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The stability of a two-level laser system with flat end mirrors, operating in a single longitudinal mode, is
considered in the case of inhomogeneous pumping. The pumping is assumed to be of a Gaussian type of one
transverse variable and spatially slowly varying. This situation is commonly encountered, for instance, in
broad-area semiconductor lasers or slab CO2 lasers. We study the transverse structure formation induced by the
slow variation of the inhomogeneous pumping near the primary instability. In a linear instability analysis, we
show that the absolutely unstable state always sets in through a transversal perturbation near the onset of
lasing. The spatiotemporal stability analysis separates local and global instabilities since the latter may have a
drastic influence on the subsequent behavior. We determine the threshold and frequency for global transverse
unstable modes. These modes are nothing but Hermite modes, which appear as a consequence of the spatial
inhomogeneity. These predictions are consistent with the recent near-single-mode operations obtained for slab
CO2 lasers. In the weakly nonlinear study, the amplitude equation is derived and appears as a modified
Ginzburg-Landau equation with spatially varying coefficients. Numerical investigations are reported to illus-
trate a possible sequence of convective and absolute instabilities together with global Hopf bifurcations of
transverse nonlinear modes.@S1050-2947~96!03705-5#

PACS number~s!: 42.55.2f, 42.65.2k, 42.50.Ne

I. INTRODUCTION

Lasers have recently appeared as physical systems whose
modeling generates specific problems sharing common
grounds with very general open questions such as those re-
lated to the appearance of complexity in spatially extended
systems@1#. Throughout the past 30 years, laser theory has
evolved, starting from simple models such as the rate equa-
tion model of the monomode laser, which involves a very
limited set of ordinary differential equations~ODE’s!, to deal
now with amplitude and phase equations aiming at the de-
tailed description of the transverse structure of beams emit-
ted by lasers with large cross sections. The latter models use
partial differential equations~PDE’s! such as the complex
Landau-Ginzburg or the Swift-Hohenberg equation, origi-
nally introduced in completely different fields. Both families
of models are presently used to describe spatiotemporal dy-
namics of lasers, but their respective fields of application are
still being discussed now. Let us set the limit cases in which
each family of models~i.e., ODE’s or PDE’s! applies.

Most lasers have a cylindrical geometry with a lengthL
far exceeding the transverse dimensions of the cavity. There-
fore the longitudinal coordinatez is often eliminated. Such
an approximation is valid when the gain~or loss! per pass in
the active medium remains small, i.e.,aL!1 ~wherea de-
notes the gain per unit length!. The mean-field approxima-
tion in laser theory assumes that the longitudinal variations
of the electromagnetic field are negligible. When this is
valid, laser dynamics is purely a transverse problem, leading
to sets of partial differential equations involving the two
transverse coordinatesx andy and timet. The interaction of

the electromagnetic field with the active medium is described
by the reduction of the Schro¨dinger equation to two energy
levels connected by a laser transition. More refined models
are sometimes used to represent specific lasers such as the
Raman laser, but the two-level Schro¨dinger equation appears
as the most commonly used~and efficient! model.

Pumping and relaxation mechanisms, which are necessary
for laser action, are dissipative terms phenomenologically
introduced in the equations. The set of quantum plus pump-
ing and relaxation equations is the so-called Bloch model of
the two-level system. Together with the field evolution given
by Maxwell equations, they form the Maxwell-Bloch model
of the laser.

It is then classical to solve Maxwell equations with
boundary conditions given by the mirrors that limit the laser
cavity. For an empty lossless cavity, Laguerre-Gauss or
Hermite-Gauss modes are obtained for cylindrical or rectan-
gular cavities, respectively. The electromagnetic field is then
projected onto the basis set provided by the eigenmodes of
the empty cavity. Laser dynamics, i.e., the evolution of the
field and matter variables, is obtained by solving these
Maxwell-Bloch equations. The complexity of this task is
greatly reduced when the variables are projected on a suit-
able basis, which is here provided by the solutions of Max-
well equations ~i.e., Hermite-Gauss or Laguerre-Gauss
modes, depending on the symmetry of the laser cavity geom-
etry!. The problem is then reduced to a set of ODE’s whose
dimension increases with the number of modes involved.
This approach proves extremely efficient in understanding
the dynamics with a limited number of active modes, typi-
cally up to 3@2#. Moreover, D’Alessandro and Oppo showed
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that the Laguerre-Gauss set of modes still provides a sensible
basis when a large number of modes~typically up to 5! are
involved @3#.

In lasers the number of potentially active modes is ap-
proximately equal to the Fresnel numberNF5a2/lL, an op-
tical equivalent of the aspect ratio in Rayleigh-Be´nard ex-
periments@4#, wherel denotes the optical wavelength anda
the radius of the laser. This number relates an evaluation of
the relative influence of the diffraction losses~'l/a! to the
angular aperture ('a/L) of the cavity.

There has recently been an increased interest for lasers
and more generally optical systems with large cross sections
and, accordingly, large Fresnel numbers~NF up to 100! for
which the mode expansion obviously fails@5#. Studies of
transverse patterns of these systems from both experimental
and numerical points of view revealed a great variety of
structures including hexagonal patterns, rolls@6#, spirals@7#,
crystal and quasicrystal structures@8#, and vortex dynamics
@9#. The description of such transverse dynamics requires a
global approach similar to that used in hydrodynamics.

Laser action occurs as some threshold pump power is ex-
ceeded. The nonlasing state, which is stable below threshold,
destabilizes above it. The transverse structures of laser emis-
sion should first be determined in the near-threshold region
in which a perturbation expansion for the field-matter inter-
action may be used. When theoretical results about trans-
verse patterns are compared with experimental findings,
boundary conditions and spatial inhomogeneities in the pa-
rameters should be carefully discussed.

The mirrors already mentioned above introduce a phase
shift depending on the distance to the cavity axis. Their in-
fluence has been investigated in details by Lega@10#. Most
lasers are axially pumped by either another laser beam or an
electric discharge. The transverse dependence of the control
parameters may affect drastically the laser dynamics. For
instance, Lugiato and Milani@11# showed that all instabilities
of the laser Lorenz equations disappear when a field Gauss-
ian profile is assumed for the laser field. It appears then that
the influence upon the transverse variable dependence of the
pump profile plays a crucial role in selecting the transverse
structure. From a theoretical point of view, the universal phe-
nomenon of transverse structure formation near threshold
may be described by order parametric equations@12#. The
latters depend on symmetry properties of the system, which
result from the geometrical configuration of the laser~geom-
etry of the cavity and pumping profile!. This situation is
shared by both lasers and passive media@13#. Unfortunately,
when inhomogeneous pumpings are taken into account for
real laser beams, theoretical investigations and the analytical
form of the laser solution are usually untractable even for the
lowest order@14#. The influence of the transverse depen-
dence of the pump parameter has been investigated in the
low-Fresnel-number situation by Chenet al. @15#, who car-
ried out directly numerical simulations of the Maxwell-Bloch
equations of the laser.

In the present paper we study the dynamical evolution of
a laser system under inhomogeneous pumping, which is
slowly varying in space. Contrary to previous works, we
have considered the case of pumping that is homogeneous in
one transverse direction (y) and has a slow dependence on
the other direction (x). This situation corresponds, for in-

stance, to narrow-gap slab waveguide CO2 lasers@16# or in
stripe geometry semiconductor lasers@17# for which a simi-
lar approximation is currently made@18#. We perform a lin-
ear spatiotemporal stability analysis near threshold in the
simple case of a single longitudinal mode and flat end mir-
rors. As the pumping profile is slowly varying in an infinite
region of space, it is convenient to examine the local and the
global instabilities of the system. The term ‘‘local’’ refers to
the stability of the mean profile of the basic state along local
independent spots. This assumption leads one to consider the
amplitude of the instability as independent of the transverse
coordinatex and one may perform the linear stability analy-
sis by considering local normal modes. The term ‘‘global’’
refers to the stability of the basic state over the entire do-
main. The following question may then be asked: What is the
relationship between local and global instability properties?

Recent theoretical works@19–23# concerning fluid dy-
namical systems have performed a criterion based on local
convective instability and absolute convective instability. We
summarize here these ideas as follows. Suppose that an ini-
tial disturbance is localized in the medium. Then the re-
sponse of the medium appears like a wave packet propagat-
ing with the group velocity of the most unstable mode. If the
disturbance is localized at its source and grows exponentially
in time, then the instability is called ‘‘absolute instability.’’
If, however, the disturbance is convected away from its
source, the basic state is said to be ‘‘convectively unstable.’’
Recently, this spatiotemporal analysis was applied to the fila-
mentation of two collinear waves in homogeneous plasma
@24#. The authors studied the threshold of the transverse
modulation of instability, which characterizes conical light
emission observed in experiments on phase conjugation in
sodium vapor.

Guided by the Ginzburg-Landau model, Chomaz, Huerre,
and Redekopp@19# have established a connection between
global and local instability properties. In particular they
showed that the existence of a finite region of absolute insta-
bility is a necessary condition for the onset of time-amplified
~self-excited! global oscillations. Here we use this criterion
to derive the global mode describing laser instability. The
shape of the pumping is assumed to be of the Gaussian type,
reaching its maximum at the origin. We recall briefly in Sec.
II the equations governing the phenomenon. In Sec. III, after
recalling some results from the homogeneous pumping case,
we use a two-scale method to show that this instability is
largely confined to the neighborhood of the origin. A linear
analysis then allows, for inhomogeneous pumping, one to
derive a discrete spectrum of critical pumping parameter and
to estimate the correspondent global frequencies. Because of
the nonlinear character of the phenomenon appearing in ex-
periments~see, for instance,@16#!, the evolution equation of
the amplitude of the global mode is then obtained~Sec. IV!
by using a weakly nonlinear analysis. This evolution is gov-
erned by a complex Ginzburg-Landau equation with spatially
varying coefficients. Numerical solutions of this equation are
summarized in Sec. V. The results confirm the asymptotic
estimation of the instability thresholds and the behavior of
the system just beyond the thresholds.

II. BASIC EQUATIONS

We consider a unidirectional laser cavity with flat mirrors
containing a two-level medium. The electric fieldE(x,y,z,t)
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and the polarizationP0(x,y,z,t) are assumed to be singly
polarized in the same direction and to propagate in thez
direction, namely,

E~x,y,z,t !5A~x,y,z,t !eiv~z/c2t !,
~1!

P0~x,y,z,t !5P~x,y,z,t !eiv~z/c2t !.

We denote byD the population difference between the en-
ergy levels 1 and 2 of the atomic system. The laser beam has
the width d and we denote byL the scale of the pumping
profile. The basic equations governing the dynamical behav-
ior of the laser, under the slowly varying envelope and
paraxial approximations, are the Maxwell-Bloch equations
@25#. These equations may be written for scalar nondimen-
sional variables@4#

]A

]z
1

]A

]t
2 iaD'A52sA1sP,

]P

]t
1~11 iV!P5DA, ~2!

]D

]t
1b~D2r !5

1

2
~AP*1A*P!,

where D' denotes the transverse Laplacian
D'5]2/]x21]2/]y2, r is the function describing the inho-
mogeneous pumping,a is the inverse Fresnel number,b
characterizes the decay rate of population inversionD, s is
the electric-field attenuation, andV is the detuning param-
eter. We assume here thatr is a slowly varying function

r5r ~X!, X5«x, «5d/L. ~3!

Moreover, we assume thatr (X) is an even function with
respect toX, which admits a local maximum atX50 ~see
later! as it is usually the case in real laser systems.

The equilibrium of the system is characterized by
D5r (X) andP5A50. These values correspond to an ab-
sence of laser emission. In what follows we introduce the
variable

n5r ~X!2D. ~4!

We assume that the laser system operates under condi-
tions of a single-longitudinal mode and begin with a linear
stability analysis, so that we set

A5mA8, P5mP8, n5mn8, ~5!

wherem denotes the order of magnitude of the perturbation.
We introduce the primed variables in Eqs.~2!. After linear-
izing around the equilibrium state~and now suppressing the
primes!, the perturbation equations read

F ]

]t
1~11 iV!GF ]

]t
2 iaD'1s GA2sr ~X!A50, ~6!

]P

]t
1~11 iV!P5r ~X!A,

]n

]t
1bn50. ~7!

Because the criterion of absolute instability is the link be-
tween local and global instabilities, we now recall this crite-
rion by following the development of Chomaz, Huerre, and
Redekopp@21#.

III. MATHEMATICAL ANALYSIS

A. Homogeneous pumping

It is of interest to first examine the case of a homogeneous
pumping. This case is generally considered in the literature
~see, e.g.,@25–28#!. Hence we assume thatr (X)5cste5r 0 .

The spatiotemporal stability analysis of the nonlasing so-
lution A5P5n50 considers normal modes expi (kx2nt),
with complex wave numberk5kr1 ik i and complex fre-
quencyn5n r1 in i . Hence, from~6!, we obtain the corre-
sponding dispersion equation. This equation depends onr 0
and linksn andk:

~2 in111 iV!~2 in1 iak21s!2sr 050. ~8!

If we are interested in temporal instability analysis, the local
mode is unstable provided thatni.0 for any realk, the
‘‘most unstable’’ wave numberkc being defined by the equa-
tion ]n i /]k50. The most unstable mode moves with the
group velocity (]n r /]k)k5kc

. Denoting byr c the value ofr 0
for which a laser solution appears with wave numberkc and
frequencync , we have

r c51, kc
25

V

a
, nc5V if V.0,

~9!

r c511
V2

~11s!2
, kc

250, nc5
sV

11s
if V,0.

Within the unstable domainr 0.r c , we shall distinguish
between the convectively unstable region and the absolutely
unstable one. The nature of the instability depends on the
response of the system to a localized excitation at, say,t50.
By evaluating the group velocitydn/dk of any unstable
mode, we can thus describe the response of the system. The
growth raten i(k0) corresponding to the zero group velocity
is the absolute growth rate. Whenn i(k0) is positive, some
unstable modes grow in place and the system is said to be
absolutely unstable. Alternatively, ifn i(k0) is negative, all
unstable modes propagate away from the location of the ex-
citation and the system is said to be convectively unstable.

These ideas manifest themselves in our problem for de-
scribing the evolution of some unstable laser modes as fol-
lows: For both signs of the detuning parameterV and for
r 0.11V2/~11s!2, the system is absolutely unstable for the
mode k050 and n05sV/~11s!. On the other hand, if we
consider oblique waves, the response to a modulated impulse
in they direction must be considered and the dependence of
the disturbances isy modulated proportionally to exp(ihy).
The wave numberK of the two-dimensional transverse struc-
ture is then defined byK25k21h2.

It appears that there exists an absolute growth rate defined
by ]n/]k50 that occurs in our problem fork50, h5hc
5AV/a, nc5V, and r 05r c51. This property is similar to
the one considered in fluid mechanics problems by Monke-
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witz @23#. We conclude that the absolute growth rate of dis-
turbances in they direction is larger than that in thex direc-
tion.

Finally, it results that, in the homogeneous case, the ab-
solute instability threshold is reached atr 05r c511a2, with
h5hc , where

a50, hc
25

V

a
if V.0,

~10!

a5
V

11s
, hc

250 if V,0.

We have introduced these values ofa andhc to be able to
simultaneously study the two casesV.0 andV,0. Note,
moreover, thatnc , hc , andr c satisfy the relation~8!.

B. Inhomogeneous pumping

Now let us return to Eq.~6!. We make the following
assumptions concerningr (X):

r ~X!5r 0„12dg~X!…, g~0!5g8~0!50, g9~0!.0;
~11!

g8~X!>0 for X.0, ug~1`!u,1`.

Equation~6! is linear with slowly varying coefficients and
can be classically studied by a multiple-scale technique@see,
e.g., @29,30#!. Hence we introduce a fast variableh and a
slow variableX, related tox by the formulas

h5
f~X!

«
, X5«x, ~12!

wheref(X) is a phase variable, as yet undetermined but
satisfying the conditionf~0!50. With the variablesh andX
being considered as independent variables, we look forA in
the form

A5Ā~X,h,«!e2 int1 ihcy. ~13!

After some calculations, Eq.~6! reads

L~Ā!5« ia@2 in111 iV#F2f8~X!
]2Ā

]h]X
1f9~X!

]Ā

]hG
1O~«2!, ~14!

whereL is the linear operator

L5@2 in111 iV#F2 in2 iaf82~X!
]2

]h2 1 iahc
21sG

2sr ~X!3. ~15!

We now expandĀ(X,h,«) with respect to«, in the form

Ā5Ā0~X,h!1«Ā1~X,h!1«2Ā2~X,h!1o~«2!. ~16!

We assume now that 0<d,1, so that 0,r (X)<r 0 . Con-
sequently, the instability is first located in the neighborhood
of X50. In particular, the critical values ofr 0 and n are

assumed as small perturbations of the two preceding values
r c and nc corresponding to the absolute unstable mode,
namely,

r 05~r c1«r 11••• !, n5nc1«n11••• . ~17!

According to Sec. III A, we assume thatkc50. By intro-
ducing the expansions~16! and ~17! in ~14! and looking
for Āj in the form

Āj~X,h!5Aj~X!eih, ~18!

we obtain at different orders in«, by applying a multiple
scale technique, the following results.

1. Order 0

Denoting byLc the operatorL restricted to the valuesnc ,
hc , andr c , we obtain the equation

Lc~Ā0!50, ~19!

which provides the dispersion equation

f82~X!5
~a1 i !sdg~X!

a
. ~20!

It results from~20! that the motion is always composed of a
fast oscillation combined with a fast damping: Hence this
motion is perceptible only near they axis.

2. Order 1

By canceling secular terms inĀ1, we obtain forA0(X) a
linear amplitude equation, which can be solved as

A0~X!5
1

Af8~X!
expH 2

n12 i ~an11r 1!

2~11a2!
f~X!J

3expS E
X0

X

G~Y!dYD , ~21!

whereX0 is an arbitrary constant and where we have set

G~X!5
n1@ i ~11 ia!1s~ i1a!#1r 1s

2a~11 ia!

1

f8~X!
. ~22!

It results, from~21! and ~22!, that the slow variation ofĀ0
contains, as its fast variation, an oscillation combined with a
damping. But the expression ofA0(X) shows that this ex-
pression becomes singular at the turning pointsY0 @i.e.,
wheref8~Y0!50#. The pointY050, after~11! and~20!, is the
only root. Because of the assumptions~11! aboutg(X), the
formula ~21! shows also that, since the derivativeg8~0! van-
ishes, the integral*G(Y)dY is divergent. Hence the expan-
sion is not uniformly valid and must be supplemented, at the
neighborhood of 0, by a local expansion. In order to over-
come this singularity, we now set in~6!

A5Ã~x,«!eihcy2 int ~23!

and replacer (X) by its expansion with respect to«, by using
~12!. Hence~6! takes the form
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~2 in111 iV!F2 in2 iaS d2dx2
2hc

2D1s G Ã
2sr 0F12

d«2

2
g9~0!x2G Ã50. ~24!

Assuming the form ofn and r 0 given by ~17!, it results,
from the balance between the dominant terms of diffraction
and inhomogeneity, that the right transverse scaling variable
is j5«1/2x, in terms of which we obtain the inner equation

d2Ã

dj2
1
is~12 ia!dg9~0!

2a
j2Ã52

n1
a Fs 12 ia

11 ia
11G Ã

1
is

a~11 ia!
r 1Ã1O~«!.

~25!

ExpandingÃ as

Ã5Ã01«Ã11••• , ~26!

after some calculations, we get, to the lowest-order the We-
ber equation,

d2Ã0

dz2
1S p1

1

2
2
1

4
z2D Ã0~z!50, ~27!

where we have set

z5lj, l5S 2
2is~12 ia!dg9~0!

a D 1/4, ~28!

p52
1

2
6
in1@s~12 ia!111 ia#1sr 1

~11 ia!A2asdg9~0!~ i1a!
, ~29!

the6 in ~29! depending on the determination chosen of the
square root definingl2 in ~28!.

The solutions of~27! bounded at the origin are the Weber
functionsWp(z). The asymptotic expansions of these func-
tions for largeuzu ~see, e.g.,@31#! are regular~for large uzu!
only whenp is a positive integer. The Weber functions, in
this case, are related to Hermite polynomialsHp(z). Since
the matching of the inner expansion with the outer one is
possible only for boundedWp(z), p must effectively be a
positive integer in~29!. Therefore the discrete real eigenval-
ues of the problem appear as two sequences (r 1p,n1p). Fi-
nally, we have a family of eigensolutionsÃ0p corresponding
to these eigenvalues (r 1p,n1p),

Ã0p~j!5Dpe
2~1/4!z2Hp~z!, ~30!

whereDp is an arbitrary constant.
Since, from~29!, r 1p andn1p are linear functions ofp1 1

2,
the smallest value ofr 1p is alwaysr 10. Hence the valuer 10
characterizes the alteration of the instability onset due to the
inhomogeneity. In the following we denote byr 1c this value
of r 1.

Once we have obtained the values of the constants of the
inner expansion, it is now necessary to relate this inner ex-
pansion to the outer one by an asymptotic matching. The

procedure is very classical~see@30#!. In the present case, the
matching is straightforward. Its role is to relate the value of
X0 ~sayX0p! in ~21! to the amplitudeDp in ~30!. In fact, the
main result of the matching is to show that, forX0p of order
1, the corresponding amplitudeDp of the solution in the
inner region is of order«p/2. Since the first unstable state
arises forp50, the amplitude of the solution is of the same
order of magnitude in the two regions.

IV. WEAKLY NONLINEAR INSTABILITY ANALYSIS

The most important practical result of the preceding
analysis is the identification of the localized nature of the
transverse modes@formula ~30!#. From the point of view of
fundamental laser physics, the inhomogeneity in the pump-
ing is responsible for both localization of modes and fre-
quency selection. Thus the spatially inhomogeneous gain
causes the appearance of standing-wave~SW! ~here through
Hermite modes! instead of traveling-wave~TW! patterns.
This kind of qualitative change of solutions may also be
induced by inhomogeneous phase gain, as pointed out in a
recent study by Staliunas and Weiss@32#. Those authors
have shown that curved mirrors~i.e., inhomogeneous phase
gain! can cause a transition from TW’s to SW’s~Hermite
modes! in the one-dimensional case.

From an experimental point of view, the Hermite mode
behavior is consistent with recent results of experiments in
slab waveguide CO and CO2 lasers@16,33#. The localized
nature of the laser beam has also been observed both experi-
mentally and numerically in broad-area semiconductor lasers
@34,35#. In fact, homogeneous variations in laser parameters
may provide a useful technique to select and control spatially
localized modes. Indeed, recently, Liet al. @36# were not
only able to generate experimentally Hermite modes but they
were also able to control them by external light injection, in
electrically pumped vertical-cavity surface-emitting semi-
conductor lasers.

It is well known that saturation effects are widely present
in most of these experiments. But so far, in our analytical
investigations, only a linear spatiotemporal analysis has been
performed and the dynamical behavior just beyond the pri-
mary threshold of the lasing solution still remains to be in-
vestigated. It is the aim of the present section to consider the
nonlinear behavior of a linearly unstable state.

A. General analysis

In the previous sections, the quantitiesA, P, andn were
assumed to be small and of the same orderm @see formulas
~5!#. We now assume that the nonlinear terms previously
neglected are no longer negligible in the equations. Let us
return to Eqs.~2!. Denoting bymA , mP , andmn the orders of
magnitude, it results from the first of~2! that mA5mP and
from the last of~2! thatmn5mAmP . Hence, denoting now by
m the order of magnitudemA , we havemP5m andmn5m2.
Thus we set instead of~5!

A5mA9, P5mP9, n5m2n9. ~31!

The equations corresponding to~6! and ~7! now read
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F ]

]t
1~11 iV!GF ]

]t
2 iaD'1sGA92sr ~X!A9

52sm2n9A9, ~32!

]P9

]t
1~11 iV!P95r ~X!A92m2n9A9,

~33!
]n9

]t
1bn95 1

2 ~A9P9*1A9*P9!.

We consider a state of the system in the neighborhood of
the linear onset previously studied. Hence, taking into ac-
count the assumptions~11! aboutr (X), we assume that

r ~X!5~r c1«r 1!@12dg~X!#, ~34!

with, since we consider the nonlinear stability,r 1.r 1c.
By inserting~34! in ~32! and~33!, we see that the balance

of terms in~32! indicates thatm25«. Considering now this
case,« appears in~32! and ~33! only by integer powers, so
that we finally expandA9, P9, andn9 in the form

A95A01«A11••• , P95P01«P11••• ,
~35!

n95n01«n11••• ,

with A0 andP0 in the form

A05Ā0~x,«,T!eihcy1lt, P05 P̄0~x,«,T!eihcy1lt,

T5«t, ~36!

and we note the following points.

~i! At the order 0 with respect to«, the linear equations
concerningĀ0 and P̄0 remain the same as in the linear sys-
tem: in particularr c andnc are the eigenvalues of this equa-
tion and have always the values given by~9!. For the same
reasons as in the linear analysis, we consider, moreover, the
casel52inc .

~ii ! At the order 1, there appears a singularity located at
x50. As already seen in the linear study, the boundary layer
remains of thicknessX5O~«1/2!. Hence the variable
j5«21/2X5«1/2x remains the inner variable associated with
this singularity. In the following subsection, we concentrate
on the solution in the neighborhood of the origin. Specifi-
cally, we seek a solution of~32! and ~33! in the form

A95A0~j,T,t,y!1«A1~j,T,t,y!1••• ,

P95P0~j,T,t,y!1«P1~j,T,t,y!1••• , ~37!

n95n0~j,T,t,y!1«n1~j,T,t,y!1••• .

B. Inner expansion and amplitude equation

Rewriting ~32! and ~33! with the help of the variables
j,T,t, we obtain the system

L~A0!50, ~38!

]P0

]t
1~11 iV!P05r cA0 ,

]n0
]t

1bn05
1

2
~A0P0*1A0*P0!,

where

L5S ]

]t
1~11 iV! D S ]

]t
2 ia

]2

]y2
1s D2sr c3. ~39!

Setting now

A05Ã0~j,T!eihcy1lt, ~40!

the operatorL vanishes forl52inc . The corresponding val-
ues ofP0 andn0 read

P05S 11
i

s
~ahc

22nc! D Ã0~j,T!eihcy2 inct, n05
uÃ0u2

b
.

~41!

At order 1, restricting our attention toA1, ~32! becomes

L~A1!52S ]

]t
1~11 iV! D S ]

]T
2 ia

]2

]j2DA0

2
]

]T S ]

]t
2 ia

]2

]y2
1s DA0

1sS r 12 dg9~0!

2
r cj

2DA02sn0A0 . ~42!

The operatorL being singular, the operator of the right-hand
side must satisfy an orthogonality condition. This condition
takes the form

2@11s1 ia~12s!#
]Ã0

]T
1 ia~11 ia!

]2Ã0

]j2

1sS r 12 dg9~0!

2
r cj

2D Ã02
s

b
Ã0uÃ0u250. ~43!

Note that, in this equation, contrary to the linear case, it is
not necessary to take into account a variation«n1: In effect
this variation is included in theT dependence ofÃ0. More-
over, Eq.~43! is not valid if, simultaneously,V.0 andh50.
In this case, the fourth-order diffusion term must be added to
prevent from the unphysical blowing up of the solution@37#.
Equation~43! is a modified Ginzburg-Landau equation with
complex coefficients. ForV→` ~i.e., a→`!, this equation
becomes a perturbed nonlinear Schro¨dinger equation.

C. Analysis of the amplitude equation
beyond the instability threshold

We are now interested in solutions of~43! that go to zero
for large uju. The amplitude of these solutions is determined
by the values ofr 1 such thatr 1.r 1c. In particular, let us
obtain the modified eigenfunction of the linearized equation
associated with~43!, by setting

Ã0~j,T!5s@A5 00~j,T8!1s2A5 01~j,T8!1•••#e2 in10T,
~44!

T85s2T, r 15r 1c1s2r̄ ,
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wheren10 is the first eigenvalue corresponding top50 @see
formulas~27!–~29!# ands is a small real parameter, not re-
lated to «, which measures the order of magnitude of the
distance ofr 1 from criticality. T8 is a slow time related tos,
which is introduced in order to avoid secular terms and to
obtain a solution of~43! uniformly valid in time.

By introducing the perturbation expansion~44! in ~43!
and replacing the derivative]/]T by ]/]T1s2]/]T8, the
leading order of the expansion gives

A5 00~j,T8!5D~T8!Ã00~j!, ~45!

whereÃ00~j! is the function defined by~30! corresponding to
p50. The equation forA5 01 is then

2@11s1 ia~12s!#
]A5 01
]T

1 ia~11 ia!
]2A5 01
]j2

1sS r 1c2 dg9~0!

2
r cj

2DA5 01
5@11s1 ia~12s!#

]A5 00
]T8

2s r̄ A5 001
s

b
A5 00uA5 00u2. ~46!

In terms of the expression~45! and in order to obtain
bounded solutions, the compatibility condition leads to the
Landau equation satisfied byD(T8),

@11s1 ia~12s!#
dD

dT8
5s r̄ D2

s

b&
DuDu2. ~47!

The perturbation is consistent only ifr̄.0. The inhomogene-
ity originates, in the laser system, a change of the solution
from a spatially periodic and time periodic mode to a spa-
tially localized and time periodic mode. The new frequency
is a slight correction of the main frequency.

V. NUMERICAL SIMULATIONS

We have numerically integrated Eq.~43! by the split-step
method where the spatially varying coefficients were incor-
porated in the nonlinear term. To avoid eventual numerical
instabilities, we have replaced the varying coefficientj2 by
the functionr 1(j)5e2j221, which coincides with2j2 for
small j. We now denote byr ~j! the corresponding varying
coefficient in~43!,

r ~j!5r 11
dg9~0!

2
r 1~j!. ~48!

This function has no incidence on our analytical analysis
since most important is the main part in the vicinity of the
origin. In addition, we have set systematically the length of
the transverse interval of integration wide enough with re-
spect to the finite width of the transverse global modes.

The results can then matched to the solutions of Eq.~27!.
This equation is, in fact, a linearized version of~43!. The
conclusions concern, first, the local and the global instability,
and, second, the existence of stationary global transverse

modes, together with the nonlinear saturation effects giving
rise to Hopf global oscillations.

A. Global instability threshold

From Eq.~29! we first deduce the corresponding values
(r 1p,n1p). The corresponding global modes are given by
~30!, wherez and j are related by~28!. All modes are of
great interest for the nonlinear problem far from the thresh-
old of the primary bifurcation. However, the first unstable
mode is obtained forp50 and in all numerical simulations
~the linear and nonlinear problems! we restrict our attention
to the fundamental modep50. In this case the solution of
~29! reads

n1056
1

2

A2~a211!asdg9~0!

s11
Re~Aa2 i !,

~49!

r 1c5r 1057n10Fs11

s

Im~Aa2 i !

Re~Aa2 i !
1a

s21

s G ,
while the corresponding eigensolution reads

Ã0~j!5D0

3expH 2
i

4 S sdg9~0!

a D 1/2 j2

~A11a22a!1/2
J

3expH 2
1

4 S sdg9~0!

a D 1/2~A11a22a!1/2j2J .
~50!

First of all, we emphasize that, for the inhomogeneous
pumping, the analytical calculations of the previous sections
need no restrictions on the magnitude ofd and g9~0!. The
small parameter« measures the ratio between the width of
the beam and the size of the pumping profile. Then it may be
of order one, which we left with a modified Ginzburg-
Landau equation with varying coefficients and not, necessar-
ily, a perturbed version of it. Thus we setdg9~0!51.

For the other parameters, we have sets51, a50.26, and
b51. This choice of values for the parameterss andb cor-
responds to the general case~classC! of laser dynamics,
since the number of variables cannot be lowered. However,
the transient effects are more important for values ofa less
than one. The parametera depends on the sign of the detun-
ing parameterV: the two casesV.0 andV,0 correspond to
two qualitatively different behaviors, according to the differ-
ence in the pumping threshold. The control parameterr 1
fixes the instability threshold and hence the spatial transverse
extent of the region of local absolute instability.

In order to clarify the notion of spatiotemporal instability,
we have plotted in Fig. 1 the functionr 1~j! for V521 and
r 150.5. The equilibrium of the system~nonlasing solutions!
is stable atj56` and a single region of absolute instability,
bordered by symmetric regions of convective instability, de-
velops in the vicinity of the origin. The threshold value cor-
responding toV521, from ~49!, is r 150.36. In order to
check this threshold we have integrated Eq.~43! up to 1500
units in time and measured the Im~n! at j50. We found
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numericallyr 1c
(n)'0.31, as shown in Fig. 2. The result is in

good agreement with the theoretical one. The relative accu-
racy is within 15% in the worst case, but we have observed
numerically that the accuracy increases with decreasingd.

B. Nonlinear behavior of the amplitude

The spatiotemporal evolutions of the envelope function
uÃ0u are illustrated in Fig. 3 for different values ofr 1. The
existence of a global mode at the threshold together with the
linear attenuation and amplification around the threshold is
clear from this figure. Note that the spatiotemporal behavior
does not depend on the initial conditions: Indeed we have

observed the same behavior with several different initial con-
ditions, including localized, random-phase, and uniform ini-
tial conditions.

Whenr 1,0 @hencer (j),r c for all j; Fig. 3~a!#, the non-
lasing solution is stable everywhere inj and the envelope
function, after some transient evolution, is asymptotically
damped. Whenr 1 increases up to 0.3@Fig. 3~b!#, the medium
is locally unstable in a finite range of values ofj. Two re-
gions must be distinguished. First, in the vicinity of the ori-
gin, an absolute local instability exists already; this region is
bordered by a region of convective local instability. In the
second region, since the group velocity does not vanish, the
traveling-wave packets are amplified and move towards

FIG. 1. Local instability char-
acteristic r 1~j! in inhomogeneous
pumping forV521 and r 150.5.
The inner region corresponds to a
pocket of absolute instability bor-
dered by two convective instabil-
ity regions. In the outer part
@r 1~j!,0# the system is linearly
stable.

FIG. 2. Global instability
thresholds measured by the growth
rate lnuÃ0u at j50 for V521.
The numerical threshold is
r 1
(n)50.3105 while the theoretical
one @formula ~49!# provides
r 150.36.
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j57`. Note that the local instability is already very devel-
oped without giving rise to global oscillations, as may be
seen from Fig. 4. In this figure, the envelope function is still
attracted by the equilibrium state. Moreover, the existence of
a pocket of local absolute instability around the origin is not
sufficient for global oscillations, in agreement with the fact
that the value of the control parameter is below the global
Hopf bifurcation.

When increasing furtherr 1 beyond the threshold@Fig.
3~c!#, the spatiotemporal envelope function globally in-
creases with time: This means that the system is globally
unstable. In fact, at the threshold, in the vicinity of the origin,
Im~n!50 and at the same time the group velocity vanishes,
giving rise to amplifications in place. On the contrary, in the
convective instability, all unstable modes propagate so that
the power is carried away. The Hopf bifurcation is confirmed

FIG. 3. Spatiotemporal evolu-
tion of the modulusuÃ0u of the am-
plitude for V521 and different
values of r 1: ~a! r 1520.1 ~be-
low the threshold!, the system is
stable; ~b! r 15r 10 ~at the thresh-
old!, global stationary mode; and
~c! r 150.35 ~beyond the thresh-
old!, amplification of the global
mode above the global instability.
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in Fig. 5. Indeed the growth rate saturates, giving rise to a
limit cycle that characterizes the Hopf bifurcation predicted
by the Landau equation~47!. Figure 6 displays the asymp-
totic spatiotemporal nonlinear mode and global oscillations
of the imaginary part of the amplitude.

VI. CONCLUSION

In this paper we have investigated the onset of lasing
solutions in the form of transverse structures when the pump-
ing parameter takes the form of anx Gaussian distribution

r5r 0[12dg(«x)], « being the ratio of the beam width to
the scale of the variation of the pumping. Our choice of the
form of a slowly varying functiong(X), X5«x, ensures that
the most unstable region is centered around the origin. The
influence of this inhomogeneity has been studied by using an
asymptotic expansion with respect to« ~the ‘‘outer’’ solu-
tion!. The solution breaks down in a region of magnitude
O~«1/2! around the origin and an inner solution is obtained by
a local study. The matching of the outer solution and the
inner solution allows one to determine both the onset and
frequency of a global laser solution. They are constrained to

FIG. 4. Asymptotic state just
below the threshold of the global
instability ~V521 and r 150.3!.
Even though the local global insta-
bility is very developed, there are
no global oscillations.

FIG. 5. Global Hopf bifurca-
tion and attractive limit cycle just
above the threshold~V521 and
r 150.32!.
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take one of a discrete set of values, in contrast with the case
of homogeneous pumping where the threshold and frequency
are restricted to a continuous spectrum of values. Such prop-
erties are similar to other results in fluid mechanics, concern-
ing the local and global instabilities of dissipative flows~see
@22#!. In particular, the regions of local absolute instability
must reach a critical order of magnitudeXc5O~«1/2! to in-
duce a global instability. The local amplitude of a laser so-
lution cannot, of course, be determined from a linear analy-
sis.

Considering nonlinear effects, we have shown that the
amplitude is described by a modified Ginzburg-Landau equa-
tion with a stabilizing cubic nonlinearity. A weakly nonlinear
analysis shows that, beyond global onset, the system under-
goes a Hopf bifurcation to global self-sustained oscillations.

Numerical simulations solving directly the nonlinear
Ginzburg-Landau equation confirm~i! the onset of global
instability and~ii ! the nonlinear behavior of the amplitude in
the neighborhood of the instability onset and beyond it. In

particular, the Hopf bifurcation has been qualitatively recog-
nized. Furthermore, we showed that the exponential growth
of the unstable transverse modes saturates by the nonlinear
terms, giving rise to localized nonlinear modes whose ampli-
tude are governed by the spatially modified Ginzburg-
Landau equation.

An extension of the present study with a view to experi-
ment would include curved mirrors for the cavity and a two-
dimensional Gaussian profile~works on this is in progress!.
Further, the main idea is that a spatiotemporal study is nec-
essary for any analysis since the linear stability analysis is no
longer sufficient.
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FIG. 6. Nonlinear global
modes forV521 and r 150.32:
~a! asymptotic spatiotemporal evo-
lution of the modulus of the ampli-
tude and~b! global oscillations of
the imaginary part of the ampli-
tude.
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