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We reconsider a variant of the one-atom-maser setup in which the emerging atoms are probed for coherent
superpositions of the two Rydberg states of the maser transition. The statistical properties of the corresponding
detector clicks contain information about the temporal evolution of the phase of the quantized electromagnetic
field inside the resonator. We derive analytical expressions for certain statistical quantities, such as the mean
number of successive clicks of the same kind, or the atom-atom and the photon-photon correlation functions.
The latter are closely related if the photon-number distribution in steady state is dominated by a single narrow
peak.
PACS number~s!: 84.40.Ik, 03.65.2w, 32.80.2t, 42.50.Dv

I. INTRODUCTION

In standard one-atom-maser~OAM! experiments@1#, the
atoms enter the resonator in the upper one of the two Ryd-
berg states of the maser transition and the emerging atoms
are probed for being in either one of these two states. The
statistical properties of the emerging atoms, or rather of the
corresponding detector clicks, are determined experimentally
and then compared with the theoretical predictions. In this
way, a certain regime of the OAM dynamics has been inves-
tigated thoroughly, viz., the regime that is relevant for the
photon-number distribution in steady state and closely re-
lated properties of the quantized electromagnetic field inside
the resonator. The agreement between the results of OAM
experiments and the predictions of OAM theory@2# has been
very satisfactory as yet.

If one wishes, however, to test other aspects of the OAM
dynamics, such as those that determine the shape of the ma-
ser line, the setup has to be modified so that the experimental
data become sensitive to the phase properties of the cavity
field. Two possibilities are suggested: one imposes a phase
either through the preparation of the entering atoms or
through the detection of the emerging atoms — the choice is
between a preselection or a postselection of the phase. The
first possibility is to pump the resonator with a controlled
phase by preparing the arriving atoms in a coherent superpo-
sition of the masing states. This setup is suffering from the
obvious drawback that the dynamics is changed and, among
other things, the steady state is altered. This is clearly unde-
sirable. The second, better, possibility@3–5# avoids such
modifications of the dynamics inasmuch as the final detec-
tion of the atoms is done differently, not their initial prepa-
ration. In this scheme, the detectors respond to coherent su-
perpositions of the atomic states rather than to the states
themselves as in the standard OAM experiments. The
quantum-mechanical reduction of the photon state that is as-

sociated with the registration of a detector click imposes a
phase on the photon state, a phase that depends on which one
of the detectors has clicked. Predictions about the next atom
to come are sensitive to this phase and so the phase dynamics
can be tested experimentally.

In the present paper we reconsider the setup of Refs.
@3–5# in which the phase of the quantized cavity field is
postselected. We are interested in the statistical properties of
the detector clicks, since the click statistics constitutes the
reproducible experimental data. In particular, we derive an
analytical expression for the mean number of successive
clicks of the same kind. This quantity has been computed in
Refs.@3–5# with the aid of a Monte Carlo method. We find
perfect agreement between those numerical results and the
analytical answer. The analytical expression tells us which
aspects of the OAM dynamics enter this mean number, a
highly valuable insight that is not supplied by the Monte
Carlo computation. It turns out that, contrary to what was
surmised in Refs.@3–5#, the said mean number does not
contain the sought information about the phase dynamics.
Therefore, we also study the correlations between emerging
atoms~or rather between detector clicks! where this informa-
tion is available. The unobservable photon-photon correla-
tion function, whose Fourier transform supplies us with the
maser spectrum, is related to the atom-atom correlation func-
tion, which can be determined experimentally. We discuss
the conditions under which this relation is close.

Finally, we present a brief outlook on conceivable future
developments aimed at demonstrating that the atom-atom
correlations violate the Bell inequality@6#. The three-atom
correlations that are built up by the OAM interaction can
also be studied by the techniques used in this paper. In par-
ticular, one could systematically look for strong correlations
of the Greenberger-Horne-Zeilinger type@7#.

II. SETTING THE STAGE

The setup of the standard OAM experiments is schemati-
cally recalled in Fig. 1~a!. The atom arrives in the upper state
uA& of the maser transition, traverses the cavity, and is then
probed for its final state. If the atom is found to be still in
stateuA&, then no photon has been emitted in effect during
the interaction of the two-level atom with the photons in the
resonator; if the atom is detected in the lower stateuB&, how-
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ever, then one photon has been added to the cavity field.
In the setup proposed in Refs.@3–5#, which is depicted in

Fig. 1~b!, the atom crosses a classical microwave field after
exiting from the cavity and before reaching the detectors that
discriminate between statesuA& and uB&. This microwave
field is resonant with theuA&↔uB& transition. Its strength is
such that it effects ap/2 pulse and so turnsuA& into the
coherent superposition~uA&1uB&!/A2 anduB& into ~uB&2uA&!/
A2 @8#. Inasmuch as the detectors probe foruA& and uB&, a
more appropriate way of looking at the effect of thep/2
pulse states that~uA&2uB&!/A2 is turned intouA& and ~uA&
1uB&!/A2 into uB&. The latter point of view regards the clas-
sical microwave field as part of the detection device. This
leads us to the picture of Fig. 1~c!, where the emerging atoms
are probed for being in one of the two coherent superposi-
tions ~uA&7uB&!/A2. Of course, Fig. 1~c! refers to quite the
same experimental apparatus as does Fig. 1~b!.

The statistical operatorr describes the photon state inside
the resonator. It is a function of the ladder operatorsa† and
a that create and annihilate quanta of the privileged mode of
the quantized electromagnetic field. The two-level atom in-
teracts resonantly with the photons in this mode. Prior to the
interaction, the combined state of the atom-photon system is

Rbefore5uA&r ^Au5rs†s, ~2.1!

with the atomic ladder operators

s5 uB&^Au, s†5uA&^Bu. ~2.2!

According to well-known results of OAM theory@9–11#, the
net effect of the interaction is summarized in the transition

Rbefore→Rafter5SArSA
†s†s1SBrSB

†ss†1SArSB
†s†

1SBrSA
†s, ~2.3!

where the sandwich operators

SA5cos~wAaa†!,

SB5a†
sin~wAaa†!

Aaa†
~2.4!

involve the accumulated Rabi anglew.
In the standard OAM setup of Fig. 1~a! the observation of

a click of the detector foruA& states implies a final photon
state that is obtained by the state reduction

Rafter→Ar/ tr$Ar%, ~2.5!

where we establish contact with the notational conventions
of Ref. @12# clicks. The linear operatorA is herein given by

Ar[SArSA
† . ~2.6!

Likewise, a click of theuB& detector is accompanied by

Rafter→Br/ tr$Br% ~2.7!

with

Br[SBrSB
† . ~2.8!

If the atoms are not observed, or the detector clicks are de-
liberately ignored@13#, the change inr resulting from the
passage of one atom is

SArSA
†1SBrSB

†2r5~A1B21!r. ~2.9!

Since the atoms arrive randomly in an uncorrelated fashion
at a beam rate ofr , the photon state evolves according to the
master equation

]

]t
r5@L1r ~A1B21!#r[L~0!r. ~2.10!

The symbolL denotes the familiar Liouville operator that
models the decay of the cavity field to the thermal state

r~ th!5
1

n11 S n

n11D
a†a

. ~2.11!

with n thermal photons. In explicit terms,L reads

Lr52
G

2
~n11!~a†ar22ara†1ra†a!

2
G

2
n~aa†r22a†ra1raa†!, ~2.12!

whereby the photon lifetime equals 1/G.

FIG. 1. Schematic setups of one-atom-maser experiments. In the
standard setup~a!, atoms are prepared in the upper stateuA&, inter-
act with the photons in the resonator, and are then detected inuA& or
in the lower stateuB&. In the phase-sensitive setup~b!, the atoms
experience ap/2 pulse before reaching the detectors. This setup is
equivalent to~c!, where thep/2 pulse is regarded as part of the
detection device so that, in effect, the emerging atoms are probed
for being in the superpositions~uA&7uB&!/A2.
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An analogous analysis can be performed for the phase
sensitive setup of Fig. 1~b!. When treating it in the spirit of
Fig. 1~c!, one recognizes immediately that the operatorsA
andB of ~2.6! and ~2.8! are replaced by

Ar

Br J 5
1

2
~SArSA

†1SBrSB
† !7

1

2
~SArSB

†1SBrSA
† !.

~2.13!

For these, Eq.~2.9! is equally valid, and so is the master
equation~2.10!, of course.

Therefore the steady stater (SS) of the OAM, which obeys
L(0)r (SS)50, is the same for both setups, the standard one of
Fig. 1~a! and the phase sensitive one of Figs. 1~b! and 1~c!. It
has the well-known form@9#

r~SS!~a†a!5r~SS!~0!)
n51

a†a F n

n11
1

r /G

n11

sin2~wAn!

n G ,
~2.14!

with r (SS)(0) determined by the normalization ofr (SS) to
unit trace. Sincer (SS) is a function of the photon number
a†a, not of a† anda individually, the Fock-state matrix of
r (SS) is diagonal. This property is conserved by the state
reductions~2.5! and~2.7! if A andB are the operators~2.6!
and ~2.8! of the standard OAM setup. In sharp contrast, the
state reductions produced byA andB of ~2.13! couple neigh-
boring diagonals. In particular, they turn a diagonal state
r(a†a) into a tridiagonal one. In this situation, the expecta-
tion value ^a&5 tr$ar% of the photon ladder operatora is
nonzero after the state reduction, although it vanished before.
Upon recalling that the numerical phase of the complex num-
ber ^a& is the phase of the electromagnetic field associated
with the photon state, one recognizes that this property of the
operators~2.13! makes the scheme of Refs.@3–5# phase sen-
sitive.

Another important difference between the two schemes
concerns the evolution of the photon stater between succes-
sive detector clicks, that is, between state reductions. This is
not just the free decay generated byL of ~2.12! because one
has to account for the changes produced by those atoms that
escape detection. According to Ref.@12#, this evolution be-
tween clicks is governed by the nonlinear master equation

]

]t
r5$L1@12 1

2 ~hA1hB!#r ~A1B21!%r

2 1
2 ~hA2hB!r @A2B2 tr$~A2B!r%#r,

~2.15!

wherehA ,hB are the detector efficiencies. If the emerging
atoms are not observed,hA5hB50, then this equation is
equal to~2.10!, as it should be.

For the twoA,B pairs — one of~2.6! and~2.8!, the other
of ~2.13! — the sumA1B is the same, but the difference
A2B is not. As a consequence, the first, linear, contribution
on the right-hand side of~2.15! does not discriminate be-
tween the two schemes, but the second, nonlinear, one does.
Whereas it is true that this second contribution is absent if
the detection is symmetric,hA5hB , the distinction between
the two schemes is essential nevertheless, because one of the

detector efficiencies may be effectively zero in a specific
calculation. For example, this is the case when one is con-
sidering correlations among the detector clicks of one kind
only.

For future reference, we note that Eq.~2.15! is solved by

r~ t !5
exp~L~h!t !r~0!

tr$exp ~L~h!t !r~0!%
, ~2.16!

where

L~h![L~0!2r ~hAA1hBB! ~2.17!

is a linear operator, albeit one for which exp(L(h)t) is not
trace conserving~unlesshA5hB50, of course!. One verifies
that ~2.16! obeys ~2.15! by differentiation in conjunction
with the identity

tr$~A1B!r%5 tr$r %, ~2.18!

which is a fundamental property of the operatorsA andB.
The stage is now set. We turn to the calculation of the

mean number of detector clicks of the same kind first and
then to atom-atom and photon-photon correlation functions.
To the extent to which the general results do not depend on
the particular form ofA andB, we shall be dealing with both
OAM setups on an equal footing — indeed with all OAM
setups.

III. SUCCESSIVE CLICKS OF THE SAME KIND

A. General considerations

Consider an arbitrary sequence of events of two kinds,
such as the clicks of theuA& and uB& detectors or the crosses
and circles that are used in Fig. 2 for illustration. The physi-
cal nature of the events is utterly irrelevant in this subsection.
It does not matter at all whether we are dealing with random
events or with ones that are strongly correlated.

We denote the probability~or relative frequency! for hav-
ing exactly n events of one kind between two successive
events of the other kind bypn with n50,1,2,3, . . . . For
each count ofn events of one kind there aren21 counts of
zero events of the other kind; see Fig. 2~b!. Therefore the
sum rule

FIG. 2. ~a! A sequence of events of two kinds, symbolized by
circless and crossesX, consists of strings of successive events of
just one kind.~b! For each string ofn successives events there are
n21 strings with noX event and vice versa.

4388 53ENGLERT, GANTSOG, SCHENZLE, WAGNER, AND WALTHER



p05 (
n51

`

~n21!pn ~3.1!

holds. We combine it with the normalization

(
n50

`

pn51 ~3.2!

to arrive at the statement

(
n51

`

npn51 . ~3.3!

Let us now ask a slightly different question. How large
are the probabilitiesPn for gettingn events of the same kind
in succession? The way of counting is different here because
n cannot equal zero for conceptual reasons. The probabilities
Pn are thus normalized in accordance with

(
n51

`

Pn51 . ~3.4!

Except for discarding then50 possibility, there is no essen-
tial difference between the probabilitiespn andPn , so that

Pn5
pn

(m51
` pm

5
pn

12p0
~3.5!

relates them to each other; the latter equality is implied by
the normalization~3.2!.

The quantity we are interested in isn̄, the average number
of successive events of the same kind@14#,

n̄[ (
n51

`

nPn . ~3.6!

As an immediate consequence of~3.5! and~3.3! this number
is given by

n̄5
1

12p0
, ~3.7!

so that we simply need to calculatep0 , which is the prob-
ability that there are no events of one kind between two
successive events of the other kind.

B. Uncorrelated events

Before considering the correlated OAM clicks it is in-
structive to calculatep0 for uncorrelated events. The corre-
sponding value ofn̄, for which we writen̄uncor, will serve as
a useful benchmark for judging the OAM values ofn̄.

We treat the case of ‘‘two successive A events with no B
events in between’’ in detail; the reverse case is handled by
exchanging the labels A and B consistently. These are the
ingredients: the rates at which the uncorrelated events occur
arerA andrB ; the probability that the first event is of type A
equalsrA/(rA1rB); the probability to have another A event
after the elapse oft•••t1dt is rAdt; the probability that
there was no other A event in the meantime is exp(2rAt!; the
probability that there was no B event is exp(2rBt). The mul-

tiplication of these probabilities and the integration over the
temporal spacingt of the two successive A events produces

E
0

`

dt rA
rA

rA1rB
e2rAte2rBt5S rA

rA1rB
D 2. ~3.8!

After adding the analogous contribution for two successive B
events, obtained by the interchangerA↔r B , we get

p05
rA
21rB

2

~rA1rB!2
512

2rArB
~rA1rB!2

. ~3.9!

The mean number of successive uncorrelated events is there-
fore given by

n̄uncor5
~rA1rB!2

2rArB
>2 . ~3.10!

The lower bound of two recognizes thatn̄uncor is twice the
squared ratio of the arithmetic and geometric means ofrA
and rB . Therefore, the equal sign applies only forrA5rB .

If n̄5n̄uncor is found for a given sequence of events, one
cannot, of course, conclude that there are no correlations
among the events. Any deviation ofn̄ from n̄uncor, however,
indicates the presence of correlations. Roughly speaking, the
events are bunched ifn̄.n̄uncor and antibunched if
n̄, n̄uncor. In particular, the extreme value ofn̄51 charac-
terizes a strictly alternating sequence of A and B events —
perfect antibunching in other words.

C. Correlated OAM clicks

1. General results

Mutatis mutandis, the calculation ofn̄ for OAM clicks
follows the general pattern that producedn̄uncor in Sec. III.B.
Owing to the correlations among the clicks, the details are
more involved. We shall make extensive use of the methods
and results of Ref.@12#. Alternatively and equivalently, one
could argue in the spirit of Ref.@15#, or possibly@16#, and
arrive at the same answers.

Thea priori rates for the clicks of theuA& and uB& detec-
tors are

rA5rhA tr$Ar~SS!%, rB5rhB tr$Br~SS!%, ~3.11!

with the symbols introduced in Sec. II. As in Sec. III B, the
probability that the first click is of type A is given by the
relative raterA/(rA1rB). After this first A click the photon
state is

rA~0!5
Ar~SS!

tr$Ar~SS!%
; ~3.12!

this is the state reduction~2.5! applied to the steady state
r (SS) of ~2.14!. Until the next click happens, this state
evolves according to the master equation~2.15!. After the
elapse of timet we thus have@cf. Eq. ~2.16!#

rA~ t !5
exp~L~h!t !rA~0!

tr$exp ~L~h!t !rA~0!%
. ~3.13!
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The probability for having an A click at timet•••t1dt is
therefore given by

r dthA tr$ArA~ t !% ~3.14!

and the probability that there was no A click in the meantime
is the exponentiated time integral thereof,

expS 2r E
0

t

dt8hA tr $ArA~ t8!% D . ~3.15!

Since the analogous probability for no B click is obtained by
the replacementhAA→hBB, the probability for no click of
either kind in the meantime is

expS 2r E
0

t

dt8 tr $~hAA1hBB!rA~ t8!% D . ~3.16!

Putting things together, we have the preliminary result@com-
pare with~3.8!#

p05E
0

`

dt
rA

rA1rB
rhA tr$ArA~ t !%

3expS 2r E
0

t

dt8 tr $~hAA1hBB!rA~ t8!% D
1@A↔ B#, ~3.17!

where the symbolic last term represents the contribution of
two successive B clicks.

Considerable simplifications can be achieved. First note
that the identity

2r tr $ ~hAA1hBB!r%5 tr$L~h!r%, ~3.18!

valid for anyr, implies that the no-click probability~3.16! is
equal to the denominator in~3.13!,

expS 2r E
0

t

dt8 tr $~hAA1hBB!rA~ t8!% D
5expS E

0

t

dt8
tr $L~h!exp~L~h!t8!rA~0!%

tr $exp ~L~h!t8!rA~0!% D
5expS E

0

t

dt8
]

]t8
ln tr $exp ~L~h!t8!rA~0!% D

5 tr $exp ~L~h!t !rA~0!%. ~3.19!

Then we use~3.11!–~3.13! to establish

rA tr$ArA~ t !% tr $exp ~L~h!t !rA~0!%

5rhA tr $A exp~L~h!t !Ar~SS!%. ~3.20!

Consequently, an equivalent expression forp0 is @17#

p05E
0

`

dt
r 2

rA1rB
@hA tr $A exp~L~h!t !Ar~SS!%

1hB
2 tr $B exp~L~h!t !Br~SS!%#

5
r 2

rA1rB
@hA

2 tr $A@2L~h!#21Ar~SS!%

1hB
2 tr $B@2L~h!#21Br~SS!%#. ~3.21!

Next, we observe that the equality (L(0)2L(h))/r2hBB
5hAA in conjunction withL(0)r (SS)50 and, for anyr,
tr$L(0)r%50 supplies the two statements

hA
2 tr $A@2L~h!#21Ar~SS!%

5rA/r
22hAhB tr $B[2L~h!#21Ar~SS!%

~3.22a!

5rA/r
22hAhB tr $A@2L~h!#21Br~SS!%, ~3.22b!

where the definition ofrA in ~3.11! has entered. We combine
that statement abouthB

2 tr $B@2L(h)#21Br (SS)% that corre-
sponds to~3.22a! with ~3.22b! and turn~3.21! into

p0512
2r 2

rA1rB
hAhB tr $A@2L~h!#21Br~SS!%. ~3.23!

According to ~3.7!, the mean number of successive OAM
detector clicks of the same kind is therefore given by

n̄5
rA1rB
2r 2

~hAhB tr $A@2L~h!#21Br~SS!%21, ~3.24!

which is a central result of this paper. In view of the sym-
metry expressed in~3.22! it is clear that the operatorsA and
B could change their places in the trace without affecting the
value of n̄.

In the situation of very low detector efficiencies, that is,
0,hA ,hB!1, most of the atoms escape detection and the
clicks are so infrequent that their correlations become irrel-
evant. Therefore consistency requires thatn̄ of ~3.24! re-
duces ton̄uncor of ~3.10! in this event. In the Appendix, we
demonstrate that~3.24! passes this test indeed.

The no-click probability of~3.19! has to vanish in the
limit of t→`. As a consequence, all the eigenvalues
2lm

(h) of the linear operatorL(h) must have negative real
parts. We denote the right eigenstates byrm

(h) and the left
ones byřm

(h) ,

L~h!rm
~h!52lm

~h!rm
~h! , řm

~h!L~h!52lm
~h!řm

~h! .
~3.25!

@The left actionřM of any Liouville operatorM is related
to its right action Mr through the requirement that
tr$ř (Mr)%5 tr$( řM)r% holds for any pairř, r.# We nor-
malize řm

(h) andrm
(h) such that the duality relation
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tr $řm
~h!r m 8

~h ! % 5d m m 8 ~3.26!

involves no numerical constants. Then the completeness
statement

r5(
m

rm
~h! tr $ řm

~h ! r %, ~3.27!

which says that anyr can be written as a weighted sum of
the right eigenstatesrm

(h) , does not involve such constants
either. With the eigenvalues and eigenstates ofL(h) at hand,
spectral decompositions

f ~L~h!!r5(
m

rm
~h! f ~2lm

~h!! tr $řm
~h ! r % ~3.28!

are available for functions ofL(h), in particular for the in-
verse@2L(h)#21. This offers a convenient way of evaluating
the trace in~3.24!, viz.,

n̄5
rA1rB
2r S hAhB(

m
tr $Arm

~h!%
r

lm
~h! tr $řm

~h ! Br~SS!% D 21

.

~3.29!

All the numerical results reported below have been produced
in this manner. As a rule, the solution of the eigenvalue
problem~3.25! is the most time-consuming part of a compu-
tation along these lines.

2. Perfect detectors

An exception is encountered in the situation of perfect
detectors, that is,hA5hB51. Actually, since there are no
perfect detectors, one is here no longer considering the sta-
tistics of detector clicks but rather the statistics of the emerg-
ing atoms themselves. In thishA5hB51 case,L(h) of
~2.17! differs from the Liouville operatorL of the photon
damping@specified in~2.12!# only by an additive constant,

L~1![L~h!uhA5hB515L2r . ~3.30!

The eigenvalues ofL are

2lk,n52~ uku/21n!G, ~3.31!

with k50,61,62, . . . andn50,1,2, . . . , and the eigenval-
ues of2L(1) are given byr1lk,n . The pairk,n represents
here the formal indexm in Eqs. ~3.25!–~3.29!. The corre-
sponding common eigenstatesrk,n andřk,n of L andL(1) are
the familiar members of the standard damping basis@18#. In
particular, fork50, n50 we have the thermal state of~2.11!
and the identity operator,

r0,05r~ th!, ř0,051 . ~3.32!

Rather than repeating once more the explicit forms ofrk,n
and řk,n , which involve normally ordered Laguerre polyno-
mials, let us mention a convenient pair of generating func-
tions @19#, viz.,

R~a* ,a![e2~n11!a* aeaa†r~ th!ea* a

5(
k,n

a* n1~ uku2k!/2an1~ uku1k!/2
~n11!n1uku

~n1uku!!
rk,n

~3.33!

and

Ř~a* ,a![e2na* aeaa†ea* a5e2~n11!a* aea* aeaa†

5(
k,n

a* n1~ uku1k!/2an1~ uku2k!/2
~n11!n

n!
řk,n .

~3.34!

The duality relation~3.26!, here with dmm85dkk8dnn8, is
equivalent to the statement

tr $Ř~a* ,a!R~b* ,b! % 5e~n 11!~a* b 1b* a!, ~3.35!

which is easily checked.
A few other important properties ofrk,n and řk,n are

worth recalling. Changing the sign ofk is equivalent to tak-
ing the adjoint,

r2k,n5~rk,n!
†, ř2k,n5~ řk,n!

†, ~3.36!

and therefore we can restrict the discussion tok>0. For
thesek values, the generating functions~3.33! and~3.34! tell
us thatrk,n is a certain function of the photon numbera†a
multiplied by k factors ofa†,

rk,n~a
†,a!5S a† 1

Aaa†D
k

f k,n~a
†a! for k>0 ,

~3.37!

whereasřk,n is of the complementary form

řk,n~a
†,a!5 f̌ k,n~a

†a!S 1

Aaa†
aD k for k> 0 .

~3.38!

@The powers of (aa† )21/2, which turna† anda into normal-
ized ladder operators, are introduced for later convenience;
they simplify ~3.50!, for instance.# In other words, in the
number state matrices of allrn,k’s and all řn,k’s only one
side diagonal has nonzero entries~thekth below or above the
main diagonal, respectively, fork>0). Thus the indexk la-
bels the diagonals and the indexn labels the various eigen-
states to a given diagonal. Roughly speaking, for largern
values the relevant photon numbers are larger too.

ForhA5hB51, Eqs.~3.11! and~2.18! imply the equality
rA1rB5r , which states the obvious: if all atoms are de-
tected, then the total click raterA1rB must equal the beam
rate r . In summary, we find

n̄5S (
k,n

tr $Ark,n%
2r

r1~ uku/21n!G
tr $řk,nBr~SS!% D 21

~3.39!
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for the mean number of successive atoms in the same final
state. Since all quantities on the right-hand side are known
explicitly, the evaluation of this expression is quite straight-
forward.

3. Symmetric detectors

If the detector efficiencies are finite and equal, that is,
0,hA5hB,1, then some of the attractive symmetry prop-
erties of the damping basis are also possessed by the eigen-
states ofL(h). The numerical calculations are then techni-
cally much simpler than in the asymmetric situationhA
ÞhB . Mainly for such practical reasons, all results reported
below in Secs. IIIC4 and IIIC5 have been computed for sym-
metric detectors.

For hA5hB[h, we can writeL(h) in the form

L~h!5@L1~12h!r ~A1B21!#2hr[L̃~0!2hr ,
~3.40!

whereL̃(0) is a Liouville operator of the OAM kind defined
in ~2.10! with a reduced beam rate ofr̃5(12h)r . Since
L̃(0), and therefore alsoL(h), does not couple the diagonals
of r to each other, their common eigenstates are of the
single-diagonal type as well,

rk,n
~h!~a†,a!5S a† 1

Aaa†D
k

f k,n
~h!~a†a!,

řk,n
~h!~a†,a!5 f̌ k,n

~h!~a†a!S 1

Aaa†
aD k, ~3.41!

here, as in~3.37! and ~3.38!, stated fork>0; sinceL(h) is
Hermitian in the sense of

@L~h!r#†5L~h!r†, ~3.42!

its eigenvalues2lk,n
(h) make up pairs of complex numbers,

l2k,n
~h! 5@lk,n

~h!#* . ~3.43!

It is then both possible and natural to normalize the eigen-
statesrk,n

(h) and řk,n
(h) such that they obey~3.36!. In particular,

for k50 the eigenvalues2l0,n
(h) are real — and, in fact,

negative — and the eigenstatesr0,n
(h) and ř0,n

(h) are Hermitian.
For k50, n50 the statement analogous to~3.32! reads

r0,0
~h!5 r̃ ~SS!, ř0,0

~h!51 , l0,0
~h!5hr , ~3.44!

where r̃ (SS) is the OAM steady state~2.14! with r replaced
by the reduced rater̃5(12h)r .

The main difference between theh,1 case of this sec-
tion and theh51 case of Sec. III C 2 consists in our knowl-
edge about the eigenvalues and eigenstates ofL(h). Whereas
those forh51 are well known explicitly, those forh,1 are
presently only available numerically. Most other differences
are minor and many are elementary. For instance, here Eqs.
~3.11! and ~2.18! imply rA1rB5hr , which is an obvious
statement too. Then, the analog of~3.39! is

n̄5S (
k,n

tr $Ark,n
~h!%

2hr

lk,n
~h! tr $řk,n

~h !Br~SS!% D 21

. ~3.45!

Depending on the particular form of the operatorsA and
B, this can be simplified further, as we shall discuss in the
subsequent sections.

4. Phase-sensitive setup

For the phase sensitive setup of Fig. 1~b! or 1~c!, n̄ has
been computed recently in Refs.@3–5# by means of a Monte
Carlo simulation that produced estimates for the probabilities
Pn of Sec. IIIA. The Rabi anglew covered the range
0,w,5 in these calculations while the ratio of the rates
r /G525/3 and the thermal photon numbern50 were kept at
fixed values. Some of these results are reproduced in Fig. 3,
which showsn̄ as a function ofw for h5100% and 10%.
The uncorrelated value

n̄uncor52 ~3.46!

is also indicated in this figure. We observe that the detector
clicks are bunched for almost the entirew range of the plot;
antibunching is seen only aroundw5A2p54.44. The said
value of n̄uncor results from ~3.10! after noting that Eqs.
~3.11! yield

rA5 1
2hAr , rB5 1

2hBr ~3.47!

for theA andB operators of~2.13!; thus rA5rB holds for
hA5hB5h and ~3.46! obtains.

More generally, we have

tr$Ar%

tr$Br% J 5 1
2 tr$r %7 1

2 tr $~SB
† SA 1SA

† SB!r %,

~3.48!

with SA andSB given in~2.4!. Because of the extraa† ladder
operator inSB , the second trace vanishes unless the number-

FIG. 3. Mean numbern̄ of successive detector clicks of the
same kind in the phase-sensitive setup of Fig. 1~b! or 1~c!. For
r /G525/3 andn50, the values ofn̄ are shown for Rabi angles in
the range 0,w,5 and for detector efficiencies ofh5100% and
10%. The plot is the result of a Monte Carlo simulation; it is es-
sentially identical to Fig. 3~a! of Ref. @5#.
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state matrix ofr has nonzero entries on thek561 diago-
nals, that is on the first side diagonals. Therefore, we have
the rather explicit statements

tr $Ark,n
~h!%55

1
2dn,0 for k50

2 1
2 tr $SB

† SA r1,n
~h ! % for k51

2 1
2 tr $SA

† SB r -1,n
~h ! % for k521

0 for k56 2,6 3, . . .
~3.49!

for the right eigenstatesrk,n
(h) of L(h). Upon employing the

factorization~3.41!, thek561 cases appear as

tr $Ar21,n
~h! %5~ tr $Ar1,n

~h!%!*

52 1
2 tr $sin ~wAa† a11 !

3cos~wAa† a12 ! f -1,n
~h !~a† a!%[2 1

2an
~h!.

~3.50!

For the double sum in~3.45! we need to supplement this
with

tr $ř0,0
~h !Br~SS!%5 tr $Br~SS!%5 1

2 ~3.51!

and

tr $ř21,n
~h ! Br~SS!%5~ tr $ř1,n

~h !Br~SS!% !*

5 1
4 tr $ f̌21,n

~h ! (a† a! sin ~2w Aa† a11 !

3r ~SS)~a†a!%[ 1
2 b̌n

~h! . ~3.52!

In view of ~3.49! only thek50, n50 term and thek561
terms contribute ton̄ in ~3.45!. We recall the value ofl0,0

(h)

given in ~3.44! and arrive at

n̄5S 122hr Re(
n50

`

an
~h !b̌n

~h !/l21,n
~h ! D 21

. ~3.53!

Please note that thek50, n50 term alone would yield
n̄52, which is the value ofn̄uncor of ~3.46!, so that the
k561 terms account for the correlation effects.

With the analytical expression~3.53! at hand, we can
computen̄ in a tiny fraction of the time needed to perform
the corresponding Monte Carlo calculation. We have already
mentioned at Eq.~3.29! that the solution of the eigenvalue
problem~3.25! consumes most of the time. If one does not
care about the eigenvalues, thet integral of ~3.21! can be
evaluated directly. The computation time is then reduced fur-
ther, roughly by a factor of 2.

More important, however, than this progress at the nu-
merical front is the analytical information contained in
~3.53!. We learn which aspects of the OAM dynamics are
studied in a measurement ofn̄. The dynamical sector gov-
erned byL(h) is relevant, not the one whereL(0) rules. We
shall have more to say about this essential distinction in Sec.
IV.

A first application is presented in Fig. 4, which showsn̄
as a function of the Rabi anglew for the same parameters

that were used in the Monte Carlo simulation of Fig. 3. The
agreement could not be better. In particular, the antibunching
aroundw5A2p54.44 is predicted both by the Monte Carlo
method and by the analytical formula~3.53!.

Whereas this antibunching appears as an exception in
Figs. 3 and 4, it is the rule in Fig. 5~a!, in which the Rabi
angle covers the range 5,w,10. Thus we observe that the
detector clicks tend to be bunched for small Rabi angles and
antibunched for larger ones; but, unfortunately, we do not
have an intuitive, qualitative understanding of this observa-
tion presently.

In Refs. @3–5# a certain similarity was noted, forw,5,
between thew dependence ofn̄ and the mean photon number

FIG. 4. Analytical results produced by Eq.~3.53! for the same
parameter values as in Fig. 3. The two curves are for detector effi-
ciencies ofh5100% (2) andh510% (222); the value of two
for uncorrelated detector clicks is indicated as well (••••••).

FIG. 5. ~a! Same as Fig. 4 for the range 5,w,10. ~b! The
corresponding mean number of photons in the cavity field.
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^a†a& in steady state. We believe that this similarity is acci-
dental, becausen̄ and^a†a& are rather dissimilar functions of
w in the range 5,w,10, as is clearly visible in Figs. 5~a!
and 5~b!.

All data presented in Figs. 3–5 refer to the limiting situ-
ation of temperature zero. The so-called trapped vacuum
states of the OAM are then realized forw5p,2p,3p, . . . .
These Rabi angles are such that an excited atom that enters
an empty resonator undergoes one, two, three, etc. full Rabi
cycles and so leaves the cavity in its excited state. In effect,
the atoms are not pumping the resonator at all and the steady
state of the cavity field is simply the photon vacuum, irre-
spective of the beam rater . Since all emerging atoms are in
stateuA& before they are exposed to thep/2 pulse of Fig.
1~b!, the detectors will register uncorrelated clicks at the
rates~3.47!. For symmetric detection these rates are equal
and we expectn̄5n̄uncor52 at w5p,2p,3p, . . . . This is
confirmed by Figs. 4 and 5~a!.

For finite temperatures, there are no trapped vacuum
states and the arguments that feed the expectation ofn̄52
for w5p,2p,3p, . . . are no longer valid. Indeed, we find
the h5100% values ofn̄52.248, 1.993, and 1.835 for
w/p51, 2, and 3, respectively, whenr /G525/3 and
n50.1. For this value of the thermal photon number, thew
dependence ofn̄ is plotted in Fig. 6 whereby all other pa-
rameters are the same as in Figs. 4 and 5. Not surprisingly,
we observe that the thermal noise leads to a smoothing of the
n -̄of-w curve, but the strong tendencies toward bunching
for w&6 and toward antibunching forw*6 are equally pro-
nounced forn50.1 as they are forn50.

5. Standard setup

For the standard OAM setup of Fig. 1~a!, the operators
A and B are given in~2.6! and ~2.8! and therefore thea
priori rates of~3.11! are

rA5rhA tr $ cos2 ~wAaa† ! r ~SS!~a†a!%

[rhA^cos2~wAaa†!&~SS! ~3.54!

and

rB5rhB tr $sin2~wAaa†!r~SS!~a†a!%

5rhB^sin2~wAaa†!&~SS!. ~3.55!

Since the equality

G~^a†a&~SS!2n!5r ^sin2~wAaa†!&~SS! ~3.56!

holds for the OAM steady state~2.14! — incidentally, this
equates the thermal loss rate to the pump gain rate and thus
states the energy balance in steady state — we can express
rA and rB in terms of the mean photon number^a†a& (SS),

rA5hAr2hAG~^a†a&~SS!2n!,

rB5hBG~^a†a&~SS!2n!. ~3.57!

When inserted into~3.10! thesea priori rates supply us with
the value ofn̄uncor. In particular, we find

n̄uncor5
r 2

2G2 @~^a†a&~SS!2n!~r /G2^a†a&~SS!1n!#21

~3.58!

if the detection is symmetrichA5hB5h.
The operatorsA andB of ~2.6! and ~2.8! do not couple

different diagonals of the statistical operatorr. Accordingly,
the eigenstates ofL(h) are of the form~3.41! even if the
detector efficiencieshA andhB are not the same. Neverthe-
less, we shall be content with treating the symmetric detec-
tion scheme because then the same eigenvalues and eigen-
states can be used as in Sec. III C 4.

As a consequence of the decoupling between the diago-
nals, now only thek50 terms contribute to the sum in~3.45!
because both traces therein vanish forkÞ0. Further, similar
to the observation made at Eq.~3.53!, the k50, n50 term
alone would yieldn̄uncor of ~3.58! here too; thek50, n.0
terms account for the correlation effects. The analog of
~3.53! thus reads

n̄ / n̄uncor5S 112hrn̄uncor(
n51

`

xnčn /l0,n
~h!D 21

~3.59!

with the symbolsxn and čn defined by

xn[ tr $Ar0,n
~h!%5 tr $cos2~wAaa†! f 0,n~h !~a† a! %,

~3.60!

čn[ tr $ř0,n
~h !Br~SS!%5^ f̌ 0,n

~h!~aa†!sin2~wAaa†!&~SS!,

where thea†a functions introduced in~3.41! appear.
In ~3.59! we have normalizedn̄ to n̄uncorbecause this ratio

tells us whether the clicks are bunched or antibunched.
Whereas it is clear that the right-hand side of~3.59! could be
evaluated for many different parameter sets, that would be
rather pointless. We demonstrate the case with the plots of
Fig. 7. They show n̄/n̄uncor as a function of w for

FIG. 6. Mean numbern̄ of successive detector clicks of the
same kind in the phase-sensitive setup of Fig. 1~b! or 1~c! at finite
temperature. Forr /G525/3 andn50.1, the values ofn̄ are shown
for Rabi angles in the range 0,w,10 and for detector efficiencies
of h5100% (2) andh510% (222); the value of 2 for uncor-
related detector clicks is indicated as well (••••••).
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r /G525/3 at temperature zero and forn50.1. Antibunching
is found only forn50 in a few rather narroww intervals and
even theren̄ is just a few percent short ofn̄uncor. The thermal
noise associated withn50.1 is enough to enforcen̄.n̄uncor
over the entirew range considered.

IV. CORRELATION FUNCTIONS

The phase sensitive setup of Fig. 1~b! was introduced in
Refs.@3–5# to enable the experimenter to investigate the dy-
namics of the electric field in the one-atom maser, in particu-
lar its decay to the stationary null value. The quantity of
primary interest is the~first-order! photon-photon correlation
function

g~ph!~ t ![
^a†~ t !a~0!&~SS!

^a†a&~SS! 5
tr $a†exp ~L~0!t !ar~SS!%

tr $a†ar~SS!%
,

~4.1!

because its Fourier transform supplies us with the spectrum
of the cavity field. Direct measurements of the properties of
the photon state are not possible in OAM experiments and
thereforeg(ph)(t) is a theoretical quantity in the first place
and so is the OAM spectrum. All modifications of the stan-
dard OAM apparatus that aim at studies of the phase dynam-
ics, such as the setup proposed in Ref.@20# or the phase
sensitive one of Fig. 1~b!, determine correlations between

atoms rather than between photons. In this section we dis-
cuss some of the relations between atom-atom and photon-
photon correlations.

We express the numerator in~4.1! with the aid of the
eigenvalues and eigenstates ofL(0) @the latter in the form of
~3.41! with h50# and arrive at

g~ph!~ t !5 (
n50

`

wn
~ph!exp~2l21,n

~0! t !, ~4.2!

where the weightswn
(ph) are given by

wn
~ph!5 tr $Aaa† f21,n

~0! ~a† a! %

3
^Aa† a f̌21,n

~0! ~a† a21! & ~SS!

^a†a&~SS! . ~4.3!

The sum rule

(
n50

`

wn
~ph!51 ~4.4!

is implied byg(ph)(t50)51, which is the conventional nor-
malization. The term ‘‘weight’’ forwn

(ph) is suggestive, but
might be misleading since these numbers are not guaranteed
to be positive or even real. With this proviso we shall con-
tinue to speak of weights.

The eigenvalue analysis performed here is essentially
identical to that of Ref.@21#, although we are employing
different notational conventions. Readers interested in the
alternative of a Green’s-function approach and analytical ap-
proximations based on it should consult Ref.@22#.

Both the expression forn̄ in Eq. ~3.53! and that for
g(ph)(t) in ~4.2! involve eigenvalues tok521, buth.0 is
essential in~3.53! whereas theh50 eigenvalues are needed
in ~4.2!. Therefore, measurements ofn̄ do not yield any in-
formation that could be directly related to the OAM spec-
trum. It is true that some connections exist in the limit
h→0, such as

]

]t
n̄U

h50

54r Re(
n50

`

a n
~0!b̌n

~0!/ l21,n
~0! ; ~4.5!

these are, however, practically useless for two reasons. First,
the left-hand side cannot be determined experimentally be-
cause of the vanishing signal-to-noise ratio forh→0; sec-
ond, the eigenvaluesl21,n

(0) cannot be extracted from the sum
on the right-hand side. We are thus led to this conclusion:
Although measurements ofn̄ and their comparison with the
theoretically predicted values constitute a valuable test of
OAM theory — be it for the standard setup or the phase
sensitive one — information about the OAM spectrum is not
gained in such experiments.

Fortunately, such information is contained in other quan-
tities that characterize the statistics of the detector clicks, in
particular in the atom-atom~or rather click-click! correlation
function. The generic example isGAB~t!, which measures the
cross correlation for a B click after timet has elapsed since
an A click happened. It is given by@12#

FIG. 7. Mean number of successive detector clicks of the same
kind in the standard setup of Fig. 1~a!, normalized to the value for
uncorrelated clicks. Forr /G525/3, the ration̄/n̄uncor is shown for
Rabi angles in the range 0,w,10 and for detector efficiencies of
h5100% (2) andh510% (222). The number of thermal pho-
tons is~a! n50 or ~b! n50.1.
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GAB~t!5
tr $B exp~L~0!t !Ar~SS!%

tr $Br~SS!% tr $Ar~SS!%
; ~4.6!

note that there is no dependence on the detector efficiencies.
This atom-atom correlation function is normalized according
to different conventions than the photon-photon correlation
function g(ph)(t) of ~4.1!. For an easier comparison of the
two, we introduce the reduced atom-atom correlation func-
tion

g~at!~ t !5
GAB~ t !21

GAB~0!21
, ~4.7!

which is subject to the same normalization asg(ph)(t), viz.,
g(t50)51 andg(t5`)50. This definition ofg(at)(t) in-
volvesGAB~t!, but for theA andB operators of the phase
sensitive setup@recall~2.13!# the sameg(at)(t) is obtained for
GAA(t), GBB(t), and GBA(t). Consequently, g(at)(t)
uniquely specifies all the various atom-atom correlation
functions in conjunction with their values att50. In view of
GAB~0!5GBA(0) and GAA(0)5GBB(0), there are really
only two of them, not four.

The reduced atom-atom correlation function can be cast
into forms that are closely analogous to~4.1! and ~4.2!,

g~at!~ t !5
tr $~B2A!exp~L~0!t !~B2A!r~SS!%

tr $~B2A!2r~SS!%

5 Re(
n50

`

wn
~at!exp~2l21,n

~0! t !, ~4.8!

where the weights

wn
~at!5

an
~0!b̌n

~0!

Re (
m50

`

am
~0!b̌m

~0!

~4.9!

involve theh50 versions of the coefficients introduced in
Eqs. ~3.50! and ~3.52!. The remark about our sloppy use of
the term ‘‘weight,’’ made after Eq.~4.4!, applies here too.
Incidentally, the injunctions to take the real parts of the sums
in ~4.8! and~4.9! are superfluous because these sums happen
to be real themselves, although the individual summands
may be complex. The photon-photon correlation function of
~4.1! is real as well.

The same eigenvalues that enter the photon-photon corre-
lation functiong(ph)(t) of ~4.1! determine also the time de-
pendence ofg(at)(t). As a rule, the weightswn

(ph) andwn
(at)

are different, of course, with the consequence that measure-
ments ofg(at)(t) will supply only partial information about
g(ph)(t) and therefore about the OAM spectrum.

If the photon-number distribution in steady state is domi-
nated by a single narrow peak, then approximations such as

cos~wAaa†!r~SS!~a†a!>cos~wA^aa†&~SS!!r~SS!~a†a!,

r~SS!~a†a!a>ar~SS!~a†a! ~4.10!

are permissible. Accordingly, we have

~B2A!r~SS!>
sin~2wA^aa†&~SS!!

2A^aa†&~SS!
~ar~SS!1r~SS!a†!,

~4.11!

FIG. 8. Reduced atom-atom
correlation functionsg(at)(t) (2)
and photon-photon correlation
functions g(ph)(t) (222) for
Rabi anglesw50.5, 1.0, 1.5, and
2.0. The insets show the corre-
sponding photon probability distri-
butions in steady state. All plots
are for r /G525/3 andn50.
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under these circumstances. As pointed out in Ref.@23#, there
should then not be a significant difference betweeng(ph)(t)
andg(at)(t) and the experimental determination of the latter
can be regarded as a measurement of the former.

This observation is confirmed by the plots shown in Fig. 8
~similar plots comparing second-order correlation functions
are contained in Ref.@24#!. For w51 andw51.5, the re-
quirement of a single narrow peak is met and the two corre-
lation functions are hardly distinguishable. By contrast,
g(ph)(t) and g(at)(t) are visibly at variance with each other
for w50.5 ~one broad peak! andw52 ~two peaks!. These
differences are also exhibited in Table I, where we report the
relevant eigenvalues and weights that enter Eqs.~4.2! and
~4.8!. Forw51 andw51.5, we see that a single eigenvalue
dominates: the smallest one or the second smallest one, re-
spectively. Single eigenvalues carry also most of the weight
for w50.5, but not the same ones forg(ph) and g(at); the
latter has substantial contributions from two more eigenval-
ues. Yet another situation is encountered forw52, where
two eigenvalues contribute the largest portion to the photon-
photon correlation function, whereas three real eigenvalues
and a pair of complex conjugate ones are most relevant for
the atom-atom correlations.

We note in passing that the smallest eigenvalue carries
negative weight forw51.5. Therefore, the correlation func-

tions are negative for timest sufficiently late. The sign
change occurs aroundt>30/G5250/r , that is after about 30
photon lifetimes during which period an average number of
250 atoms traverse the resonator. Consequently, these~very
weak! long-time anticorrelations are of no experimental sig-
nificance.

In summary, we conclude that a measurement ofg(at)(t)
will yield those eigenvalues ofL(0) that are most important
for the photon-photon correlation function and thus for the
OAM spectrum. The weightswn

(ph) , however, are not made
available in this way, so that the spectrum cannot be inferred.
Nevertheless, the comparison of the experimental atom-atom
correlation function with the theoretical prediction would
once more put OAM theory to the test.

V. SUMMARY

We have reconsidered the phase-sensitive OAM setup
proposed in Refs.@3–5# in which the state reduction that is
associated with each registered detector click effects a post-
selection of the phase of the maser field. In these papers it
was surmised that the mean number of successive detector
clicks of the same kind supplies information about the phase
dynamics of the pumped maser and so tells the experimenter
something about the maser spectrum. In the present paper we

TABLE I. Those eigenvaluesl21,n
(0) of the Liouville operatorL(0), in units of the decay rateG, that are

most relevant for the correlation functions plotted in Fig. 8, and the weightswn
(ph) , wn

(at) associated with them.
The eigenvalues are ordered according to the increasing real part; note that some intermediaten values are
missing because they carry no weight within the accuracy of the table.

w n l21,n
(0) /G wn

(ph) wn
(at)

0.5 1 0.058 0.998 0.086
2 0.873 0.003 0.830
3 1.675 20.001 0.086
4 2.650 0.0 20.002

1.0 1 0.239 1.026 0.979
2 2.820 20.026 0.016
4 4.945 0.0 0.006
7 6.854 0.0 20.001

1.5 1 0.762 20.050 20.061
2 0.864 1.084 1.167
3 2.944 0.002 0.020
4 4.27910.493i 20.01320.008i 20.05620.029i
5 4.27920.493i 20.01310.008i 20.05610.029i
7 6.51210.183i 20.00610.003i 20.00910.008i
8 6.51220.183i 20.00620.003i 20.00920.008i
11 11.516 0.0 0.004

2.0 1 0.840 0.750 0.305
2 2.099 0.322 0.298
4 3.323 20.075 0.612
6 6.03510.224i 0.00210.003i 20.11520.001i
7 6.03520.224i 0.00220.003i 20.11510.001i
9 8.88910.208i 0.0 0.00920.012i
10 8.88920.208i 0.0 0.00910.012i
11 9.830 0.0 20.002
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derive an analytical expression for this mean number and
find perfect agreement with the results obtained in Refs.
@3–5# with the aid of a numerical simulation of the OAM
dynamics. Unfortunately, the structure of the analytical an-
swer contradicts the said surmise because it involves the ei-
genvalues of a Liouville operator different from the one that
determines the OAM spectrum. As we demonstrate then, the
relevant eigenvalues are, however, available from measure-
ments of the atom-atom correlation function, as has been
already noted qualitatively in@5# and discussed in more de-
tail in @23#. Partial knowledge about the OAM spectrum can
thus be extracted from the statistics of the emerging atoms.

VI. OUTLOOK

Let us close with an outlook on likely future develop-
ments. Prior to the interaction with the cavity field there are
no correlations among the atoms in the Poissonian beam.
The observation of correlations after the interaction therefore
indicates that the atoms have become entangled. The primary
entanglement is between the photons and the atoms and the
atom-atom entanglement is of secondary nature. This sec-
ondary entanglement is the origin of the correlations among
the detector clicks.

Inasmuch as all such entanglements give rise to correla-
tions of the Einstein-Podolsky-Rosen type@25#, one is in-
vited to ask@5# if violations of the Bell inequality@6# can be
demonstrated in OAM experiments. By changing the relative
phase of the classical field that produces thep/2 pulse in Fig.
1~b! one could probe the atoms for the various superpositions
of uA& and uB& that enter the Bell inequality. According to
Ref. @26#, such violations can be found indeed if one uses a
pair of test atoms in addition to the pump atoms of the Pois-
sonian beam. At present it is an open question whether the
two-particle correlations among the emerging pump atoms
themselves are strong enough. There is also the practical
aspect that the detector efficiencies are most likely too small
for tests of the Bell inequality.

The detector efficiencies play no role when one looks for
correlations of the Greenberger-Horne-Zeilinger~GHZ! type
@7,27#, which would involve three or more atoms and are
much stronger than the two-atom correlations of the Bell
inequality. In particular, Mermin’s version@28# for three
spin-12 particles is suited perfectly for the two-level atoms
used in OAM experiments. A method for preparing a
Mermin-type GHZ state was proposed in Ref.@29#. It utilizes
the interaction of atoms with photons in a resonator in a
clever way. Here too we do not know presently if the three-
particle correlations that are built up among the pump atoms
as a result of the standard OAM operation are strong enough
to allow for experimental studies of GHZ correlations. Inves-
tigations along these lines are the intended subject of a future
investigation.
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APPENDIX

Here we demonstrate thatn̄ of ~3.24! reduces ton̄uncor of
~3.10! in the situation of very low detector efficiencies,
0,hA ,hB!1. We regardhA ,hB as infinitesimal quantities
and proceed from noting that, under these circumstances,
L(h) of ~2.17! differs from L(0) only by an infinitesimal
amount. Therefore, the eigenvalueslm

(h) of 2L(h) agree with
the eigenvalueslm

(0) of 2L(0) up to terms that are linear in
hA ,hB :

lm
~h!5lm

~0!1 tr $řm
~0! ~L~0!2L~h!!rm

~0!%

5lm
~0!1r tr $řm

~0! ~hAA1hBB!rm
~0!%. ~A1!

In this result of first-order perturbation theory, all contribu-
tions of second and higher order inhA ,hB are consistently
disregarded.~The implicit assumption that the eigenvalues
are not degenerate is innocuous.!

Now we recall that the OAM steady stater (SS) is the
~unique! eigenstate ofL(0) to the eigenvaluel (0)50. We
associate the labelm50 with this eigenvalue, so that

l0
~0!50 , r0

~0!5r~SS!, ř0
~0!51 ~A2!

by convention. Then we have, form50,

l0
~h!5r tr $~hAA1hBB!r~SS!%5rA1rB ,

and formÞ0,

lm
~h!5lm

~0!Þ0 ~A3!

for 0,hA ,hB!1. Consequently, in the sum overm that ap-
pears in~3.29!,

(
m

tr $hAArm
~h!%

r

lm
~h! tr $řm

~h !hBBr~SS!%, ~A4!

them50 term is of first order inhA ,hB and themÞ0 terms
are of second order. ThemÞ0 terms are therefore negligibly
small; with r0

(h)→r0
(0)5r (SS) and ř0

(h)→ ř0
(0)51 the m50

term equals

tr $hAAr~SS!%
r

l0
~h! tr $hBBr~SS!%5

rArB/r

rA1rB
. ~A5!

Accordingly, Eq.~3.29! turns into

n̄5
rA1rB
2r S rArB/rrA1rB

D 21

5
~rA1rB!2

2rArB
5n̄uncor. ~A6!

Since~3.29! is equivalent to~3.24! this completes the dem-
onstration thatn̄ reduces ton̄uncor for 0,hA ,hB!1.
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