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Collective-resonance fluorescence in an ideal cavity
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We study cooperative properties of the emission spectruftefo-level atoms interacting with a quantized

field in a lossless cavity. We show, in a unified treatment, the system anharmonicity, the fine structure, and size
of the spectral bands. Further, we show that for an initially inverted atomic system and a thermal cavity field
the atomic cooperativity allows the merging of well-defined sidebands, absent in the single-atom case. Thus the
cooperativity reduces the destructive effect of the large dispersion of the blackbody photon distribution. For an
increasing number of atoms, the central band is split into a doublet. The dip in the doublet is filled when the
cavity field is very strong. Also, the extra sidebands have smaller amplitudes than the time-dependent contri-
butions to the spectrum.

PACS numbd(s): 42.50.Fx, 32.70.Jz

I. INTRODUCTION This different behavior suggests that the sidebands would
stand out notably against the central band for a large number
The interaction of atoms with blackbody radiation leadsof atoms. o )
generally to irregular dynamics of the system observables, Indeed, we show in this paper that the coherence provided
reflecting the large fluctuations of the field. For example, the?y an initially inverted atomic system can lead to high spec-
revivals of the atomic inversiof2,3] and of photon correla- tral sidebands even if the average number of thermal photons

tions[4] are broader in the presence of thermal photons thaff! the cavity is significantly larger than the number of atoms.
in the case of pure coherent figlfl]. Particularly interesting Furthermore, in the strong quantum field case we observe the
are those interactions in the cavity QED frame where cohersPlitting of the central band with increasing number of atoms

ent quantum effects are stronger than the influence of thefue to the lack of an elastic peak. This splitting appears in
mal fluctuationg1]. So far, experiments with higQ cavi- both the coherent and thermal cases. We also describe the

ties count with a finite number of thermal photdiis7]. fine structure of the spectral bands for the case of initial Fock
However, it has been shown that atomic collectivity canf'eld states. These two effects are not a consequence of the

overcome the thermal fluctuations. as in the observation ofiven initial photon distribution. It is a fundamental feature
coherentlike revivals of the atomic inversion of many atoms2f @ quantum field interacting with a cooperative atomic sys-

interacting with a weak thermal cavity fie[®,7,8, along €M, it disappears in the classical field limit. _ _
with narrowing of the photon distribution at certain times _ W€ use the perturbation method devised by Kozierowski,

[8]. This can be explained by the suppression of the larg&humakov, and Mameddu 9], based on a S() group rep-
fluctuations of the thermal field due to the coherence of théeSentation tephnlque and '.che appr0>_<|mate dynamical sym-
atomic system. metry of the Dicke model, with expansion parameter equal to
The resonance fluorescentRF) spectra from two-level the inverse square of 'the qul frequency. Thls method has
atoms interacting with quantized fields in high-cavities proved its usefulness in studies of cooperative spontaneous

also show very interesting features. The weak-field spectrurﬁm's_s'_or[_lg]‘ Its _advantages are Fhe C'?ar presence of anhar-
shows the so-called vacuum Rabi splittif@,10]. For the monicity in the eigenfrequencies in a simple analytical form,

case of strong coherent field the spectri@yL1] resembles and ease of calculation of observables. With our model we
the semiclassical one-atom Mollow triplgt2]. While the @0 obtain the intensities and positions of t#e21 spectral
weak-field spectrum is not very sensitive to the initial field Pands, but the extra sidebands are very small in the strong-
statistics, well suited to testing the radiation discretenesf€!d region. They are of the same order as transient effects,
[13], for strong thermal fields the sidebands become very'Sually neglected through the secular approximation; hence
weak and almost flat for one atofd1], and even for two they are not the best collective spectral features to look at.
atoms[14], due to the broad photon distribution. We proceed as follows. In Sec. Il we explain our model
For cooperative RF, the existence &1 pairs of side- and in Sec. Ill we calculate the spectrum for an initial Fock,

bands(whereA is the number of atomsin addition to the coherent, and. thermal fields. In Sec. IV we estir_‘nate and
Mollow-like triplet, has been predictefil5,16. However, Ccompare the linewidths for coherent and thermal fields, and

these sidebands are very small and difficult to observe exlV€ give our cpnclusmns in S?C' V'. Finally, a b”e.f account of
perimentally. On the other hand, it has been shown that in QUI Perturbation method is given in the Appendix.

lossless cavity the central band grows linearly, while the
sidebands grow quadratically with [17]. It is to be com-
pared to the free space case, where the three componentsWe use the model originally proposed by Dicka0]. It
grow asA?, keeping the one-atom spectral shdjig,18. considers a system &f identical two-level atoms interacting

II. THEORETICAL MODEL
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resonantly with a single mode of a quantized field of fre-Here|n); is the Fock field state with photons. It is conve-
guencyw in a lossless cavity. We neglect direct interatomicnient to work in a dressed system basis, labeling the eigen-
forces, and assume that all atoms have equivalent mode pwectors and eigenvalues by the indidésand p, O<p<A.
sitions, having therefore the same coupling constarnithe  We write the eigenvalue equations for the interaction Hamil-

rotating-wave approximation Dicke modél0] Hamiltonian  tonian7=g(aL* +a'L~) and the excitation number opera-
has the form f=1): tor as

F=w(ata+L?)+g(aLt+alL "), (1) TN =AY W), ATV =N[Wy ). (@)

wherea' and a are the photon creation and annihilation gstr;r?%;volutlon operator is given in terms of the dressed

operators, and the collective atomic operators are describe
by A

U= [Wyphe o e . (5)
L*|m),=V(m+1)(A—m)|m+1),, (1) ,;0| N.p) P (¥ pl

It is well known that the energy spectrum is not equidis-

L7 [m)a= Vm(A—m+1)|m—1),, tant for an arbitrary number of atorig2]. From the pertur-
A bation theory shown in the Appendix, the approximate eigen-
L4m),=| m— 5) [m)a, values and eigenvectors are
4
X_ (] + - Y_ (1 +_1 —\/9 g
L?=(L"+L7)/2, L =(L"—L")/2, ) AQ:(A—zp)QN{ 1- ﬂ[10p(A—p)

where |m), is the symmetric atomic state wittm excited
atoms. The atomic operators generate tha+()- —(A— 1)(A—2)]], (6)
dimensional representation of the @Jgroup.

Dicke stressed the role of the symmetry of the initial )
atomic state under permutations of atoms and found th _ 9

= + ——[(A—=2p+1)Jp(A—p+ —

states that lead to enhanced spontaneous emissigrerra- ?\FN"’> |M> SQﬁ[(A 2p+1)Vp(A—p 1>|M>
diance. Tavis and Cumming$21] reformulated this prob-
lem in matrix form and reduced the problem to solving an —(A=2p—1)V(p+1)(A-p)|N,p+1)], (7)
algebraic equation of a high degree. The early computer ex- h
periments showed that there exist regimes where the spel@’- ere
trum of the model is nearly linegR2]. Correspondingly, the — g N—AR2+ 172
early analytical paper$23—25 considered the linearized On=gVN-A+1/2 ®
versions of the problem. For instance, Bonifacio andg the collective Rabi frequency, antll,p) are the lowest

Preparat§26] and Kumar and Mehtg27] presented approxi- (;erothy order eigenvectors, whose components are given by
mate solutions for the time evolution of the atomic inversion

in terms of elliptic functiongcompare the later pap€28]). amp=(N,m|N,p)

It has become clear now that anharmonic phenomena due to - . _

the nonlinearity of the model become especially important if \/ m!p! e (—2)(A=])!
we treat the field as a quantum objéste, e.g.[29]). It can = 2AA—-m)!I(A—p)! S jtm=j)(p—j)!"

be easily understood in the one-atom cg&@, where in the
linear approximation we get the Rabi oscillations of the 9
atomic inversion, but not the collapses and revivals of thes
oscillations. The goal of recent wof81,32 was to investi-
gate the nonlinear corrections to the spectrive, to solve
the algebraic equation of the high degree mentioned gbove N _
; 'ﬂ{mp_<Nim|\PN p>
We shall use here the approach based on the approximate '

The first-order eigenvectors, Eq7), can be rewritten in
terms ofay,, as

dynamical symmetry of the Dicke modé!9]. To our knowl- g?

edge, it is the only solution available in a closed and simple =ampt W[(A_ 2p+1)Vp(A=p+1)anp-1
form, which can be used to calculate the physical properties N

of the model in different dynamical regimes; 4d6]. —(A=2p—1)J(p+1)(A—p)ap p+1l- (10)

To write down the solution, we need to introduce some
notation. Let us recall that the excitation number operatorThe matrix._# describes the transformation between the bare
=a'a+L?+A/2, commutes with the Hamiltoniafl).  and the dressed vectors, i.¢Wy ,)=.7/N,m). In zeroth
We are interested here in the strong-field regime, where therder,. 72— « and|N,p)= a|N,m). As one can see from Eq.
number of atoms is less than the excitation nundeiThen  (6), the first-order corrections to the eigenvalues always van-
the dynamics is restricted to & ¢ 1)-dimensional subspace, ish. Moreover, folA=1 all the higher-order corrections van-
spanned by the “bare” basis ish and in zeroth order we recover the exact expressions for
the Jaynes-Cummings mode3]. The matrix« diagonal-
IN,m)y=|N—m);®|m),, O=m=A. (3) izes the zeroth-order Hamiltonia#p=2gL* (see Appen-
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dix), aL*a=LZ%. Note that>f_,a’%,= 1. Moreover,« does  second equality we have used Eg). After the filter inte-
not depend orN. It is convenient to introduce also the ro- gration and passing the transient proceds; 1, we get
tated operatorsrL=a=X"*. They are connected with the

operatord. =, L* as follows: A

S(AtD=27 2 Pnom 2 Ao
L¥=LX=3(X"=X"), LP=3(X"+X"). (11 N=m p.ar=0

+ _
The matrix elements of these new operators in the basis of XU pIL W N- 1) (N6l LW
the zeroth-order eigenvectoi®,p) have a very simple exr{it(w(’}—wg‘p)]

f : - - ,
orm 1A= o7+ (Aol

(16)

(N=1g/LX|N,p)=3(A—2p) 8y,
with A¢=v— w being the filter-field detuning. Note that the
(N—1,0|X7|N,p)=Vp(A—p+1)8gp_1, summation over the initial photon numberin Eq. (15) has
- - been transformed into a summation over the initial excitation
(N=10|X"IN,p)=V(p+1)(A—p)Sqp+1. (120  numberN=n+min Eq. (16). Forp#r we have oscillatory
- - terms that contain the product of two complex Lorentzians,
Therefore, the operatods™ shift up and down the eigenvec- peaked atoy, andwy,, so that the oscillation amplitudes are
tors of LX. Now, in order to calculate the matrix elements of small. They are of the order of @4, . Here we shall consider
any atomic operator, we may first express it in terms of theonly the time-independent part of the spectrum, which is

operatorsX*,L* by means of Eqg11) and then make use of given by the termsp=r. We have a real Lorentzian for
Egs.(12). Below we shall use the following matrix elements: every value ofp andq,

A 1 o) A , —
N—1g/L7|N,p)=|=—p| 8y o+ =V (p+1)(A—p)S L T e | Il K AN
(N 10U )= (5P| o T Pdss gy 55 S p L mdH0usdl Vg
N=0 q;p=0 Yo+ (At = wqp)
1 — (17)
_E p(A_p+1)5q,p—1- (13

This equation gives the stationary physical spectrum in terms
of the system eigenvalues and eigenvectors. To continue we
need to calculate them numerically or use some analytical
In this section we obtain an analytic expression for theapproximation. We choose to use the approximatiéGnhsnd
Dicke model RF spectrum in terms of Fock states of the field7) since they give us better insight into the physics of the
and use it to find the spectrum for thermal and coherenprocess(Computer simulations with exact eigenvalues and
fields. The standard definition of the physical spectf4] eigen)vectors show a full agreement with our analytical treat-
is ment
It is very instructive to start with the case of an initial

Ill. COLLECTIVE EMISSION SPECTRA

_ t t —(r-in(t-ty) Fock field statdthe term with a given value dil=n+m in
S(v,)=2y Odtl OdtZe the external sum of Ed17)]. The eigenvalue€s) determine
_ the positions of the spectral components. Denoting
xe  (rfmt-tIG(t, t,), (14  q=p-+k, we have
wherey andv are the filter bandwidth and peak transmission g2 4

) ) ) g
frequency, respectively, ar@(t,,t,) is the two-time collec- wN+k =2kQy+ 5= (A2—k—p)+ —={2(A—2p—2k)
. - ) L pk.p Qy 16Q
tive dipole correlation function: N

—Kk[10p(A— 10k(A—2p—k
G(ty,ty)=(L " (t)L (t)) [10p(A—p)+10k(A—2p—k)

—(A=1)(A=2)-5(A-2p)(A=-2p—K)]}, (18

=2 Por(nla(mlUT(t2) L U(t,) o
n wherek=0 labels the central banl=1 (—1) the first right

< UT LUt NYlm (left) sideband,_ and so on. Neig_hboring bands are separated
(t) (t)Immpa by 2Q . The first-order terms give the separation of peaks
* A . N inside a bandg?/Q . The second-order terms give the finest
= Eo Pn 2 . A L€ T “apt2 corrections to the peak positions. Théndex numerates the
n= p.a.r=

peaks inside a given band and goes a3 A for the cen-

Ci(ot oMt + tral band, Gsp<A—-1 for the first right sideband, and
xe e plL Wy -1) 1<p=<A for thg first left sideband. ngsksAthere are
X(UN—14lL 7P ). (15  2A+1 bands, and the number of peaks in #th band is

A+1—|k|. For evenA one peak disappears in the central

Here|m), is the initial state of the atomic systef, is the  band, the elastic peak, so that it consistf\qieaks for even
initial photon probability distribution, and)ngAg—Ag_l A and of A+ 1 peaks for odd\; see Eqs(20) below. Kien,

are the frequencies of the spectral components. To obtain tHghumovsky, and QuanidL6] predicted the eight peak total
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FIG. 1. Fine structure and relative intensities of the spectral bands vs filter detNfing— w in units of the coupling constar, for
a field in the number state=21 and(a) A=1 (Jaynes-Cummings model spectiyrtb) A=3, and(c) A=7. All the atoms are initially
excited,m=A. Filter bandwidthy=0.01g.

spectrum for the two-atom case. We conclude that the spec- A AA+1)
trum hascooperative fine structurié the field is in a number lotlcr— 70— (21)
state.

The coefficients ) ) )
a result obtained by Shumovsky and Quatd] in a semi-

lap= |- Zmpl AW n-1/L 7 [¥n o) P (190  classical treatment. They noticed the linear dependence on
) . - . _A of the central band in a cavity compared to #e result
determine the intensities of the SpeCtraI lines. For the SpeClqbr free space, in which case the Strong-ﬁe|d Spectra| line
case of having all the atoms initially in the saifggound or  shape approaches that for one afdr,18. We can see that

excited state,m=0A, the zeroth-order amplitudgsr, l.,=1, for A=3.
are proportional to the binomial coefficierjis follows from The extra sidebands are very small in the strong field
Eq. (9] Then, from Eq.(13) we obtain the distribution of region. Thekth band appears in thek{ 1)th order of the
peak intensities in every band of the basic triplet, perturbation theory and has the time-independent intensity
| proportional toQ;“(k_l). Hence the extra sidebands are
Al (p+1)(A—p) . I
lp+1p= — , smaller than the oscillatory contributions. For most of what
P (A=p)!p! 2 follows we restrict ourselves to a study of the steady triplet
) spectrum which appears naturally in the zeroth order of our
| = Al (A—2p) perturbation theory. Thus we neglect the time-dependent part
PP (A—p)lp!  2AF2 of the spectrum, additional sidebands, and the corrections to
the intensity of the triplet. The extra sidebands are also small
B Al p(A—p+1) in the weak-field region, when the number of atoms is larger
'pfl,p_(A_p)!p! 2ATZ (20 than the number of photons. They can become important

only if A~n. In the remainder of the paper we only consider
for the right, central, and left bands, respectivéfyg. 1).  the case of initially excited atomic system=A.
The most outstanding effect of cooperativity is in the size of The final height and shape of the spectral bands are
the sidebands compared to the central band. Performing thmarked by the initial photon statistics. The thermal and co-
sum of each of Eqs(20) over thep states, the central to herent fields are represented by the blackbody and Poisson
sideband integrated intensity ratio is distributions,
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th__ "N con_® 1" 1.50
e o ®@ ; (a)
1.25 |
whose dispersiondn are given byyn(n+1) andn, re- 2
spectively, wheren is the appropriate average photon num- S1oor
ber. The high coherent-field-induced “Poisson” spectrum C
and the broad asymmetric “thermal” sidebands are the most Q¢ 75 [
evident aspects when comparing spectra, as seen in Figs.©, C
2-4. As a result of Eq(21), for an increasing number of ~0.50 F
atoms the thermal sidebands become clearly defiRid 2), = Tr
while the Poisson sidebands soon grow higher than the cen- ¢ C
tral band(Fig. 3. 42 0.25
On the other hand, the absence of the elastic peak leads to— C
a doublet envelope of the central band, enhanced by large o0.00 35 e
cooperativity, given as the product of the parabolic factor Detuning (units of g)
(A—2p)? and the binomial coefficients ih, ,, for every
excitation numbeN. While increasing the field intensity is 3.0
of little effect on the shape of the Poissonian spectrum, the (b)
thermal sidebands become damped and brodeigr 4), re- >5[ M
flecting the large fluctuations of the blackbody radiation in .~ [
the cavity. We observe a competition between atomic coop- 2 C
erativity and field properties in the line shape, which we  $2°[
study numerically in the next section. . C
-g 1.5 F
IV. SPECTRAL LINE SHAPE ~ C
>10F
The mean position of a band is given bwy ‘0 -
={(wp+kp)pn. Where the double brackets denote averages § 05
over both thep andn state distributions, Eq$20) and(22). c C
The terms withn~n are closer to the resonan@®earn po- s A
sition. For the sidebands in the coherent case 0.5 =15 0 15 30
Detuning (units of g)
— —  Ag 6.0
(we))M=+20F———. (23 :
(A+1)Q - (c)
50 |
Here Q=g+n+A/2+1/2 is the mean Rabi frequency for 2
m=A; see Eq(8). However, the mean and peak positions of s40r
the thermal sidebands do not coincide with.{;)*°" being o
pulled to the center of the spectrum by the lowstates of Q35F
P". The large thermal fluctuations renormalize the Rabi fre- 2 |
quency but a large number of atoms reduce the resonance -, L
shift (Fig. 5), making the interaction more “coherent.” Simi- =
lar thermally induced shifts and asymmetries have been stud- & C
ied in micromaser line shap¢ss]. < 1or
The cooperative fine structure of the bands would be re- — |
vealed fory<g?/Q, which is the separation between two 0.0 55 e - A— Y- 30

neighboringp states, while the separation betweenthend
n—1 photon contributions to a sidebafwkntral bangifrom
a field with a givenP, is g?/Q (g*/4Q3). We can then

FIG. 2. Collective emission spectra for a thermal field with

Detuning (units of

15
g)

neglect the width of they state distribution of the sideband, n=21 and (8 A=1, (b) A=3, and (c) A=7, for m=A and
but not that for the central band. Both cooperative and phoy=0.257.

ton fine structures are lost if a semiclassical theory is fol-

lowed. The oscillations in the thermal sidebands in Figs. 2 The width of thekth band can be computed with the
and 4 (y=0.25) are due to the smalfi- photon contribu- standard formula
tions, having small Rabi frequency, which consequently have

large separation between two photon number peaks. The

large n and thep contributions mix up and erase the fine
structure for most of a sideband.

o= (wn—(wn,

for which we can obtain approximate expressions via

(24)
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FIG. 3. Same as Fig. 2 for initial coherent field.
o= w(N+An) = wy(n). (25  (g*40%<g?/Q), which explains its reduced sensitivity to

the initial P,,. The dip is filled slightly faster with increasing

For coherent field the approximations are very good, whilehermal field than with a coherent field due to the larger
for a thermal field the approximations are still good. For thewijdth of everyp peak of the former

sidebands we have
coh__ 94\/? th__ g

2
2 — gon=Z Vg Z (B, 27)
Ucf{‘*—gg cf&“ﬁﬂﬁ—l)%. (26) ° o403 0 @5([ : (

Note that the cooperative width of the central bdadde to
For largen every n thermal state contributes little to the the distribution ofp state$ is
spectrum, resulting in small and broad sidebands, that is, a
strong thermal field acts as damping. The closeness of the coop gZ\/K
central band adds a small amount of broadening to the ther- %0 zﬁ- (28)
mal sideband foA small. Figure 6 shows cooperative nar-

rowing of the sidebands when all atoms are initially excited,As mentioned above, this is larger than the spread due to

more for a thermal than for a coherent field. ‘photon statistics for both coherent and thermal fields.
The central band shows a dip due to the lack of an elastic

peak in the quantum field formulation; the dip becomes V. CONCLUSIONS

wider for increasing atomic cooperativity, Fig. 7. The band

envelope is given by, ,, Eqg. (20). In general, the central We have studied collective features of the emission spec-
band is less sensitive to the field statistics than the sidebandsum of many atoms in an ideal cavity. The quadratic growth
The whole band is not completely filled, at least for not veryof the sidebands with the number of atomgcompared to
strong fields, due to the much smaller separation of twdhe linear growth of the central bandnd their narrowing
neighboringn-photon contributions than that of theestates  when all the atoms are initially inverted, allow the formation
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£ r FIG. 6. Width of the sidebands for therm@lpper curvg and
0oL L coherent fieldlower curve with n=21.
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Detuning (units of (for photon numbers much larger than atomic numpdts

15
9)
seems realistic to observe these phenom@ma high side-
FIG. 4. Effect of damping of a thermal field of increasing inten- bands in comparison with the central band, and the coopera-
sity on spectra foA=7 and(i) n=14, (i) n=21, and(iii) n=28  tive doublet structure of the central barbth in optical and
(with higher central doublét microwave experimentésee, e.g.[10,38).

of well-defined sidebands even if a strong thermal field is
present in the cavity. Since the Rabi frequency is a sign of
coherence in the field-atom interaction, a large number of The authors thank Dr. Andrey Klimov, Dr. Maciej Ko-
initially excited atoms would reduce the thermal fluctuations.zierowski, Dr. Erwin MarttPanameo, and Dr. Hetor
This suggests that further studies on the competition betweeloya-Cessa for many interesting discussions, and Dr.
atomic coherence and field incoherence be made. Camilo Arancibia for help with the graphics. H.M.C.B. ac-
For a quantized cavity field tha+1 dressed levels ap- knowledges the support of a scholarship from Consejo Na-
pear, whose positions depend on the initial photon numbewional de Ciencia y Tecnology Mexico. S.Ch. is grateful for
This leads to spectral fine structure. The lack of an elastitiospitality to the Instituto Nacional de Astrsita, Optica y
peak in this case originates a dip in the central band, which i€lectrmica, Puebla, Mexico, where this work was per-
enhanced with an increasing number of atoms. However, thiformed.
dip is filled in the classical field limit. We have also shown
that the steady intensities of the extra sidebands are smaller
than the time-dependefscillatory) contributions. ) ] ) ] )
Finally, we may note that the vacuum Rabi splitting in the In this appenc_hx we briefly outline the perturbation theory
absorption spectra of the collective atomic system in a highf Ref. [19], which our RF theory rests on. Note that the
Q cavity has been observed in optical experimda;36. theory is expressed here in terms of the strong-field situation,

The emission spectra have richer structure, since transitiofd>A. We write the interaction Hamiltonian in the form
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between many dressed states are invol\8. Our results, A A
in fact, show that the quantum field features can be seen ing — g+ 4 5~ 7 =ga’> L7, 7"=gad L'
emission spectra of a collective atomic system in a good ’ = = '

cavity even for coherent and thermal fields of high intensity (A1)

25 .
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FIG. 5. Normalized mean position of the thermal sideband in FIG. 7. Distance of the maxima of the distributigp, (central
units of w, 7 (coherent fieldl Solid, long-dashed, and short-dashed double} from the center of the spectrum, in units of/Q as a
curves are fon=14, 21, and 28, respectively. function of the number of atoms.
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with nonvanishing matrix elements A : :
Vo= CpolN.@), Cpg=CRl+C+..., (A7
(N,m—1|7""IN,m)=gym(A—m+1)(N—m+1) ¥ip) qzo pal N Cpa=Cpa*Crq (A7
=(N,m7"*|N,m—1). (A2) wherecg‘?a:ép,q and )\éo)=A—2p. It is customary to ob-

o o 52 tain corrections up to second order for eigenvalues and to
Expanding in a power series in the parameterg“/Q)§ we  first order for eigenvectors. By standard perturbation meth-

have ods we have
A-m+1 E0
(N,m—1|7"|N,m)=g mA-m+1) Mo =(N.p|7|N,p),
€ A . 2
: [(N,q| 71IN, p)|
e/A+1 N =(NpI 72N+ > =5
5| -m a#pa=0 A —\g
(N,q|73IN.p)
(1) _\H NP
C(A+1 |2 Coa= o0 (A8)
gl m kY P

With the Hamiltonians”; and 7, and Eqs(11) and(12)
which requires not onlye to be small butA<N as well. we have
Actually, the perturbation theory works well evendfand
A are not very small. (N,g[71IN,p)=—3[(A=2p+1)Vp(A—p+1) 841
In this space oA+ 1 dimensions there acts the represen-

tation of the SW2) group, whose generators dré, L™, and +(A=2p=1)
L?, and the interaction Hamiltonian is expanded as X\(p+1)(A=p) 3y p+1l,

7/:2 6|71/27/'|, /”/N/i:gK|[L7(%_LZ)|+(%_LZ)IL+], <M|7/2|M>:—3A2{(A_2p)[A_l+ Zp(A_p)](qup
1=0

(Ad) +(A—2p+2)
(2|_3)|| X\/(p_l)P(A—p+1)(A—P+2)

— — —(_1\l+1 o
Ko=1, K;=1/2, K=(—-1) o I=2. (A5) X 8qp-2+ (A—2p—2)
In particular we see that’p=2gL*. X\(p+1)(p+2)(A-p—1)(A-p)

Now we can obtain perturbation expansions that lead to Y ! (A9)
Egs.(6) and(7): q.p+2J -

Then, substituting these results in Eq85) and (34) we
Ag:i[)\gour 6)\%14 ,52)\%2)4r . (A6)  obtain Egs(6) and (7). Note that the first-order approxima-
Je tion to the eigenvalues vanishes.
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