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We report on the analysis of experiments on a neodymium-doped yttrium aluminum garnet laser with an
intracavity frequency-doubling crystal. Three modes of the laser were excited in differing polarization con-
figurations. The total intensity of infrared light was observed and then analyzed using methods of nonlinear-
time-series analysis. We present clear evidence using global false nearest neighbors that when all polarizations
are parallel, the intensity is chaotic with two positive Lyapunov exponents and the system can be embedded in
dimension 7. The noise level in this operating condition, which we call type | chaos, is small. When one of the
polarizations is perpendicular to the others, the intensity is again chaotic with positive Lyapunov exponents,
but there is substantial noise in the signal of high dimensional origin, and no finite embedding dimension
appears possible. We call this type Il chaos. We suggest that the origin of this phenomenon is the intrinsic
guantum noise associated with the generation of green light, which is 25 times more intense in the type I
operating configuration than in the first. In past experiments with this system we have found that the type |
chaos can be controlled to unstable periodic orbits while type Il cannot. In each type of chaotic laser operation
we use local false nearest neighbors to demonstrate that the local dimension of the dynamics is 7. This means
seven differential equations can capture the full dynamics of these regimes of the laser. We evaluate local and
global false nearest neighbors to support our conclusions and determine the Lyapunov spectrum of each type
of chaotic behavior. The predictability of type Il chaos is shown to be much less than that of type I, and we
make local polynomial models in reconstructed-state space to demonstrate that we can predict rather well for
type | chaos. Finally we suggest a fairly standard model for the interaction of the infrared light with the
nonlinear frequency doubling medium and with a two-level of the active medium.

PACS numbd(s): 42.60.V, 422.50.Ne, 42.50.Lc, 05.4%

I. INTRODUCTION tion of green light(\~0.532 um) via the KTP crystal. The
green light leaves the cavity as one of the mirrors is trans-
In the operation of a neodymium-doped yttrium alumi- parent at its wavelength.
num garnet(Nd:YAG) laser with an intracavity potassium Operating with three active cavity modes for the infrared
titanyl phosphatédKTP) crystal, irregular fluctuations of the light, we observed two distinctly different irregular time se-
total output intensity in infrared lightA~1.064 um) are ries depending on the polarizations of the light. When the
commonly observed. These fluctuations are chaotic as thaypodes were all polarized parallel to each other, the chaotic
have at least one positive Lyapunov exponent associateascillations of the total infrared intensity showed clear low-
with their evolution[1,2], and they have a broad, continuous dimensional behavior. This class of oscillations, which we
Fourier power spectrum with a peak near 60 kHz. The obterm type | chaos, was also accompanied by a very low level
servation and characterization of this chaotic signal are nowf green light. In this setup we anticipate that the dynamical
somewhat familiar, although we bring tools to the analysis ofequations governing the intensity of the infrared light and the
the chaos that have not previously been applied to this physgain in the active medium would be quite accurate in their
cal problem. The focus in this paper is on aspects of thisemiclassical form.
chaotic laser that are tied to the quantum mechanical genera- We also observed a second kind of chaotic motion, type Il
chaos, which occurs when one of the modes of infrared light
is polarized perpendicular to the other two. In this case the
*Also at the Institute for Nonlinear Science, University of Cali- production of green light is very strong, and the false
fornia, San Diego, La Jolla, CA 92093-0402. Electronic addressnearest-neighbor statistic that determines the integer dimen-
hdia@hamilton.ucsd.edu sion in which the dynamics can be captured shows that this
TElectronic address: clif@rutherford.ucsd.edu dimension is not small. The “noise” seen by this statistic we
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associated with the intrinsic fluctuations accompanying th&he KTP crystal is antireflection coated for both the funda-
generation of the green light. For type Il chaos because thmental and doubled wavelengths. The green light is thus not
apparent noise levels are higher we anticipate that the dyesonant in the cavity and acts as a nonlinear loss mecha-
namical equations may be semiclassical but significantly innjsm.
fluenced by fluctuation terms. The laser system can display steady-state, periodic, qua-
In this paper we review these observations beginning irsiperiodic, and chaotic intensity fluctuations when operated
the next section with a discussion of the experiment and thgiith three or more longitudinal modes. The characteristic
data collection. In Sec. Ill we discuss the average mutudlime scale on which these fluctuations occur is that of the
information and false nearest-neighbor methods—local angy|ayation oscillations, which are inherent to the laser sys-
global—we use to analyze the data, and draw some of thg,, ‘They are the result of energy exchange between atoms
§n the lasing medium and light in the laser cavity. Without
S'e kTP crystal in the cavity these oscillations are normally

dg in which the attractor of type | chaos is unfolded is . . ; .
de=7. Type Il chaos has enough noise that no global emheavny damped and stabilized by this damping. The dou-

bedding dimension can be extracted. For each type of cha Ing process provides the nonlinear loss mechanism that
we are able to deduce the local dynamical dimension o estabilizes these oscillations. For the data presented in this

d, =7 using local false nearest neighbors. In this section w&2Per. the relaxation oscillation frequency is approximately
also discuss the evaluation of Lyapunov exponents for thesg0 kHz. ]
chaotic data. Interestingly we find two positive Lyapunov  1he mode structure of the YAG laser output was moni-
exponents for type | chaotic behavior, and three positive extored using a confocal Fabry-fRe interferometer with a free
ponents for type II. Using various techniques for controllingspectral range of 8 GHz. Each of the observed longitudinal
chaos, we have been able to control type | chaos to periodigiodes was polarized along one of two orthogonal directions.
behavior, but have been unsuccessful with type Il chaodhe relative polarization direction of each mode was deter-
[3,4]. We attribute this to the additional positive Lyapunov mined by separating the laser output using a polarizing
exponents as well as the higher intrinsic noise level assocbeam-splitter cube. The polarized output was monitored
ated with more green light production. along one direction and then the cube was rotated to monitor

In Sec. IV we discuss making models of the evolution ofthe output along the orthogonal polarization direction. The
the laser system in a reconstructed phase space made outtefal intensity of infrared light was monitored with a photo-
the observed total infrared intensity and its time delaysdiode that converted the laser intensity to voltages that were
Thesg models are “black_ box” models that do not rely onyjewed using a digital oscilloscope.
knowing any of the physics of the laser system. They are | the present experiments the system parameters were
interpolation rules in the reconstructed phase space that alyiysted to obtain chaotic behavior in laser operation with
low us to predict from a new data point, here a given totakyeq infrared cavity modes. Two distinct polarization con-
infrared intensity, what the future evolution of that intensity i, ations were selected. An appropriate orientation of the
will be. The method, described In some detail beloyv, use%rystal axes allowed us to select these configurations. The
knowledge of_how one evolyes in time from one ne|ghbqr—“near cavity loss and the pump level, set to about twice the
hood of a point on the orbit to the next neighborhood N reshold pump power, were similar for the two configura-
phase space. . . . tions. The total intensity in the infrareldt) was observed

In Sec. V we use a familiar model of the interaction of thewith a photodiode having a rise time of less than 1 ns and
infrared light with the nonlinear susceptibility of the KTP was sampled using a 100-MHz eight-bit digital oscilloscope

crystal to produce green light. This model is expanded tocapable of storing Fosamples. In Fig. 1 we shott) when

describe our mglumode fmng—lgngth laser. The numerlcaIa” three modes were polarized parallel to each other; we call
work to verify this model is still in progress.

Our final section is a summary of all this and includesthls type | chaos. In Fig. 4 we show(t) with one mode

X . o olarized perpendicular to the other two: we call this type Il
some suggestions for further investigation of these pheno “haos perp yp
ena. X

Even in the time traces we can see the distinction between
these two operating regimes. Type | consists of long “bursts”
[l. EXPERIMENTAL SETUP AND DATA PREPARATION of relaxation oscillations, while type Il appears far more ir-
regular. During type | operation very little green light, less
than 1uW, was observed, while more than 28V of power

The basic elements of the laser system are a Nd:YAGn green light accompanied type Il activity. This is consistent
crystal pumped by a diode laser that is in the same cavity awith the linear stability properties of the macroscope equa-
a KTP crystal. The nonlinear KTP crystal serves as thdions we will present later. If all three modes are parallel
frequency-doubling element. One end of the laser cavity ipolarized as in type | behavior, the laser can become unstable
formed by the high reflection coated flat facet of thewith a very small coupling in the KTP crystal, but very little
Nd:YAG crystal. This facet is highly reflecting at both the green light is produced. If one of the modes is polarized
infrared fundamenta{1064 nm and at the doubled green perpendicular to the other two, a very small value of the
(532 nm wavelength and is highly transmissive at the pumpcoupling results in appreciable sum frequency generation,
wavelength(810 nm). The back end of the laser cavity is instability to chaotic operation, and roughly two orders of
formed by a curved output coupler that is highly transmissivemagnitude larger intensity of green light than in type | op-
for the green light and highly reflecting for infrared ligHi]. eration.

A. Experimental setup



442 HENRY D. I. ABARBANEL, Z. GILLS, C. LIU, AND R. ROY 53

B. Data preparation y(n)=[1(n),I(n+T),I(n+2T),... I (n+(dg—1)T)],
The resolution of the digital sampling oscilloscofeght

bits or 0.4% is too low for some of the data analysis, nota- .. e (N)=1(to+nr) andT is an integer multiple of the

bly the Lyapunov exponent calculation. In order to improvesampling timer, . Wesneed a method for choosing the time
the resolution of the data sets and still have the large numbqfe|ay-|— and the required integer embedding dimensign

of points needed to analyze data in high dimensions, thghese vectorg(n) then constitute our data and provide us
oscilloscope is set to sample the datd &t 10 MHz and the  ith the reconstructed phase space of the dynamical system.
entire 16 sample memory is used. This rate is 200 timesjt is in this d.-dimensional space that we evaluate all the
higher than the 60-kHz relaxation oscillations of the dynam—elevant dynamical quantities of the laser.

ics ensuring that the detailed evolution of the signal is cap-

tured and aliasing does not occur. Recall that the sampling A. Mutual information

rate fs must be at least twice the highest frequency found in _ - .
> g g 4 To choose the time delal we utilize the nonlinear “cor-

the signal to prevent aliasing. relation” function of average mutual information. This an-
For the calculations where resolution was not critical, the o 9 S '

: - .~ “swers the question: how much, in bits, does one learn on the

data sets are downsampled by a factor of eight resulting in ap

Hoctiv mpling rate of 1.25 MHz or molin riod oféverage about a set of measuremets{a;} from a set of
etiective sampling rate of ~. ora sampiing period o measurementB={b,}. Here the two sets of measurements

800 ns. This rate is still 20 times higher than the relaxation, .o {he set of intensitie(n) at timesn=1,2,...N and the
oscillation rate, and so the first minimum of the mutual in- gt of intensitied (n+T) at timesn=1,2 NThe mutual

formation is found at four or five samples or one-quarter ofiysormation between these two sets of measurements is
the relaxation oscillation period. Note that in downsampling,

1)

the broadband noise lev&lue to high-dimensional dynam- P(aj,bn)

ics) is neither increased or decreased. This is important when log, P(a;)P(b,) |’ @
one is trying to determine the noise level using the global :

false neighbors algorithm. whereP(-,-) is the joint probability distribution for the two

When the eight-bit resolution is insufficient, the raw datameasurements(n) andl(n+T). The quantityP(-) is the
sets were interpolated using a digital linear filter. This filter isindividual probability distribution for either of the measure-
designed to remove frequencies from 500 kHz to the Nyquistents. The correlation function, which is theerage mutual
frequencyf/2=5 MHz and pass all frequencies below 500 informationover all measurements, is
kHz. Since the signal due to the dynamics alone has no fre-
guency as high as 500 kHz, no dynamical information is lost. 7(T)= E Pas(a; ,by)log, PPAB.(aJ ,0n)

aj by A(aJ)PB(bn)

On the other hand, the quantization noise, which is as-
where thea; are thel(n) and theb, are thel(n+T). The

}, (©)

sumed to be whit¢equally distributed over all frequencies

up to the Nyquist frequency, is cut down by 90%. Thus, by

reducing the quantization noise or error by a factor of 10, W(:{qhua.ntgyﬂ7 (Té gives ;jtsha quantitativee, nonlin delar T?I_aSlIJfre of
have gained slightly more than three bits of resolution. e independence of the measureme@ andl(n+T).

The digital filter is implemented by performing a discrete these are completely independent in a nonlinear fashion, then

. ) . - Pag(@j,bn) =Pa(a;)Pg(by), and the mutual information is
conv_olutlon of the_ data with the |mpulse_response, which Sero. IfT=0, then the average mutual information is just the
the inverse Fourier transform of the filter frequency re-

A H . g . lied he i I entropy of the set of measurements. We seek a valtieatf
sponse. A Hamming window is applied to the Impulse re-,n;eh the measurements are somewhat independent, but not
sponse to reduce frequency anomalies at the cutoff frequengytaly independent. In the latter case they would not serve

(Gibb's phenomenar{5]. This impulse response is chosen to \ye|| a5 coordinates in thee-dimensional state space of the
be symmetric in time so the filter exhibits linear phase; i.e., itvectorsy(n). If T were quite large the measurements would
will cause no relative phase shifts at different frequencies. pe independent, since the source of the signal is chaotic and
After performing the digital convolution, the data are thus unstable everywhere in state space. This means that for
downsampled from the original 10 MHz to 1.25 MHz. Since |argeT the measurememlg{n) and| (n+T) are essentially
the filter has already removed frequencies above 500 kHz, neandom with respect to each other. Fortoo small, not
aliasing occurs and the data have 11 bits of resolution.  enough time has passed for the measurements to be some-
what independent of each other. We utilize firescription
of choosing that time lag, which is the first minimum of the
IIl. NONLINEAR ANALYSIS OF THE DATA average mutual informatid®,2] with which to construct our
vectors y(n). This prescription gives us an intermediate
In the analysis of the chaotic laser data we employ severalalue of T to use in forming the vectong(n).
ideas that are covered in detail in REZ], but that we will For data of type | chaos, we display in Fify a sample
discuss here for completeness. The primary goal of outime series from our observations. The original sampling
analysis is to establish @-dimensional space of data vec- time for these data was 100 ns. We then downsampled this
tors whose components are the measured total intensity afata by a factor of eight because the original data were over-
observed infrared light(t) and its time delaysdg is an  sampled; this was done after the preparation of the data as
integer. If the infrared light is sampled everyin time, then  described in Sec. Il B above. The effective sampling time for
we wish to form thedg-dimensional data vectors all the data we consider in this paper is thes=800 ns.
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FIG. 1. Atypical time trace for type I chaos. The sampling time _ F1G- 3. The average mutual informatiof(T) for type | chaos.
is 7,=800 ns. 6000 points out of the 125 000 observed are dis125 000 samples were used. A clear first minimunT at5 corre-
played. The laser was operating with three infrared cavity modes affPOnding to 4us is seen.

polarized parallel to each other.
The distinction between the type | and the type Il data

Figure 1 shows 6000 data points out of the 125000 colcomes when we examine another characteristic of the sig-
lected. The Fourier power spectrum of these data is in Fig. Zaals: the false nearest neighbors.
and we can see broad spectral features near 60 kHz and |t is important to restate that this choice, or any choice, of
apparent harmonics of that frequency. The broadband naturgis a prescription. Mutual information should give a value
of the spectrum is characteristic of chaotic motion. Figure Jor T that is indicative of the relevant times for nonlinear
shows the average mutual information evaluated from thesgrocesses to manifest themselves, but a cautious consumer of
data. We see that the average mutual information has its firghe methods we are using will investigate all results for a
minimum nearT 7g=57,=4 us. This was the location of the selection ofT values around the first minimum of the aver-
first minimum in.7(T) for each of the type | data sets we age mutual information. We have done so in each of the
examined. computations we report as we go along and found the precise
For data from a type Il chaos trace, the time series isjalue of T not to be importantT + 1, say, would do as well.
shown in Fig. 4 and the Fourier spectrum in Fig.s5=800
ns again. The spectral features seen in type | chaos are
washed out with other spectral “peaks” visible in these data.
Once again we evaluated the average mutual information and In order to determine the required embedding dimension
see a typical result in Fig. 6 from one of our data sets welg to use in the data vectoygn) we employ a statistic about
examined. The first minimum fav(T) is again neail =5
for each of the type Il data sets. Here it wasTat4.

B. False nearest neighbors
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Frequency (Units of 76 Hz) FIG. 4. Atypical time trace for type Il chaos. The sampling time
is 7,=800 ns. 6000 points out of the 125 000 observed are dis-
FIG. 2. The Fourier power spectrum of the type | chaos seen irplayed. The laser was operating with three infrared cavity modes
Fig. 1. There is a broad peak in the spectrum near 60 kHz and alonghere two are polarized parallel to each other and the other is
with other broad spectral features. polarized perpendicular to the first two.
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FIG. 5. The Fourier power spectrum of the type Il chaos seenin FIG. 7. The percentage of global false nearest neighbors for
Fig. 4. The broad peak near 60 kHz seen in type | chaos has bedwth type I(solid symbolg and type Il chaogopen symbols For
further broadened. type | chaos we use@i=>5 for the state space reconstruction while

for type Il, T=4. Both operating conditions show some noise, but
these data known as false nearest neighB@rsThe con-  the levels of residual falsg ne.ighbors is much higher in type Il chaos
struction of thedg-dimensional data vectors is purely geo- Where the green production is substantially larger.
metric once a time delay has been chosen. One is seeking
a multivariate space in which the orbi$n) do not overlap lated by points such ag'N(n) of quite different time index.
because of projection from a higher dimension. The mairNow we ask what happens to the distance betwden as
idea is that if the data come from a system governed byeen in dimensiod+1 where it is the vector
autonomous differential equations or discrete time maps with
time-independent parameters, then orbits cannot cross each y(m=(n),I(n+T),...I(n+Td)), (4)
other. If they appear to cross, it is because we are viewing
them in a dimension that is too small or that is smaller than
the number of active degrees of freedom in the source of ougnd the vectoy™"(n) in dimensiond+ 1, where it becomes
observations.

To establish whether the space has become big enough we
look at each poiny(n) and its nearest neighbgf™(n) in yNN(n) =y(k)=(1(k),1(k+T),....I(k+Td)). (5
dimensiond. The time index associated witly"N(n) =y(k)
need bear little resemblance to the time indeaf the data If the distance in dimensiomd+1 is large. we label
point we are examining. As data fold back on themselves in ge,

N .
R ! 'y (n) afalse nearest neighbaof y(n). Whend becomes
dissipative systems, the neighborhoody() may be popu large enough, the number of false neighbors will go to zero.

At that dimension the attractor is unfolded in the coordinate

LR system defined by our choice of time delayNow the idea

o5 ] of “large” distances requires some threshold for deciding

6ol 1 that a nearest neighbog™ is false. The choice of false

55| ] neighbor turns out to be independent of this threshold over a

50| ] wide range of choices for its valyi&].

45l ] For our type | data the percentage of false nearest neigh-

40! ] bors is shown in Fig. 7 for one of our data sets. The other
Eas| 1 data sets produce quite similar results. The interpretation of

30 ] this is quite clear: the attractor associated with type | chaos is

25| ] captured in a low-dimensional space with~5. Our analy-

20} ] sis of type Il chaos yields quite a different result. We show in

15| o 1 Fig. 8 the false nearest neighbors ford-<8 for data sets

10 f e 1 of type | and type Il. We see that the percentage of global

osf * .® ® e e0®°®0a0an false nearest neighbors for type | chaos falls to ze-at 7.

0.0 . T e e T A

T T T S T s T s e 151920 The percentage of _false nearest neighbors doe; not fall to
Time lag zero for any dimension for the type |l data, and this indicates
the presence of a high-dimensional noise in these data. We
FIG. 6. The average mutual informatiof(T) for type Il chaos.  hote that when the chaos is type I, the infrared light is ac-
125 000 samples were used. A clear first minimunTat4 corre-  companied by a large amount of green light associated with
sponding to 3.2us is seen. the conversion of infrared photons in the KTP crystal.
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, , ‘ , . , , dimension determined by the false-nearest-neighbors
8o} 1 method. This assures that all neighbors are true neighbors.
kS Then in a neighborhood, we ask if a local model in dimen-
sion d=d,, accurately relating the neighbors of the point
6ol I y(n) to the neighbors of/(n+1) can be made. This local
model is a rule that giveg(n+1) in terms of a polynomial
50 = 1 constructed out of the vectoygn). The coefficients in this
polynomial rule are determined by a least-squares fit mini-
mizing the residual errors in the rule that takgén)
3.0¢ 1 —Yy(n+1). This rule is used to predict ahead a timequal
to the mutual information time determined before. If, in pre-
dicting ahead this amount of time, the error between the
1ol ] prediction and the known observed data point is larger than a
certain fractiong of the attractor size, we deem it a bad
prediction. The fraction of bad predictioR is collected as
Dimension we move over the whole attractor, and this is displayed
against the dimensiom of the local model for various
FIG. 8. An enlargement of the global false neighbors statistic toChO'CeS,‘ of the numbe'f of ne!ghbm@ of the pointsy(n) on
emphasize the residual level of false neighbors for type Il chaos. thelorb't' We seek a d'mens'o,n where the quel, represented
by its fraction of bad predictions, becomes independent of
the local dimension and the number of neighbors used to
establish the model. The at which this occurs determines
The integer dimensiom evaluated above tells us the the dimensiord, of a good local model. As one changes the
global dimension required to unfold the attractor from itsfraction 8 of the attractor size that defines the allowed error
projection on the observation axign). The local dimension sphere or changes the time that one predicts ahead, the frac-
d_ of the dynamics may be less than or equaldfo. If  tion of bad predictiond will move up and down in abso-
dg>d,, it means that the particular coordinate systemute value. The dimensiod, at whichPy becomes indepen-
namely, that of the time delay vectorén), twists it about so  dent ofd and Ng will remain the same. As it igl, that one
that unfolding the attractor from the observations requiresvishes to extract from the local false-nearest-neighbors sta-
additional dimensions to “untwist it.” The local or dynami- tistic the absolute size d?y is of no special significance.
cal dimension is the same in any coordinate system and rep- In all evaluations of local false nearest neighbors we re-
resents the integer number of differential equations requiregort here we chosd,,=15 andp=0.37. The “size” of the
to describe the local evolution of the system. attractor was chose as the root-mean-square variation of the
We use the method dbcal false nearest neighboi$] intensity valued (n) about their mean over the whole data
that starts with a working dimensiod,,=dg with dg as  set. Other natural choices for the extent of the overall attrac-
determined by the global false-neighbors algorithm de+or in phase space lead to variations in the absolute level of
scribed above. All distances between poipfs) are com- Py but not to changes in the choice df . In our computa-
puted indy,. Now we choose the local dimensidrstarting  tions we always chosdg=10, 25, 50, and 75 as illustrative
with d=1 and proceeding td=d,y, asking at each dimen- values to assure ourselves tlig{ had become independent
sion how well we can predict the evolution of a cluster of of Ng as well as of the dimensiah In Fig. 9a) we show the
neighbors abouy(n) for eachn=1,2,...N on the attractor. fraction of bad prediction$®¢ for type | chaos when we
In a dimensiond, which is lower than the true local dimen- predict forward in time. Clearly?x becomes independent of
siond, , there will be points in a neighborhood which got the local dimensiord and of Ng at d, =7. If we predict
there by projection and not by a dynamical rule. The abilitybackward in time, as shown in Fig(l9, we draw the same
to predict where these points go will be very bad. As weconclusion. This is consistent with the behavior of type |
increased up tod, our ability to predict will improve until it  chaos seen in Fig. 8 where the number of global false nearest
levels off and becomes independent of the estimated localeighbors falls to zero adg=7, then remains there. Local
dimensiond as well as the number of neighbors we use tofalse nearest neighbors are much more sensitive to fine struc-
define a neighborhood whose evolution we predict. In di-ture on the attractor than global false neighbors. The latter
mensionsd, <d=<d,y predictability should become indepen- presents a kind of global average over all regions of phase
dent ofd as we have enough dynamical degrees of freedorspace, so regions that exhibit the highest dimensional struc-
already to capture the evolution of the data. The quality oture may occupy only a small percentage of the total phase
prediction is determined by how far ahead we wish to pre-space. This small percentage of space regains proper impor-
dict, and by how large an error we tolerate until we say theance when local quantities are computed, as we are doing
prediction has failed. now.
To be more precise about the details of the method of In Figs. 1@a) and 1@b) we show the result of the same
local false nearest neighbors we note that what is involved iralculation for type Il chaos. Note that tH® values are
the prediction is a local map from one neighborhood of themuch higher for type Il chaos, reflecting the presence of
attractor to another neighborhood of the attractor. The memhigh-dimensional noise in the data. This noise is not of such
bers of a neighborhood are determined by distances evallrgh amplitude as to ruin completely the possibility of mak-
ated in a dimensioml,,=dg with dg the global embedding ing local predictions, but it certainly enormously erodes the
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C. Local false nearest neighbors
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FIG. 9. Local false nearest neighbors for type | chaos using FIG. 10. Local false nearest neighbors for type Il chaos using
T=5 and 120000 points from the time series. The computationf=4 and 120 000 points from the time series. The computation
done(a) forward and thertb) backward on the data. There is a clear done(a) forward and therb) backward on the data. There is a clear
indication that atle=7 the predictability of these data has become indication that atlz=7 the predictability of these data has become
independent of the number of neighbors and the embedding dimefndependent of the number of neighbors and the embedding dimen-
sion. B, here set to 037, defines the size of the error ball Withinsion_ Note the much h|gher percentageuﬂ'bredictakﬂepoints on
which a good prediction must fall aftdF steps forwardor back-  the attractor here compared to type | chaos. The level of unpredict-
ward) in predicting. The error ball i times the overall size of the  apjlity for d=d, is nearly three times that seen for type | chaos.
attractor. Se¢8] for more details on this parameter choice in this This is a direct result of the higher noise level in type I chaos.
algorithm. Nonetheless the local false-nearest-neighbor statistic is seen to be

quite robust against noisg, here set to 0.37, defines the size of the

quality of those predictions. The level of bad predictions foror ball within which a good prediction must fall aft@rsteps

the same parameter settings for both types of chaos leads §JWvard (or backwardiin predicting. The error ball ig times the

about 20% bad predictions for type | chaos and nearly 60%overall size of the attractor. S¢8] for more details on this param-
D . ._“eter choice in this algorithm.

bad predictions for type Il chaos. At the same time there is a Ice 1 this aigor

clear indication that the dynamical dimension of the systemne ative Lvapunov exponents. Finally we have the atomic
giving rise to the observations @& =7 in each case. This is 9 yap P i Y

. . . ) degrees of freedom in the active medium. We anticipate a
a very nice result in that it shows that low levels of noise do,

. . , X , - -single gain equation associated with the population inversion
not impede our ability to identify the number of differential o the |evel responsible for the principal transition near 1.064

equations required to describe the data. ~ um. This will give us the seven degrees of freedom seen in
Seven degrees of freedom could well have been anticihe experimental data.

pated from physical reasoning. We have three modes of the |f e provide more degrees of freedom in the form of
infrared field each of which has a creation and an annihilagifferential equations for Heisenberg operators or density
tion operator describing it. So we have six degrees of freematrix elements, we expect to find large, negative Lyapunov
dom from the electromagnetic field. The green field is sig-exponents associated with the damping of these quantities.
nificantly damped by its not being a cavity mode, soThe local false nearest neighbors results tells us the number
associated with that field we should expect some large andf “active” degrees of freedom out of the many we could
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anticipate entering this problem. “Active degrees of free-

dom” is best defined by the example we are discussing now: ij'f ] zjz
namely, those dynamical variables that are not substantiallyg oso; d Joso
removed from the dynamical description of the physical situ- g %0l = : o 1030 g
ation by damping or losses. Once again those variables thag °°f & 1 } 2 ! ! 11 ]{°-‘° c
are suppressed by the losses would show up in exhibiting; 2;2' « * : : y v VY VY v ¥ ;ﬁZj;Z :5
large, but negative, Lyapunov exponents were we to evaluateg o509 Y 1080 B
them in dimensions larger than that indicated by local false:g 070 | lom 2
neighbors, herel, =7. 3 s T §
g -of > 1110 3
Z “30f > {180 Z

150 | » 4 -1.50

D. Local and global Lyapunov exponents -1-70.* 1-170

-1.90 % L L L L . . L . . . 1.
The evolution of small perturbations to an observed orbit R . S e

y(n) is governed by the linearized equations of motion,
whatever they may be. As we do not know them from look- FIG. 11. The average local Lyapunov exponents for our sample
ing at the data alone, we assume there is an underlying now type | chaos. A global and a local dimensiond@=d =7 has
linear procesy(n)—y(n+1)=F(y(n)) that moves the sys- been used, and 120 000 points from the time series were utilized.
tem ahead one sampling time. A small perturbatiorw(n) There are two positive Lyapunov exponents and one zero exponent
to the orbity(n) satisfies indicating that differential equations describe the underlying dy-
namics. The Lyapunov dimensidd, for this is about 4.950.1
telling us that the last large, negative exponent is not very important
dynamically. This is consistent with the fall of the global false near-
est neighbors, shown in Fig. 7, to nearly zero by dimension 5. The
w(n+ 1)=DF(y(n))-W(n)+O(W2), (6) attractor, which is essentially five dimensional, is twisted signifi-
cantly in the time delay coordinate system provided by the vectors
y(n), and it requires seven dimensions to completely unfold its
intersections with itself.

y(n+1)+w(n+21)=F(y(n)+w(n)),

where the Jacobian matrix is

IF A(X) B 1 Ns
DF(Xan=""5, — @) Na(L) =5 2 Nay(K),L), ©)
S k=1
anda,b=12,...d, . for Ng starting locations/(k). These quantities are shown in

The eventual growth or shrinkage of the perturbation un+ig. 11 and then in an enlarged view in Fig. 12 for type |
der this linear evolution rule is determined by the eigenvalchaos. There are clearly two positive Lyapunov exponents,

uese*a*) of the Oseledec matrif2,9] one zero exponent, which is characteristic of the dynamics of
differential equation$2], and four negative exponents. Their
(x,L)=[(DF-(x))T-DF“(x) V2 ®) sum is negative, as it should be, and for this sample of type

| chaos that sum is approximatelyl.28 in units of inverse

7. The behavior of tha (L) as seen here is quite typical of
average local Lyapunov exponents as seen in model dynami-
cal system$2]. The largest exponent starts high compared to

The matrixDF(x) is the composition of Jacobian matrices
along the observed orbiy(n) starting at locationx. As
L—o, the Ay(x,L)—\,, which are the usual global
Lyapunov exponents. The, are independent ox in the

basin of attraction of the attractor. They are invariants of the ¢ . M . o0
dynamics and characterize it. They are also independent of % H B S $ o0
the coordinate system in which they are evaluated. To deterg 7 p “ . fow Z
mine the\ , reliably we need to know the value df as this & 3
is the dimension of the dynamics. If we work in a space with § "’y v v v e
d>d, , thend—d, of the eigenvalues of the Oseledec matrix 5 “*| 1% 2
will be false, and we need a reliable rule to establish whichg % 104 %
are true and which are not. Similarly if we work éh<d,, I 080y 180 2
we will not have unfolded the local dynamics in such a Way§ 060 ¢ 1080 3
that would allow the correct evaluation of thF(x), and § 070 ¢ 1070 f{
thus the\ , would be in error. < 080t 1080 €

Using dg=d, =7, we have computed the,(x,L) for a 080 1-0.90
large number of starting locationon the attractor, then de- 1.00% x = > 100
termined the value of these quantities as a function of the L; Number of steps is 2"

number of steps we look ahead of these starting points. We

used 5000 starting points and carried the calculation out FIG. 12. A blowup of the average local Lyapunov exponents
2048 steps ahead of each of these locations. This allows us #own in Fig. 11. The zero exponent and the two positive exponents
define an average local Lyapunov exponent. are much clearer in this view of the data.
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FIG. 13. The average local Lyapunov exponents for our sample gig. 14. A blowup of the average local Lyapunov exponents

of type Il chaos. A global and a local dimensiond=d, =7 have  shown in Fig. 13. The zero exponent and the three positive expo-
been used, and 120 000 points from the time series were utilizethents are much clearer in this view of the data.

There are three positive Lyapunov exponents and one zero expo-
nent, indicating that differential equations describe the underlyin

: %al resolution, this reversal is seen to be quite accurate. We
dynamics.

also note that the largest Lyapunov exponents for type I
chaos is nearly 3 times that for type | chaos. The substan-

its value for largeL, while the negative exponents start low yi4)y greater unpredictability of type Il chaos is quantified by
and rise. The zero exponent begins negative and rises towayfiq

zero or rides very close to zero for &ll Each of the average
local exponents shown here changes sign when the eigenval-
ues of the Oseledec matrix is evaluated backward in time.

This is as it should be for real exponents, and this supports!V. PREDICTING IN RECONSTRUCTED PHASE SPACE
our choice ofdg=d, =7 from local false neighbors. : . :
The same cEaIcuILations were done on our data set for typ, Even without knowledge of the d_ynamlcql equations for
Il chaos. From the outset we must recall that when a data setc laser system we can use the information we have ac-

is noisy, the evaluation of Lyapunov exponents may well bequired SO far to make predictive_ .models for the laser inten-
uncertain2]. The origin of the uncertainty is in the severely sity evolution. The method2] utilizes the compactness of

ill conditioned nature of the Oseledec matrix, which servesthe attractor iry(n) space by noting that we have knowledge

to amplify any numerical errors in the individual Jacobians\?\fhg:g r?(:iOIr?tt)lgrnhgcf) dV;'hlgigr?R?ﬁj%gecgs'g:g?mggg%':IEZ
composing it. With noise the determination of neighboring 9 ) . ’
local models of this evolution and then use these models as

distances and the local map from which we read off the terpolating rules for the evolution of new phase-space
Jacobian are sure to lead to small errors in each Jacobialf ¢'P 9 P P

This will lead to real uncertainties in the Lyapunov expo- points near the attracto_r. We use only local p_olynomial qu-
nents, especially the negative expondis els although other basis sets than polynomials are certainly

Nonetheless, we have evaluated the average Iocaﬂu'te useful. Indeed, in this work we use only local linear

Lyapunov exponents for these data, and in Fig. 13 we presemc’dels as we have substantial amount of data and thus good

the results of this calculation. Figure 14 shows an enlarge(-:overage of the attractor; namely, every neighborhood is

ther well populated.
ment of the average exponents for large numbers of step{gl The idea is that locally on the attractor we find thg

along the trajectory after a perturbation to the known orbit. . YR .
From these figures we see that the largest exponent is abola?lghborsy (n); r=1.2,.. Ng of each poiny(n) and make

twice that of the largest type | exponent. This would lead
immediately to increased unpredictability, as we saw in the TABLE I. Average local Lyapunov exponents for laser chaos.
evaluation of local false nearest neighbors. Also we see three
positive exponents, which would be connected to the appar-

Average Lyapunov exponents lat=2048

ent inability to control the type Il chaos with the methods Tvoe 1 ch de=7:d =7 Tvoe Il ch
that have been triei3,4]. It is reassuring that one of the ype 1 chaos ype Il chaos
exponents is zero, so we again have a set of differential ™2 Backward Forward Backward
equations describing the source of these data. 0.080 ~0.089 0.244 —0.271

A check of our calculations is presented in Table | whereg g41 —0.043 0.172 —0.188
we display the values of the average local Lyapunov expog gog —0.013 0.091 ~0.113
nents evaluated after 2048 steps along the attractor following g 533 0.029 0.0069 —0.0017
a perturbation. The exponents forward and backward are pre-g 102 0.096 —0.104 0.091
sented for each of the types of chaos we consider. If the 278 0.264 0298 0274
exponents are true, then their signs should reverse when tim_ell017 1.020 _0.788 0733

is reversed. Within errors commensurate with the experimen
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FIG. 15. Predicted and observed total infrared intensity for type ~ FIG. 16. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in thé chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for ti@constructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data setocal maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-and then predictions are made starting with point 45 000. All pre-
dictions are made imle=d, =7. This figure shows the result of dictions are made imlg=d, =7. This figure shows the result of
predicting aheadt=107. The largest global Lyapunov exponent predicting ahead\t=50rs. The predictions are much worse than
is aboutss in units of 75, so we do not expect to be able to accu- for At=10rg since we are trying to predict beyong/\ ;.

rately predict ahead much more than this amount. ) )
largest Lyapunov exponent is approximat&ly=0.08, so we

the local linear modely(r;n+1)=An+Bn‘y(')(n) where should be able to make accurate predictions out to twelve or
y(r:n+1) is the point to whichy!’(n) goes in one time SO steps beyond any starting location on the attractor. The

step. The coefficientd,, andB, are determined by minimiz- computations reported in Fig. 15 support this quite well. In
ing at each time location Fig. 16 we show the result of the same calculation but now

predicting ahead 50 steps instead of the 10 just shown. There

are clearly regions where the predictability is rather good,
Ng but also regions where the method starts to fail quite visibly.
> ly(r;n+1)—A,—B,-y"(n)[?, (100 Figure 17 shows a region where the predictability remains
r=0 quite good, while Fig. 18 is a region where predictability is

wherer =0 meang/(n) itself andy(n+ 1). When we have a quite reduced for this large time step ahead of a known point.
new pointz(k) on or near the attractor, we seek the nearest:I'hese results are consistent with the wide variatiotooél

neighbory(Q) among all the data in the set we used to

determine theA, and theB,,. The predicted point(k+ 1) is 2300 I
then 2100 |- ‘ ':‘.:' {
- 148380 fderiX
1900 13 B b
Z(k+ 1)%AQ+ BQ-Z(k). (11 1700 3
150.0

This works remarkably accurately within the limits of pre-
diction dictated by the largest Lyapunov expongnt When

130.0 ¢

Total Infrared Intensity

. . - ) . 0 - { 3 T1
we try to predict beyond the instability horizon, that is for oo | RE: | A SRR .y
times much greater than ooy ! Lo !
—— Observed Intensity|
50.0

s 30.0 : . ! ;

—, (12 49000 49100 49200 49300 49400 49500

A 1 Time (800 ns)

our prgdlctlon should rapidly lose accurapy. L FIG. 17. Predicted and observed total infrared intensity for type

. In Fig. 15 we show an example of this prediction teCh'I chaos. The predictions are made using local linear maps in the
nique for type | chaos based on a total data set of 60 00QLconstructed phase space of the attractor. The coefficients for the
points. 40 000 points were used to determine the local polyocal maps are leamed from the first 40 000 points of the data set,
nomial coefficientsA,, and B, then predictions were made ang then predictions are made starting with point 45 000. All pre-
10 steps ahead from the poim=45000 to the point gictions are made imlz=d, =7. This figure shows the result of
n=>55 000. The results for points=45 500 are shown in the predicting ahead\t=50r,. This is a region of phase space where
figure. The predictions are shown as solid symbols while thehe predictions are much better than would be expected from the
observed data are shown as the solid line. In units;dhe  values of theglobal Lyapunov exponents.
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FIG. 18. Predicted and observed total infrared intensity for type  FIG. 20. Predicted and observed total infrared intensity for type
| chaos. The predictions are made using local linear maps in th@ chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for theconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data setocal maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-and then predictions are made starting with point 45 000. All pre-
dictions are made img=d_=7. This figure shows the result of dictions are made iml=d, =7. This figure shows the result of
predicting ahead\t=507;. This is a region of phase space where predicting aheadt=10r,.

the predictions are much worse than when we tried to predict ahead )
only At=10r. enlarged the region between steps 55 000 and 55 500 so one

may see that the quality of these predictions is not as good as
we saw in working with type | data. This is as it should be.
Figure 22 is another enlargement of the type Il predictions
cﬂnakmg much the same point about the quality of the predic-
ifions. Finally in Fig. 23 we have predictions 50 time steps
ahead for type Il chaos. Again 40 000 points were used for
learning the local linear maps used for prediction. The qual-
ity of the predictions here has become quite poor.

Lyapunov exponents on an attrac{@]. Pushing this even
further we show in Fig. 19 the result of trying to predict
ahead 100 steps beyond a new point near the attract
Clearly predictability has been reduced substantially, as i
should be reduced in a chaotic system.

We have also used this method for moving about the at:
tractor for type Il chaotic data. In Fig. 20 we display the
result of learning on 40 000 points of this data set and then
predicting ahead from point 45 000. The predictions ten steps
ahead compared to the observed values forare shown in

this figure for time steps 55 000-57 500. In Fig. 21 we have The salient features of our data and data analysis can be
summarized as follows(i) There are only a few modes of

infrared light in the laser cavity. Indeed, the number in this
experiment was determined to be three by observing the in-

V. AMODEL FOR THE PROCESS

235.0
o5 s frared light in a Fabry-Pet interferometer(ii) These infra-
:',;,,... s Yy ‘ ‘." 3 red modes with wavelength=1.064 um couple through the
1950 ii Tes Hl IIIM I JI : ' s It “\ KTP crystal to green light at wavelengi=0.532 um. The
= 175.0 |! X H
z el ||| l l il | 1i i ]i .
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FIG. 19. Predicted and observed total infrared intensity for type 0.0 | N
I chaos. The predictions are made using local linear maps in the 700 - i i ’]
reconstructed phase space of the attractor. The coefficients for the  Odcted Intensty
local maps are learned from the first 40 000 points of the data set, 50000 55100 55200 55300 55400 55500
Time (800 ns)

and then predictions are made starting with point 45 000. All pre-
dictions are made imlg=d, =7. This figure shows the result of
predicting ahead\t=100r5. The predictions are much worse than

above since we are trying to predict quite a bit beyegd ;.

FIG. 21. An enlargement of the predictions fot=
Il chaos.

107 in type
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FIG. 23. Predicted and observed total infrared intensity for type
FIG. 22. An enlargement of the predictions fbt=107sintype || chaos. The predictions are made using local linear maps in the
Il chaos. reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
amount of green light depends on the polarization of theand then predictions are made starting with point 45 000. All pre-
infrared modes. If all modes are polarized parallel to eachyictions are made imle=d, =7. This figure shows the result of
other, the production is small. If one mode is polarized perpredicting aheadt=50r,.
pendicular to the other two, the production of green light is o
strongly enhancediii ) When green light is produced, it exits | N€ indicesm or n refer both to the mode and to the polar-
the cavity through one of the mirrors, which is transmﬂtmg'zat'on Green light is treated as a scalar field with creation
at that wavelength. The same mirror reflects the infrared annihilation operatorg'(t) andg(t) safisfying
light, so green is not a cavity modév) The infrared pro-
duction in the active medium is pumped by a diode laser at [g".0]=1, (16)
A=810 nm.
The model we suggest neglects the detailed dynamics &t equal times. Of course, the green light has polarization and
the active medium, treating it as a continuum of two-levelProbably more than a single mode, but these were not mea-
quantum systems distributed over the length of the laser cay@U’ed in our experiment, so we will not address those prop-

ity. Each two-level system has an upper leje(z)) and a erties of the green light. Further, we shall see that the green
lower level|l(z)) with energy differencéiw, . The dynami- modes are damped out so strongly relative to the infrared

cal variables for the atomic levels are the usual Pauli spifhat they trail or are fully determined by the infrared dynam-

operatorsS;(z,t) andS. (z,t). They satisfy g:spe'l;hrﬁegrjgen modes play a “nondynamical” role in these
xperi

[S3(2),S.(2')]=*2S.(2)8(z—2") (13 The loss of infrared light in modée will be treated in a
conventional manner as a coupling to a “reservoir” of radia-
and tion modesc}, andc;, which are also bosons. The green
loss is modeled in the same way using radiation maxik
[S.,S_(2)]=S3(2)8(z—2"), (14) andcg, with a higher coupling constant indicating a higher

loss rate. The loss mechanisms for the atomic levels, essen-
at equal times. We have annihilation and creation operatorgally the electromagnetic modes responsible for spontaneous
al(t) anda,(t) for the M infrared modes with the usual em|SS|on from the upper levéli(z)), are labeled,(z) and

equal-time Bose commutation relations b(z). These modes of the electromagnetic field serve solely
+ to describe the loss mechanism as seen in the lasing system.
[am.an]= Omn- (15 The Hamiltonian for the system is written as

<

M

H=2 fwala +ﬁwg9 9+|ﬁ E [K,]a a 9—«i;d aja]+i21 Ek [AQuChCik+ viaich+ viCial ]

M=

i=1

AQa < T
783(z)+|ﬁi21[ais+(z)a, sinkiz—o*a'S_(z)sink;z]

L
+2k: [ﬁngC;kCgk"_ 73k903k+ 79kcgkgT]+fo

+ih; [T«(2)S:(2)by(2) ~ T} (2)b}(2)S_(2) + hwiA2)bj(2)by(2)] |dz. 17
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In this expression, the,; are the frequencies associated Our emphases in this paper have been twofold: First, we
with the infrared modes;oy is the green frequency: have been concerned with the application of a general pro-
wg~2w;. Q) and Q4 are the frequencies of the reservoir gram of nonlinear time series analygi] to the specific
modes coupled to the infrared modand green mode, re- problem of the dynamics of a certain solid state laser system.
spectively, ande-Sp(z) are the reservoir frequencies for the The description of that set of tools as they are used in a
atomic loss mechanism at locatianThe nonlinear coupling practical setting can be no better given than using our work
«i; comes from the second-order susceptibility of the KTPhere as an example. Second, we have been interested in the
crystal. It is dependent on the polarizations of the infraredproperties of this specific laser system and in determining
photons. They,, tell us the strength of the coupling of the characteristics that describe its behavior. In that regard the
infrared modes to their reservoirs, thgy is the coupling of local and global Lyapunov exponents are important aspects
the green mode to its reservoir, ahig(z) is the coupling of  of the dynamics of this laser source. In fact, by establishing
the atomic levels to their reservoirs at locatomhere is no  that type Il chaos has both high false neighbors at high em-
pumping of the two-level system included in this modelbedding dimension and correspondingly a higher value for
Hamiltonian. It is added to the Heisenberg equation of mothe largest positive global Lyapunov exponent, we have
tion for S;(z) as a constant rate of population inversion.  found that type Il chaos is quantitatively less predictable and,

From the Hamiltonian we determine the Heisenberg equasonsistent with earlier experienf®,4] less controllable than
tions of motion for the various operators and perform stantype | chaos. This provides a consistent picture for these
dard reservoir approximatioi40] to get a model that can be operating conditions for this laser system.
integrated numerically. Using this model we have success- The dynamics of the laser has been described by coupled
fully reproduced type | chaos and this will be discussed in anacroscopic differential equations for the intensitigg) of
future papef14]. the individual infrared longitudinal modes and their corre-

sponding gain$,(t) [1,11]

VI. SUMMARY AND CONCLUSIONS

We have determined the properties of an Nd:YAG laser %: o _ 0
with an intracavity KTP crystal when the laser is in an oper- edt G aegly ij;k SLUILE (18
ating mode producing chaotic fluctuations of the total output
infrared intensity. While this chaotic intensity has been stud-

ied in the pas{1] we have brought to the analysis several 4G,

tools not previously applied to this problei} average mu- T ——=7y—| 1+ + ,32 l;|Gy. (19

tual information(ii) global and local false nearest neighbors, dt 1#k

and (i) determination of the full spectrum of local and glo-

bal Lyapunov exponents. 7.~0.2 ns is the cavity round trip time, ang~240 us is the
Using these new tools we have been able to start from th#uorescence lifetime of the Nd ions. The cavity loss

observation of a scalar—total infrared light intensifg)—  «~0.01.yis the small signal gain related to the pump rte.

and deduce the number of active degrees of freedom in this the cross-saturation parameter which we take to be the
laser cavity, evaluate the spectrum of Lyapunov exponentsame for all mode pairs and is somewhat less than unity for
and make “black box” predictive models that use no physicsthis laser system. The efficiency of the nonlinear doubling
associated with the laser but, nonetheless, allow accurate prprocess is defined by. For the KTP crystak~10"°. g is a
diction on or near the observed attractor. We have also sugreometric factor 8 g=<1, which depends on the relative ori-
gested a physical quantum mechanical model for which nuentation between the fast axes of the strongly birefringent
merical studies are still being performed. We anticipate thakKTP and the very weakly birefringent Nd:YAG,; it also de-
the resulting equations contain all of the features, includingoends on the lengths of the crystals. The fagtqr accounts
the nonlinear characteristics, of our data. for the change in geometry when the modesnd k have

In laser operation our system has exhibited two generalarying polarizations. If the modes have the same polariza-
classes of dynamical activity. Each has three infrared modeson w; =g, otherwiseu;=1—g. This factor determines
lasing in the cavity. For the chaotic operating state we havéhe relative amount of green light produced by second har-
labeled type | chaos all three of the infrared modes are pomonic versus sum frequency generation for different polar-
larized parallel to each other. In this state the production ofzation configurations of the laser modes. These equations
green light is small—less than AW in our cavity—and the are macroscopic descriptions of the laser that do not account
guantum noise, as revealed by global false nearest neighboffgy any noise sources.
is small. This means that the macroscopic dynamical system The description of the laser system using these “classi-
involving infrared intensity and perhaps gain is well de-cal” equations has been quite successful. The next task we
scribed by a few differential equations with some small aswill pursue is to reconcile the quantum-mechanical equations
sociated noise terms. In the operating state we have callederived from the model above with these classical equations.
type Il chaos there are also three modes of infrared lighClearly the operator equations contain more information
though two are parallel polarized and one is polarized perabout the system: they deal with infrared mode amplitudes
pendicular to the other two. The production of green light israther than intensities, so phases are included, and they con-
much stronger—about 2aW—and the influence of noise, tain both fluctuations associated with the quantum mechanics
as revealed by global false nearest neighbors is much largef the operators and associated with the loss of green light
than for type | chaos. from the cavity.
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