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Global-stability analysis of transverse modes in laser systems under inhomogeneous pumping
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The stability of a two-level laser system with flat end mirrors, operating in a single longitudinal mode, is
considered in the case of inhomogeneous pumping. The pumping is assumed to be of a Gaussian type of one
transverse variable and spatially slowly varying. This situation is commonly encountered, for instance, in
broad-area semiconductor lasers or slaly G@ers. We study the transverse structure formation induced by the
slow variation of the inhomogeneous pumping near the primary instability. In a linear instability analysis, we
show that the absolutely unstable state always sets in through a transversal perturbation near the onset of
lasing. The spatiotemporal stability analysis separates local and global instabilities since the latter may have a
drastic influence on the subsequent behavior. We determine the threshold and frequency for global transverse
unstable modes. These modes are nothing but Hermite modes, which appear as a consequence of the spatial
inhomogeneity. These predictions are consistent with the recent near-single-mode operations obtained for slab
CO, lasers. In the weakly nonlinear study, the amplitude equation is derived and appears as a modified
Ginzburg-Landau equation with spatially varying coefficients. Numerical investigations are reported to illus-
trate a possible sequence of convective and absolute instabilities together with global Hopf bifurcations of
transverse nonlinear modg&1050-294{06)03705-5

PACS numbgs): 42.55~f, 42.65~k, 42.50.Ne

[. INTRODUCTION the electromagnetic field with the active medium is described
by the reduction of the Schdinger equation to two energy
Lasers have recently appeared as physical systems whokavels connected by a laser transition. More refined models
modeling generates specific problems sharing commoare sometimes used to represent specific lasers such as the
grounds with very general open guestions such as those r&aman laser, but the two-level ScHioger equation appears
lated to the appearance of complexity in spatially extendecs the most commonly usddnd efficient model.
systemd 1]. Throughout the past 30 years, laser theory has Pumping and relaxation mechanisms, which are necessary
evolved, starting from simple models such as the rate equder laser action, are dissipative terms phenomenologically
tion model of the monomode laser, which involves a veryintroduced in the equations. The set of quantum plus pump-
limited set of ordinary differential equatiof®DE’s), to deal  ing and relaxation equations is the so-called Bloch model of
now with amplitude and phase equations aiming at the dethe two-level system. Together with the field evolution given
tailed description of the transverse structure of beams emiby Maxwell equations, they form the Maxwell-Bloch model
ted by lasers with large cross sections. The latter models us# the laser.
partial differential equation§PDE’s) such as the complex It is then classical to solve Maxwell equations with
Landau-Ginzburg or the Swift-Hohenberg equation, origi-boundary conditions given by the mirrors that limit the laser
nally introduced in completely different fields. Both families cavity. For an empty lossless cavity, Laguerre-Gauss or
of models are presently used to describe spatiotemporal dyHermite-Gauss modes are obtained for cylindrical or rectan-
namics of lasers, but their respective fields of application argular cavities, respectively. The electromagnetic field is then
still being discussed now. Let us set the limit cases in whictprojected onto the basis set provided by the eigenmodes of
each family of modelsi.e., ODE’s or PDE’$ applies. the empty cavity. Laser dynamics, i.e., the evolution of the
Most lasers have a cylindrical geometry with a length field and matter variables, is obtained by solving these
far exceeding the transverse dimensions of the cavity. Therdaxwell-Bloch equations. The complexity of this task is
fore the longitudinal coordinate is often eliminated. Such greatly reduced when the variables are projected on a suit-
an approximation is valid when the gdior los9 per pass in  able basis, which is here provided by the solutions of Max-
the active medium remains small, i.el. <1 (wherea de-  well equations (i.e., Hermite-Gauss or Laguerre-Gauss
notes the gain per unit lengthThe mean-field approxima- modes, depending on the symmetry of the laser cavity geom-
tion in laser theory assumes that the longitudinal variation®try). The problem is then reduced to a set of ODE’s whose
of the electromagnetic field are negligible. When this isdimension increases with the number of modes involved.
valid, laser dynamics is purely a transverse problem, leadin@his approach proves extremely efficient in understanding
to sets of partial differential equations involving the two the dynamics with a limited number of active modes, typi-
transverse coordinatesandy and timet. The interaction of  cally up to 3[2]. Moreover, D’Alessandro and Oppo showed
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that the Laguerre-Gauss set of modes still provides a sensibfance, to narrow-gap slab waveguide Q&sers[16] or in
basis when a large number of modégically up to § are  stripe geometry semiconductor las¢t§] for which a simi-
involved [3]. lar approximation is currently madés8]. We perform a lin-

In lasers the number of potentially active modes is ap£ar spatiotemporal stability analysis near threshold in the
proximately equal to the Fresnel numBée=a?/\L, an op-  SMPle case of a single longitudinal mode and flat end mir-
tical equivalent of the aspect ratio in Rayleighred ex- rors. As the pumping profile is slowly varying in an infinite

periments4], wherex denotes the optical wavelength aad region of space, it is convenient to examine the local and the

he radi f the | hi b | uati gﬂobal instabilities of the system. The term “local” refers to
the radius of the laser. This number relates an evaluation Qe stapility of the mean profile of the basic state along local

the relative influence of the diffraction losses\/a) to the  jndependent spots. This assumption leads one to consider the
angular aperturexa/L) of the cavity. amplitude of the instability as independent of the transverse
There has recently been an increased interest for laset®ordinatex and one may perform the linear stability analy-
and more generally optical systems with large cross sectionsis by considering local normal modes. The term “global”
and, accordingly, large Fresnel numbéxg up to 100 for refers to the stability of the basic state over the entire do-
which the mode expansion obviously fa{l§]. Studies of main. The following question may then be asked: What is the
transverse patterns of these systems from both experimentiglationship between local and global instability properties?
and numerical points of view revealed a great variety of Recent theoretical workgl9-23 concerning fluid dy-
structures including hexagonal patterns, rpfi§ spirals[7], ~ namical systems have performed a criterion based on local
crystal and quasicrystal structurgd), and vortex dynamics convective instability and absolute convective instability. We
[9]. The description of such transverse dynamics requires Ummarize here these ideas as follows. Suppose that an ini-
global approach similar to that used in hydrodynamics. tial disturbance |s_IocaI|zed in t_he medium. Then the re-
Laser action occurs as some threshold pump power is ex2Ponse of the medium appears like a wave packet propagat-
ceeded. The nonlasing state, which is stable below threshol g with the group v_elocny .Of the most unstable mode. If t_he
destabilizes above it. The transverse structures of laser emi i_st_urbance IS IOC?"Zed."’.‘t Its source ﬁmd grows_expor_lgntlglly
sion should first be determined in the near-threshold regio time, then the instability is called “absolute instability.

in which a perturbation expansion for the field-matter inter—I . however, th? d|sturpanqe IS copvected away from |ts:,
ource, the basic state is said to be “convectively unstable.

action may be used. When theoretical results about trang: ) i . ; .

; ; I~ ecently, this spatiotemporal analysis was applied to the fila-
verse patterns are compareql V\-"th expernme _ntal_ finding mentatit))/n of tvx?o coIIinepar wavesyin homogpepneous plasma
boundary choncfglcl))ns and sir)agal mhon;ogenemes in the p [24]. The authors studied the threshold of the transverse
rameters should be carefu iscussed. Lo . " . . . X

y glodulatlon of instability, which characterizes conical light

The mirrors already mentioned above introduce a phase . . X . ) I
shift depending on the distance to the cavity axis. Their in-Smisston observed in experiments on phase conjugation in

. . X . dium vapor.
fluence has been investigated in details by LEH3. Most sodiur .
lasers are axially pumped by either another laser beam or an Guided by the Ginzburg-Landau model, Chomaz, Huerre,

electric discharge. The transverse dependence of the contrd d Redekop;ﬁlg]_have _e_stabllshed_ a connectu_)n between
parameters may affect drastically the laser dynamics. Foy obal and local 'T‘Stab"'ty properties. In particular t_hey
instance, Lugiato and Milafil1] showed that all instabilities shpwgd that the emstencc_a_of afinite region of gbsolute |_n_sta—
of the laser Lorenz equations disappear when a field Gaus ility is a necessary Cor!d'“."” for the onset of t|m.e-arr_1pl|'f|ed
ian profile is assumed for the laser field. It appears then th tself-e_XCIted global oscillations. He_re we use this criterion
the influence upon the transverse variable dependence of t derive the globz_;\I mode describing laser |nstab|I|t_y. The
pump profile plays a crucial role in selecting the transverse 1aP€ of the pumping is assumed to be of the Gaussian type,

structure. From a theoretical point of view, the universal phe_re;]chmg 't‘;‘. maximum at thti ong}m. We recaIII bnsefly IIrI]I SF}'TC'
nomenon of transverse structure formation near threshoIH € equations governing th€ phenomenon. In Sec. 11, after
may be described by order parametric equatick®. The recalling some results from the homogeneoug pumping case,
latters depend on symmetry properties of the system, whic € use a t\(vo-scale meth_od to show that th|s_ |_nstab|_I|ty IS
result from the geometrical configuration of the lagggom- argely_ confined to the nelghborhood of the origin. A linear
etry of the cavity and pumping profile This situation is analysis then allows, for inhomogeneous pumping, one to

shared by both lasers and passive métigd. Unfortunately, derivg a discrete spectrum of critical pumping parameter and
when inhomogeneous pumpings are taken into account idp estimate the correspondent global frequencies. Because of
real laser beams, theoretical investigations and the analytic |e_nonllt;1(ear C?arathr of t?g )pk;ﬁnomelnct)_n appeail_ng |nf ex
form of the laser solution are usually untractable even for th herlmenl_t sge, fotrhms lar;)cel[ ](’j € ?r\]’o u 'g? %%‘La |o|r\1/)o
lowest order[14]. The influence of the transverse depen- € amplitude ot the global mode IS then obtal C.

dence of the pump parameter has been investigated in tl%y using a weakly noqlinear analysis. This qvolut_ion is gov-
low-Fresnel-number situation by Chet al. [15], who car- erned by a complex Ginzburg-Landau equation with spatially

ried out directly numerical simulations of the Maxwell-Bloch varying (_:oeffi_cients. Numerical solutions (.)f this equation are
equations of the laser summarized in Sec. V. The results confirm the asymptotic
In the present papér we study the dynamical evolution o stimation of the instability thresholds and the behavior of

a laser system under inhomogeneous pumping, which i e system just beyond the thresholds.
slowly varying in space. Contrary to previous works, we
have considered the case of pumping that is homogeneous in
one transverse directiory) and has a slow dependence on  We consider a unidirectional laser cavity with flat mirrors
the other direction X). This situation corresponds, for in- containing a two-level medium. The electric fidtgx,y,z,t)

Il. BASIC EQUATIONS



4410 M. N. OUARZAZI, P. A. BOIS, AND M. TAKI 53

and the polarizatiorPy(X,y,z,t) are assumed to be singly Because the criterion of absolute instability is the link be-

polarized in the same direction and to propagate inzhe tween local and global instabilities, we now recall this crite-

direction, namely, rion by following the development of Chomaz, Huerre, and
Redekopd 21].

E(x,y,z,t)=A(X,y,z,t)e eV,

et @) lll. MATHEMATICAL ANALYSIS

Po(X,y,z,t)=P(x,y,z,t)e' @@,
A. Homogeneous pumping

We denote byD the population difference between the en-
ergy levels 1 and 2 of the atomic system. The laser beam h mping. This case is generally considered in the literature
the widthd and we denote by the scale of the pumping Ejeepe.%..[ZS—za). Henge we agsume thagX) =cSte=r,.
profile. The basic equations governing the dynamical behav- Tr’1e spatiotemporal stability analysis of the nonlasing so-
ior of the laser, under the slowly varying envelope andIution A=P=n=0 considers normal modes éjx— »t)
paraxial approximations, are the Maxwell-Bloch equationswith complex wave numbek=k, +ik; and complex fré-
[25]. These equations may be written for scalar nondimen'quencyv= v +iv . Hence, from(r6), V\lle obtain the corre-
sional variables4] sponding dispersion equation. This equation depends,on

JA  IA and linksv andk:

—_ gt — = — + . . . .
oz T gt 18ALA= oAt P, (—ivt14i0)(—iv+iaki+ ) —are=0.  (8)

It is of interest to first examine the case of a homogeneous

JdP i If we are interested in temporal instability analysis, the local
E+(1+'Q)P:DA' 2 mode is unstable provided that>0 for any realk, the
“most unstable” wave numbék, being defined by the equa-
D 1 tion dv;/dk=0. The most unstable mode moves with the
- +b(D—r)= > (AP*+A*P), group velocity ¢v,/dk)x—_. Denoting byr the value ofr,
for which a laser solution appears with wave numkeand

where A, denotes the transverse Laplacian frequencyr;, we have
A, =&19x?+ 3*1ay?, r is the function describing the inho-

mogeneous pumping is the inverse Fresnel numbép, _1 kz—g —0 if 050
characterizes the decay rate of population inver&ornr is fe=d Ke=g V™ : '
the electric-field attenuation, ard is the detuning param- (9)
eter. We assume here thats a slowly varying function 02 o
re=1+ ———, k=0, v;=—r if Q<O0.

r=r(X), X=sx, s=d/L. 3) ¢ (1+0) ¢ ¢ l+o
Moreover, we assume tha{X) is an even function with Within the unstable domainy>r ., we shall distinguish
respect toX, which admits a local maximum a&=0 (see  between the convectively unstable region and the absolutely
laten) as it is usually the case in real laser systems. unstable one. The nature of the instability depends on the

The equilibrium of the system is characterized byresponse of the system to a localized excitation at, tsag,
D=r(X) andP=A=0. These values correspond to an ab-By evaluating the group velocitglv/dk of any unstable
sence of laser emission. In what follows we introduce themnode, we can thus describe the response of the system. The
variable growth ratev;(ky) corresponding to the zero group velocity

is the absolute growth rate. When(k,) is positive, some
n=r(X)—D. (4) unstable modes grow in place and the system is said to be
absolutely unstable. Alternatively, if;(koy) is negative, all

We assume that the laser system operates under condinstable modes propagate away from the location of the ex-
tions of a single-longitudinal mode and begin with a linearcitation and the system is said to be convectively unstable.

stability analysis, so that we set These ideas manifest themselves in our problem for de-
) , ) scribing the evolution of some unstable laser modes as fol-
A=uA’, P=uP’, n=pun’, (5  lows: For both signs of the detuning parameserand for

, _ 1o>1+0%(1+0)? the system is absolutely unstable for the
whereu denotes the order of magnitude of the perturbation,,qqe ko=0 and y,=cQ/(1+0). On the other hand, if we
We introduce the primed variables in EG8). After linear-  c,nsider oblique waves, the response to a modulated impulse
izing around the equilibrium stat@nd now suppressing the  they direction must be considered and the dependence of
primes, the perturbation equations read the disturbances ig modulated proportionally to exj{y).

The wave numbeK of the two-dimensional transverse struc-

Jd J . .
L (1+i0)|| S—iaA, +o|A-or(X)A=0, (6) tureis then defined bik?=k?+h?. _
at dat It appears that there exists an absolute growth rate defined
by dviok=0 that occurs in our problem fok=0, h=h,
JP . _ an _ =\Q/a, v.=Q, andr,=r.=1. This property is similar to
Tr TAFIQP=rCOA, - Zr+bn=0. (" the one considered in fluid mechanics problems by Monke-
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witz [23]. We conclude that the absolute growth rate of dis-assumed as small perturbations of the two preceding values

turbances in the direction is larger than that in thedirec-
tion.

r. and v, corresponding to the absolute unstable mode,
namely,

Finally, it results that, in the homogeneous case, the ab-

solute instability threshold is reachedrgt=r .= 1+ o, with
h=h., where

n2=2
a

C

if O>0,

a=0,
(10
h2=0 if Q<O0.

a=—",
1+o

We have introduced these values®@find h, to be able to
simultaneously study the two cas&s>0 and (2<0. Note,
moreover, that,, h;, andr satisfy the relation(8).

B. Inhomogeneous pumping

Now let us return to Eq(6). We make the following
assumptions concerningX):

r(X)=ro(1-469(X)), g9(0)=g’(0)=0, g"(0)>0;

11

g'(X)=0 for X>0, |g(+®)|<+oe.
Equation(6) is linear with slowly varying coefficients and
can be classically studied by a multiple-scale technigee,
e.g.,[29,30). Hence we introduce a fast variablgand a

slow variableX, related tox by the formulas

(%)

n P

X=¢eX, (12)

where ¢(X) is a phase variable, as yet undetermined but

satisfying the conditiorp(0)=0. With the variables; and X
being considered as independent variables, we loolAfor
the form

AZA_(X,n,e)efi”HihCy. (13

After some calculations, Ed6) reads

A

L(A_)=sia[—iv+l+iﬂ][2¢’(X) +¢"(X) %}

anaXx

+0(&?), (14)

wherelL is the linear operator

(92
—+iahZ+ o

L=[—iv+1+iQ] P

—iv—iag'?(X)

—or(X)X. (15
We now expand?(X, 7,€) with respect tce, in the form
A=Ag(X, 7)+eAg(X, 7)+e%Ag(X, 7) +0(52). (16)

We assume now that05<1, so that 6<r(X)=<r,. Con-

ro=(reterg+---), (17)

According to Sec. Ill A, we assume thlat=0. By intro-
ducing the expansionél6) and (17) in (14) and looking
for A; in the form

v=v.tevit--- .

A(X,7)=A;(X)e'”, (18)

we obtain at different orders in, by applying a multiple
scale technique, the following results.
1. Order O

Denoting byL . the operatoL restricted to the values,,
h., andr., we obtain the equation

Lo(Ag)=0, (19
which provides the dispersion equation
, (a+i)adg(X)

¢ *(X)= ——F. (20)

a

It results from(20) that the motion is always composed of a
fast oscillation combined with a fast damping: Hence this
motion is perceptible only near theaxis.

2. Order 1

By canceling secular terms mTl we obtain forAy(X) a
linear amplitude equation, which can be solved as

1—i(avy+ry)
2(1+ az)

1 v
Ag(X)= —_¢,(X) exp[ —

X
Xexr{ f G(Y)dY) ,
Xo

whereX, is an arbitrary constant and where we have set

¢(X)]

(21)

vli(l+ia)+o(i+a)]+rioc 1
2a(l+ia) d'(X)’

It results, from(21) and(22), that the slow variation oA,
contains, as its fast variation, an oscillation combined with a
damping. But the expression &{(X) shows that this ex-
pression becomes singular at the turning poiXts[i.e.,
whereg'(Y;)=0]. The pointY,=0, after(11) and(20), is the
only root. Because of the assumptiddd) aboutg(X), the
formula (21) shows also that, since the derivatigg0) van-
ishes, the integral G(Y)dY is divergent. Hence the expan-
sion is not uniformly valid and must be supplemented, at the
neighborhood of 0, by a local expansion. In order to over-
come this singularity, we now set {i6)

G(X)= (22

A=A(x,e)elheyint (23

sequently, the instability is first located in the neighborhoodand replace (X) by its expansion with respect tg by using

of X=0. In particular, the critical values af, and v are

(12). Hence(6) takes the form
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d? _ procedure is very classicédee[30]). In the present case, the
(—iv+1+iQ) —iv—ia W—hi +o|A matching is straightforward. Its role is to relate the value of
Xo (sayXpp) in (21) to the amplitudeD , in (30). In fact, the
Se2 _ main result of the matching is to show that, %, of order
—oTy 1—7 g"(0)x?|A=0. (24 1, the corresponding amBIitudBp of the solution in the

inner region is of ordee<. Since the first unstable state
Assuming the form of andr, given by (17), it results arises forp=0, the amplitude of the solution is of the same

from the balance between the dominant terms of diffractiorP"der Of magnitude in the two regions.
and inhomogeneity, that the right transverse scaling variable

is é&=&V%, in terms of which we obtain the inner equation
IV. WEAKLY NONLINEAR INSTABILITY ANALYSIS

l1-ia
Ul+ia

d?A io(1-ia)3g"(0) 2= -

X The most important practical result of the preceding
dé&? 2a a

LA analysis is the identification of the localized nature of the
transverse moddggormula (30)]. From the point of view of
+— rl'AJr O(s). fundamental laser physics, the inhomogeneity in the pump-
a(l+ia) ing is responsible for both localization of modes and fre-
(25 ~ duency selection. Thus the spatially inhomogeneous gain
_ causes the appearance of standing-w@W) (here through
ExpandingA as Hermite modek instead of traveling-wavéTW) patterns.
_ ~ ~ This kind of qualitative change of solutions may also be
A=ApteAp+--, (260 induced by inhomogeneous phase gain, as pointed out in a
. recent study by Staliunas and Weig32]. Those authors
after some calculations, we get, to the lowest-order the Wep e shown that curved mirrofse., inhomogeneous phase
ber equation, gain) can cause a transition from TW’s to SW(klermite
1 1 modes in the one-dimensional case.
= . ; : .
p+t-———2 )Ao(z)—O, (27) From an experimental point of view, the Hermite mode
2 4 behavior is consistent with recent results of experiments in
slab waveguide CO and GQasers[16,33. The localized
nature of the laser beam has also been observed both experi-
1/4 mentally and numerically in broad-area semiconductor lasers
) , (28 [34,35. In fact, homogeneous variations in laser parameters
may provide a useful technique to select and control spatially
) ) _ localized modes. Indeed, recently, &t al. [36] were not
_ 1 info-ie)t+1ltialtor, 29 only able to generate experimentally Hermite modes but they
27 (1+ia)\2acsg"(0)(i+a) were also able to control them by external light injection, in
electrically pumped vertical-cavity surface-emitting semi-
the = in (29) depending on the determination chosen of theconductor lasers.
square root defining? in (28). It is well known that saturation effects are widely present
The solutions 0f27) bounded at the origin are the Weber in most of these experiments. But so far, in our analytical
functionsW(z). The asymptotic expansions of these func-investigations, only a linear spatiotemporal analysis has been
tions for large|z| (see, e.g.[31]) are regulanfor large|z|)  performed and the dynamical behavior just beyond the pri-
only whenp is a positive integer. The Weber functions, in mary threshold of the lasing solution still remains to be in-
this case, are related to Hermite polynomibls(z). Since  vestigated. It is the aim of the present section to consider the
the matching of the inner expansion with the outer one ishonlinear behavior of a linearly unstable state.
possible only for boundedlV,(z), p must effectively be a
positive integer in29). Therefore the discrete real eigenval-

d?A,
P E Ak
dz

where we have set

2ic(1—ia)dég”(0)
B a

Z=\¢, )\:(

ues of the problem appear as two sequences, £;,). Fi- A. General analysis

nally, we have a family of eigensolutiors,, corresponding In the previous sections, the quantitiés P, andn were

to these eigenvalues {,,vy;), assumed to be small and of the same ord¢see formulas
~ 2 (5)]. We now assume that the nonlinear terms previously
Agp(§)=Dpe” M7 H (2), (300 neglected are no longer negligible in the equations. Let us

return to Eqs(2). Denoting byu, , up, andu,, the orders of
magnitude, it results from the first ¢2) that u,=up and
from the last of(2) that u,= uamp . Hence, denoting now by
the order of magnitudg.,, we haveup=pu and u,=u?.
hus we set instead @)

whereD,, is an arbitrary constant.

Since, from(29), r,, and,, are linear functions op + :
the smallest value af,, is alwaysr,,. Hence the value,
characterizes the alteration of the instability onset due to th#
inhomogeneity. In the following we denote by, this value
of ry. A=uA", P=uP", n=pu’n". (31

Once we have obtained the values of the constants of the
inner expansion, it is now necessary to relate this inner ex-
pansion to the outer one by an asymptotic matching. Th@he equations corresponding () and(7) now read
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(33
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dPq ) dng 1 . nx
W+(l+|Q)P0:rCAo, 7+bno:§(A0PO+AOP0),
where
L= J +(1+iQ ¢ i + X 39
= E ( iQ) ﬁ a WZ g or.X. ( )
Setting now
Ag=Ag(£,T)eN N, (40)

We consider a state of the system in the neighborhood ohe gperatot. vanishes fon=—i v, . The corresponding val-

the linear onset previously studied. Hence, taking into ac
count the assumptiond1) aboutr(X), we assume that

r(X)=(reter)[1-69(X)], (34)
with, since we consider the nonlinear stability>r .

By inserting(34) in (32) and(33), we see that the balance
of terms in(32) indicates thaiu?=¢. Considering now this
case,ec appears in32) and(33) only by integer powers, so
that we finally expand\”, P”, andn” in the form

A”:Ao"l‘SAl_""‘ y P"IP0+8P1+--~ y
(35
n"=ng+enyt---,
with Ay and P, in the form
AOZA_O(X,S,T)eihCy+M, PO:P_O(X,S,T)eihCerM,
T=et, (39

and we note the following points.

(i) At the order_0 with respect te, the linear equations
concerningA, and P, remain the same as in the linear sys-
tem: in particular . and v, are the eigenvalues of this equa-
tion and have always the values given (®). For the same

ues of Py andng read

|Al?
b

i ~ . .
P0:(1+;(ahg_Vc))Ao(f,T)e'h°y_'V°t, no=
(4)
At order 1, restricting our attention #, (32) becomes

( d

e

52
L(A)=—

d .
S (i) )AO

52
—ia (7—y2+0'

J
aT

+O'(r1_

The operatot. being singular, the operator of the right-hand
side must satisfy an orthogonality condition. This condition
takes the form

7

7t Ao

69"(0)
2

rcgz)Ao— onoAy. (42

1+o+ia(l Mo a1+ Ao
_[ otia( _U)]ﬁ_T ia( Ia)é’—gz—
89”(0 ~ O~ ~
+0'(r1— gz( )rcgz Ao 5 AdlAol*=0. (43

reasons as in the linear analysis, we consider, moreover, thye that, in this equation, contrary to the linear case, it is

casen=—iv;.

(i) At the order 1, there appears a singularity located a
x=0. As already seen in the linear study, the boundary lay
remains of thicknessXx=0(s"?). Hence the variable
&=& Y2X= ¢ remains the inner variable associated with

this singularity. In the following subsection, we concentrate

on the solution in the neighborhood of the origin. Specifi-
cally, we seek a solution dB82) and(33) in the form

A'=RAo(& T LY) +eA(ET, LY+,

P”:Po(g,T,t,y)'f‘8P1(§,T,t,y)+"' ’ (37)

n”:nO(ng!try)+8nl(§!T't’y)+ o

B. Inner expansion and amplitude equation
Rewriting (32) and (33) with the help of the variables
& T,t, we obtain the system

L(A0)=0, (39

not necessary to take into account a variaten: In effect
this variation is included in th& dependence oh,. More-

€bver, Eq.(43) is not valid if, simultaneouslyQ>0 andh=0.

In this case, the fourth-order diffusion term must be added to
prevent from the unphysical blowing up of the solut{&T].
Equation(43) is a modified Ginzburg-Landau equation with
complex coefficients. Fofl—» (i.e., a—), this equation
becomes a perturbed nonlinear Salinger equation.

C. Analysis of the amplitude equation
beyond the instability threshold

We are now interested in solutions @3) that go to zero
for large|g. The amplitude of these solutions is determined
by the values ofr; such thatr;>r,.. In particular, let us
obtain the modified eigenfunction of the linearized equation
associated with{43), by setting

Ao(£,T)=S[Ag(£,T) +SPAqy(£,T") +++-Je "1,
(44)

T'=8?T, ry=ry+s7r,
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wherew, is the first eigenvalue correspondingpe-0 [see
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modes, together with the nonlinear saturation effects giving

formulas(27)—(29)] ands is a small real parameter, not re- rise to Hopf global oscillations.
lated toe, which measures the order of magnitude of the

distance ofr; from criticality. T' is a slow time related ts,

A. Global instability threshold

which is introduced in order to avoid secular terms and to

obtain a solution 0f43) uniformly valid in time.

By introducing the perturbation expansi¢d4) in (43
and replacing the derivative/dT by d/dT+s?3/dT’', the
leading order of the expansion gives

Ao &,T")=D(T")Agg(£),

whereﬂoo(g) is the function defined b{B0) corresponding to
p=0. The equation foAy; is then

(49)

=~

0

1+o+ia(l MRoL a1 +i P Ao
[1+o+tia(l—0)] oT ia(l+ia) PP
597(0) _
to rlc_Trc§2 Ao
Py

=[1l+o+ia(l—0)] T

- g =~ ~
—oTAgt b AgolAgol®. (46)

In terms of the expressio45) and in order to obtain

bounded solutions, the compatibility condition leads to the

Landau equation satisfied iy(T’),
1 (1 a_ TD-—D|D]%. (4
[1+o+ia U)]W—Ur bﬁ | | . 4

The perturbation is consistent onlyrif-0. The inhomogene-

From Eq.(29) we first deduce the corresponding values
(r1p:v1p)- The corresponding global modes are given by
(30), wherez and ¢ are related by28). All modes are of
great interest for the nonlinear problem far from the thresh-
old of the primary bifurcation. However, the first unstable
mode is obtained fop=0 and in all numerical simulations
(the linear and nonlinear problejnae restrict our attention
to the fundamental modp=0. In this case the solution of
(29) reads

1 VJ2(a®’+1)acsg”(0)

VlO:iE o+1 Rd\/a—i),
(49
. o+l Im(Va—i) o—1
rlczrloz -+ V10| p Rq \/ﬁ) +a o y

while the corresponding eigensolution reads

Ao(§)=Dy

e © (aag"<0>)”2 £
AT T ) (e

” 1/2
p{i(ﬁg_«») ( mz_a)mgz}_

a
(50)

First of all, we emphasize that, for the inhomogeneous

ity originates, in the laser system, a change of the solutioPumping, the analytical calculations of the previous sections
from a spatially periodic and time periodic mode to a spaieed no restrictions on the magnitude ®and g”(0). The
tially localized and time periodic mode. The new frequencysmall parametee measures the ratio between the width of

is a slight correction of the main frequency.

V. NUMERICAL SIMULATIONS

We have numerically integrated E@3) by the split-step

the beam and the size of the pumping profile. Then it may be
of order one, which we left with a modified Ginzburg-
Landau equation with varying coefficients and not, necessar-
ily, a perturbed version of it. Thus we sé”"(0)=1.

For the other parameters, we have getl, a=0.26, and

method where the spatially varying coefficients were incorf=1. This choice of values for the parametersandb cor-
porated in the nonlinear term. To avoid eventual numericatesponds to the general cagdassC) of laser dynamics,

instabilities, we have replaced the varying coefficiéhby
the functionr1(§)=e‘§2— 1, which coincides with— £ for
small & We now denote by (¢ the corresponding varying
coefficient in(43),

69"(0
(o=ryr 20

ri(é). (48)

This function has no incidence on our analytical analysis

since the number of variables cannot be lowered. However,
the transient effects are more important for values déss
than one. The parameterdepends on the sign of the detun-
ing parametef): the two case$§)>0 and(2<0 correspond to
two qualitatively different behaviors, according to the differ-
ence in the pumping threshold. The control parameter
fixes the instability threshold and hence the spatial transverse
extent of the region of local absolute instability.

In order to clarify the notion of spatiotemporal instability,

since most important is the main part in the vicinity of the we have plotted in Fig. 1 the functian(¢) for Q=-1 and
origin. In addition, we have set systematically the length ofr;=0.5. The equilibrium of the systefmonlasing solutions
the transverse interval of integration wide enough with re-is stable at=*c and a single region of absolute instability,

spect to the finite width of the transverse global modes.
The results can then matched to the solutions of(Eq.
This equation is, in fact, a linearized version @f). The

bordered by symmetric regions of convective instability, de-
velops in the vicinity of the origin. The threshold value cor-
responding toQ)=—1, from (49), is r,=0.36. In order to

conclusions concern, first, the local and the global instabilitycheck this threshold we have integrated EB) up to 1500
and, second, the existence of stationary global transveragits in time and measured the (m at £&=0. We found
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0.25 T T T T T T T T
02 -
0.15 |- -
FIG. 1. Local instability char-
04 acteristicr(¢) in inhomogeneous
T 7 pumping forQ=-1 andr;=0.5.
2 The inner region corresponds to a
LS . e
0.05 - pocket of absolute instability bor-
’ dered by two convective instabil-
ity regions. In the outer part
0 [r1(§<0] the system is linearly
stable.
-0.05 - -
-0.1 1 ) 1 1 ) 1 1 1
25 2 -1.5 -1 05 0 05 1 1.5 2 25

Transverse variable &

numericallyr &2’~0.31, as shown in Fig. 2. The result is in observed the same behavior with several different initial con-
good agreement with the theoretical one. The relative accuditions, including localized, random-phase, and uniform ini-
racy is within 15% in the worst case, but we have observedial conditions.

numerically that the accuracy increases with decreaing Whenr ;<0 [hencer (§) <r for all & Fig. 3(@)], the non-
lasing solution is stable everywhere &and the envelope

function, after some transient evolution, is asymptotically
damped. When, increases up to 0[Fig. 3(b)], the medium

__ The spatiotemporal evolutions of the envelope functionis locally unstable in a finite range of values fTwo re-

|Aq are illustrated in Fig. 3 for different values of. The  gions must be distinguished. First, in the vicinity of the ori-
existence of a global mode at the threshold together with thgin, an absolute local instability exists already; this region is
linear attenuation and amplification around the threshold i®ordered by a region of convective local instability. In the
clear from this figure. Note that the spatiotemporal behaviosecond region, since the group velocity does not vanish, the
does not depend on the initial conditions: Indeed we haveraveling-wave packets are amplified and move towards

B. Nonlinear behavior of the amplitude

0.006 T T T T T
0.004 |- o A
©
<
©
0.002 |- R 4
<
©
0 -

o & . .
" . FIG. 2. Global instability
un -0.002 |- ‘ ° 7 thresholds measured by the growth
= o ° rate INA at &=0 for Q=-1.
1:,‘:’ -0.004 |- o . The numerical threshold is
=1 o © : r {"=0.3105 while the theoretical

-0.006 - o © J one [formula (49)] provides

° r,=0.36.
L4
©
-0.008 | ° .
<
L4
001§ °© .
_0'012 1 1 1 1 1
0.29 0.295 0.3 0.305 0.31 0.315 0.32

Control parameter r;



M. N. OUARZAZI, P. A. BOIS, AND M. TAKI

1 d_ .
S5, = S.nhnlay
_ —_—c =
SCET OV _® S 9Da=
nwarmmm:mlob
oL 2 c2cDO8
SLE99+ 3 )
CET S >gp Qo0 0L
WOd, S ..hltnla
SCS I Q> _w9a
Sig® -S8525%
8537 g= 9568572
I £ 8Sags
Gl G1,5S8=
ET £ 58E 2
; )8 ©
©2Le5TaEcES
=] () =
O58gsa2hLey
LS55 .9=<"=<7T
SEEEST 5T
SEa>2mhol0E
(o] o m

\
N\ /////////

<«
N\ \
N\ ///M//////%///////////////W///////

N
<
AN

DN

DA

.
N

W nh -

®

AR
f%% &%/ﬂ
\

o
T

Al

4416
1Agl
ir

beyond the thresholdlFig.

oped without giving rise to global oscillations, as may be3(c)], the spatiotemporal envelope function globally in-
seen from Fig. 4. In this figure, the envelope function is stillcreases with time: This means that the system is globally

attracted by the equilibrium state. Moreover, the existence ofinstable. In fact, at the threshold, in the vicinity of the origin,
0 and at the same time the group velocity vanishes,

sufficient for global oscillations, in agreement with the factgiving rise to amplifications in place. On the contrary, in the

When increasing further,
the power is carried away. The Hopf bifurcation is confirmed

+o, Note that the local instability is already very devel-

that the value of the control parameter is below the globatonvective instability, all unstable modes propagate so that

a pocket of local absolute instability around the origin is notim(v)

Hopf bifurcation.

3
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0.15 T T T T T

0.05

FIG. 4. Asymptotic state just

Nl

zg 005 L below the threshold of the global
5 ’ instability (Q=-1 and r;=0.3).
= Even though the local global insta-

0.1 bility is very developed, there are

no global oscillations.

-0.15 -

02

-0.25 [ 1 1 1 1

0.2 0.1 0 0,1 0.2 0.3 0.4 05

Re (;to)

in Fig. 5. Indeed the growth rate saturates, giving rise to a=ry[1—5g(eX)], & being the ratio of the beam width to
limit cycle that characterizes the Hopf bifurcation predictedthe scale of the variation of the pumping. Our choice of the
by the Landau equatioft7). Figure 6 displays the asymp- form of a slowly varying functiog(X), X=eX, ensures that
totic spatiotemporal nonlinear mode and global oscillationghe most unstable region is centered around the origin. The
of the imaginary part of the amplitude. influence of this inhomogeneity has been studied by using an
asymptotic expansion with respect #o(the “outer” solu-
tion). The solution breaks down in a region of magnitude
0O(£*? around the origin and an inner solution is obtained by
In this paper we have investigated the onset of lasing local study. The matching of the outer solution and the
solutions in the form of transverse structures when the pumpnner solution allows one to determine both the onset and
ing parameter takes the form of anGaussian distribution frequency of a global laser solution. They are constrained to

VI. CONCLUSION

0.15 T T T T
0.1 1

0.05 - 4

FIG. 5. Global Hopf bifurca-

o N |
K/ tion and attractive limit cycle just
. above the thresholdQ)=—-1 and

I’1=0.32).

Im(Ko)

-0.05 - -

_0.1 5 1 1 1 i )
-0.16 -0.1 -0.05 0 0.05 0.1 0.15
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1A,

0.1

0.05 -

1500
1400

Time ¢

Transverse variable & 10 1000

FIG. 6. Nonlinear global

modes for)=-—1 and r;=0.32:
(@ (a) asymptotic spatiotemporal evo-
lution of the modulus of the ampli-

tude and(b) global oscillations of
the imaginary part of the ampli-

Im(Ko) tude.

0.1

0.05

-0.05
-0.1

-0.15 1500

1400

Time ¢

Transverse variable & 10 1000

)

take one of a discrete set of values, in contrast with the cagearticular, the Hopf bifurcation has been qualitatively recog-
of homogeneous pumping where the threshold and frequenayized. Furthermore, we showed that the exponential growth
are restricted to a continuous spectrum of values. Such propf the unstable transverse modes saturates by the nonlinear
erties are similar to other results in fluid mechanics, concernterms, giving rise to localized nonlinear modes whose ampli-
ing the local and global instabilities of dissipative flojgge tude are governed by the spatially modified Ginzburg-
[22]). In particular, the regions of local absolute instability Landau equation.

must reach a critical order of magnitutte=0(s'?) to in- An extension of the present study with a view to experi-
duce a global instability. The local amplitude of a laser so-ment would include curved mirrors for the cavity and a two-
lution cannot, of course, be determined from a linear analydimensional Gaussian profil@vorks on this is in progress

Sis. Further, the main idea is that a spatiotemporal study is nec-

Considering nonlinear effects, we have shown that theessary for any analysis since the linear stability analysis is no
amplitude is described by a modified Ginzburg-Landau equalonger sufficient.
tion with a stabilizing cubic nonlinearity. A weakly nonlinear
analysis shows that,_beyond global onset, t_he system gnder- ACKNOWLEDGMENTS
goes a Hopf bifurcation to global self-sustained oscillations.
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