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We study cooperative properties of the emission spectrum ofA two-level atoms interacting with a quantized
field in a lossless cavity. We show, in a unified treatment, the system anharmonicity, the fine structure, and size
of the spectral bands. Further, we show that for an initially inverted atomic system and a thermal cavity field
the atomic cooperativity allows the merging of well-defined sidebands, absent in the single-atom case. Thus the
cooperativity reduces the destructive effect of the large dispersion of the blackbody photon distribution. For an
increasing number of atoms, the central band is split into a doublet. The dip in the doublet is filled when the
cavity field is very strong. Also, the extra sidebands have smaller amplitudes than the time-dependent contri-
butions to the spectrum.

PACS number~s!: 42.50.Fx, 32.70.Jz

I. INTRODUCTION

The interaction of atoms with blackbody radiation leads
generally to irregular dynamics of the system observables,
reflecting the large fluctuations of the field. For example, the
revivals of the atomic inversion@2,3# and of photon correla-
tions @4# are broader in the presence of thermal photons than
in the case of pure coherent field@5#. Particularly interesting
are those interactions in the cavity QED frame where coher-
ent quantum effects are stronger than the influence of ther-
mal fluctuations@1#. So far, experiments with high-Q cavi-
ties count with a finite number of thermal photons@6,7#.

However, it has been shown that atomic collectivity can
overcome the thermal fluctuations, as in the observation of
coherentlike revivals of the atomic inversion of many atoms
interacting with a weak thermal cavity field@3,7,8#, along
with narrowing of the photon distribution at certain times
@8#. This can be explained by the suppression of the large
fluctuations of the thermal field due to the coherence of the
atomic system.

The resonance fluorescence~RF! spectra from two-level
atoms interacting with quantized fields in high-Q cavities
also show very interesting features. The weak-field spectrum
shows the so-called vacuum Rabi splitting@9,10#. For the
case of strong coherent field the spectrum@9,11# resembles
the semiclassical one-atom Mollow triplet@12#. While the
weak-field spectrum is not very sensitive to the initial field
statistics, well suited to testing the radiation discreteness
@13#, for strong thermal fields the sidebands become very
weak and almost flat for one atom@11#, and even for two
atoms@14#, due to the broad photon distribution.

For cooperative RF, the existence ofA21 pairs of side-
bands~whereA is the number of atoms!, in addition to the
Mollow-like triplet, has been predicted@15,16#. However,
these sidebands are very small and difficult to observe ex-
perimentally. On the other hand, it has been shown that in a
lossless cavity the central band grows linearly, while the
sidebands grow quadratically withA @17#. It is to be com-
pared to the free space case, where the three components
grow asA2, keeping the one-atom spectral shape@15,18#.

This different behavior suggests that the sidebands would
stand out notably against the central band for a large number
of atoms.

Indeed, we show in this paper that the coherence provided
by an initially inverted atomic system can lead to high spec-
tral sidebands even if the average number of thermal photons
in the cavity is significantly larger than the number of atoms.
Furthermore, in the strong quantum field case we observe the
splitting of the central band with increasing number of atoms
due to the lack of an elastic peak. This splitting appears in
both the coherent and thermal cases. We also describe the
fine structure of the spectral bands for the case of initial Fock
field states. These two effects are not a consequence of the
given initial photon distribution. It is a fundamental feature
of a quantum field interacting with a cooperative atomic sys-
tem; it disappears in the classical field limit.

We use the perturbation method devised by Kozierowski,
Chumakov, and Mamedov@19#, based on a SU~2! group rep-
resentation technique and the approximate dynamical sym-
metry of the Dicke model, with expansion parameter equal to
the inverse square of the Rabi frequency. This method has
proved its usefulness in studies of cooperative spontaneous
emission@19#. Its advantages are the clear presence of anhar-
monicity in the eigenfrequencies in a simple analytical form,
and ease of calculation of observables. With our model we
can obtain the intensities and positions of the 2A11 spectral
bands, but the extra sidebands are very small in the strong-
field region. They are of the same order as transient effects,
usually neglected through the secular approximation; hence
they are not the best collective spectral features to look at.

We proceed as follows. In Sec. II we explain our model
and in Sec. III we calculate the spectrum for an initial Fock,
coherent, and thermal fields. In Sec. IV we estimate and
compare the linewidths for coherent and thermal fields, and
we give our conclusions in Sec. V. Finally, a brief account of
our perturbation method is given in the Appendix.

II. THEORETICAL MODEL

We use the model originally proposed by Dicke@20#. It
considers a system ofA identical two-level atoms interacting
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resonantly with a single mode of a quantized field of fre-
quencyv in a lossless cavity. We neglect direct interatomic
forces, and assume that all atoms have equivalent mode po-
sitions, having therefore the same coupling constantg. The
rotating-wave approximation Dicke model@20# Hamiltonian
has the form (\51):

H5v~a†a1LZ!1g~aL11a†L2!, ~1!

where a† and a are the photon creation and annihilation
operators, and the collective atomic operators are described
by

L1um&a5A~m11!~A2m!um11&a ,

L2um&a5Am~A2m11!um21&a ,

LZum&a5Sm2
A

2 D um&a ,

LX5~L11L2!/2, LY5~L12L2!/2i , ~2!

where um&a is the symmetric atomic state withm excited
atoms. The atomic operators generate the (A11)-
dimensional representation of the SU~2! group.

Dicke stressed the role of the symmetry of the initial
atomic state under permutations of atoms and found the
states that lead to enhanced spontaneous emission~superra-
diance!. Tavis and Cummings@21# reformulated this prob-
lem in matrix form and reduced the problem to solving an
algebraic equation of a high degree. The early computer ex-
periments showed that there exist regimes where the spec-
trum of the model is nearly linear@22#. Correspondingly, the
early analytical papers@23–25# considered the linearized
versions of the problem. For instance, Bonifacio and
Preparata@26# and Kumar and Mehta@27# presented approxi-
mate solutions for the time evolution of the atomic inversion
in terms of elliptic functions~compare the later paper@28#!.
It has become clear now that anharmonic phenomena due to
the nonlinearity of the model become especially important if
we treat the field as a quantum object~see, e.g.,@29#!. It can
be easily understood in the one-atom case@30#, where in the
linear approximation we get the Rabi oscillations of the
atomic inversion, but not the collapses and revivals of these
oscillations. The goal of recent work@31,32# was to investi-
gate the nonlinear corrections to the spectrum~i.e., to solve
the algebraic equation of the high degree mentioned above!.
We shall use here the approach based on the approximate
dynamical symmetry of the Dicke model@19#. To our knowl-
edge, it is the only solution available in a closed and simple
form, which can be used to calculate the physical properties
of the model in different dynamical regimes; see@19#.

To write down the solution, we need to introduce some
notation. Let us recall that the excitation number operator,
N 5a†a1LZ1A/2, commutes with the Hamiltonian~1!.
We are interested here in the strong-field regime, where the
number of atoms is less than the excitation numberN. Then
the dynamics is restricted to a (A11)-dimensional subspace,
spanned by the ‘‘bare’’ basis

uN,m&5uN2m& f ^ um&a , 0<m<A. ~3!

Here un& f is the Fock field state withn photons. It is conve-
nient to work in a dressed system basis, labeling the eigen-
vectors and eigenvalues by the indicesN andp, 0<p<A.
We write the eigenvalue equations for the interaction Hamil-
tonianV 5g(aL11a†L2) and the excitation number opera-
tor as

V uCN,p&5Lp
NuCN,p&, N uCN,p&5NuCN,p&. ~4!

Then the evolution operator is given in terms of the dressed
vectors by

U~ t !5 (
p50

A

uCN,p&e
2 i ~Lp

N
1vN!t^CN,pu. ~5!

It is well known that the energy spectrum is not equidis-
tant for an arbitrary number of atoms@22#. From the pertur-
bation theory shown in the Appendix, the approximate eigen-
values and eigenvectors are

Lp
N5~A22p!VNH 12

g4

32VN
4 @10p~A2p!

2~A21!~A22!#J , ~6!

uCN,p&5uN,p&1
g2

8VN
2 @~A22p11!Ap~A2p11!uN,p21&

2~A22p21!A~p11!~A2p!uN,p11&], ~7!

where

VN5gAN2A/211/2 ~8!

is the collective Rabi frequency, anduN,p& are the lowest
~zeroth-! order eigenvectors, whose components are given by

amp5^N,muN,p&

5A m!p!

2A~A2m!! ~A2p!! (
j50

min~m,p!
~22! j~A2 j !!

j ! ~m2 j !! ~p2 j !!
.

~9!

The first-order eigenvectors, Eq.~7!, can be rewritten in
terms ofamp as

Amp
N 5^N,muCN,p&

5amp1
g2

8VN
2 @~A22p11!Ap~A2p11!am,p21

2~A22p21!A~p11!~A2p!am,p11#. ~10!

The matrixA describes the transformation between the bare
and the dressed vectors, i.e.,uCN,p&5AuN,m&. In zeroth
order,A→a anduN,p&5auN,m&. As one can see from Eq.
~6!, the first-order corrections to the eigenvalues always van-
ish. Moreover, forA51 all the higher-order corrections van-
ish and in zeroth order we recover the exact expressions for
the Jaynes-Cummings model@33#. The matrixa diagonal-
izes the zeroth-order HamiltonianV 052gLX ~see Appen-
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dix!, aLXa5LZ. Note that(p50
A amp

2 51. Moreover,a does
not depend onN. It is convenient to introduce also the ro-
tated operatorsaL6a5X6. They are connected with the
operatorsL6,LX as follows:

L65LX6 1
2 ~X22X1!, LZ5 1

2 ~X21X1!. ~11!

The matrix elements of these new operators in the basis of
the zeroth-order eigenvectorsuN,p& have a very simple
form:

^N21,quLXuN,p&5 1
2 ~A22p!dqp ,

^N21,quX2uN,p&5Ap~A2p11!dqp21 ,

^N21,quX1uN,p&5A~p11!~A2p!dqp11 . ~12!

Therefore, the operatorsX6 shift up and down the eigenvec-
tors ofLX. Now, in order to calculate the matrix elements of
any atomic operator, we may first express it in terms of the
operatorsX6,LX by means of Eqs.~11! and then make use of
Eqs.~12!. Below we shall use the following matrix elements:

^N21,quL2uN,p&5SA2 2pD dq,p1
1

2
A~p11!~A2p!dq,p11

2
1

2
Ap~A2p11!dq,p21 . ~13!

III. COLLECTIVE EMISSION SPECTRA

In this section we obtain an analytic expression for the
Dicke model RF spectrum in terms of Fock states of the field
and use it to find the spectrum for thermal and coherent
fields. The standard definition of the physical spectrum@34#
is

S~n,t ![2gE
0

t

dt1E
0

t

dt2e
2~g2 in!~ t2t2!

3e2~g1 in!~ t2t1!G~ t1 ,t2!, ~14!

whereg andn are the filter bandwidth and peak transmission
frequency, respectively, andG(t1 ,t2) is the two-time collec-
tive dipole correlation function:

G~ t1 ,t2!5^L1~ t2!L
2~ t1!&

5(
n

Pn f^nua^muU†~ t2!L
1U~ t2!

3U†~ t1!L
2U~ t1!un& f um&a

5 (
n50

`

Pn (
p,q,r50

A

Amp
N
Amr

N ei ~v1vqp
N

!t2

3e2 i ~v1vqr
N

!t1^CN,puL1uCN21,q&

3^CN21,quL2uCN,r&. ~15!

Here um&a is the initial state of the atomic system,Pn is the
initial photon probability distribution, andvqp

N [Lp
N2Lq

N21

are the frequencies of the spectral components. To obtain the

second equality we have used Eq.~5!. After the filter inte-
gration and passing the transient process,gt.1, we get

S~D f ,t !52g (
N5m

`

PN2m (
p,q,r50

A

Amp
N
Āmr

N

3^CN,puL1uCN21,q&^CN21,quL2uCN,r&

3
exp@ i t ~vqr

N 2vqp
N !#

@g2 i ~D f2vqr
N !#@g1 i ~D f2vqp

N !#
, ~16!

with D f5n2v being the filter-field detuning. Note that the
summation over the initial photon numbern in Eq. ~15! has
been transformed into a summation over the initial excitation
numberN5n1m in Eq. ~16!. For pÞr we have oscillatory
terms that contain the product of two complex Lorentzians,
peaked atvqr

N andvqp
N , so that the oscillation amplitudes are

small. They are of the order of 1/VN . Here we shall consider
only the time-independent part of the spectrum, which is
given by the termsp5r . We have a real Lorentzian for
every value ofp andq,

S~D f !52g (
N50

`

(
q,p50

A

PN2m

uAmpu2z^CN21,quL2uCN,p& z2

g21~D f2vqp
N !2

.

~17!

This equation gives the stationary physical spectrum in terms
of the system eigenvalues and eigenvectors. To continue we
need to calculate them numerically or use some analytical
approximation. We choose to use the approximations~6! and
~7! since they give us better insight into the physics of the
process.~Computer simulations with exact eigenvalues and
eigenvectors show a full agreement with our analytical treat-
ment.!

It is very instructive to start with the case of an initial
Fock field state@the term with a given value ofN5n1m in
the external sum of Eq.~17!#. The eigenvalues~6! determine
the positions of the spectral components. Denoting
q5p1k, we have

vp1k,p
N 52kVN1

g2

VN
~A/22k2p!1

g4

16VN
3 $2~A22p22k!

2k@10p~A2p!110k~A22p2k!

2~A21!~A22!25~A22p!~A22p2k!#%, ~18!

wherek50 labels the central band,k51 (21) the first right
~left! sideband, and so on. Neighboring bands are separated
by 2VN . The first-order terms give the separation of peaks
inside a band,g2/VN . The second-order terms give the finest
corrections to the peak positions. Thep index numerates the
peaks inside a given band and goes as 0<p<A for the cen-
tral band, 0<p<A21 for the first right sideband, and
1<p<A for the first left sideband. For2A<k<A there are
2A11 bands, and the number of peaks in thekth band is
A112uku. For evenA one peak disappears in the central
band, the elastic peak, so that it consists ofA peaks for even
A and ofA11 peaks for oddA; see Eqs.~20! below. Kien,
Shumovsky, and Quang@16# predicted the eight peak total
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spectrum for the two-atom case. We conclude that the spec-
trum hascooperative fine structureif the field is in a number
state.

The coefficients

I qp5uAmpu2z^CN21,quL2uCN,p& z2 ~19!

determine the intensities of the spectral lines. For the special
case of having all the atoms initially in the same~ground or
excited! state,m50,A, the zeroth-order amplitudesuampu2
are proportional to the binomial coefficients@it follows from
Eq. ~9!#. Then, from Eq.~13! we obtain the distribution of
peak intensities in every band of the basic triplet,

I p11,p5
A!

~A2p!!p!

~p11!~A2p!

2A12 ,

I p,p5
A!

~A2p!!p!

~A22p!2

2A12 ,

I p21,p5
A!

~A2p!!p!

p~A2p11!

2A12 , ~20!

for the right, central, and left bands, respectively~Fig. 1!.
The most outstanding effect of cooperativity is in the size of
the sidebands compared to the central band. Performing the
sum of each of Eqs.~20! over thep states, the central to
sideband integrated intensity ratio is

I 0 :I61→
A

4
:
A~A11!

16
, ~21!

a result obtained by Shumovsky and Quang@17# in a semi-
classical treatment. They noticed the linear dependence on
A of the central band in a cavity compared to theA2 result
for free space, in which case the strong-field spectral line
shape approaches that for one atom@15,18#. We can see that
I61>I 0 for A>3.

The extra sidebands are very small in the strong field
region. Thekth band appears in the (k21)th order of the
perturbation theory and has the time-independent intensity
proportional toVn

24(k21) . Hence the extra sidebands are
smaller than the oscillatory contributions. For most of what
follows we restrict ourselves to a study of the steady triplet
spectrum which appears naturally in the zeroth order of our
perturbation theory. Thus we neglect the time-dependent part
of the spectrum, additional sidebands, and the corrections to
the intensity of the triplet. The extra sidebands are also small
in the weak-field region, when the number of atoms is larger
than the number of photons. They can become important
only if A;n̄. In the remainder of the paper we only consider
the case of initially excited atomic system,m5A.

The final height and shape of the spectral bands are
marked by the initial photon statistics. The thermal and co-
herent fields are represented by the blackbody and Poisson
distributions,

FIG. 1. Fine structure and relative intensities of the spectral bands vs filter detuningD f5n2v in units of the coupling constantg, for
a field in the number staten521 and~a! A51 ~Jaynes-Cummings model spectrum!, ~b! A53, and~c! A57. All the atoms are initially
excited,m5A. Filter bandwidthg50.01g.
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Pn
th5

n̄n

~11n̄!n11
, Pn

coh5
e2 n̄ n̄n

n!
, ~22!

whose dispersionsDn are given byAn̄(n̄11) andAn̄, re-
spectively, wheren̄ is the appropriate average photon num-
ber. The high coherent-field-induced ‘‘Poisson’’ spectrum
and the broad asymmetric ‘‘thermal’’ sidebands are the most
evident aspects when comparing spectra, as seen in Figs.
2–4. As a result of Eq.~21!, for an increasing number of
atoms the thermal sidebands become clearly defined~Fig. 2!,
while the Poisson sidebands soon grow higher than the cen-
tral band~Fig. 3!.

On the other hand, the absence of the elastic peak leads to
a doublet envelope of the central band, enhanced by large
cooperativity, given as the product of the parabolic factor
(A22p)2 and the binomial coefficients inI p,p , for every
excitation numberN. While increasing the field intensity is
of little effect on the shape of the Poissonian spectrum, the
thermal sidebands become damped and broader~Fig. 4!, re-
flecting the large fluctuations of the blackbody radiation in
the cavity. We observe a competition between atomic coop-
erativity and field properties in the line shape, which we
study numerically in the next section.

IV. SPECTRAL LINE SHAPE

The mean position of a band is given byvk
5Š^vp1k,p&p‹n , where the double brackets denote averages
over both thep andn state distributions, Eqs.~20! and~22!.
The terms withn;n̄ are closer to the resonance~mean! po-
sition. For the sidebands in the coherent case

~v61!
coh.62V̄7

Ag2

~A11!V̄
. ~23!

Here V̄5gAn̄1A/211/2 is the mean Rabi frequency for
m5A; see Eq.~8!. However, the mean and peak positions of
the thermal sidebands do not coincide with (v61)

coh being
pulled to the center of the spectrum by the lown states of
Pn
th . The large thermal fluctuations renormalize the Rabi fre-

quency but a large number of atoms reduce the resonance
shift ~Fig. 5!, making the interaction more ‘‘coherent.’’ Simi-
lar thermally induced shifts and asymmetries have been stud-
ied in micromaser line shapes@35#.

The cooperative fine structure of the bands would be re-
vealed forg,g2/V̄, which is the separation between two
neighboringp states, while the separation between then and
n21 photon contributions to a sideband~central band! from
a field with a givenPn is g2/V̄ (g4/4V̄3). We can then
neglect the width of thep state distribution of the sideband,
but not that for the central band. Both cooperative and pho-
ton fine structures are lost if a semiclassical theory is fol-
lowed. The oscillations in the thermal sidebands in Figs. 2
and 4 (g50.25g) are due to the small-n photon contribu-
tions, having small Rabi frequency, which consequently have
large separation between two photon number peaks. The
large n and thep contributions mix up and erase the fine
structure for most of a sideband.

The width of thekth band can be computed with the
standard formula

sk5A^vk
2&n2^vk&n

2, ~24!

for which we can obtain approximate expressions via

FIG. 2. Collective emission spectra for a thermal field with
n̄521 and ~a! A51, ~b! A53, and ~c! A57, for m5A and
g50.25g.
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sk5vk~ n̄1Dn!2vk~ n̄!. ~25!

For coherent field the approximations are very good, while
for a thermal field the approximations are still good. For the
sidebands we have

s61
coh'

g2An̄
V̄

, s61
th '2~A221!

g2n̄

V̄
. ~26!

For large n̄ every n thermal state contributes little to the
spectrum, resulting in small and broad sidebands, that is, a
strong thermal field acts as damping. The closeness of the
central band adds a small amount of broadening to the ther-
mal sideband forA small. Figure 6 shows cooperative nar-
rowing of the sidebands when all atoms are initially excited,
more for a thermal than for a coherent field.

The central band shows a dip due to the lack of an elastic
peak in the quantum field formulation; the dip becomes
wider for increasing atomic cooperativity, Fig. 7. The band
envelope is given byI p,p , Eq. ~20!. In general, the central
band is less sensitive to the field statistics than the sidebands.
The whole band is not completely filled, at least for not very
strong fields, due to the much smaller separation of two
neighboringn-photon contributions than that of thep states

(g4/4V̄3!g2/V̄), which explains its reduced sensitivity to
the initialPn . The dip is filled slightly faster with increasing
thermal field than with a coherent field due to the larger
width of everyp peak of the former

s0
coh5

g4An̄
4V̄3 , s0

th'
g2

A8V̄
~A221!. ~27!

Note that the cooperative width of the central band~due to
the distribution ofp states! is

s0
coop5

g2AA
2V̄

. ~28!

As mentioned above, this is larger than the spread due to
photon statistics for both coherent and thermal fields.

V. CONCLUSIONS

We have studied collective features of the emission spec-
trum of many atoms in an ideal cavity. The quadratic growth
of the sidebands with the number of atomsA ~compared to
the linear growth of the central band! and their narrowing
when all the atoms are initially inverted, allow the formation

FIG. 3. Same as Fig. 2 for initial coherent field.
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of well-defined sidebands even if a strong thermal field is
present in the cavity. Since the Rabi frequency is a sign of
coherence in the field-atom interaction, a large number of
initially excited atoms would reduce the thermal fluctuations.
This suggests that further studies on the competition between
atomic coherence and field incoherence be made.

For a quantized cavity field theA11 dressed levels ap-
pear, whose positions depend on the initial photon number.
This leads to spectral fine structure. The lack of an elastic
peak in this case originates a dip in the central band, which is
enhanced with an increasing number of atoms. However, this
dip is filled in the classical field limit. We have also shown
that the steady intensities of the extra sidebands are smaller
than the time-dependent~oscillatory! contributions.

Finally, we may note that the vacuum Rabi splitting in the
absorption spectra of the collective atomic system in a high-
Q cavity has been observed in optical experiments@10,36#.
The emission spectra have richer structure, since transitions
between many dressed states are involved@37#. Our results,
in fact, show that the quantum field features can be seen in
emission spectra of a collective atomic system in a good
cavity even for coherent and thermal fields of high intensity

~for photon numbers much larger than atomic numbers!. It
seems realistic to observe these phenomena~the high side-
bands in comparison with the central band, and the coopera-
tive doublet structure of the central band! both in optical and
microwave experiments~see, e.g.,@10,38#!.
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APPENDIX

In this appendix we briefly outline the perturbation theory
of Ref. @19#, which our RF theory rests on. Note that the
theory is expressed here in terms of the strong-field situation,
N.A. We write the interaction Hamiltonian in the form

V 5V 11V 2, V 25ga†(
j51

A

L j
2 , V 15ga(

j51

A

L j
1 ,

~A1!

FIG. 4. Effect of damping of a thermal field of increasing inten-
sity on spectra forA57 and~i! n̄514, ~ii ! n̄521, and~iii ! n̄528
~with higher central doublet!.

FIG. 5. Normalized mean position of the thermal sideband in
units ofvk51 ~coherent field!. Solid, long-dashed, and short-dashed
curves are forn̄514, 21, and 28, respectively.

FIG. 6. Width of the sidebands for thermal~upper curve! and
coherent field~lower curve! with n̄521.

FIG. 7. Distance of the maxima of the distributionI p,p ~central
doublet! from the center of the spectrum, in units ofg2/V̄ as a
function of the number of atoms.
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with nonvanishing matrix elements

^N,m21uV 2uN,m&5gAm~A2m11!~N2m11!

5^N,muV 1uN,m21&. ~A2!

Expanding in a power series in the parametere5g2/VN
2 we

have

^N,m21uV 2uN,m&5gAm~A2m11!

e

3F11
e

2 SA11

2
2mD

2
e2

8 SA11

2
2mD 21••• G , ~A3!

which requires not onlye to be small butA!N as well.
Actually, the perturbation theory works well even ife and
A are not very small.

In this space ofA11 dimensions there acts the represen-
tation of the SU~2! group, whose generators areL1, L2, and
LZ, and the interaction Hamiltonian is expanded as

V 5(
l50

`

e l21/2V l , V l5gKl@L
2~ 1

22LZ! l1~ 1
22LZ! lL1#,

~A4!

K051, K151/2, Kl5~21! l11
~2l23!!!

2l l !
, l>2. ~A5!

In particular we see thatV 052gLX.
Now we can obtain perturbation expansions that lead to

Eqs.~6! and ~7!:

Lp
N5

g

Ae
@lp

~0!1elp
~1!1e2lp

~2!1•••#, ~A6!

uCN,p&5 (
q50

A

Cp,quN,q&, Cp,q5Cp,q
~0! 1Cp,q

~1! 1•••, ~A7!

whereCp,q
(0)5dp,q and lp

(0)5A22p. It is customary to ob-
tain corrections up to second order for eigenvalues and to
first order for eigenvectors. By standard perturbation meth-
ods we have

lp
~1!5^N,puV 1uN,p&,

lp
~2!5^N,puV 2uN,p&1 (

qÞp,q50

A u^N,quV 1uN,p&u2

lp
~0!2lq

~0! ,

Cp,q
~1! 5

^N,quV 1uN,p&

lp
~0!2lq

~0! . ~A8!

With the HamiltoniansV 1 andV 2 and Eqs.~11! and~12!
we have

^N,quV 1uN,p&52 1
4 @~A22p11!Ap~A2p11!dq,p21

1~A22p21!

3A~p11!~A2p!dq,p11#,

^N,quV 2uN,p&52 1
32$~A22p!@A2112p~A2p!#dq,p

1~A22p12!

3A~p21!p~A2p11!~A2p12!

3dq,p221~A22p22!

3A~p11!~p12!~A2p21!~A2p!

3dq,p12%. ~A9!

Then, substituting these results in Eqs.~35! and ~34! we
obtain Eqs.~6! and ~7!. Note that the first-order approxima-
tion to the eigenvalues vanishes.
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