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We report on the analysis of experiments on a neodymium-doped yttrium aluminum garnet laser with an
intracavity frequency-doubling crystal. Three modes of the laser were excited in differing polarization con-
figurations. The total intensity of infrared light was observed and then analyzed using methods of nonlinear-
time-series analysis. We present clear evidence using global false nearest neighbors that when all polarizations
are parallel, the intensity is chaotic with two positive Lyapunov exponents and the system can be embedded in
dimension 7. The noise level in this operating condition, which we call type I chaos, is small. When one of the
polarizations is perpendicular to the others, the intensity is again chaotic with positive Lyapunov exponents,
but there is substantial noise in the signal of high dimensional origin, and no finite embedding dimension
appears possible. We call this type II chaos. We suggest that the origin of this phenomenon is the intrinsic
quantum noise associated with the generation of green light, which is 25 times more intense in the type II
operating configuration than in the first. In past experiments with this system we have found that the type I
chaos can be controlled to unstable periodic orbits while type II cannot. In each type of chaotic laser operation
we use local false nearest neighbors to demonstrate that the local dimension of the dynamics is 7. This means
seven differential equations can capture the full dynamics of these regimes of the laser. We evaluate local and
global false nearest neighbors to support our conclusions and determine the Lyapunov spectrum of each type
of chaotic behavior. The predictability of type II chaos is shown to be much less than that of type I, and we
make local polynomial models in reconstructed-state space to demonstrate that we can predict rather well for
type I chaos. Finally we suggest a fairly standard model for the interaction of the infrared light with the
nonlinear frequency doubling medium and with a two-level of the active medium.

PACS number~s!: 42.60.V, 422.50.Ne, 42.50.Lc, 05.45.1b

I. INTRODUCTION

In the operation of a neodymium-doped yttrium alumi-
num garnet~Nd:YAG! laser with an intracavity potassium
titanyl phosphate~KTP! crystal, irregular fluctuations of the
total output intensity in infrared light~l'1.064 mm! are
commonly observed. These fluctuations are chaotic as they
have at least one positive Lyapunov exponent associated
with their evolution@1,2#, and they have a broad, continuous
Fourier power spectrum with a peak near 60 kHz. The ob-
servation and characterization of this chaotic signal are now
somewhat familiar, although we bring tools to the analysis of
the chaos that have not previously been applied to this physi-
cal problem. The focus in this paper is on aspects of this
chaotic laser that are tied to the quantum mechanical genera-

tion of green light~l'0.532mm! via the KTP crystal. The
green light leaves the cavity as one of the mirrors is trans-
parent at its wavelength.

Operating with three active cavity modes for the infrared
light, we observed two distinctly different irregular time se-
ries depending on the polarizations of the light. When the
modes were all polarized parallel to each other, the chaotic
oscillations of the total infrared intensity showed clear low-
dimensional behavior. This class of oscillations, which we
term type I chaos, was also accompanied by a very low level
of green light. In this setup we anticipate that the dynamical
equations governing the intensity of the infrared light and the
gain in the active medium would be quite accurate in their
semiclassical form.

We also observed a second kind of chaotic motion, type II
chaos, which occurs when one of the modes of infrared light
is polarized perpendicular to the other two. In this case the
production of green light is very strong, and the false
nearest-neighbor statistic that determines the integer dimen-
sion in which the dynamics can be captured shows that this
dimension is not small. The ‘‘noise’’ seen by this statistic we
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associated with the intrinsic fluctuations accompanying the
generation of the green light. For type II chaos because the
apparent noise levels are higher we anticipate that the dy-
namical equations may be semiclassical but significantly in-
fluenced by fluctuation terms.

In this paper we review these observations beginning in
the next section with a discussion of the experiment and the
data collection. In Sec. III we discuss the average mutual
information and false nearest-neighbor methods—local and
global—we use to analyze the data, and draw some of the
implications just suggested. In particular we use global false
nearest neighbors to demonstrate that the global dimension
dE in which the attractor of type I chaos is unfolded is
dE57. Type II chaos has enough noise that no global em-
bedding dimension can be extracted. For each type of chaos
we are able to deduce the local dynamical dimension of
dL57 using local false nearest neighbors. In this section we
also discuss the evaluation of Lyapunov exponents for these
chaotic data. Interestingly we find two positive Lyapunov
exponents for type I chaotic behavior, and three positive ex-
ponents for type II. Using various techniques for controlling
chaos, we have been able to control type I chaos to periodic
behavior, but have been unsuccessful with type II chaos
@3,4#. We attribute this to the additional positive Lyapunov
exponents as well as the higher intrinsic noise level associ-
ated with more green light production.

In Sec. IV we discuss making models of the evolution of
the laser system in a reconstructed phase space made out of
the observed total infrared intensity and its time delays.
These models are ‘‘black box’’ models that do not rely on
knowing any of the physics of the laser system. They are
interpolation rules in the reconstructed phase space that al-
low us to predict from a new data point, here a given total
infrared intensity, what the future evolution of that intensity
will be. The method, described in some detail below, uses
knowledge of how one evolves in time from one neighbor-
hood of a point on the orbit to the next neighborhood in
phase space.

In Sec. V we use a familiar model of the interaction of the
infrared light with the nonlinear susceptibility of the KTP
crystal to produce green light. This model is expanded to
describe our multimode finite-length laser. The numerical
work to verify this model is still in progress.

Our final section is a summary of all this and includes
some suggestions for further investigation of these phenom-
ena.

II. EXPERIMENTAL SETUP AND DATA PREPARATION

A. Experimental setup

The basic elements of the laser system are a Nd:YAG
crystal pumped by a diode laser that is in the same cavity as
a KTP crystal. The nonlinear KTP crystal serves as the
frequency-doubling element. One end of the laser cavity is
formed by the high reflection coated flat facet of the
Nd:YAG crystal. This facet is highly reflecting at both the
infrared fundamental~1064 nm! and at the doubled green
~532 nm! wavelength and is highly transmissive at the pump
wavelength~810 nm!. The back end of the laser cavity is
formed by a curved output coupler that is highly transmissive
for the green light and highly reflecting for infrared light@1#.

The KTP crystal is antireflection coated for both the funda-
mental and doubled wavelengths. The green light is thus not
resonant in the cavity and acts as a nonlinear loss mecha-
nism.

The laser system can display steady-state, periodic, qua-
siperiodic, and chaotic intensity fluctuations when operated
with three or more longitudinal modes. The characteristic
time scale on which these fluctuations occur is that of the
relaxation oscillations, which are inherent to the laser sys-
tem. They are the result of energy exchange between atoms
in the lasing medium and light in the laser cavity. Without
the KTP crystal in the cavity these oscillations are normally
heavily damped and stabilized by this damping. The dou-
bling process provides the nonlinear loss mechanism that
destabilizes these oscillations. For the data presented in this
paper, the relaxation oscillation frequency is approximately
60 kHz.

The mode structure of the YAG laser output was moni-
tored using a confocal Fabry-Pe´rot interferometer with a free
spectral range of 8 GHz. Each of the observed longitudinal
modes was polarized along one of two orthogonal directions.
The relative polarization direction of each mode was deter-
mined by separating the laser output using a polarizing
beam-splitter cube. The polarized output was monitored
along one direction and then the cube was rotated to monitor
the output along the orthogonal polarization direction. The
total intensity of infrared light was monitored with a photo-
diode that converted the laser intensity to voltages that were
viewed using a digital oscilloscope.

In the present experiments the system parameters were
adjusted to obtain chaotic behavior in laser operation with
three infrared cavity modes. Two distinct polarization con-
figurations were selected. An appropriate orientation of the
crystal axes allowed us to select these configurations. The
linear cavity loss and the pump level, set to about twice the
threshold pump power, were similar for the two configura-
tions. The total intensity in the infraredI (t) was observed
with a photodiode having a rise time of less than 1 ns and
was sampled using a 100-MHz eight-bit digital oscilloscope
capable of storing 106 samples. In Fig. 1 we showI (t) when
all three modes were polarized parallel to each other; we call
this type I chaos. In Fig. 4 we showI (t) with one mode
polarized perpendicular to the other two: we call this type II
chaos.

Even in the time traces we can see the distinction between
these two operating regimes. Type I consists of long ‘‘bursts’’
of relaxation oscillations, while type II appears far more ir-
regular. During type I operation very little green light, less
than 1mW, was observed, while more than 25mW of power
in green light accompanied type II activity. This is consistent
with the linear stability properties of the macroscope equa-
tions we will present later. If all three modes are parallel
polarized as in type I behavior, the laser can become unstable
with a very small coupling in the KTP crystal, but very little
green light is produced. If one of the modes is polarized
perpendicular to the other two, a very small value of the
coupling results in appreciable sum frequency generation,
instability to chaotic operation, and roughly two orders of
magnitude larger intensity of green light than in type I op-
eration.
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B. Data preparation

The resolution of the digital sampling oscilloscope~eight
bits or 0.4%! is too low for some of the data analysis, nota-
bly the Lyapunov exponent calculation. In order to improve
the resolution of the data sets and still have the large number
of points needed to analyze data in high dimensions, the
oscilloscope is set to sample the data atf s510 MHz and the
entire 106 sample memory is used. This rate is 200 times
higher than the 60-kHz relaxation oscillations of the dynam-
ics ensuring that the detailed evolution of the signal is cap-
tured and aliasing does not occur. Recall that the sampling
rate f s must be at least twice the highest frequency found in
the signal to prevent aliasing.

For the calculations where resolution was not critical, the
data sets are downsampled by a factor of eight resulting in an
effective sampling rate of 1.25 MHz or a sampling period of
800 ns. This rate is still 20 times higher than the relaxation
oscillation rate, and so the first minimum of the mutual in-
formation is found at four or five samples or one-quarter of
the relaxation oscillation period. Note that in downsampling,
the broadband noise level~due to high-dimensional dynam-
ics! is neither increased or decreased. This is important when
one is trying to determine the noise level using the global
false neighbors algorithm.

When the eight-bit resolution is insufficient, the raw data
sets were interpolated using a digital linear filter. This filter is
designed to remove frequencies from 500 kHz to the Nyquist
frequencyf s/255 MHz and pass all frequencies below 500
kHz. Since the signal due to the dynamics alone has no fre-
quency as high as 500 kHz, no dynamical information is lost.

On the other hand, the quantization noise, which is as-
sumed to be white~equally distributed over all frequencies!
up to the Nyquist frequency, is cut down by 90%. Thus, by
reducing the quantization noise or error by a factor of 10, we
have gained slightly more than three bits of resolution.

The digital filter is implemented by performing a discrete
convolution of the data with the impulse response, which is
the inverse Fourier transform of the filter frequency re-
sponse. A Hamming window is applied to the impulse re-
sponse to reduce frequency anomalies at the cutoff frequency
~Gibb’s phenomenon! @5#. This impulse response is chosen to
be symmetric in time so the filter exhibits linear phase; i.e., it
will cause no relative phase shifts at different frequencies.

After performing the digital convolution, the data are
downsampled from the original 10 MHz to 1.25 MHz. Since
the filter has already removed frequencies above 500 kHz, no
aliasing occurs and the data have 11 bits of resolution.

III. NONLINEAR ANALYSIS OF THE DATA

In the analysis of the chaotic laser data we employ several
ideas that are covered in detail in Ref.@2#, but that we will
discuss here for completeness. The primary goal of our
analysis is to establish adE-dimensional space of data vec-
tors whose components are the measured total intensity of
observed infrared lightI (t) and its time delays.dE is an
integer. If the infrared light is sampled everyts in time, then
we wish to form thedE-dimensional data vectors

y~n!5@ I ~n!,I ~n1T!,I ~n12T!,...,I „n1~dE21!T…#,
~1!

where I (n)5I (t01nts) andT is an integer multiple of the
sampling timets . We need a method for choosing the time
delayT and the required integer embedding dimensiondE .
These vectorsy(n) then constitute our data and provide us
with the reconstructed phase space of the dynamical system.
It is in this dE-dimensional space that we evaluate all the
relevant dynamical quantities of the laser.

A. Mutual information

To choose the time delayT we utilize the nonlinear ‘‘cor-
relation’’ function of average mutual information. This an-
swers the question: how much, in bits, does one learn on the
average about a set of measurementsA5$aj% from a set of
measurementsB5$bn%. Here the two sets of measurements
are the set of intensitiesI (n) at timesn51,2,...,N and the
set of intensitiesI (n1T) at timesn51,2,...,N. The mutual
information between these two sets of measurements is

log2F P~aj ,bn!

P~aj !P~bn!
G , ~2!

whereP(•,•) is the joint probability distribution for the two
measurementsI (n) and I (n1T). The quantityP(•) is the
individual probability distribution for either of the measure-
ments. The correlation function, which is theaverage mutual
informationover all measurements, is

T ~T!5 (
aj ,bn

PAB~aj ,bn!log2F PAB~aj ,bn!

PA~aj !PB~bn!
G , ~3!

where theaj are theI (n) and thebn are theI (n1T). The
quantityI (T) gives us a quantitative, nonlinear measure of
the independence of the measurementsI (n) and I (n1T). If
these are completely independent in a nonlinear fashion, then
PAB(aj ,bn)5PA(aj )PB(bn), and the mutual information is
zero. IfT50, then the average mutual information is just the
entropy of the set of measurements. We seek a value ofT at
which the measurements are somewhat independent, but not
totally independent. In the latter case they would not serve
well as coordinates in thedE-dimensional state space of the
vectorsy(n). If T were quite large the measurements would
be independent, since the source of the signal is chaotic and
thus unstable everywhere in state space. This means that for
largeT the measurementsI (n) and I (n1T) are essentially
random with respect to each other. ForT too small, not
enough time has passed for the measurements to be some-
what independent of each other. We utilize theprescription
of choosing that time lagT, which is the first minimum of the
average mutual information@6,2# with which to construct our
vectors y(n). This prescription gives us an intermediate
value ofT to use in forming the vectorsy(n).

For data of type I chaos, we display in Fig. 1 a sample
time series from our observations. The original sampling
time for these data was 100 ns. We then downsampled this
data by a factor of eight because the original data were over-
sampled; this was done after the preparation of the data as
described in Sec. II B above. The effective sampling time for
all the data we consider in this paper is thents5800 ns.
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Figure 1 shows 6000 data points out of the 125 000 col-
lected. The Fourier power spectrum of these data is in Fig. 2,
and we can see broad spectral features near 60 kHz and
apparent harmonics of that frequency. The broadband nature
of the spectrum is characteristic of chaotic motion. Figure 3
shows the average mutual information evaluated from these
data. We see that the average mutual information has its first
minimum nearTts55ts54 ms. This was the location of the
first minimum in I (T) for each of the type I data sets we
examined.

For data from a type II chaos trace, the time series is
shown in Fig. 4 and the Fourier spectrum in Fig. 5.ts5800
ns again. The spectral features seen in type I chaos are
washed out with other spectral ‘‘peaks’’ visible in these data.
Once again we evaluated the average mutual information and
see a typical result in Fig. 6 from one of our data sets we
examined. The first minimum forI (T) is again nearT55
for each of the type II data sets. Here it was atT54.

The distinction between the type I and the type II data
comes when we examine another characteristic of the sig-
nals: the false nearest neighbors.

It is important to restate that this choice, or any choice, of
T is a prescription. Mutual information should give a value
for T that is indicative of the relevant times for nonlinear
processes to manifest themselves, but a cautious consumer of
the methods we are using will investigate all results for a
selection ofT values around the first minimum of the aver-
age mutual information. We have done so in each of the
computations we report as we go along and found the precise
value ofT not to be important.T61, say, would do as well.

B. False nearest neighbors

In order to determine the required embedding dimension
dE to use in the data vectorsy(n) we employ a statistic about

FIG. 1. A typical time trace for type I chaos. The sampling time
is ts5800 ns. 6000 points out of the 125 000 observed are dis-
played. The laser was operating with three infrared cavity modes all
polarized parallel to each other.

FIG. 2. The Fourier power spectrum of the type I chaos seen in
Fig. 1. There is a broad peak in the spectrum near 60 kHz and along
with other broad spectral features.

FIG. 3. The average mutual informationI (T) for type I chaos.
125 000 samples were used. A clear first minimum atT55 corre-
sponding to 4ms is seen.

FIG. 4. A typical time trace for type II chaos. The sampling time
is ts5800 ns. 6000 points out of the 125 000 observed are dis-
played. The laser was operating with three infrared cavity modes
where two are polarized parallel to each other and the other is
polarized perpendicular to the first two.

53 443NONLINEAR-TIME-SERIES ANALYSIS OF CHAOTIC LASER . . .



these data known as false nearest neighbors@7#. The con-
struction of thedE-dimensional data vectors is purely geo-
metric once a time delayT has been chosen. One is seeking
a multivariate space in which the orbitsy(n) do not overlap
because of projection from a higher dimension. The main
idea is that if the data come from a system governed by
autonomous differential equations or discrete time maps with
time-independent parameters, then orbits cannot cross each
other. If they appear to cross, it is because we are viewing
them in a dimension that is too small or that is smaller than
the number of active degrees of freedom in the source of our
observations.

To establish whether the space has become big enough we
look at each pointy(n) and its nearest neighboryNN(n) in
dimensiond. The time indexk associated withyNN(n)5y(k)
need bear little resemblance to the time indexn of the data
point we are examining. As data fold back on themselves in
dissipative systems, the neighborhood ofy(n) may be popu-

lated by points such asyNN(n) of quite different time index.
Now we ask what happens to the distance betweeny(n) as
seen in dimensiond11 where it is the vector

y~n!5„I ~n!,I ~n1T!,...,I ~n1Td!…, ~4!

and the vectoryNN(n) in dimensiond11, where it becomes

yNN~n!5y~k!5„I ~k!,I ~k1T!,...,I ~k1Td!…. ~5!

If the distance in dimensiond11 is large, we label
yNN(n) a false nearest neighborof y(n). Whend becomes
large enough, the number of false neighbors will go to zero.
At that dimension the attractor is unfolded in the coordinate
system defined by our choice of time delayT. Now the idea
of ‘‘large’’ distances requires some threshold for deciding
that a nearest neighboryNN is false. The choice of false
neighbor turns out to be independent of this threshold over a
wide range of choices for its value@7#.

For our type I data the percentage of false nearest neigh-
bors is shown in Fig. 7 for one of our data sets. The other
data sets produce quite similar results. The interpretation of
this is quite clear: the attractor associated with type I chaos is
captured in a low-dimensional space withdE'5. Our analy-
sis of type II chaos yields quite a different result. We show in
Fig. 8 the false nearest neighbors for 4<dE<8 for data sets
of type I and type II. We see that the percentage of global
false nearest neighbors for type I chaos falls to zero atdE57.
The percentage of false nearest neighbors does not fall to
zero for any dimension for the type II data, and this indicates
the presence of a high-dimensional noise in these data. We
note that when the chaos is type II, the infrared light is ac-
companied by a large amount of green light associated with
the conversion of infrared photons in the KTP crystal.

FIG. 5. The Fourier power spectrum of the type II chaos seen in
Fig. 4. The broad peak near 60 kHz seen in type I chaos has been
further broadened.

FIG. 6. The average mutual informationI (T) for type II chaos.
125 000 samples were used. A clear first minimum atT54 corre-
sponding to 3.2ms is seen.

FIG. 7. The percentage of global false nearest neighbors for
both type I~solid symbols! and type II chaos~open symbols!. For
type I chaos we usedT55 for the state space reconstruction while
for type II, T54. Both operating conditions show some noise, but
the levels of residual false neighbors is much higher in type II chaos
where the green production is substantially larger.
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C. Local false nearest neighbors

The integer dimensiondE evaluated above tells us the
global dimension required to unfold the attractor from its
projection on the observation axisI (n). The local dimension
dL of the dynamics may be less than or equal todE . If
dE.dL , it means that the particular coordinate system,
namely, that of the time delay vectorsy(n), twists it about so
that unfolding the attractor from the observations requires
additional dimensions to ‘‘untwist it.’’ The local or dynami-
cal dimension is the same in any coordinate system and rep-
resents the integer number of differential equations required
to describe the local evolution of the system.

We use the method oflocal false nearest neighbors@8#
that starts with a working dimensiondW>dE with dE as
determined by the global false-neighbors algorithm de-
scribed above. All distances between pointsy(n) are com-
puted indW . Now we choose the local dimensiond starting
with d51 and proceeding tod5dW asking at each dimen-
sion how well we can predict the evolution of a cluster of
neighbors abouty(n) for eachn51,2,...,N on the attractor.
In a dimensiond, which is lower than the true local dimen-
sion dL , there will be points in a neighborhood which got
there by projection and not by a dynamical rule. The ability
to predict where these points go will be very bad. As we
increased up todL our ability to predict will improve until it
levels off and becomes independent of the estimated local
dimensiond as well as the number of neighbors we use to
define a neighborhood whose evolution we predict. In di-
mensionsdL<d<dW predictability should become indepen-
dent ofd as we have enough dynamical degrees of freedom
already to capture the evolution of the data. The quality of
prediction is determined by how far ahead we wish to pre-
dict, and by how large an error we tolerate until we say the
prediction has failed.

To be more precise about the details of the method of
local false nearest neighbors we note that what is involved in
the prediction is a local map from one neighborhood of the
attractor to another neighborhood of the attractor. The mem-
bers of a neighborhood are determined by distances evalu-
ated in a dimensiondW>dE with dE the global embedding

dimension determined by the false-nearest-neighbors
method. This assures that all neighbors are true neighbors.
Then in a neighborhood, we ask if a local model in dimen-
sion d<dW accurately relating the neighbors of the point
y(n) to the neighbors ofy(n11) can be made. This local
model is a rule that givesy(n11) in terms of a polynomial
constructed out of the vectorsy(n). The coefficients in this
polynomial rule are determined by a least-squares fit mini-
mizing the residual errors in the rule that takesy(n)
→y(n11). This rule is used to predict ahead a timeT equal
to the mutual information time determined before. If, in pre-
dicting ahead this amount of time, the error between the
prediction and the known observed data point is larger than a
certain fractionb of the attractor size, we deem it a bad
prediction. The fraction of bad predictionsPK is collected as
we move over the whole attractor, and this is displayed
against the dimensiond of the local model for various
choices of the number of neighborsNB of the pointsy(n) on
the orbit. We seek a dimension where the model, represented
by its fraction of bad predictions, becomes independent of
the local dimension and the number of neighbors used to
establish the model. Thed at which this occurs determines
the dimensiondL of a good local model. As one changes the
fractionb of the attractor size that defines the allowed error
sphere or changes the time that one predicts ahead, the frac-
tion of bad predictionsPK will move up and down in abso-
lute value. The dimensiondL at whichPK becomes indepen-
dent ofd andNB will remain the same. As it isdL that one
wishes to extract from the local false-nearest-neighbors sta-
tistic the absolute size ofPK is of no special significance.

In all evaluations of local false nearest neighbors we re-
port here we chosedW515 andb50.37. The ‘‘size’’ of the
attractor was chose as the root-mean-square variation of the
intensity valuesI (n) about their mean over the whole data
set. Other natural choices for the extent of the overall attrac-
tor in phase space lead to variations in the absolute level of
PK but not to changes in the choice ofdL . In our computa-
tions we always choseNB510, 25, 50, and 75 as illustrative
values to assure ourselves thatPK had become independent
of NB as well as of the dimensiond. In Fig. 9~a! we show the
fraction of bad predictionsPK for type I chaos when we
predict forward in time. ClearlyPK becomes independent of
the local dimensiond and of NB at dL57. If we predict
backward in time, as shown in Fig. 9~b!, we draw the same
conclusion. This is consistent with the behavior of type I
chaos seen in Fig. 8 where the number of global false nearest
neighbors falls to zero atdE57, then remains there. Local
false nearest neighbors are much more sensitive to fine struc-
ture on the attractor than global false neighbors. The latter
presents a kind of global average over all regions of phase
space, so regions that exhibit the highest dimensional struc-
ture may occupy only a small percentage of the total phase
space. This small percentage of space regains proper impor-
tance when local quantities are computed, as we are doing
now.

In Figs. 10~a! and 10~b! we show the result of the same
calculation for type II chaos. Note that thePK values are
much higher for type II chaos, reflecting the presence of
high-dimensional noise in the data. This noise is not of such
high amplitude as to ruin completely the possibility of mak-
ing local predictions, but it certainly enormously erodes the

FIG. 8. An enlargement of the global false neighbors statistic to
emphasize the residual level of false neighbors for type II chaos.
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quality of those predictions. The level of bad predictions for
the same parameter settings for both types of chaos leads to
about 20% bad predictions for type I chaos and nearly 60%
bad predictions for type II chaos. At the same time there is a
clear indication that the dynamical dimension of the system
giving rise to the observations isdL57 in each case. This is
a very nice result in that it shows that low levels of noise do
not impede our ability to identify the number of differential
equations required to describe the data.

Seven degrees of freedom could well have been antici-
pated from physical reasoning. We have three modes of the
infrared field each of which has a creation and an annihila-
tion operator describing it. So we have six degrees of free-
dom from the electromagnetic field. The green field is sig-
nificantly damped by its not being a cavity mode, so
associated with that field we should expect some large and

negative Lyapunov exponents. Finally we have the atomic
degrees of freedom in the active medium. We anticipate a
single gain equation associated with the population inversion
of the level responsible for the principal transition near 1.064
mm. This will give us the seven degrees of freedom seen in
the experimental data.

If we provide more degrees of freedom in the form of
differential equations for Heisenberg operators or density
matrix elements, we expect to find large, negative Lyapunov
exponents associated with the damping of these quantities.
The local false nearest neighbors results tells us the number
of ‘‘active’’ degrees of freedom out of the many we could

FIG. 9. Local false nearest neighbors for type I chaos using
T55 and 120 000 points from the time series. The computation
done~a! forward and then~b! backward on the data. There is a clear
indication that atdE57 the predictability of these data has become
independent of the number of neighbors and the embedding dimen-
sion. b, here set to 0.37, defines the size of the error ball within
which a good prediction must fall afterT steps forward~or back-
ward! in predicting. The error ball isb times the overall size of the
attractor. See@8# for more details on this parameter choice in this
algorithm.

FIG. 10. Local false nearest neighbors for type II chaos using
T54 and 120 000 points from the time series. The computation
done~a! forward and then~b! backward on the data. There is a clear
indication that atdE57 the predictability of these data has become
independent of the number of neighbors and the embedding dimen-
sion. Note the much higher percentage ofunpredictablepoints on
the attractor here compared to type I chaos. The level of unpredict-
ability for d>dL is nearly three times that seen for type I chaos.
This is a direct result of the higher noise level in type II chaos.
Nonetheless the local false-nearest-neighbor statistic is seen to be
quite robust against noise.b, here set to 0.37, defines the size of the
error ball within which a good prediction must fall afterT steps
forward ~or backward! in predicting. The error ball isb times the
overall size of the attractor. See@8# for more details on this param-
eter choice in this algorithm.
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anticipate entering this problem. ‘‘Active degrees of free-
dom’’ is best defined by the example we are discussing now:
namely, those dynamical variables that are not substantially
removed from the dynamical description of the physical situ-
ation by damping or losses. Once again those variables that
are suppressed by the losses would show up in exhibiting
large, but negative, Lyapunov exponents were we to evaluate
them in dimensions larger than that indicated by local false
neighbors, heredL57.

D. Local and global Lyapunov exponents

The evolution of small perturbations to an observed orbit
y(n) is governed by the linearized equations of motion,
whatever they may be. As we do not know them from look-
ing at the data alone, we assume there is an underlying non-
linear processy(n)→y(n11)5F„y(n)… that moves the sys-
tem ahead one sampling timets . A small perturbationw(n)
to the orbity(n) satisfies

y~n11!1w~n11!5F„y~n!1w~n!…,

w~n11!5DF„y~n!…•w~n!1O~w2!, ~6!

where the Jacobian matrix is

DF~x!ab5
]Fa~x!

]xb
, ~7!

anda,b51,2,...,dL .
The eventual growth or shrinkage of the perturbation un-

der this linear evolution rule is determined by the eigenval-
uesela(x,L) of the Oseledec matrix@2,9#

O ~x,L !5@„DFL~x!…T•DFL~x!#1/2L. ~8!

The matrixDFL~x! is the composition ofL Jacobian matrices
along the observed orbity(n) starting at locationx. As
L→`, the la~x,L!→la , which are the usual global
Lyapunov exponents. Thela are independent ofx in the
basin of attraction of the attractor. They are invariants of the
dynamics and characterize it. They are also independent of
the coordinate system in which they are evaluated. To deter-
mine thela reliably we need to know the value ofdL as this
is the dimension of the dynamics. If we work in a space with
d.dL , thend2dL of the eigenvalues of the Oseledec matrix
will be false, and we need a reliable rule to establish which
are true and which are not. Similarly if we work ind,dL ,
we will not have unfolded the local dynamics in such a way
that would allow the correct evaluation of theDF~x!, and
thus thela would be in error.

Using dE5dL57, we have computed thela~x,L! for a
large number of starting locationx on the attractor, then de-
termined the value of these quantities as a function of the
number of steps we look ahead of these starting points. We
used 5000 starting points and carried the calculation out
2048 steps ahead of each of these locations. This allows us to
define an average local Lyapunov exponent.

l̄a~L !5
1

NS
(
k51

NS

la„y~k!,L…, ~9!

for NS starting locationsy(k). These quantities are shown in
Fig. 11 and then in an enlarged view in Fig. 12 for type I
chaos. There are clearly two positive Lyapunov exponents,
one zero exponent, which is characteristic of the dynamics of
differential equations@2#, and four negative exponents. Their
sum is negative, as it should be, and for this sample of type
I chaos that sum is approximately21.28 in units of inverse
ts . The behavior of thel̄a(L) as seen here is quite typical of
average local Lyapunov exponents as seen in model dynami-
cal systems@2#. The largest exponent starts high compared to

FIG. 11. The average local Lyapunov exponents for our sample
of type I chaos. A global and a local dimension ofdE5dL57 has
been used, and 120 000 points from the time series were utilized.
There are two positive Lyapunov exponents and one zero exponent
indicating that differential equations describe the underlying dy-
namics. The Lyapunov dimensionDL for this is about 4.9560.1
telling us that the last large, negative exponent is not very important
dynamically. This is consistent with the fall of the global false near-
est neighbors, shown in Fig. 7, to nearly zero by dimension 5. The
attractor, which is essentially five dimensional, is twisted signifi-
cantly in the time delay coordinate system provided by the vectors
y(n), and it requires seven dimensions to completely unfold its
intersections with itself.

FIG. 12. A blowup of the average local Lyapunov exponents
shown in Fig. 11. The zero exponent and the two positive exponents
are much clearer in this view of the data.
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its value for largeL, while the negative exponents start low
and rise. The zero exponent begins negative and rises toward
zero or rides very close to zero for allL. Each of the average
local exponents shown here changes sign when the eigenval-
ues of the Oseledec matrix is evaluated backward in time.
This is as it should be for real exponents, and this supports
our choice ofdE5dL57 from local false neighbors.

The same calculations were done on our data set for type
II chaos. From the outset we must recall that when a data set
is noisy, the evaluation of Lyapunov exponents may well be
uncertain@2#. The origin of the uncertainty is in the severely
ill conditioned nature of the Oseledec matrix, which serves
to amplify any numerical errors in the individual Jacobians
composing it. With noise the determination of neighboring
distances and the local map from which we read off the
Jacobian are sure to lead to small errors in each Jacobian.
This will lead to real uncertainties in the Lyapunov expo-
nents, especially the negative exponents@2#.

Nonetheless, we have evaluated the average local
Lyapunov exponents for these data, and in Fig. 13 we present
the results of this calculation. Figure 14 shows an enlarge-
ment of the average exponents for large numbers of steps
along the trajectory after a perturbation to the known orbit.
From these figures we see that the largest exponent is about
twice that of the largest type I exponent. This would lead
immediately to increased unpredictability, as we saw in the
evaluation of local false nearest neighbors. Also we see three
positive exponents, which would be connected to the appar-
ent inability to control the type II chaos with the methods
that have been tried@3,4#. It is reassuring that one of the
exponents is zero, so we again have a set of differential
equations describing the source of these data.

A check of our calculations is presented in Table I where
we display the values of the average local Lyapunov expo-
nents evaluated after 2048 steps along the attractor following
a perturbation. The exponents forward and backward are pre-
sented for each of the types of chaos we consider. If the
exponents are true, then their signs should reverse when time
is reversed. Within errors commensurate with the experimen-

tal resolution, this reversal is seen to be quite accurate. We
also note that the largest Lyapunov exponents for type II
chaos is nearly 3 times that for type I chaos. The substan-
tially greater unpredictability of type II chaos is quantified by
this.

IV. PREDICTING IN RECONSTRUCTED PHASE SPACE

Even without knowledge of the dynamical equations for
the laser system we can use the information we have ac-
quired so far to make predictive models for the laser inten-
sity evolution. The method@2# utilizes the compactness of
the attractor iny(n) space by noting that we have knowledge
of the evolution of whole phase-space neighborhoods into
whole neighborhoods later in time. We can use this to make
local models of this evolution and then use these models as
interpolating rules for the evolution of new phase-space
points near the attractor. We use only local polynomial mod-
els although other basis sets than polynomials are certainly
quite useful. Indeed, in this work we use only local linear
models as we have substantial amount of data and thus good
coverage of the attractor; namely, every neighborhood is
rather well populated.

The idea is that locally on the attractor we find theNB
neighborsy(r )(n); r51,2,...NB of each pointy(n) and make

FIG. 13. The average local Lyapunov exponents for our sample
of type II chaos. A global and a local dimension ofdE5dL57 have
been used, and 120 000 points from the time series were utilized.
There are three positive Lyapunov exponents and one zero expo-
nent, indicating that differential equations describe the underlying
dynamics.

FIG. 14. A blowup of the average local Lyapunov exponents
shown in Fig. 13. The zero exponent and the three positive expo-
nents are much clearer in this view of the data.

TABLE I. Average local Lyapunov exponents for laser chaos.

Average Lyapunov exponents atL52048
dE57; dL57

Type I chaos Type II chaos
Forward Backward Forward Backward

0.080 20.089 0.244 20.271
0.041 20.043 0.172 20.188
0.008 20.013 0.091 20.113
20.033 0.029 0.0069 20.0017
20.102 0.096 20.104 0.091
20.278 0.264 20.298 0.274
21.017 1.020 20.788 0.733
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the local linear modely(r ;n11)5An1Bn•y
(r )(n) where

y(r ;n11) is the point to whichy(r )(n) goes in one time
step. The coefficientsAn andBn are determined by minimiz-
ing at each time locationn

(
r50

NB

uy~r ;n11!2An2Bn•y
~r !~n!u2, ~10!

wherer50 meansy(n) itself andy(n11). When we have a
new pointz(k) on or near the attractor, we seek the nearest-
neighbor y(Q) among all the data in the set we used to
determine theAn and theBn . The predicted pointz(k11) is
then

z~k11!'AQ1BQ•z~k!. ~11!

This works remarkably accurately within the limits of pre-
diction dictated by the largest Lyapunov exponentl1. When
we try to predict beyond the instability horizon, that is for
times much greater than

ts
l1

, ~12!

our prediction should rapidly lose accuracy.
In Fig. 15 we show an example of this prediction tech-

nique for type I chaos based on a total data set of 60 000
points. 40 000 points were used to determine the local poly-
nomial coefficientsAn andBn , then predictions were made
10 steps ahead from the pointn545 000 to the point
n555 000. The results for pointsn545 500 are shown in the
figure. The predictions are shown as solid symbols while the
observed data are shown as the solid line. In units ofts the

largest Lyapunov exponent is approximatelyl1'0.08, so we
should be able to make accurate predictions out to twelve or
so steps beyond any starting location on the attractor. The
computations reported in Fig. 15 support this quite well. In
Fig. 16 we show the result of the same calculation but now
predicting ahead 50 steps instead of the 10 just shown. There
are clearly regions where the predictability is rather good,
but also regions where the method starts to fail quite visibly.
Figure 17 shows a region where the predictability remains
quite good, while Fig. 18 is a region where predictability is
quite reduced for this large time step ahead of a known point.
These results are consistent with the wide variation oflocal

FIG. 15. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt510ts . The largest global Lyapunov exponent
is about 112 in units of ts , so we do not expect to be able to accu-
rately predict ahead much more than this amount.

FIG. 16. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt550ts . The predictions are much worse than
for Dt510ts since we are trying to predict beyondts/l1 .

FIG. 17. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt550ts . This is a region of phase space where
the predictions are much better than would be expected from the
values of theglobal Lyapunov exponents.
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Lyapunov exponents on an attractor@2#. Pushing this even
further we show in Fig. 19 the result of trying to predict
ahead 100 steps beyond a new point near the attractor.
Clearly predictability has been reduced substantially, as it
should be reduced in a chaotic system.

We have also used this method for moving about the at-
tractor for type II chaotic data. In Fig. 20 we display the
result of learning on 40 000 points of this data set and then
predicting ahead from point 45 000. The predictions ten steps
ahead compared to the observed values forI (t) are shown in
this figure for time steps 55 000–57 500. In Fig. 21 we have

enlarged the region between steps 55 000 and 55 500 so one
may see that the quality of these predictions is not as good as
we saw in working with type I data. This is as it should be.
Figure 22 is another enlargement of the type II predictions
making much the same point about the quality of the predic-
tions. Finally in Fig. 23 we have predictions 50 time steps
ahead for type II chaos. Again 40 000 points were used for
learning the local linear maps used for prediction. The qual-
ity of the predictions here has become quite poor.

V. A MODEL FOR THE PROCESS

The salient features of our data and data analysis can be
summarized as follows:~i! There are only a few modes of
infrared light in the laser cavity. Indeed, the number in this
experiment was determined to be three by observing the in-
frared light in a Fabry-Pe´rot interferometer.~ii ! These infra-
red modes with wavelengthl'1.064mm couple through the
KTP crystal to green light at wavelengthl'0.532mm. The

FIG. 18. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt550ts . This is a region of phase space where
the predictions are much worse than when we tried to predict ahead
only Dt510ts .

FIG. 19. Predicted and observed total infrared intensity for type
I chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt5100ts . The predictions are much worse than
above since we are trying to predict quite a bit beyondts/l1 .

FIG. 20. Predicted and observed total infrared intensity for type
II chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt510ts .

FIG. 21. An enlargement of the predictions forDt510ts in type
II chaos.
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amount of green light depends on the polarization of the
infrared modes. If all modes are polarized parallel to each
other, the production is small. If one mode is polarized per-
pendicular to the other two, the production of green light is
strongly enhanced.~iii ! When green light is produced, it exits
the cavity through one of the mirrors, which is transmitting
at that wavelength. The same mirror reflects the infrared
light, so green is not a cavity mode.~iv! The infrared pro-
duction in the active medium is pumped by a diode laser at
l'810 nm.

The model we suggest neglects the detailed dynamics of
the active medium, treating it as a continuum of two-level
quantum systems distributed over the length of the laser cav-
ity. Each two-level system has an upper leveluu(z)& and a
lower levelu l (z)& with energy difference\vA . The dynami-
cal variables for the atomic levels are the usual Pauli spin
operatorsS3(z,t) andS6(z,t). They satisfy

@S3~z!,S6~z8!#562S6~z!d~z2z8! ~13!

and

@S1 ,S2~z8!#5S3~z!d~z2z8!, ~14!

at equal times. We have annihilation and creation operators
am
† (t) and am(t) for the M infrared modes with the usual

equal-time Bose commutation relations

@am
† ,an#5dmn . ~15!

The indicesm or n refer both to the mode and to the polar-
ization. Green light is treated as a scalar field with creation
and annihilation operatorsg†(t) andg(t) satisfying

@g†,g#51, ~16!

at equal times. Of course, the green light has polarization and
probably more than a single mode, but these were not mea-
sured in our experiment, so we will not address those prop-
erties of the green light. Further, we shall see that the green
modes are damped out so strongly relative to the infrared
that they trail or are fully determined by the infrared dynam-
ics. The green modes play a ‘‘nondynamical’’ role in these
experiments.

The loss of infrared light in modei will be treated in a
conventional manner as a coupling to a ‘‘reservoir’’ of radia-
tion modesc ik

† and cik , which are also bosons. The green
loss is modeled in the same way using radiation modesc gk

†

andcgk with a higher coupling constant indicating a higher
loss rate. The loss mechanisms for the atomic levels, essen-
tially the electromagnetic modes responsible for spontaneous
emission from the upper leveluu(z)&, are labeledbk(z) and
b k
†(z). These modes of the electromagnetic field serve solely

to describe the loss mechanism as seen in the lasing system.
The Hamiltonian for the system is written as

H5(
i51

M

\v iai
†ai1\vgg

†g1 i\ (
i , j51

M

@k i j ai
†aj

†g2k i j* g
†ajai #1(

i51

M

(
k

@\V ikcik
† cik1g ik* aicik

† 1g ikcikai
†#

1(
k

@\Vgkcgk
† cgk1ggk* gcgk

† 1ggkcgkg
†#1E

0

LF\VA

2
S3~z!1 i\(

i51

M

@s iS1~z!ai sin kiz2s i* ai
†S2~z!sin kiz#

1 i\(
k

@Gk~z!S1~z!bk~z!2G j* ~z!bk
†~z!S2~z!1\vk

sp~z!bk
†~z!bk~z!#Gdz. ~17!

FIG. 23. Predicted and observed total infrared intensity for type
II chaos. The predictions are made using local linear maps in the
reconstructed phase space of the attractor. The coefficients for the
local maps are learned from the first 40 000 points of the data set,
and then predictions are made starting with point 45 000. All pre-
dictions are made indE5dL57. This figure shows the result of
predicting aheadDt550ts .

FIG. 22. An enlargement of the predictions forDt510ts in type
II chaos.
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In this expression, thev i are the frequencies associated
with the infrared modes;vg is the green frequency:
vg'2v i . V ik andVgk are the frequencies of the reservoir
modes coupled to the infrared modei and green mode, re-
spectively, andv j

sp(z) are the reservoir frequencies for the
atomic loss mechanism at locationz. The nonlinear coupling
k i j comes from the second-order susceptibility of the KTP
crystal. It is dependent on the polarizations of the infrared
photons. Theg ik tell us the strength of the coupling of the
infrared modes to their reservoirs, theggk is the coupling of
the green mode to its reservoir, andGk(z) is the coupling of
the atomic levels to their reservoirs at locationz. There is no
pumping of the two-level system included in this model
Hamiltonian. It is added to the Heisenberg equation of mo-
tion for S3(z) as a constant rate of population inversion.

From the Hamiltonian we determine the Heisenberg equa-
tions of motion for the various operators and perform stan-
dard reservoir approximations@10# to get a model that can be
integrated numerically. Using this model we have success-
fully reproduced type I chaos and this will be discussed in a
future paper@14#.

VI. SUMMARY AND CONCLUSIONS

We have determined the properties of an Nd:YAG laser
with an intracavity KTP crystal when the laser is in an oper-
ating mode producing chaotic fluctuations of the total output
infrared intensity. While this chaotic intensity has been stud-
ied in the past@1# we have brought to the analysis several
tools not previously applied to this problem:~i! average mu-
tual information,~ii ! global and local false nearest neighbors,
and~iii ! determination of the full spectrum of local and glo-
bal Lyapunov exponents.

Using these new tools we have been able to start from the
observation of a scalar—total infrared light intensityI (t)—
and deduce the number of active degrees of freedom in the
laser cavity, evaluate the spectrum of Lyapunov exponents,
and make ‘‘black box’’ predictive models that use no physics
associated with the laser but, nonetheless, allow accurate pre-
diction on or near the observed attractor. We have also sug-
gested a physical quantum mechanical model for which nu-
merical studies are still being performed. We anticipate that
the resulting equations contain all of the features, including
the nonlinear characteristics, of our data.

In laser operation our system has exhibited two general
classes of dynamical activity. Each has three infrared modes
lasing in the cavity. For the chaotic operating state we have
labeled type I chaos all three of the infrared modes are po-
larized parallel to each other. In this state the production of
green light is small—less than 1mW in our cavity—and the
quantum noise, as revealed by global false nearest neighbors,
is small. This means that the macroscopic dynamical system
involving infrared intensity and perhaps gain is well de-
scribed by a few differential equations with some small as-
sociated noise terms. In the operating state we have called
type II chaos there are also three modes of infrared light
though two are parallel polarized and one is polarized per-
pendicular to the other two. The production of green light is
much stronger—about 25mW—and the influence of noise,
as revealed by global false nearest neighbors is much larger
than for type I chaos.

Our emphases in this paper have been twofold: First, we
have been concerned with the application of a general pro-
gram of nonlinear time series analysis@2# to the specific
problem of the dynamics of a certain solid state laser system.
The description of that set of tools as they are used in a
practical setting can be no better given than using our work
here as an example. Second, we have been interested in the
properties of this specific laser system and in determining
characteristics that describe its behavior. In that regard the
local and global Lyapunov exponents are important aspects
of the dynamics of this laser source. In fact, by establishing
that type II chaos has both high false neighbors at high em-
bedding dimension and correspondingly a higher value for
the largest positive global Lyapunov exponent, we have
found that type II chaos is quantitatively less predictable and,
consistent with earlier experience@3,4# less controllable than
type I chaos. This provides a consistent picture for these
operating conditions for this laser system.

The dynamics of the laser has been described by coupled
macroscopic differential equations for the intensitiesI k(t) of
the individual infrared longitudinal modes and their corre-
sponding gainsGk(t) @1,11#

tc
dIk
dt

5FGk2a2egIk22e(
jÞk

m jkI j G I k , ~18!

t f
dGk

dt
5g2F11I k1b(

jÞk
I j GGk . ~19!

tc'0.2 ns is the cavity round trip time, andt f'240ms is the
fluorescence lifetime of the Nd31 ions. The cavity loss
a'0.01.g is the small signal gain related to the pump rate.b
is the cross-saturation parameter which we take to be the
same for all mode pairs and is somewhat less than unity for
this laser system. The efficiency of the nonlinear doubling
process is defined bye. For the KTP crystale'1025. g is a
geometric factor 0<g<1, which depends on the relative ori-
entation between the fast axes of the strongly birefringent
KTP and the very weakly birefringent Nd:YAG; it also de-
pends on the lengths of the crystals. The factorm jk accounts
for the change in geometry when the modesj and k have
varying polarizations. If the modes have the same polariza-
tion m jk5g, otherwisem jk512g. This factor determines
the relative amount of green light produced by second har-
monic versus sum frequency generation for different polar-
ization configurations of the laser modes. These equations
are macroscopic descriptions of the laser that do not account
for any noise sources.

The description of the laser system using these ‘‘classi-
cal’’ equations has been quite successful. The next task we
will pursue is to reconcile the quantum-mechanical equations
derived from the model above with these classical equations.
Clearly the operator equations contain more information
about the system: they deal with infrared mode amplitudes
rather than intensities, so phases are included, and they con-
tain both fluctuations associated with the quantum mechanics
of the operators and associated with the loss of green light
from the cavity.
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In part these effects will enlarge our understanding of the
sum frequency generation of green light in its semiclassical
description@12# as well as numerous interesting issues asso-
ciated with the classical-quantum correspondence@13# as ex-
hibited in this particular system.

All these are important effects, and our future work on
this system will now deal with numerical approximations to
the Heisenberg equations which are consistent with the ob-
served data as analyzed by our tools as well as establishing
in a quantitative way the role of the fluctuations we have
identified. Good values for all the relevant parameters such
as the green-infrared couplingsk i j and the damping rates
will be part of the tasks, and we shall return to this in our
next paper@14#.
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