extremely sensitive to op-
tical feedback, which results from undesired reflections from
optical elements and detectors. A small amount of optical
feedback is sufficient to produce chaotic instabilities that
lead to higher intensity or frequency noise@1#. Models of
semiconductor lasers subject to optical feedback are formu-
lated by coupled delay-differential equations that are difficult
to explore analytically or even numerically. As a result, little
is known on the bifurcation mechanisms leading to these
chaotic responses. In 1980, Lang and Kobayashi~LK ! @2#
formulated a simple model consisting of two ordinary delay-
differential equations for the complex electrical field and the
carrier number. Computer simulations have shown that the
LK equations correctly describe the dominant effects ob-
served experimentally. This includes the occurrence of mode
hopping@3,4#, low-frequency fluctuations@5–7#, the onset of
coherence collapse@3,8#, and coexisting attractors exhibiting
time-periodic intensities@9–11#.

In dimensionless form, LK equations@2# for the complex
electrical fieldY and the excess carrier numberZ are given
by

dY

ds
5~11 ia!ZY1h exp~2 iVu!Y~s2u!, ~1.1a!

T
dZ

ds
5P2Z2~112Z!uYu2. ~1.1b!

In Eqs. ~1.1a! and ~1.1b!, time is s[t/tp where tp is the
photon lifetime.V is the dimensionless angular frequency of
the solitary laser.T[ts/tp is the ratio of the carrier and
photon lifetimes.u[t/tp is the ratio of the external cavity
round-trip time and the photon lifetime.P is the dimension-
less pumping current above threshold.h.0 is the strength of
the feedback and our bifurcation parameter.a is the line-
width enhancement factor. Typical values of the parameters
are T5O(103), u5O(103), uPu,1, Vu~mod2p! is O(1),
a;5, andh5O(1022). Without the delay term, Eqs.~1.1a!
and ~1.1b! are the usual dimensionless equations considered
for the semiconductor laser subject to optical injection or for
arrays of coupled lasers. In the Appendix, we consider the
LK equation as introduced in@5# and show how to formulate
Eqs.~1.1a! and ~1.1b!.

A basic solution of these equations called an external cav-
ity mode solution is a periodic solution of the form

Y5Ae exp~ iVes! and Z5Ze , ~1.2!

whereAe , Ve , andZe are constants. Its linear stability can
be analyzed and approximations of Hopf bifurcation points
have been determined analytically@12,14#. For very low
feedback levels, it is reasonable to assume that the intensity
of the laser field is almost a constant and that the phase of the
laser field is the main dynamical variable. This approxima-
tion has led to the formulation of phase equations@4,15,16#
that reproduced the mode hopping phenomena but never
showed the oscillatory regimes predicted by the linear stabil-
ity analysis of~1.2!. The main purpose of this paper is to
derive a phase equation from the LK equations~1.1a! and
~1.1b! that exhibits time-periodic intensity solutions. To this
end, we seek an asymptotic solution of Eqs.~1.1a! and~1.1b!
based on the large value ofT and the relatively large value of
a compared to the other time constants. Our analysis benefits
from a recent study of a semiconductor laser subject to an
injected signal@17# for which we derived a phase equation.
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In this paper we show that branches of time-periodic in-
tensity solutions emerge from either Hopf bifurcation points
or from limit points ~saddle-node bifurcation points!. As a
result, coexistence of stable periodic states is possible as was
suspected in earlier studies@9,10#. In @18#, the coexistence of
periodic states has been analyzed in terms of two successive
Hopf bifurcations branches. In this paper, we examine a dif-
ferent mechanism involving isolated branches of solutions.
We interpret the onset of the periodic solutions as the emer-
gence of a new set of external cavity modes with a time
dependence more complicated than that of simple plane
waves. These modes arise when the intracavity field repro-
duces itself after one round trip, up to a scale factor.

The paper is organized as follows. In Sec. II, we derive a
phase equation starting from LK equations~1.1a! and~1.1b!.
In Sec. III, we study this phase equation and determine
branches of periodic solutions. In Sec. IV, we examine the
validity of our analytical predictions by determining numeri-
cally the bifurcation diagrams of the original LK equations
and the approximate LK phase equation. In Sec. V, we dis-
cuss our main results. In the Appendix we introduce the LK
equations with all the relevant definitions of the parameters.

II. ASYMPTOTIC ANALYSIS

We first analyze the behavior of the single-mode solution
~1.2! and its linear stability forT large anda large. We
consider the following range of values of the feedback rate:

h5O~T21a21!→O~T21/2a21! ~2.1!

and find that@14#

Ze5O~h! and Ae5P1/21O~h!. ~2.2!

Furthermore, if we assume

V5O~T21/2! and u5O~T1/2!, ~2.3!

thenVe is O(T
21/2) and its leading approximation satisfies

the implicit equation

h.2
1

a

Ve2V

cos~Veu!
. ~2.4!

Equation~2.4! admits several branches of solutions and their
number increases ash increases. A stable single-mode solu-
tion may change stability ash surpasses a critical valuehH
given by @14#

hH.
112P

Ta

1

sin~Veu!@cos~vu!21#
, ~2.5!

where cos~vu!21Þ0 andv is the laser relaxation frequency
defined by

v[A2P/T. ~2.6!

The conditionhH.0 requires the inequality sin(Veu),0.
We also note from our analysis of the Hopf bifurcation con-
ditions that the frequencyvH at the Hopf point is close tov
for largeT. These asymptotic properties of the Hopf bifur-

cation point were obtained by first formulating the linearized
LK equations and then taking the limit largeT and largea.

In this section, we propose an alternative strategy. We
first approximate the nonlinear LK equations for largea and
then determine the Hopf point from the linearized theory
using largeT. To facilitate our analysis, we introduce a new
basic time defined as

S[vs ~2.7!

and seek a solution of the LK equations in terms of the
rescaled carrier number densityx, electric fieldy, and the
phaseF defined by means of the following relations:

Z5xv/a, ~2.8!

Y5AP~11y/a!exp@ i ~F2Vs!#. ~2.9!

After inserting the expressions~2.7!, ~2.8!, and ~2.9! into
Eqs. ~1.1a! and ~1.1b!, we neglect allO(a21) small terms
and obtain the following problem forx, y, andF:

dx

dS
52y2vjx, ~2.10a!

dy

dS
5x1L cos@F~S2U!2F~S!#, ~2.10b!

dF

dS
5D1x, ~2.10c!

where the control parameterL and the fixed parameterU, D,
andj are defined by

L[ah/v, ~2.11!

U[uv5O~1!, ~2.12!

D[
Vu~mod2p!

vu
5O~1!, ~2.13!

j[
112P

2P
5O~1!. ~2.14!

Eliminating y, we find thatx satisfies the equation for a
harmonic oscillator driven nonlinearly by the phaseF. We
may further eliminatex and obtain a third-order differential
equation forF only given by

F-1vjF91F82D1L cos@F~S2U!2F~S!#50,

~2.15!

where the prime means differentiation with respect toS. The
second term is small becausev5O(T21/2) is small. If the
pumpingP is too small, the asymptotic approximation may
fail. Mathematically,j5O(1) means thatj5j(P) is fixed
as we take the limitT→`. Numerically, our analysis re-
mains valid if the coefficientvj remains small. We are cur-
rently investigating the double limitT→` andP→0 and we
expect the failure of the phase equation for very lowP. Note
that F(S) can be unbounded asS→` but F8(S) must be
bounded as a consequence of Eq.~2.10c! and the fact thatx

4430 53ALSING, KOVANIS, GAVRIELIDES, AND ERNEUX



is a physically bounded function of time. Equation~2.15! is
the main point of this paper. In the subsequent sections we
describe both analytical and numerical results that show that
Eq. ~2.15! captures the coexistence of periodic attractors ex-
hibited by the full LK model, Eq.~1.1!.

III. PERIODIC SOLUTIONS

In this section, we analyze Eq.~2.15! in detail. We have
verified that the particular solutionF5VeS/v satisfies Eq.
~2.15!, whereVe satisfies~2.4! now in terms ofL5ah /v. In
addition, the linearized phase equation leads to a Hopf bifur-
cation point that matches the expression~2.5!. The analysis
of the condition for a single external mode solution and its
linear stability motivates an exploration of Eq.~2.15! for
periodic solutions in the regimeL5O(v).

We apply a two-time perturbation method@19# and seek a
solution of Eq.~2.15! of the form

F~S,z,v!5F0~S,z!1vF1~S,z!1••• , ~3.1!

wherez is a slow time defined by

z[vS. ~3.2!

We considerS and z as two independent time variables,
which implies the chain ruleF85FS1vFz and the
expansion F(S2U)5F(S2U,z2vU)5F(S2U,z)
2vUFz(S2U,z)1••• . We also expand the control pa-
rameterL as

L5v~L11••• !. ~3.3!

After introducing~3.1!, ~3.2!, and ~3.3! into Eq. ~2.15!, we
obtain a sequence of linear problems forF0,F1 . . . . The
two first problems are given by

F0SSS1F0S5D ~3.4!

and

F1SSS1F1S523F0SSz2F0z2jF0SS

2L1 cos@F0~S2U,z!2F0~S,z!#.

~3.5!

The solution of the first problem is

F05A~z!cos@S1v~z!#1DS1B~z!, ~3.6!

whereA, B, and v are unknown functions ofz. We next
introduce~3.6! into the right-hand side~RHS! of Eq. ~3.5!.
Expanding the trigonometric function and using Bessel func-
tion identities@20# we find that the right-hand side has the
form

RHS52A8 cos~S1v !22Av8 sin~S1v !2B8

1jA cos~S1v !2L1@cos~DU!J0~D !

12 sin~DU!J1~D !sin~S1v2U/2!1•••#, ~3.7!

where we have omitted the higher-order harmonic functions
of S; J0(D) andJ1(D) denote Bessel functions.D is defined
by

D[2A sin~U/2!. ~3.8!

Solvability of theF1 equation requires thatF1S is bounded
with respect toS. This implies that we eliminate in the right-
hand side of Eq.~3.5! the terms multiplying cos(S1v) and
sin(S1v). As a result, we obtain two conditions given by

A852
j

2
A2L1 sin~DU!J1~D !sin~U/2! ~3.9!

and

v852
L1

A
sin~DU!J1~D !cos~U/2!. ~3.10!

Furthermore, we determine an equation forB by eliminating
the constant term in Eq.~3.7!. The equation forB is

B852L1 cos~DU!J0~D !. ~3.11!

ThusB is passively related toA and is obtained by integrat-
ing Eq. ~3.11!. Equation~3.9! is an equation for the ampli-
tudeA ~the bifurcation equation!. Equation~3.10! is an equa-
tion for the frequency correctionv. If sin~U/2!50 @or is
O(v) small#, the perturbation analysis needs to be modified.
This is a case of resonance that appears when the delay time
u is close to a multiple of the laser relaxation oscillation
period P052p/v ~i.e., P0u;2np/v!. Similarly, the case
sin~DU!50 or O(v) small requires a different perturbation
analysis. This case corresponds to the maximum or minimum
power mode.

We now analyze the amplitude equation~3.9! in detail. Its
steady state represents the amplitude of a periodic solution of
the original LK equations. It satisfies the implicit relation

L152
jA

2 sin~DU!J1~D !sin~U/2!
. ~3.12!

By taking the limitA→0 in ~3.12!, we note that a branch of
periodic solutions emerges from a Hopf bifurcation point
located atL15L1H whereL1H is defined by

L1H[2
j

2 sin~DU!sin2~U/2!
. ~3.13!

L1H.0 implies sin~DU!,0. Equation~3.13! is identical to
Eq. ~2.5! rewritten in terms ofL5ah/v[vL1H. The Hopf
bifurcation is the classical mechanism leading to a periodic
state. Expanding~3.12! for smallA we find that

A>S 2

sin2~U/2!

L12L1H

L1H
D 1/2 ~3.14!

asL12L1H→0. The bifurcation is always supercritical~i.e.,
defined only forL.L1H!, and according to Hopf theorem,
the periodic solution is stable. The behavior of the periodic
solution near its bifurcation point has been first examined in
@13# using a different method. The expression~3.12! shows
thatA approaches a constant amplitude asL1→`. This con-
stant amplitude is denoted byA5A* and satisfies the con-
dition

J1@D~A* !#50. ~3.15!

53 4431LANG AND KOBAYASHI PHASE EQUATION



Thus,A5A* corresponds to the first zero of the Bessel func-
tion J1(D) with DÞ0. But Eq. ~3.15! admits additional
roots. Equivalently, ~3.12! predicts additional, isolated,
branches of solutions that appear from limit points. This
branching phenomenon is the second mechanism leading to
periodic states in the LK problem. From~3.12! and the con-
dition L18(A)50, we find that the amplitude at these limit
points satisfies the equation

J1~D !22AJ18~D !sin~U/2!52J1~D !2DJ0~D !50.
~3.16!

The linear stability of the steady state can be analyzed
from Eq. ~3.9!. We eliminateL1 in the expression of the
growth rate by using~3.12! and obtain

s52
j

2 F122A sin~U/2!
J18~D !

J1~D !
G52jA sin~U/2!

J2~D !

J1~D !
.

~3.17!

Stability meanss,0, which is verified for the Hopf bifurca-
tion branch. Note thats50 at the limit points since substi-
tuting ~3.16! into ~3.17! givess50. From these limit points a
stable branch and an unstable branch of the periodic solu-
tions appear as the feedback rateL increases.

IV. NUMERICAL BIFURCATION DIAGRAMS

In all our numerical computations we used fourth-order
Runge-Kutta with fixed step size. Figure 1 shows the bifur-
cation diagram of the LK phase equation~2.15!. The figure
exhibits the extrema of the electric fieldy. From Eqs.
~2.10a!–~2.10c!, we know thaty is related toF as

y52F91O~v!. ~4.1!

Using Eqs.~3.1! and~3.6!, we find that the extrema ofy are,
in first approximation, given by6A. A Hopf bifurcation
appears atLH50.023 and is well approximated by
LH5vL1H whereL1H is given by Eq.~3.13!. The values of
the parameters are given byP50.75,T52000,D51.5, and
U5p. At the Hopf bifurcation point, a branch of periodic
solutions appears that then saturates at a constant amplitude
asL increases. This constant is well predicted by our analy-
sis, which givesA5A*.1.9. The value ofA* verifies the
Bessel function condition Eq.~3.15!.

All other branches appear through limit points. Solving
Eq. ~3.16! numerically and then using Eq.~3.12!, we find
approximations for the limit points (L,A)5(LLn ,ALn)
listed in Table I. The differentLLn are indicated in Fig. 1
and match the numerical estimates obtained from the LK
phase equation Eq.~2.15!. From each of these limit points a
stable branch and an unstable branch of solutions appear.
Only the stable branches are shown in Fig. 1. These branches
quickly saturate at constant amplitudes. Again, these con-
stants verify, in first approximation, Eq.~3.15!. They are
shown as dotted lines in Fig. 1 atA*.(5.08,8.23,11.38,...).
For L.1.05, we observe a change of the first branch of
periodic solutions that exhibits low-amplitude oscillations.
Note that there exists only one single external cavity mode
solution for 0,L,1.5 and no new Hopf bifurcations points
have been observed for 1.5,L,2.0.

Figure 2 shows the bifurcation diagram of the original LK

FIG. 1. Bifurcation diagram
for the extrema of the electric field
variabley for the Lang and Koba-
yashi phase equation, Eq.~2.15!.
The values of the parameters are
P50.75, T52000, D51.5 and
U5p.

TABLE I. Numerical values of the limit points
(L,A)5(LLn ,ALn) obtained from Eq.~3.16! and Eq.~3.12!.

n LLn ALn

1 0.35 4.2
2 0.82 7.4
3 1.39 10.6
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equations~1.1a! and ~1.1b!. We representy as a function of
L, which are related to the original variables used in Eqs.
~1.1a! and ~1.1b! by the following expressions:

y5aS uYu

AP
21D , L5

ah

v
. ~4.2!

The bifurcation diagram is in good agreement with the dia-
gram of the approximate LK equation previously shown in
Fig. 1. Successive coexisting branches of periodic solutions
appear through Hopf bifurcations or limit point mechanisms.
We have verified that these branches numerically overlap the
branches shown in Fig. 1 obtained from the phase equation
~2.15!. We also found that higher-amplitude periodic states
predicted from the phase equation are difficult to obtain due
to their small basins of attractions. Figure 2 also shows a
period-doubling bifurcation forL near 1. We did not inves-
tigate this bifurcation. AsL is further increased from 1 the
LK equations~1.1a! and ~1.1b! exhibit a series of higher-
order instabilities leading to chaos. We did not investigate if
the phase equation~2.15! captures these higher-order bifur-
cations. Figure 2 shows the bifurcation diagram for 0,L,1
for clarity only.

V. DISCUSSION

We have derived a third-order differential equation for the
phase of the laser field that is simpler than the original LK
equations and that allows a systematic bifurcation analysis.
This equation is equivalent to the system of equations~2.10!
that shows that the leading approximation of the LK problem
models the laser as a harmonic oscillator driven nonlinearly
by the phase. This results from the relatively large value of
the linewidth enhancement factor and similar equations have

been derived for other semiconductor laser problems@17#.
Our asymptotic analysis of the LK equations concentrated

on periodic solutions that appear at low feedback rate. We
have shown that, in addition to a Hopf bifurcation, periodic
solutions branch out from limit points. This allows the coex-
istence of multiple periodic states. Furthermore, our analysis
shows that the amplitude of all periodic states saturates at
constant values as the feedback rate increases. In this section,
we briefly describe these periodic states as a family of exter-
nal cavity modes.

The periodic solutions obtained in Sec. III have the form

Yn~S!5AP exp~ iLB̄nS!exp@ iAncos~S!#,

where the indexn is associated with the solution correspond-
ing to thenth root ofJ1(D)50. Ān andB̄n are constants.~It
is apparent that the frequency of the oscillation of the domi-
nant mode has been shifted.! It can be easily demonstrated
that these solutions satisfy the reproducibility relation

Yn~S!5lnYn~S2U!,

whereln is some complex constant. These solutions can be
interpreted as a set of approximate eigenfunctions of the ex-
ternal cavity that exhibit a time dependence more compli-
cated than that of simple plane waves.
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APPENDIX

The LK equations are two equations for the slowly vary-
ing complex envelope electric fieldE(t) and the carrier den-
sity N(t) given by @5#

dE

dt
5
1

2
~11 ia!GN~N2Nth!E1

k

t in
e2 iv0tE~ t2t!,

~A1!

dN

dt
5J2

N

ts
2F 1tp 1GN~N2Nth!G uEu2. ~A2!

In these equations,tp , tin , t, andts are the photon lifetime,
the round-trip time in the laser cavity, the round trip time in
the external cavity, and the carrier lifetime, respectively.k2

is the power reflected from the external cavity relative to the
power reflected from the laser mirror.a is the linewidth en-
hancement factor andJ is the pumping term. The solitary
laser is assumed to oscillate in a single longitudinal mode
with angular frequencyv0, Nth is the threshold carrier den-
sity for the solitary laser, andGN is a constant defined as
GN[(]G/]N) th , whereG(N) is the gain per unit time:

G~N!5G~Nth!1GN~N2Nth!5
1

tp
1GN~N2Nth!.

~A3!

We now introduce the following dimensionless variables:

Y[AtsGN

2
E, ~A4!

Z[S tpGN

2 D ~N2Nth!, ~A5!

s[
t

tp
. ~A6!

In terms of~7.4!, ~7.5!, and~7.6! Eqs.~7.1! and~7.2! can be
rewritten as Eqs.~1.1a! and ~1.1b!, where

P[
tpGNNth

2 S JJth21D , ~A7!

Jth[Nth/ts , ~A8!

h[ktp /t in , ~A9!

u[t/tp , ~A10!

V[v0tp . ~A11!
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