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One-atom maser: Phase-sensitive measurements
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We reconsider a variant of the one-atom-maser setup in which the emerging atoms are probed for coherent
superpositions of the two Rydberg states of the maser transition. The statistical properties of the corresponding
detector clicks contain information about the temporal evolution of the phase of the quantized electromagnetic
field inside the resonator. We derive analytical expressions for certain statistical quantities, such as the mean
number of successive clicks of the same kind, or the atom-atom and the photon-photon correlation functions.
The latter are closely related if the photon-number distribution in steady state is dominated by a single narrow
peak.

PACS numbg(s): 84.40.1k, 03.65-w, 32.80—t, 42.50.Dv

[. INTRODUCTION sociated with the registration of a detector click imposes a
phase on the photon state, a phase that depends on which one
In standard one-atom-mas@AM) experimentg1], the  of the detectors has clicked. Predictions about the next atom
atoms enter the resonator in the upper one of the two Rydi0 come are sensitive to this phase and so the phase dynamics
berg states of the maser transition and the emerging atonf&n be tested experimentally.
are probed for being in either one of these two states. The In the present paper we reconsider the setup of Refs.
statistical properties of the emerging atoms, or rather of thé3—5] in which the phase of the quantized cavity field is
corresponding detector clicks, are determined experimentall ostselected. We are_lnterested in the s_ta'qsncal pr(_)pertles of
and then compared with the theoretical predictions. In thi he detector clicks, since the click statistics constitutes the

way, a certain regime of the OAM dynamics has been inves[emc’d_UCibIe experjmental data. In particular, we derive an
tigated thoroughly, viz., the regime that is relevant for the"’m""lyt'c"’lI expression for the mean number of successive

photon-number distribution in steady state and closely re9IICkS of the same kind. This quantity has been computed in

lated properties of the quantized electromagnetic field insid56fs'[3_5] with the aid of a Monte Carlo mEthOd' We find
the resonator. The agreement between the results of OAI\'ﬂerfeC.t agreement between those numen_cal results and_ the
experiments and the predictions of OAM the$2J has been analytical answer. The analytical expression tells us which
very satisfactory as yet aspects of the OAM dynamics enter this mean number, a

If one wishes, however, to test other aspects of the OAI\/r1ighly valuable insight that is not supplied by the Monte

dynamics, such as those that determine the shape of the mg2rlo computation. It turns out that, contrary to what was

ser line, the setup has to be modified so that the experiment Prm|sed in Refs[3-5], the said mean number does not

data become sensitive to the phase properties of the cavi ntain the sought information abou_t the phase dynamlgs.
field. Two possibilities are suggested: one imposes a phas erefore, we also study the correlations between emerging

either through the preparation of the entering atoms o 'tomls(or rqther between detector cligkshere this informa-
through the detection of the emerging atoms — the choice i on 1S av_allable. The uno_bservable photon-photon qorrela-
between a preselection or a postselection of the phase. T on function, who_se Fourier transform supplies us V.V'th the
first possibility is to pump the resonator with a controlled maser spectrum, Is related to the atom-atom correlatlo_n func-
phase by preparing the arriving atoms in a coherent superpi'—on‘ Wh'?h can be dete_rmlne_d expgrm_entally. We discuss
sition of the masing states. This setup is suffering from th he conditions under which this relation is close.

obvious drawback that the dynamics is changed and, amon Finally, we prgsent a brief OUtIOOk. on conceivable future
other things, the steady state is altered. This is clearly und fevelopments aimed at demonstrating that the atom-atom

sirable. The second, better, possibilit§—5] avoids such correlat?ons violate the I_Sell inequalipp]. Th? three-_atom
modifications of the dynamics inasmuch as the final detecgorrelatlons that are built up by the OAM interaction can

tion of the atoms is done differently, not their initial prepa- also be studied by the techniques used in this paper. In par-

ration. In this scheme, the detectors respond to coherent SngIar, one could systematicalll'y look for strong correlations
: f the Greenberger-Horne-Zeilinger typg.

perpositions of the atomic states rather than to the stated
themselves as in the standard OAM experiments. The
guantum-mechanical reduction of the photon state that is as- Il SETTING THE STAGE
The setup of the standard OAM experiments is schemati-
* Permanent address: Department of Theoretical Physics, Nationaklly recalled in Fig. (8). The atom arrives in the upper state

University of Mongolia, 210646 Ulaanbaatar, Mongolia. |A) of the maser transition, traverses the cavity, and is then
TAlso at Sektion Physik, Universitaiinchen, Theresienstrasse probed for its final state. If the atom is found to be still in
SZIIII, D-80333 Minchen, Germany. state|A), then no photon has been emitted in effect during
Also at Sektion Physik, Universitaliinchen, Am Coulombwall the interaction of the two-level atom with the photons in the

1, D-85748 Garching, Germany. resonator; if the atom is detected in the lower siBje how-
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o=[BXAl, o'=|AXB. (2.2
(@) /@) |A) According to well-known results of OAM theof@—11], the
o\ |_| net effect of the interaction is summarized in the transition
= \§> P betore P aia= SapSho o+ SgpSloro T+ SypSho
14) B +SgpSho, 2.3

where the sandwich operators

P e N e Sa=cog ¢ aa),
=/ L]

|I 7T/2 ll
hoon o] sin(¢+aa')
|A) |B) Sp=a' ——— (2.4
yaa
involve the accumulated Rabi angte
(<) (14) - 1B)) /v2 In the standard OAM setup of Fig(d) the observation of
|_| a click of the detector fofA) states implies a final photon
(*) state that is obtained by the state reduction
=T
1) (18 +1B)) /v2 P atter— Ap/ tr{Ap}, 2.5
; where we establish contact with the notational conventions
preparation : interaction : detection of Ref.[12] clicks. The linear operata is herein given by
FIG. 1. Schematic setups of one-atom-maser experiments. In the Ap= SAPSL X (2.6)

standard setugg), atoms are prepared in the upper stétg inter-
act with the photons in the resonator, and are then detectéd or Likewise, a click of thelB) detector is accompanied by
in the lower statdB). In the phase-sensitive set(p), the atoms
experience ar/2 pulse before reaching the detectors. This setup is P aier— Bp! tr{Bp} (2.7
equivalent to(c), where thew/2 pulse is regarded as part of the
detection device so that, in effect, the emerging atoms are probe‘(iiIth
for being in the superpositio *|B)/V2.

g perpositior$A) = [B))/\2 Bp=SypSL. 2.8

If the atoms are not observed, or the detector clicks are de-
liberately ignored[13], the change irp resulting from the
assage of one atom is

ever, then one photon has been added to the cavity field.
In the setup proposed in Ref8-5], which is depicted in
Fig. 1(b), the atom crosses a classical microwave field afte
exiting from the cavity and before reaching the detectors thal
discriminate between statgd) and |B). This microwave i T _
field is resonant with théAi—JB) trar|15ition. Its strength is SapSa+ SepSmp=(A+B-L)p. 29
such that it effects ar/2 pulse and so turnfA) into the  Since the atoms arrive randomly in an uncorrelated fashion
coherent superpositioffA)+|B))/\/2 and|B) into (|B)—|A))/  at a beam rate af, the photon state evolves according to the
V2 [8]. Inasmuch as the detectors probe fiéay and|B), a  master equation
more appropriate way of looking at the effect of the2
pulse states thafA)—|B))/\2 is turned into|A) and (|A)
+|BY)/\/2 into |B). The latter point of view regards the clas-
sical microwave field as part of the detection device. This - o
leads us to the picture of Fig(d), where the emerging atoms The symbolL denotes the famll]ar Liouville operator that
are probed for being in one of the two coherent superposimOdels the decay of the cavity field to the thermal state
tions (JA)¥|B))/v2. Of course, Fig. () refers to quite the

0
—p=[L+1(A+B=1)]p=Lp. (2.10

aTa
same experimental apparatus as does Kig). 1 p(t = 1 v (2.11
The statistical operatqr describes the photon state inside v+1\v+1 '
the resonator. It is a function of the ladder opera@rsnd ] o
a that create and annihilate quanta of the privileged mode ofvith » thermal photons. In explicit termg; reads
the quantized electromagnetic field. The two-level atom in- I
teracts resonantly with the photons in this mode. Prior to the Lp=—=(v+1)(a’ap—2apa’+pa'a)
interaction, the combined state of the atom-photon system is 2
r
P petore=|A)p (A|=pa'o, (2.2 - Ev(aan—ZanavaaaT), (2.12

with the atomic ladder operators whereby the photon lifetime equalsl'l/
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An analogous analysis can be performed for the phase
sensitive setup of Fig.(lh). When treating it in the spirit of (a)
Fig. 1(c), one recognizes immediately that the operatdrs —K KOO H—COH——HKHA—O—— K KOO KKK
and B of (2.6) and(2.8) are replaced by

Ap| 1 1
By | = 2SSkt SepSE) T 5 (SapSh+ SepS)). ®) n—1 times no X
(2.13 %-6-6-0 o
For these, Eq(2.9 is equally valid, and so is the master 7 O in succession

equation(2.10, of course.

Therefore the steady stg€>S) of the OAM, which obeys FIG. 2. (a) A sequence of events of two kinds, symbolized by
E(O)p(SS)ZO, is the same for both setups, the standard one dfirclesO and crosseX, consists of strings of successive events of
Fig. 1(a) and the phase sensitive one of Figh)Jand Xc). It just one kind(b) For each string ofi successiv® events there are

has the well-known forni9] n—1 strings with noX event and vice versa.
a'a if(oyn detector efficienci be effectivel i ifi
SS(ata) = p (O[T v rIT sir(@yn) etector efficiencies may be effectively zero in a specific
p= (a'a)=p (O)n_l B " n , calculation. For example, this is the case when one is con-
N (2.14 sidering correlations among the detector clicks of one kind
' only.
with p(5S(0) determined by the normalization @fSS) to For future reference, we note that £8.15 is solved by
unit trace. Sincep®S is a function of the photon number
a'a, not ofa’ anda individually, the Fock-state matrix of = exp( L7)p(0) (2.16
p9 is diagonal. This property is conserved by the state p(U= tr{exp (L71)p(0)}’ '

reductions(2.5) and(2.7) if A and B are the operator€.6)

and (2.9 of the standard OAM setup. In sharp contrast, theywhere

state reductions produced byandB of (2.13 couple neigh-

boring Qiagona!s: In particular, thgy Furn.a diagonal state LD=L£O—y(p A+ neB) (2.17)
p(a'a) into a tridiagonal one. In this situation, the expecta-

tion value(a)= tr{ap} of the photon ladder operat@ris s 5 |inear operator, albeit one for which expP't) is not
nonzero after the state reduction, although it vanished before.. . conservingunlessy, = 7s=0, of cours@ One verifies
Upon recalling that the numerical phase of the complex NUMgnat (2.16) obeys (2.15 by differentiation in conjunction
ber{a) is the phase of the electromagnetic field associated\jith the identity

with the photon state, one recognizes that this property of the

operatorg2.13 makes the scheme of Ref8—-5] phase sen-
sitive.

Another important difference between the two schemes hich is a fund | f th otand B
concerns the evolution of the photon statbetween succes- w 'IIFh |sta undamenta {)r(\al\;/)erty 0 tt ethoperalt l’atf‘ 'f th
sive detector clicks, that is, between state reductions. This is ' ¢ Stag€ IS now Set. YWe turn to the calculation ot the
not just the free decay generated Byf (2.12 because one mean number of detector clicks of the same !(lnd flrst'and
has to account for the changes produced by those atoms t n to atom-atom and photon-photon correlation functions.

escape detection. According to REE2], this evolution be- th(:etgaert?c):(lile;rt ff)orr\évrc])lt(zlhat:delsgev\r/]s;ﬂ;ﬁztéltjei?inngo\t/v(ijtﬁp;oqg on
tween clicks is governed by the nonlinear master equation . . ;
g y q OAM setups on an equal footing — indeed with all OAM

setups.

tr{(A+B)p}= trlp}, (218

P
SP=ALH 1= 2(nat 7e) N (A+B=1)}p

) Ill. SUCCESSIVE CLICKS OF THE SAME KIND
—32(na— ) [A—B— tr{(A-DB)p}lp,

213 Consider an arbitrary sequence of events of two kinds,
where 7, , 7 are the detector efficiencies. If the emergingsuch as the clicks of th\) and|B) detectors or the crosses
atoms are not observediy= 7g=0, then this equation is and circles that are used in Fig. 2 for illustration. The physi-
equal to(2.10, as it should be. cal nature of the events is utterly irrelevant in this subsection.

For the twoA,B pairs — one 0f(2.6) and(2.8), the other It does not matter at all whether we are dealing with random
of (2.13 — the sumA+ B is the same, but the difference events or with ones that are strongly correlated.
A— B is not. As a consequence, the first, linear, contribution We denote the probabilitor relative frequencyfor hav-
on the right-hand side of2.15 does not discriminate be- ing exactlyn events of one kind between two successive
tween the two schemes, but the second, nonlinear, one doesents of the other kind bp,, with n=0,1,2,3, ... . For
Whereas it is true that this second contribution is absent ieach count oh events of one kind there are-1 counts of
the detection is symmetrigga= 75, the distinction between zero events of the other kind; see FigbR Therefore the
the two schemes is essential nevertheless, because one of tham rule

A. General considerations
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o tiplication of these probabilities and the integration over the
Po= E (n—1)p, (3.1  temporal spacing of the two successive A events produces
n=1
2
* r
holds. We combine it with the normalization f dtrp e "Ale TBl= A (3.9
0 I‘A+ I’B rA+ rB
E p,=1 (3.2 After adding the analogous contribution for two successive B
n=0 events, obtained by the interchangg—rg, we get
to arrive at the statement 2. 2
ra+rg 1 2ralg 3.9
* Po=rr Q7 v2= 1" 7 o2 .
(ra+rg) (ra+rg)
nglnpnzl. (3.3 ATTE ATTE

The mean number of successive uncorrelated events is there-

Let us now ask a slightly different question. How large fore given by
are the probabilitie®,, for gettingn events of the same kind 5
in succession? The way of counting is different here because —  _ (ratre) - (3.10
n cannot equal zero for conceptual reasons. The probabilities uncor— or.rg '
P, are thus normalized in accordance with
. The lower bound of two recognizes thag,, is twice the
E P —1 (3.4) squared ratio of the arithmetiq and ggometric means ,of
& ' andrg. Therefore, the equal sign applies only for=rg.
If n=nyneoris found for a given sequence of events, one
Except for discarding the=0 possibility, there is no essen- cannot, of course, conclude that there are no correlations
tial difference between the probabilitigg andP,, so that  among the events. Any deviation offrom n .., however,
indicates the presence of correlations. Roughly speaking, the
b Pn _ Pn (3.5 events are bunched >Ny, and antibunched if
TS Pm 1-Po ' N<Nyncor- N particular, the extreme value of=1 charac-
terizes a strictly alternating sequence of A and B events —
relates them to each other; the latter equality is implied byperfect antibunching in other words.
the normalization(3.2).
The qua_ntity we are interested inns the average number C. Correlated OAM clicks
of successive events of the same kjid],

1. General results

= nP,. (3.6) Mutatis mutandis, the calculation of for OAM clicks
n=1 follows the general pattern that produagg,..,in Sec. IlI.B.
Owing to the correlations among the clicks, the details are
As an immediate consequence(8f5) and(3.3) this number  more involved. We shall make extensive use of the methods
is given by and results of Ref[12]. Alternatively and equivalently, one
could argue in the spirit of Ref15], or possibly[16], and
- 1 (3.7) arrive at the same answers.
1-po’ The a priori rates for the clicks of th¢A) and |B) detec-
tors are

so that we simply need to calculapg, which is the prob-
ability that there are no events of one kind between two ra=rpat{ 2p59}, rg=rpgtr{#p9}, (3.11)
successive events of the other kind.

with the symbols introduced in Sec. Il. As in Sec. Il B, the

B. Uncorrelated events probability that the first click is of type A is given by the
Before considering the correlated OAM clicks it is in- rs(taélatueivig rater o/ (ra+rg). After this first A click the photon

structive to calculatg, for uncorrelated events. The corre-
sponding value oh, for which we writen .o, will serve as (9

a useful benchmark for judging the OAM valuesrof pa(0)= Ap—(ss); (3.12
We treat the case of “two successive A events with no B tr{ Ap*>7}

events in between” in detail; the reverse case is handled by = | ) )
exchanging the labels A and B consistently. These are th ('SSS)'S the state reductio2.5) applied to the steady state
ingredients: the rates at which the uncorrelated events occ#r~ Of (2.14. Until the next click happens, this state
arer , andr g ; the probability that the first event is of type A €volves according to the master equati@nly. After the
equalsr o/(r +rg); the probability to have another A event €lapse of timet we thus havécf. Eq. (2.16)]

after the elapse of---t+dt is r,dt; the probability that (n
there was no other A event in the meantime is expg); the (t)= expL ") pa(0)
probability that there was no B event is expgt). The mul- Pa tr{exp (LMt)pa(0)}"

(3.13
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The probability for having an A click at time- - -t+dt is
therefore given by

r dtya tr{Apa(t)} (3.149

and the probability that there was no A click in the meantime

is the exponentiated time integral thereof,

t
exp( —rfodt’nA tr{ApA(t’)}). (3.15

Since the analogous probability for no B click is obtained by
the replacemeng,A— ngl3, the probability for no click of
either kind in the meantime is

t
ex;{ —rfodt’ tr{(naA+ neB)pa(t’)}]|. (3.16

Putting things together, we have the preliminary regtdim-
pare with(3.9)]

pozf dt
0

><exp( “r [t (koA )

A
ra+rg

r 7 t{Apa(t)}

+[A< B], (3.17

; TR ratrs —1 (S -1
where the symbolic last term represents the contribution oh= —5rz (7a78 tr{A[—L£P]"1BpSSY 1

two successive B clicks.

ENGLERT, GANTSOG, SCHENZLE, WAGNER, AND WALTHER

Fatr{ Apa(t)} tr {exp (L7t)pa(0)}
=ryatr {A exp(L7t) ApSS}. (3.20

Consequently, an equivalent expressionggris [17]

pQ:J dt
0

+ 5 tr {B exp(Lt) Bp'SS}]
2

r2

[ 7 tr {A exp( L") Ap'S9}

Cratrg

+ mg tr{B[— L] B9,

[ 7 tr {A[ - L7] "1 Ap(59}

(3.21

Next, we observe that the equalityC©—L£)/r— 9gB
=pyaA in conjunction with £(9p(9)=0 and, for anyp,
tr{ £®p} =0 supplies the two statements

na tr {A[— L] 1 Ap(SS}

=1 lr? = pamg tr {B[— L1771 A4p(59}
(3.223

=rA/I’2— UINUIE) tr {A[_E(W)]_]-BP(SS}' (322@

where the definition of 4 in (3.11) has entered. We combine
that statement aboui3 tr {B[ — L]~ *Bp(5} that corre-
sponds ta(3.223 with (3.220 and turn(3.22) into

2r2

o=1-———mamstr {A[— L] 1Bp!S9}.
A B

p (3.23

According to (3.7), the mean number of successive OAM
detector clicks of the same kind is therefore given by

(3.29

Considerable simplifications can be achieved. First notg .- is a central result of this paper. In view of the sym-

that the identity
—rtr{ (gaA+mgB)p}=t{L7p},  (3.18

valid for anyp, implies that the no-click probabilit§3.16) is
equal to the denominator i(8.13),

t
exr{ —I’fodt' tr {(naA+ ﬂBB)PA(t')})

s |

=exp( ftdt'a%m tr{exp(ﬁ(”)t’)pA(O)})
0

tr {LPexp( L) pa(0)}
tr {exp (L) pa(0)}

= tr {exp (L") pa(0)). (319

Then we us€3.11)—(3.13 to establish

metry expressed if8.22 it is clear that the operatord and
B could change their places in the trace without affecting the
value ofn.

In the situation of very low detector efficiencies, that is,
0<7a,mg<<1l, most of the atoms escape detection and the
clicks are so infrequent that their correlations become irrel-
evant. Therefore consistency requires thabf (3.24) re-
duces ton.or Of (3.10 in this event. In the Appendix, we
demonstrate tha3.24) passes this test indeed.

The no-click probability of(3.19 has to vanish in the
limit of t—o. As a consequence, all the eigenvalues
—)\EL”) of the linear operatoZ(” must have negative real
parts. We denote the right eigenstatesﬁf)ﬁ) and the left
ones byp'?”,

pn)

() (M= _\(m (m) () p(m) = — ) (M (
ﬁﬂp,u_ NPy p,u[’n_ NP

(3.29

[The left actionp M of any Liouville operatorM is related
to its right action Mp through the requirement that
tr{p (Mp)}= tr{(p M)p} holds for any paip, p.] We nor-
malize p'? andp(? such that the duality relation
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tr {;)Ln)p Lﬂ)} =8, (3.26 P(a* ,a)Ee—(y+1)a*aeaafp(th)ea*a
n+|k|
involves no numerical constants. Then the completeness :E a*n+(|k|—k)/2an+(\k\+k)/2&pkn
statement P (n+ |k|)! ,
(3.33
— () 1 57 3.2
p % p tr{p p} @29 4

which says that any can be written as a weighted sum of ~ P(a*,a)=e"*" agaa'ga*a_ g=(r+l)a* aga*agaa’

the right eigenstatep&"), does not involve such constants L1

either. With the eigenvalues and eigenstate£@t at hand, => a* n+<\k\+k)/2an+<|kl—k>/2(V Pn-

spectral decompositions k.n n! '
(3.39

The duality relation(3.26, here with 6, = Sk Onpr, is
equivalent to the statement

(Lp=2 p f (=N {p p} (328
M

are available for functions of(”), in particular for the in- 3
verse — £{M]~1. This offers a convenient way of evaluating tr{P(a*,a)P(B*,B) } =¥ TD@B+F®) (335
the trace in(3.24), viz.,

which is easily checked.

__ atrg r . -1 A few other important properties oy, and p, , are
= 77A778§M: tr{Ap” WIF{PEZ’) BP(SS}) : worth recalling. Changing the sign &fis equivalent to tak-
# (3.29 ing the adjoint,
_ Ty et
All the numerical results reported below have been produced P-kn=(Pkn)"s P-kn=(Pin) ", (3.36

in this manner. As a rule, the solution of the eigenvalue

problem(3.29 is the most time-consuming part of a compu- and therefore we can res_trict the. discussionkt0. For
tation along these lines. thesek values, the generating functio(@33 and(3.34) tell

us thatpy ,, is a certain function of the photon numbeta

2. Perfect detectors multiplied by k factors ofa,
An exception is encountered in the situation of perfect 1 \K
detectors, that ispa=7g=1. Actually, since there are no pn(ata)=| a'——==| f(afa) for k=0,
perfect detectors, one is here no longer considering the sta- yaa
tistics of detector clicks but rather the statistics of the emerg- (3.37

ing atoms themselves. In thiga=7g=1 case,£(" of L
(2.17) differs from the Liouville operator of the photon Whereasp , is of the complementary form
damping[specified in(2.12] only by an additive constant,

k
. . 1
LY=L, =L (3.30 pk|n(aT’a):fk,n(aTa)(\/ﬁa) for k= 0.
(3.39

The eigenvalues of are
[The powers of §a') %2, which turna® anda into normal-

—Agn=—(|k|/2+n)T, (3.3) ized ladder operators, are introduced for later convenience;
they simplify (3.50, for instance] In other words, in the
with k=0,21,+2, ... andh=0,1,2, ... , and the eigenval- number state matrices of afl,,’s and all p, \'s only one

ues of— £ are given byr +\, ,. The pairk,n represents side diagonal has nonzero entriéise kth below or above the
here the formal index: in Egs. (3.25—(3.29. The corre- main diagonal, respectively, fd=0). Thus the index la-
sponding common eigenstates, andp, , of £ and£™ are  bels the diagonals and the indaxabels the various eigen-
the familiar members of the standard damping bpk@. In ~ states to a given diagonal. Roughly speaking, for lamger
particular, fork=0, n=0 we have the thermal state @.11)  Values the relevant photon numbers are larger too.

and the identity operator, For o= 7g=1, Egs.(3.11) and(2.18 imply the equality
ra+rg=r, which states the obvious: if all atoms are de-
tected, then the total click rate,+rg must equal the beam
rater. In summary, we find

poo=p"™, Poo=1. (3.32

Rather than repeating once more the explicit formspf or

andpy ,, which involve normally ordered Laguerre polyno- = triA trin. Bp(SS
mials, let us mention a convenient pair of generating func- kZ] { pk‘n}r+(|k|/2+ )T’ {pcnBp™™)
tions[19], viz., (3.39

-1
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for the mean number of successive atoms in the same final
state. Since all quantities on the right-hand side are known
explicitly, the evaluation of this expression is quite straight-
forward.

3. Symmetric detectors

If the detector efficiencies are finite and equal, that is, ©

0<7yp= ng<1, then some of the attractive symmetry prop-
erties of the damping basis are also possessed by the eigen-
states of£(”. The numerical calculations are then techni-

cally much simpler than in the asymmetric situation — 100% o 10%
# ng. Mainly for such practical reasons, all results reported ! 0 1' ; é ; s
below in Secs. I1IC4 and llIC5 have been computed for sym- ©

metric detectors.

_ don(n) _
For na=ng=7, we can write'” in the form FIG. 3. Mean numben of successive detector clicks of the

~ same kind in the phase-sensitive setup of Figh) or 1(c). For
LO=[LA (1= pr(A+B=1)]—pr=L9—qr, r/T =25/3 andv=0, the values oh are shown for Rabi angles in
(3.40  the range & ¢<5 and for detector efficiencies of=100% and
_ 10%. The plot is the result of a Monte Carlo simulation; it is es-
where£(® is a Liouville operator of the OAM kind defined sentially identical to Fig. @) of Ref.[5].
in (2.10 with a reduced beam rate of=(1— n)r. Since
£, and therefore als&(”, does not couple the diagonals o o
of p to each other, their common eigenstates are of the n= % tr {Ap/n}
single-diagonal type as well, ’

2qr . -1
"7 tr{pinBp'SS}| . (3.45

1\ Depending on the particular form of the operatotsand
(Mat ay—| At ()¢ At B, this can be simplified further, as we shall discuss in the
Picn(a’.a) (a \/Q) ficn(aa), subsequent sections.

4. Phase-sensitive setup

. 1\

b&?ﬁ(aﬂaﬁf&?&(a*a)(—a) : (3.4 For the phase sensitive setup of Figb)lor 1(c), n has

Jaa’ been computed recently in Ref8~5] by means of a Monte
Carlo simulation that produced estimates for the probabilities
P, of Sec. IlIA. The Rabi anglep covered the range
0<¢<5 in these calculations while the ratio of the rates
(m) 1t = ()t r/T"=25/3 and the thermal photon numbet+ 0 were kept at
(L7 p] =L"p’, (342 fixed values. Some of these results are reproduced in Fig. 3,

o ) which showsn as a function ofe for =100% and 10%.
its eigenvalues-\{”) make up pairs of complex numbers, The uncorrelated value

here, as in(3.37) and (3.39, stated fork=0; since£(” is
Hermitian in the sense of

AR =N (3.43 Ponco=2 (3.46

It is then both possible and natural to normalize the eigenis also indicated in this figure. We observe that the detector
statesp{”) andp{”) such that they obe8.36. In particular, ~ clicks are bunched for almost the entigerange of the plot;

for k=0 the eigenvalues- )\gf{? are real — and, in fact, antibunching is seen only aroung-= J27w=4.44. The said
negative — and the eigenstaie$y) andp’? are Hermitian.  value of Ny, results from(3.10 after noting that Egs.
Fork=0, n=0 the statement analogous @32 reads (3.1 yield

pgﬂ):'ﬁ(SQ, bé)?o):]- ’ )\E)Tg: 77r1 (344) rA:%nAr’ rB:%nBr (347)

wherep(S9) is the OAM steady stat€2.14) with r replaced for the A and B operators .of(2.13); thusr,=rg holds for
by the reduced rafg=(1— »)r. 1A= 7s=7 and(3.46 obtains.
The main difference between the<1 case of this sec-  More generally, we have
tion and thep=1 case of Sec. lll C 2 consists in our knowl-
edge about the eigenvalues and eigenstate®8f Whereas tr{Ap} —ltr{p}T i tr {(ST S, +ShSg) }
those forp=1 are well known explicitly, those fop<1 are tr{Bp}| 2 WPIT 2 BOA T SASBP
presently only available numerically. Most other differences (3.48
are minor and many are elementary. For instance, here Egs.
(3.11) and (2.18 imply ra+rg=7r, which is an obvious with S, andSg given in(2.4). Because of the extra' ladder
statement too. Then, the analog(8f39 is operator inSg, the second trace vanishes unless the number-
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state matrix ofp has nonzero entries on the=*+1 diago-

nals, that is on the first side diagonals. Therefore, we have

the rather explicit statements

30,0 for k=0
—Ltr{shsy p{?} for k=1
2 A P
r{Apt=y
—3tr{SkSs p'7)} for k=-1
0 for k==*x2,+3,...

(3.49

for the right eigenstatepl”) of £(”. Upon employing the
factorization(3.41), thek= =1 cases appear as

tr { Ap'7) }=(tr {Ap{7h})*
=—1tr{sin(¢aTa+1)
xcos(gyala+2)f'7 (a'a)}=—3al”.
(3.50

For the double sum ir{3.45 we need to supplement this
with

tr{p6oBp' 5%} = tr {Bp9} =1 (352
and
505 = 50155
=1tr{f") (a'a) sin(2¢ VaTa+1)
(3.52

In view of (3.49 only thek=0, n=0 term and th&k==*1
terms contribute tao in (3.45. We recall the value ok {7
given in (3.44) and arrive at

xpS(a'a)}=1p(".

©

-1

(1 >

n=|z-m ReY, o'W
n=0 '

(3.53

Please note that thk=0, n=0 term alone would yield
=2, which is the value o, of (3.46), so that the
k= =1 terms account for the correlation effects.

With the analytical expressiof3.53 at hand, we can
computen in a tiny fraction of the time needed to perform

the corresponding Monte Carlo calculation. We have already

mentioned at Eq(3.29 that the solution of the eigenvalue
problem(3.25 consumes most of the time. If one does not
care about the eigenvalues, thentegral of (3.21) can be

evaluated directly. The computation time is then reduced fur-

ther, roughly by a factor of 2.

More important, however, than this progress at the nu-

merical front is the analytical information contained in
(3.53. We learn which aspects of the OAM dynamics are
studied in a measurement of The dynamical sector gov-
erned byL(” is relevant, not the one whe®® rules. We

shall have more to say about this essential distinction in Sec.

V.
A first application is presented in Fig. 4, which shows
as a function of the Rabi angle for the same parameters

ENSITIVE MEASUREMENTS 4393

FIG. 4. Analytical results produced by E(.53 for the same
parameter values as in Fig. 3. The two curves are for detector effi-
ciencies ofyp=100% (—) and »=10% (— — —); the value of two
for uncorrelated detector clicks is indicated as wel (- - -).

that were used in the Monte Carlo simulation of Fig. 3. The
agreement could not be better. In particular, the antibunching
arounde= \2=4.44 is predicted both by the Monte Carlo
method and by the analytical formu(a.53).

Whereas this antibunching appears as an exception in
Figs. 3 and 4, it is the rule in Fig.(&, in which the Rabi
angle covers the range<tp<<10. Thus we observe that the
detector clicks tend to be bunched for small Rabi angles and
antibunched for larger ones; but, unfortunately, we do not
have an intuitive, qualitative understanding of this observa-
tion presently.

In Refs.[3-5] a certain similarity was noted, fap<5,
between the» dependence af and the mean photon number

22

@

[

1.8

1.6

(b)

(ala)

10
©

FIG. 5. (a) Same as Fig. 4 for the range<Gp<10. (b) The
corresponding mean number of photons in the cavity field.
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T T T T rA:”?A tr{COSZ (‘P\/a_af) p(ss(aTa)}
s I =1 7a(coS(p/aa"))sd (3.59

and

rg="7g tr {sirf(p\/aa") p*S(a'a)}

b =r pg(sirt(paa"))S9, (3.55
i ‘ Since the equality
2l I'((a'a)S9—v)=r(sirt(¢yaa'))®d (3.5
holds for the OAM steady stat@.14 — incidentally, this
i . . . . equates the thermal loss rate to the pump gain rate and thus
o 2 4 6 8 10 states the energy balance in steady state — we can express
¢ r, andrg in terms of the mean photon numbg'a)(SS),
FIG. 6. Mean numben of successive detector clicks of the ra=nar— 7al'((a'a) 59— v),
same kind in the phase-sensitive setup of Fi@p) br 1(c) at finite
temperature. For/I" = 25/3 andy=0.1, the values oh are shown rg=nel'((a’a)(S9—v). (3.57
for Rabi angles in the range<0p<<10 and for detector efficiencies . . o .
of 7=100% (—) and 7=10% (- ——); the value of 2 for uncor- When inserted int¢3.10 thesea priori rates supply us with
related detector clicks is indicated as well (- - -). the value ofn .- IN particular, we find
2
o . B — r 40 (S9 t21(S9 -1
(a'a) in steady state. We believe that this similarity is acci- nuncosﬁ[((a a)>d—)(riT —(a'a)>?+v)]
dental, because and(a'a) are rather dissimilar functions of (3.59
¢ in the range 5X¢<10, as is clearly visible in Figs.(8 '
and §b). if the detection is symmetrigga= 7= 7.

All data presented in Figs. 3-5 refer to the limiting situ- The operatorsd and 5 of (2.6) and (2.8 do not couple
ation of temperature zero. The so-called trapped vacuurdifferent diagonals of the statistical operagorAccordingly,
states of the OAM are then realized fpr=7,27,3m, ... . the eigenstates of(" are of the form(3.41) even if the
These Rabi angles are such that an excited atom that entettetector efficiencies), and ng are not the same. Neverthe-
an empty resonator undergoes one, two, three, etc. full Raléss, we shall be content with treating the symmetric detec-
cycles and so leaves the cavity in its excited state. In effectjon scheme because then the same eigenvalues and eigen-
the atoms are not pumping the resonator at all and the steadyates can be used as in Sec. Ill C 4.
state of the cavity field is simply the photon vacuum, irre- As a consequence of the decoupling between the diago-
spective of the beam rate Since all emerging atoms are in nals, now only th&k=0 terms contribute to the sum {8.45
state|A) before they are exposed to thg2 pulse of Fig. because both traces therein vanishKer0. Further, similar
1(b), the detectors will register uncorrelated clicks at theto the observation made at E@®.53, thek=0, n=0 term
rates(3.47). For symmetric detection these rates are equahlone would yieldn, .., of (3.58 here too; thek=0, n>0
and we expech=n,,~2 at =123, ... . Thisis terms account for the correlation effects. The analog of
confirmed by Figs. 4 and(8). (3.53 thus reads

For finite temperatures, there are no trapped vacuum
states and the arguments that feed the expectation=¢f
for ¢=,27,3m, ... are no longer valid. Indeed, we find
the »=100% values ofn=2.248, 1.993, and 1.835 for
¢/m=1, 2, and 3, respectively, whem/I'’=25/3 and with the symbolsy, and [ﬂn defined by
v=0.1. For this value of the thermal photon number, ¢he
dependence of is plotted in Fig. 6 whereby all other pa- xn= tr {Api7} = tr {cod(paal)f%)(a" a) },
rameters are the same as in Figs. 4 and 5. Not surprisingly, (3.60
we observe that the thermal noise leads to a smoothing of the _ .
n -of-¢ curve, but the strong tendencies toward bunching  ¢,= tr {pi?'BpS9}=(f\7 (aa")sir(¢+/aa"))(s9,
for =<6 and toward antibunching fas=6 are equally pro-
nounced forv=0.1 as they are for=0. where thea'a functions introduced ir{3.41) appear.

In (3.59 we have normalized to n,.,,because this ratio
tells us whether the clicks are bunched or antibunched.
5. Standard setup Whereas it is clear that the right-hand sidg®69 could be
For the standard OAM setup of Fig(d), the operators evaluated for many different parameter sets, that would be
A and B are given in(2.6) and (2.8) and therefore thea  rather pointless. We demonstrate the case with the plots of
priori rates of(3.11) are Fig. 7. They shown/n,., as a function of ¢ for

o -1
N/ N ynco= 1"_27]""‘_uncorng1 Xn‘/fn/)\é)?a) (3.59
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atoms rather than between photons. In this section we dis-
cuss some of the relations between atom-atom and photon-
photon correlations.

We express the numerator {@.1) with the aid of the
eigenvalues and eigenstates®f) [the latter in the form of
(3.4 with »=0] and arrive at

/ Truncor

]

gP(t)= > wPexp(—A ) 1), (4.2

n=0

7,

where the weightsv are given by

wP=tr{\aa" % (a'a)}

(VaFaf? (afa—1)) (59
X (atay™ss . 4.3
:
3 The sum rule
[
> wiPh=1 (4.4)

n=0

is implied bygP"(t=0)=1, which is the conventional nor-
0 2 4 6 8 10 malization. The term “weight” forw{P" is suggestive, but
® might be misleading since these numbers are not guaranteed
to be positive or even real. With this proviso we shall con-
FIG. 7. Mean number of successive detector clicks of the saménue to speak of weights.
kind in the standard setup of Fig(al, normalized to the value for The eigenvalue analysis performed here is essentially
uncorrelated clicks. For/T'=25/3, the ration/n,n. is shown for  identical to that of Ref[21], although we are employing
Rabi angles in the range<0p <10 and for detector efficiencies of different notational conventions. Readers interested in the
n=100% (-) and=10% (- — —). The number of thermal pho-  alternative of a Green’s-function approach and analytical ap-
tons is(@ »=0 or (b) »=0.1. proximations based on it should consult R&2].
Both the expression fon in Eq. (3.53 and that for

r/I"=25/3 at temperature zero and fer=0.1. Antibunching  g(P")(t) in (4.2) involve eigenvalues ta=— 1, but >0 is
is found only forv=0 in a few rather narrow intervals and  essential in(3.53 whereas the;=0 eigenvalues are needed
even theren is just a few percent short of,,co- The thermal  in (4.2). Therefore, measurements mfdo not yield any in-
noise associated with=0.1 is enough to enforce>n,.,c,r  formation that could be directly related to the OAM spec-
over the entirep range considered. trum. It is true that some connections exist in the limit
n—0, such as

IV. CORRELATION FUNCTIONS

The phase sensitive setup of Figbllwas introduced in —n
Refs.[3-5] to enable the experimenter to investigate the dy- ot 7=0
namics of the electric field in the one-atom maser, in particu-
lar its decay to the stationary null value. The quantity ofthese are, however, practically useless for two reasons. First,
primary interest is théfirst-orde) photon-photon correlation the left-hand side cannot be determined experimentally be-

=4r Re2, « CRUNCS (4.5

function cause of the vanishing signal-to-noise ratio fpr0; sec-
ond, the eigenvalue?s(f){n cannot be extracted from the sum
ot (@' (Da(0))59 tr{a'exp (£ V1)ap'>%} on the right-hand side. We are thus led to this conclusion:
gri(n= (aTa><SS - tr{atap(S9} ' Although measurements of and their comparison with the

4.2 theoretically predicted values constitute a valuable test of
OAM theory — be it for the standard setup or the phase

because its Fourier transform supplies us with the spectrursensitive one — information about the OAM spectrum is not
of the cavity field. Direct measurements of the properties ofyained in such experiments.
the photon state are not possible in OAM experiments and Fortunately, such information is contained in other quan-
thereforeg(P")(t) is a theoretical quantity in the first place tities that characterize the statistics of the detector clicks, in
and so is the OAM spectrum. All modifications of the stan-particular in the atom-atorfor rather click-click correlation
dard OAM apparatus that aim at studies of the phase dynanfunction. The generic example G,g(t), which measures the
ics, such as the setup proposed in R&0] or the phase cross correlation foa B click after timet has elapsed since
sensitive one of Fig. (b), determine correlations between an A click happened. It is given Hy.2]
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1.00 T T T
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075 Y 2o 1 -
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s |t o=t |
0.25 I -
FIG. 8. Reduced atom-atom
©=1.0 correlation functionsg®(t) ()
0.00 L L and photon-photon correlation
0 5 It 15 20  functions g®V(t) (——-) for

Rabi anglesp=0.5, 1.0, 1.5, and
2.0. The insets show the corre-
sponding photon probability distri-
butions in steady state. All plots
are forr/I"=25/3 andv=0.

tr {B exp(L9t).Ap'S9} 20O
Gas()= T (BpSST o [Ap™SST (4.6 wa—__n o 4.9
Re S 0B
note that there is no dependence on the detector efficiencies. m=0

This atom-atom correlation function is normalized according

to different conventions than the photon-photon correlatiorinvolve the =0 versions of the coefficients introduced in
function g®®"(t) of (4.1). For an easier comparison of the Egs.(3.50 and(3.52. The remark about our sloppy use of
two, we introduce the reduced atom-atom correlation functhe term “weight,” made after Eq(4.4), applies here too.

tion Incidentally, the injunctions to take the real parts of the sums
in (4.8 and(4.9) are superfluous because these sums happen
@y Gpg(t)—1 to be real themselves, although the individual summands
g()= m' (4.7) may be complex. The photon-photon correlation function of
(4.1) is real as well.
which is subject to the same normalizationgd®(t), viz., The same eigenvalues that enter the photon-photon corre-

g(t=0)=1 andg(t=)=0. This definition ofg@(t) in-  lation functiong®"(t) of (4.1) determine also the time de-
volves G g (1), but for the A and B operators of the phase Pendence of@(t). As a rule, the weightsv{"” and w(®
sensitive setuprecall(2.13] the samey®)(t) is obtained for ~ are different, of course, with the consequence that measure-
Gaa(t), Gga(t), and Gga(t). Consequently, g@(t)  ments ofg‘(t) will supply only partial information about
uniquely specifies all the various atom-atom correlationd®(t) and therefore about the OAM spectrum.

functions in conjunction with their values & 0. In view of If the photon-number distribution in steady state is domi-
Gag(0)=Gga(0) and Gaa(0)=Ggg(0), there are really nated by a single narrow peak, then approximations such as
only two of them, not four.

~ The reduced atom-atom correlation function can be cast cog¢aa')p*9(a'a)=cog ¢\(aa")9)p(*S(a'a),

into forms that are closely analogous(thl) and(4.2),

(S9¢ataya=apS9(at
gy LB AR £ (B A5} prRasa @R @10
g =
tr{(B—A4)%p'>%} are permissible. Accordingly, we have
=R @exp—\) b), 4.8 i iES)
engo wlexp(— A5 t) (4.8 (B ) (9= sin(2¢+(aa') )(ap(33+p<53af),

2(aal) ™

where the weights (4.11
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TABLE I. Those ei(g)envaluels(,0)1'n of the Liouville operator£®, in units of the decay ratE, that are
most relevant for the correlation functions plotted in Fig. 8, and the weigtty, w(® associated with them.
The eigenvalues are ordered according to the increasing real part; note that some intermealia¢s are
missing because they carry no weight within the accuracy of the table.

@ n NG wPh w(@

0.5 1 0.058 0.998 0.086
2 0.873 0.003 0.830
3 1.675 —0.001 0.086
4 2.650 0.0 —0.002

1.0 1 0.239 1.026 0.979
2 2.820 —0.026 0.016
4 4.945 0.0 0.006
7 6.854 0.0 —0.001

15 1 0.762 —0.050 —0.061
2 0.864 1.084 1.167
3 2.944 0.002 0.020
4 4.279+0.493 —0.013-0.008 —0.056-0.029
5 4.279-0.493 —0.013+0.008 —0.056+0.029
7 6.512+0.183 —0.006+0.003 —0.009+0.008
8 6.512-0.183 —0.006-0.003 —0.009-0.008
11 11.516 0.0 0.004

2.0 1 0.840 0.750 0.305
2 2.099 0.322 0.298
4 3.323 —0.075 0.612
6 6.035+0.224 0.002+0.003 —0.115-0.001
7 6.035-0.224 0.002-0.003 —0.115+0.001
9 8.889+0.208 0.0 0.009-0.012
10 8.889-0.208 0.0 0.009+0.012
11 9.830 0.0 —0.002

under these circumstances. As pointed out in &S], there  tions are negative for times sufficiently late. The sign
should then not be a significant difference betwegé(t) change occurs arourté= 30" = 2504, that is after about 30
andg®(t) and the experimental determination of the latterphoton lifetimes during which period an average number of
can be regarded as a measurement of the former. 250 atoms traverse the resonator. Consequently, ilvesg
This observation is confirmed by the plots shown in Fig. 8weak) long-time anticorrelations are of no experimental sig-
(similar plots comparing second-order correlation functionsnificance.
are contained in Ref.24]). For ¢=1 and ¢=1.5, the re- In summary, we conclude that a measuremeng®%(t)
quirement of a single narrow peak is met and the two correwill yield those eigenvalues of(®) that are most important
lation functions are hardly distinguishable. By contrast,for the photon-photon correlation function and thus for the
g®"(t) and g®(t) are visibly at variance with each other OAM spectrum. The weighta"™, however, are not made
for ¢=0.5 (one broad peakand ¢=2 (two peak$ These available in this way, so that the spectrum cannot be inferred.
differences are also exhibited in Table I, where we report théNevertheless, the comparison of the experimental atom-atom
relevant eigenvalues and weights that enter E4<2) and  correlation function with the theoretical prediction would
(4.9). For p=1 andp=1.5, we see that a single eigenvalue once more put OAM theory to the test.
dominates: the smallest one or the second smallest one, re-
spectively. Single eigenvalues carry also most of the weight
for ¢=0.5, but not the same ones fgf®™ and g‘@; the
latter has substantial contributions from two more eigenval- We have reconsidered the phase-sensitive OAM setup
ues. Yet another situation is encountered ot 2, where proposed in Refd.3-5] in which the state reduction that is
two eigenvalues contribute the largest portion to the photonassociated with each registered detector click effects a post-
photon correlation function, whereas three real eigenvalueselection of the phase of the maser field. In these papers it
and a pair of complex conjugate ones are most relevant fowas surmised that the mean number of successive detector
the atom-atom correlations. clicks of the same kind supplies information about the phase
We note in passing that the smallest eigenvalue carriedynamics of the pumped maser and so tells the experimenter
negative weight fokp=1.5. Therefore, the correlation func- something about the maser spectrum. In the present paper we

V. SUMMARY
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derive an analytical expression for this mean number and APPENDIX

find perfect agreement with the results obtained in Refs. Here we demonstrate thatof (3.24) reduces tan, .o, of

53_5] V.V'th t?ef a'td oftal m:;nen;:al tsmule;tltc;]n of thlet_0A|\M (3.10 in the situation of very low detector efficiencies,
ynamics. Unfortunately, the structure of the analyuical anq -, . <1 We regardy, , 75 as infinitesimal quantities

swer contradicts the said surmise because it involves the eling proceed from noting that, under these circumstances

genvalues of a Liouville operator different from the one thatﬁ(n) of (2.17 differs from £© only by an infinitesimal

determines the OAM spectrum. As we demonstrate then, the o+ Therefore. the eigenvaluég) of — £ agree with

relevant eigenvalues are, however, available from measure: | . ©) (0) : :
' - ; he eigenvalued’’ of — up to terms that are linear in

ments of the atom-atom correlation function, as has been g. m £ P

already noted qualitatively if6] and discussed in more de-

tail in [23]. Partial knowledge about the OAM spectrum can

.. . 0 >(0 0
thus be extracted from the statistics of the emerging atoms. )\5]7)=)\5L)+ tr {PL) (ﬁ(o)—ﬁ(”))PL }

“AO+rtr {p (pad+neB)pV}. (A1)

A:7B -

VI. OUTLOOK . _ . .
In this result of first-order perturbation theory, all contribu-

Let us close with an outlook on Ilkely future develop- tions of second and h|gher order %,7]8 are Consistenﬂy
ments. Prior to the interaction with the cavity field there aredisregarded(The implicit assumption that the eigenvalues
no correlations among the atoms in the Poissonian beamare not degenerate is innocugus.

The observation of correlations after the interaction therefore  Now we recall that the OAM steady stafeS® is the
indicates that the atoms have become entangled. The primatynique eigenstate ofC(®) to the eigenvalue,(¥=0. We
entanglement is between the photons and the atoms and thesociate the labgl=0 with this eigenvalue, so that
atom-atom entanglement is of secondary nature. This sec-
ondary entanglement is the origin of the correlations among
the detector clicks.

Inasmuch as all such entanglements give rise to correla-
tions of the Einstein-Podolsky-Rosen tyfi25], one is in- by convention. Then we have, fgr=0,
vited to asli{5] if violations of the Bell inequality 6] can be
demonstrated in OAM experiments. By changing the relative
phase of the classical field that produces- 2 pulse in Fig.

1(b) one could probe the atoms for the various superpositions
of |A) and |B) that enter the Bell inequality. According to and for u#0,

Ref.[26], such violations can be found indeed if one uses a

pair of test atoms in addition to the pump atoms of the Pois- NN (I (A3)
sonian beam. At present it is an open question whether the ® #

two-particle correlations among the emerging pump atoms

themselves are strong enough. There is also the practickr 0<7,,7g<1. Consequently, in the sum ovgrthat ap-
aspect that the detector efficiencies are most likely too smafpears in(3.29,

for tests of the Bell inequality.

The detector efficiencies play no role when one looks for r
correlations of the Greenberger-Horne-Zeiling8Hz) type > tr{nadp' b tr {p\ 7eBp S}, (A4)
[7,27], which would involve three or more atoms and are m Ny
much stronger than the two-atom correlations of the Bell
inequality. In particular, Mermin's versiof28] for three the u=0 term is of first order iy, , 7g and thew#0 terms
spin+ particles is suited perfectly for the two-level atoms are of second order. The=0 terms are therefore negligibly
used in OAM experiments. A method for preparing asmall; with p{”— p{®=p(% and p{”—p{@=1 the u=0
Mermin-type GHZ state was proposed in R&#9]. It utilizes  term equals
the interaction of atoms with photons in a resonator in a
clever way. Here too we do not know presently if the three-
particle correlations that are built up among the pump atoms tr {aA (SS}L tr { 7gBp(S9) = rarglr (A5)
as a result of the standard OAM operation are strong enough AP )\g”) 78=P rat+rg’
to allow for experimental studies of GHZ correlations. Inves-
tigations along these lines are the intended subject of a futu
investigation.

)\E)0>=0 , pBO)Zp(SS), IVJE)O): 1 (A2)

"= tr {(pad+ mgB)p'SS}=ratrg,

rEccordingly, Eq.(3.29 turns into

I’A+ s
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