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Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection

Thomas Erneux
UniversiteLibre de Bruxelles, Optique Nonlin#e Theorique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium

Vassilios Kovanis; Athanasios Gavrielidesand Paul M. Alsing
Nonlinear Optics Center, Phillips Laboratory, PL/LIDN, 3350 Aberdeen Avenue SE, Kirtland Air Force Base, New Mexico 87117-5776
(Received 25 January 1995

The single-mode rate equations for a semiconductor laser subject to optical injection are investigated ana-
lytically. We determine the first branch of periodic solutions for low values of the injection field. For larger
values of the injection field, we derive a third-order pendulum equation for the phase difference of the laser
field of the form ¢/"+ ¢’ =A coq¢), where A groups all the key laser parameters. This equation captures
several aspects of the numerical bifurcation diagram, namely, the fixed amplitude of the period-one solution
and the period-doubling bifurcation. Finally, we compute the optical power spectrum utilizing the perturbation
solutions of the phase equation before and after the period-doubling transition. We also obtain very good
agreement with the numerically computed spectrum.

PACS numbgs): 42.55.Px, 05.45:b

I. INTRODUCTION dy
EzA—bN— 7E "1 sin(y), (1.2
Experimentally observed spectra of a laser diode subject

to strong injection have been reproduced numerically using a dN
single-mode injection model by Simpsat al. [1,2]. The T—=P-N—-P(1+2N)E2 1.3
numerical study allows a detailed analysis of a period- dr
doubling route to chaos and has clarified the role of the line- . L . .
width enhancement factor. Of particular interest is the fac{.rf] these egu/atlonsﬁ t'me'f m,egsured. In du?ns;f thiphotpn
that period doubling appears at relatively low values of the'fet'rr:1e (T_t. tp, W er:etp~hlo Sl)f Tisde Te ast iratlo
injection field. The main objective of this paper is to capture0 Nt e_gcarrle_r to the photon |et|me$T—tS/tp,~W ere
analytically the mechanism leading to these period-doublin S.Nlo ). b IS tlhe Ilﬂewdthl_en:an(f:err]ne_nt_ fact(c(i;r;?,la@.d .
instabilities and to obtain simple analytical expressions of” IS proportional to the amplitude of the injected field and is
the optical power spectra. To this end, we propose an asym[ihe control parameterP is the pumping current above

totic approximation of the laser equations based on two larg hreshold[P=0.375 is proportional tdJ/Ji—1), whereJ
parameters, namely, the ratio of the carrier to the photo

ndJ, denote the pumping current and the pumping current
lifetimes and the linewidth enhancement factor. We obtain t threshold, respectivelyA is the frequency offset of the
simple nonlinear problem that exhibits the dominant role o

fmaster laser from the free-running frequency of the slave
the phase of the laser field. This particular feature of théaser. In this system of equations the nonlinear gain was not
semiconductor laser with an injected signal has been dis-

included in order to simplify the analytical calculations.
cussed before by Lar{@] and has been suspected by Winful

and Wang[4] and Winful [5] for coupled semiconductor 06
lasers. However, the actual mechanism of how the phase
induces the first two bifurcations has never been analyzed. 04

The single-mode rate equations used successfull§,z]
to compute the optical power spectra consist of three equa-
tions for the amplitude of the electrical field, the phase
difference between master and slave electrical figldand
the carrier density above threshdid They are given by

02
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dE
E:NE_i_ n COil/l), (11) 0.4
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A typical bifurcation diagram of the possible solutions of where the factof2P)Y? has been introduced i2.3) so that
Egs.(1.1)—(1.3) is shown in Fig. 1 for zero detuningh=0).  the leading-order equations &s—«~ do not depend on any
The figure representg=(E/E;) —1 as a function ofy for the ~ parameter. We consider small values of the injected signal
experimental parameter values extracted with the four-waveand scaley as
mixing technique 6] and used in the numerical simulations .

[1,2]. From low to moderate values of we note a cascade n=T "\ 2.4

of period-doubling bifurcations. We also note from the time_., . L . . . .
evolution that the oscillations remain nearly harmonic. ThisTZ'.S stcallntgh 'f rPhonva;.te? bz thfe gf}ea”zfd theory, Wh'crl
contrasts the pulsating oscillations observed in other cases i |c_a£s_r_l a 9 Ne i |;rs] tthop briurea '08 Hap?%irs a
period doubling in clas8 laser system§7,8]. In this paper, ’.7HlT (t d ) t[ - _%eT—?/z) ?_f |sba §ec<t)n q OF: ¢ : ur?a-
we concentrate on the first two bifurcations, namely, a Hopﬂgz ;Cir?st;bT]eHzfgr ( e € agslcc;secz d)i/r-1$ a eer?cc)) dL_J'
bifurcation at a relatively low value af, and the first period- doubling bifurcati TH1 Z "sz 9 | pth'
doubling bifurcation, which occurs as the amplitude of the oubling bifurcations are observed as soomasy,;. In tis

. _1 .
Hopf bifurcation branch saturates to a constant. We considé?aper’ we only consider the cage-O(T ). After mtrodu_c-
thepcaseAZO in detail and then discuss the effectdf0. MY (2.1)~(2.4) into Egs.(1.1)~(1.3), we obtain the following

The fact thafT, the ratio of the two fundamental time scales, equations fora, ¢, andn:

is a large quantityO(~10°—10°) suggests an approximation a'=n(1+a)+ e\ cog ), (2.5
of the laser equation€l.1)—(1.3). This approximation must
be derived carefully because the limit of lar§ids singular. e\

The paper is organized as follows. In Sec. Il we eliminate Y'=—bn- 71 sin(¢), (2.6)
the largeT singularity by reformulating the laser equations
in terms of deviations from the nonzero intensity solution. In N'=—(a+Lia?)—en[1+2P(1+a)?], 2.7

Sec. Il we determine a branch of periodic solutions that
emerges from a Hopf bifurcation as the injection field iswhere the prime means differentiation with respect smde
progressively increased. The fact that this Hopf bifurcations defined by

appears at a very low value of the control parameter is ex-

plained by considering the lardedimit. Furthermore, this €=(2PT) %<1 (2.8
limit allows us to explain why the amplitude of the periodic U . _

solutions saturates at a fixed value as the control parameter Recausee=0(T ?) is small, we investigate Eqg2.5)-
further increased. The results described in Sec. Il then mo2:7 in the limit e~0. If =0, Egs.(2.9—(2.7) reduce to the
tivate an asymptotic analysis of the laser equations, assumirig!loWing problem fora=aq, n=nq, and ¢=yy:

a specific scaling betweeh andb. This is done in Sec. IV

where we derive a third-order pendulum equation for the %o="No(aot1), 2.9

phase of the laser field and obtain an approximation of the o= — (ag+2a?) (2.10

first period-doubling bifurcation. We compute the optical 0 o' 2%k '

spectra in Sec. V. Section VI discusses the effect of detuning wi=—bN 2.19)

(A) and summarizes the main results. All mathematical de- 0 0 '

tails are deferred to the Appendixes for clarity. These equations can be integrated once. We find the integrals
Eo=3(1+ap)®—In(1+ag)+nj (2.12

IIl. FORMULATION

: and
In the case of a free-running lasey=0), we note from

the linearized theory that small perturbations from the Co=to+b In(1+ ay), (2.13
steady-state solutiokEs=1 and N,=0 are oscillating with
relaxation frequencme(ZP/T)l’i and are slowly decaying whereE, and C, are the constants of integrati¢@0]. An
with damping rateys~(1+2P)/2T. We also note from the analysis of the solutions of Eq&.9) and(2.10 in the phase
solution of the linearized problem tha&t is ~O(T Y3,  plane shows that these equations admit a one-parameter fam-
while E—1 remainsO(1) as T—. This suggests the refor- ily of periodic solutions for alE,>0. We denote byag,ng)
mulation of the laser equations in terms of new variableghe P-periodic solution of Egs(2.9 and (2.10. Equation
defined as (2.13 implies thatyy is P periodic becausey is P periodic,
but its mean value is arbitrary sin€g is arbitrary. In order
B " to find howE, andC, depend on the bifurcation parameter
s=(2P/T)™*r, 2.0 \, we formulate solvability conditions for the higher-order
terms multiplyinge in Egs.(2.5—(2.7). These conditions are

E=1+a, 2.2 formulated in Appendix A and are given by

J‘P
and 0

N=(2P/T)Y%n, (23 and

26[’0"‘ CUS

Tray \ cog o) — 2n3[ 1+ 2P(1+ ag)?]|ds=0

(2.19
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FIG. 2. Bifurcation diagram of the periodic solutions fbitarge 2, A
andb large. The values of the parameters @re1000,b=10, and o . .
P—0 3759 P FIG. 3. Period-one solution. The period-one branch of the solu-

tion is given by a=~a sin(s), n~a cos(s), and ¢~C+basin(s).

o 1 The figure represents the amplitudé\) and is defined by3.5).
i _ The branch is first quasivertical near the Hopf bifurcation point

fo [=sin(yo) +b codo)] 1+ aq ds=0. (2.19 A=\ and then saturates at a constant amplitagea* =2.4b ™%,

In the next section, we investigate these conditions in detail cogCy)bJy(ab)—sin(Cy)[badi(ba)+Jg(ab)]=0,
and determine the first branch of periodic solutions. (3.4

where the Bessel functions come from the expansion of

coqyy)=cogbasin(s)] in Fourier seried11]. Eliminating
Equations(2.14 and (2.15 are called the bifurcation Co from these equations gives an implicit amplitude equation

equations because they relate the amplitude of the periodf®’ @a=a(\):

solutions(proportional toE;) and the bifurcation parameter

Ill. HOPF BIFURCATION

1/2
\. They cannot be solved analytically because we do not, _ a(1+2pP) 1 [bad(ba)+Jo(ab)]?
have an explicit expression far, andn,. However, the nu- 2J,(ab) b2J3(ab) ! 0
merical bifurcation diagram shown in Fig. 1 indicates that (3.5

the amplitude of the Hopf bifurcation branch remains small o o

and quickly approaches a constant amplitudeyascreases.  1his function is shown in Fig. 3. A&—0, we note from
By considering successive larger valuespfve have noted (3-5 that\ approaches a constant given by

numerically that the amplitude of is clearly a quantity L _3

~b~1 and the saturation of the amplitude after a thin layer Ay=b"*(1+2P)+0O(b%). 3.6
near the Hopf bifurcation point becomes more transparen

See Fig. 2. This suggests the determination of a smal the Hopf bifurcation point obtained from the linearized

amplitude solution of Egs.(2.9 and (2.10, assuming
_ -1 _ -1 _ ~~ theory and evaluated fdr large[8]. We also note front3.5)
2=0(b""), o=0(b ), andyp=0(1) asb—ee. All de- ("7 7 0 a—a*, wherex=a*b is defined as the first

tails are given in Appendix B. The leading expressions for . . P
ap, Ng, and i, are given by zero of the Bessel functiady(x). In a first approximatiom

is given by

IR_'l\/e have verified that3.6) matches the exact expression of

apg=4a Sin(S), Np=a COiS), a*%2‘4b—l. (37)

and In summary, we have shown that the amplitude of the Hopf

_ ) bifurcation branch quickly approaches a constant value as
Yo=Da sin(s) (3D \=0(2). In the next section, we consider=0(1), assume a

_1 . _ " specific scaling betweelm and T, and determine an approxi-
where a=0(b 7). Substituting (3.1) into the conditions  ation for the first period-doubling bifurcation.
(2.14 and(2.195 and assuming that

)\=O(b_1) (3.2 IV. PERIOD-DOUBLING BIFURCATION
In Sec. Il we found that a branch of periodic solutions
leads to the following conditions for amplitudeand Cy: emerges from a Hopf bifurcation ak,=0O(b" 1) and
quickly approaches a constar®(b™!) amplitude as
\ sin(Cy)2ald;(ab)—a?(1+2P)=0, (3.3 A=0(1). In this section we investigate the bifurcation dia-
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gram forA=0(1) in detail. To this end, we assume the scal-

ings \
A=0(1), «=0(b™ 1), n=0(b™Y), 5
and \
[
$p=0(1). 4.1 4 \
[
In addition, we introduce a specific scaling between £ \
(equivalentlyT"%?) andb™*: ' \
? N

e=0(b™1). 4.2 . \
This scaling is motivated by the numerical values@indb, 1 .\
which were used for the bifurcation diagram in Fig(i2., 2 .\\
€=4x10? andb™'=10"%). Using (4.1) and (4.2, we find » ..\\
from Egs.(2.5—(2.7) that the leading order solution satisfies 3 " 3 3 7 3 3 m i
the equations b

a'=n+e\ coq ), 4.3 FIG. 4. Period-doubling bifurcation point. The figure
compares the exact values of the period-doubling bifurcation points
' =—bn, (4.9 (solid squares with the asymptotic  approximation

7epT = (2PT)Y?0720.62 (full line).
n'=-a. (4.5
analytical expressions fapep as well as the period-one and
Equivalently, we may eliminate: and obtain two equations period-two branches of solutions.
for n and ¢

n"+n=—e\ cod ), (4.6) A. Period-one solution

An approximation of the period-one solution is obtained
y'=—bn. (4.7 by a perturbation analysis. See Appendix C. In the first ap-

proximation, we find that
Equations(4.6) and (4.7) reveal the main effect of injection.

If A=0 (no injection, the laser is described in first approxi- Yp1=C+D sin(S)+0O(A), (4.1
mation as a harmonic oscillator. K+#0, the phase of the _ )
laser field produces the essential nonlinearity leading to inwhereS=[1+0(A)]s. C is equal to 0 orm andD~2.4 is
stabilities. It is mathematically interesting to formulate anthe first root of the Bessel functialy(x). Figure 5 represents
equation fory only. From(4.6) and(4.7), we eliminaten and ~ the exact and approximate solutions fd€=0 and

doubling bifurcation point located at~0.62. Note that the
"+ =A coqgy), (4.8 general solution of Eq(4.9) is quasiperiodic. In order to
obtain a bounded periodic solution, we have integrated the
whereA=0(1) is defined by modified equation
A=eb=byT*42P)"*2 (4.9 W'+ = A cog i) — L (4.12

This is the main mathematical result of this paper. Equationy, g,,ccessive smaller values offrom ¢=0.1 to 0.05. The
(4.8 has appeared in a different area of physics as a geQyqgitional term in(4.12 is suggested by the higher-order
metrical model for dentrite growth but with very specific damping term in the original equatiofspecifically, the term

boundary condition$12]. , _ _ _—en(1+2P) in Eq. (2.7), which leads to a term propor-
The original laser exhibits cascading period-doubling bi-tjonal to o/ in the phase equatiof#.12)].

furcations and we are interested in determining periodic so-

lutions of Eq.(4.8. We have found numerically that Eq.

(4.8 admits a branch of periodic solutions characterized by

an almost constant amplitude and a first period-doubling bi- In order to determine a possible bifurcation point from the

furcation located at period-one solution, we consider the linearized problem for
the period-one solution:

B. Period-doubling bifurcation point

u”+u’'=—A sin(¢pq)u, (4.13
Figure 4 representsp=(2P)Y2T Y20~ App as a function
of b. The points in the figure are the numerical valuesygf  where u= ¢ — ¢p, is defined as the small perturbation. A
computed from the original equationd.1)—(1.3). As ex-  period-doubling bifurcation located at=Apy corresponds
pected, we note that our approximation becomes better fao a period-two solution of Eq(4.13. In Appendix D we

largeb. We next investigate Eq4.8) in detail and determine determine an approximation fokpp that matches the nu-
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FIG. 5. Approximation of the period-one solution of the phase FIG. 6. Period-two solution. The period-two solution of
equation. The full line represents the period-one solution of EqEd. (4.8) is represented for a value df slightly above the period-
(4.9) for a value ofA before the period-doubling bifurcation point doubling bifurcation poin{A=0.6208. Note the periodic alterna-
App~0.62 (A=0.6171. The dotted line is the approximation tion of the maxima and minima, which allows us to recognize
(4.11), i.e., y=2.4 sinG). The progressive shift between the two the period-two solution. The dotted line denotes the approxima-
curves as time increases is due to the fact that our approximatiotion #=2.4 sinG—sp) —0.1{cog(s—s,)/2]—0.17 cog3(s—sg)/2]},
neglects the small nonlinear change of the frequency. wheres; is introduced so thag(0)=0.

merical estimatg4.10 for the caseC=0. The period-two V. OPTICAL POWER SPECTRA

solution of Eq.(4.13 is obtained from a four-term Fourier  pijrect experimental evidence of the successive bifurca-

expansion. We find an approximate solution given by tions is difficult because the intensity oscillates in the giga-
hertz regime. In practice, the bifurcation diagram is recon-
u~cogS/2)+r cog35/2), (414  structed from Fourier spectra obtained using a scanning
Fabry-Peot spectrum analyzdil,2). In this section, we ob-
wherer~—0.17. tain analytical expressions for the optical power spectra. The

optical power spectrum is defined by
C. Period-two solution

_ 2
We now investigate the period doubling bifurcation. In Flo)=[S(e)l%, ©.0
Appendix E we seek a solution of the nonlinear problem Ofwhere
the form
y=iptv, (4.19 S(w)zf exp —iws)(1+ a)exgip)ds, (5.2

where ¢, is given by(4.11) andv is small. The linearized
theory suggests the search for a solution of the formAu,  whereE=(1+a)exp(i ) is the complex electrical field ex-
whereu is defined by(4.14) andA is an unknown amplitude. pressed as a function of ting wheres is the original time

We obtain scaled by the relaxation frequency of the free-running laser,
i.e., s=wgr=(2P/T)¥?r. a and y satisfy Eqs.(2.5—(2.7).
v~[12(A—App)/App]¥{ cogS/2)+r1 cog35/2)], Figures Ta) and {b) show the exact numerical spectra for

(4.16  the period-one and period-two solutions, respectively. The
period-two solution is computed near the period-doubling

where App~0.62. The bifurcation is clearly supercritical bifurcation point. By comparing the two figures, we clearly
since (4.16 only exists if A>App. Figure 6 represents the note in Fig. Tb) the emergence of the subharmonic frequen-
period-two solution for a valud slightly above the period- cies located atv~=*=n/2 (n=1,2,..).
doubling bifurcation point and is compared to the approxi- We now determine analytical expressions for these spec-
mation(4.15 and(4.16). The high accuracy that is required tra using the asymptotic approximation of the solution valid
for the determination ofApp prevents us from making a for T andb large. For the period-one solution, recall that
complete quantitative comparison. The amplitudevofn a=0(b~ 1) <1 and y~D sin(s), whereD is defined as the
(4.16 has been fixed arbitrarily to-0.1. This implies first zero of the Bessel functiody(x). Using the generating
A—App=5x10"* which then impliesApp=0.6203. function of the Bessel functiord 1], i.e.,
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A similar analysis is possible for the period-two solution.

ok The simplest approximation is given .16 for the period-
(@) two solution near the period-doubling bifurcation point. We
have the approximationn=0(b~1)<1 and ¢~D sin(s)
08 |- +R cogs/2). From(5.2) and using(5.3) twice, we obtain
~osl S(w)= 2, In(D) X I(RE2S(w—m—n/2).
8 m=—o n=—o
ot (5.9
04 Substituting(5.5) into (5.1), we find that there is no contri-
bution at w=0, the w=+1 peaks have sizd%(D)J5(R)
o [~J3(D)], and the new peaks atw==*3 have size
' J{(D)JIZ(R) [=I{(D)R?].
00 | : | | : " VI. SUMMARY AND DISCUSSION

Our asymptotic analysis is based on two large parameters
that appear in the dimensionless laser equations. The param-
eterT is the ratio of the carrier to the photon lifetimes and is
1.0 equivalent to the ratio of the cavity to the inversion of popu-
®) lation lifetimes for gas or solid-state lasers. For many prac-
tical lasers this ratio is a large quantity. Thus our analysis of
08 - the largeT limit (Sec. 1) should apply to other lasers as
well. The parameteb is the linewidth enhancement factor
and is typically a semiconductor laser parameter. Our analy-
0.6 - sis of the largeh limit could be useful for a gas laser with an
injected signal14-16, but only for a particular range of
values for the cavity and atomic detunings.

0.4 From a mathematical point of view, the key point of our
analysis was the derivation of a third-order pendulum equa-
tion for the phase of the laser fielde., Eqg.(4.8)]. In par-
02~ ticular, this equation revealed the destabilizing mechanism
for small injection but sufficiently large values of the line-
width enhancement factdr. A different aspect of the bifur-
l — I cation problem is revealed by the equivalent equations for
12 3 4 5 the carrier density and the phase of the laser field, respec-
tively [i.e., Egs.(4.6) and (4.7)]. The laser behaves as a

FIG. 7. Optical power spectra. Represented are the numericdlarmonic oscillor, but is driven by a phase that depends on
power spectra fofa) 7=1.4x107% and (b) »=1.62x10"%. The the state of the oscillator. Thus it is the phase that introduces
other parameters afe=1000,b=10, andP=0.375. the essential feedback nonlinearity leading to instabilities.

The case of nonzero detunings+0) can be analyzed by
* a similar method. We find that the response of the laser is
exfiD sin(s)]= >, Jn(D)exp(ims), (5.3  described by the phase equation
m=—ow

F(®)

0.0 l ! ‘ |
5 4 3 2 1

|

|
0
o

we obtain from(5.2) that Yl =A+A cody), 6.0
» where A is defined by(4.9 and A=ATY32P) "2 s pro-

~ J(D)S(w—m), 5.4 portional toA. This equation is similar to Eq4.8) and we

S(w) m;w m(D)olw=m) 649 expect similar results ifA| is small andA=0(1). We are

currently investigating the case wheji| and A are both
whered(x) denotes the delta function. Substitutiftig4) into  O(1).

(5.1) gives a power spectrum that exhibits peaks centered at
w=+m of sizeJ(D). Note that there is no contribution at
m=0 sinceJy(D) =0. This explains the small contribution at
the center line in Fig. (8. If m#0, the analysis predicts This research was supported by the U.S. Air Force Office
symmetric side bands. The apparent asymmetry in K@). 7 of Scientific Research Grant No. AFOSR-93-1-0084, the Na-
can be explained by taking into account tBéA) correction  tional Science Foundation Grant No. DMS-9308009, the
term for ¢ (see Appendic € Specifically, we have computed Fonds National de la Recherche ScientifigBelgium), and
S(w) usingy=D sin(s) + B sin(2s), whereB=—AJ,(D)/3, the Inter University Attraction Pole of the Belgian govern-
and found good agreement with the numerically computednent. P.M.A. wishes to thank the National Research Council
spectrum. for supporting this work.

ACKNOWLEDGMENTS



4378

APPENDIX A: BIFURCATION EQUATIONS

In this appendix we derive the bifurcation equations for

the periodic solution$ag,ng, i) of Egs.(2.5—(2.7). To this
end, we introduce the functiofis= E(a,n) andC=C(¢,a)
defined by

E=3(1+a)?>—In(1+a)+n? (A1)

C=¢+bIn(l+a). (A2)
These functions are motivated by the first integrédsl?)
and (2.13. If =0, we know thatE=E, and C=C, are
constants. Ife#0 and small, we expect th&' andC’ are
proportional toe. We obtain differential equations f& and
C by differentiating(Al) and (A2) and using Eqs(2.5-
(2.7). We find

2
E'=¢ 1+z N cog ) —2n[1+xI(1+ a)?] (A3)
and
, 1
C'=eN[—sin(¢)+b cogy)] 1ra: (A4)

We now require thalE andC are bounded periodic functions

of s as e—0. This implies the condition§2.14 and (2.15
(standard averaging

APPENDIX B: SMALL-AMPLITUDE SOLUTIONS

In this appendix we apply the Poincardstedt method
[13] and determine a small-amplitude solution of E(s9
and (2.10 of the form

ag(S,a)=aay(S)+a%ay(S)+--- , (B1)
no(S,a)=an;(S)+a%n,(S)+--- , (B2)

where
S=(1+a%c+--+)s (B3)

anda is a small parameter defined as the amplitude of the

critical mode
1 2w
a=;f ao(S,a)sin(S)dS. (B4)
0

Introducing(B1)—(B3) into Egs.(2.9) and(2.10 and equat-
ing to zero, the coefficients of each power aflead to a
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ol

(B6)

g=—

The expression fory, is then obtained by substituting
(B5) into (2.11):
o=Co—b In(1+ ay)=Cy—ba sin(S)+ O(ba?). (B7)

With (B7), we may determine cég,) and siriiy), which
appear in the bifurcation equations. We firid]

cog ¢y) = cog Cy—ba sin(S)]+O(ba?)
=c0gCyp)[Jo(ab)+2J,(ab)cog2S)+---]
+5in(Co)[ 23, (ab)sin(S)
+2J;(ab)sin(3S)+-- -] (B8)
and
Sin( o) =sin Co,—ba sin(S) ]+ O(ba?)
=sin(Cg)[Jo(ab)+2J,(ab)cog2S)+ -]
—c0gCy)[2J,(ab)sin(S)
+2J;(ab)sin(3S)+-- -1, (B9)

whereJ,(x) denotes a Bessel function of order

APPENDIX C: PERIOD-ONE SOLUTION OF EQ. (4.9

We seek a 2 periodic solution of Eq(4.8) of the form
P(SA)=tho(S) + Ay (S)+---, (Cy

where
S=(1+A%0+--)s. (C2)

Introducing (C1) and (C2) into Eq. (4.8 leads to a succes-
sion of problems for the unknown coefficients given by

O(1)yg +4o=0, (C3
O(A) Y1 + ¢ =cog o), (C4
O(A?) 3 + ¢y =—sin(yho) 1= 3oy — oghy,  (CH)

where the prime means differentiation with respecstdhe
solution of Eq.(CJ3) is
o=C+D sin(S), (C6)

where we have defined the time origin so that has no

sequence of problems for the unknown coefficients. Solvingontribution proportional to coS§j. cogy) is needed for the

these equations, we obtain

ap=a sin(S)—a?[:+ 3 cog2S)]+0(ad),
(BY)
no=a cogS)+a?} sin(2S)+ 0(ad).

The frequency correctionr is obtained from a solvability

condition and is given by

O(A) problem and is given by

cog ¢fg)=cogC)[Jo(D)+2J,(D)cog2S)+ -]

—sin(C)[2J4(D)sin(S)+---], (C7)
where the missing terms correspond to higher-order harmon-
ics. BecauseC and D are unknown, we next consider Eq.
(C4). This equation must satisfy two solvability conditions
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because the homogeneous problem admits two solutions

[namely, ¢, =C; and ¢, =D, exp(xiS)]. Using (C7), these
conditions require that

Jo(D)=0
and
sin(C)=0. (C8

Equivalently,(C8) implies thatD ~2.4 is the first zero of the
Bessel functionly(x) and

C=0 or . (C9
We next determine the solution of EGC4) and obtain

y1=C;+(D.e'S+c.c)— 3% cogC)I,(D)sin2S)+--- .
(C10

We have foundC andD, but the frequency correctios is
still unknown. Therefore, we examine E&5). To this end,
we need sifyyy), given by

sin(ig) =2 cogC)J,(D)sin(S)+ - . (C1y
Then the solvability conditions for E4C5) give
D1=D;, C;=0,
and
1
o==55J1(D)Jo(D)+:- . (C12)

Thus we have found th&, is real,C, is zero, and we have
obtained the correction of the frequeney

APPENDIX D: PERIOD-DOUBLING
BIFURCATION POINT

In this appendix we seek a solution of £4.13 with ¢p,
given by(4.11) using a four-term Fourier series
u= a,eiS/2+ ﬁefiS/Z_i_ ,ye3iS/2+ 6e73i8/2_ (Dl)
Substituting (D1) into Eqg. (4.13 with sin(yp,)
=siC+ D sin(S)]~2 cos(C)J,(D)sin(S), where C=0 or
7, leads to four equations for the coefficients of exp$/2)
and exp=3iS/2):

sa=A cogC)Jy(D)(B- ), (D2)
§B=A cogC)Jy(D)(a— ), (D3)
3 y=—A cogC)Jy(D)a, (D4)
18 5=—A cogC)Jy(D)B. (D5)

Eliminating v and 6 leads to two equations far and 8. The
condition for nontrivial solution then requires that
15[c0gC)AJy(D)]*+cogC)AJ (D) —§=0, (D6)

which admits the roots co€)AJ,(D)=x,~0.32 and
X_~—2.20. Thus we have two cases. Either
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C=0, A=App=0.323,(D)~0.62 (D7)
or
C=m, A=App=2.2/34(D)~4.23, (D8)

where we usd,(D)=J,(2.4)~0.52. Note that the solution
at A=App verifies

a=B, y=96, y=ra, (D9)
where
r=—2x,~-0.17. (D10)
Thus the solutioiD1) can be rewritten as
u=2a[cogS/2)+r cog35/2)]. (D11

APPENDIX E: PERIOD-TWO SOLUTION

We now concentrate on the ca€e=0 and determine an
approximation of the period-two solution. We seek a solution
of the form

y=¢p1tv, (ED)

where i, is given by(4.11) with C=0 andv is assumed
small. SubstitutingE1) into Eq. (4.8 gives

v"+v'==A sin(¢p1)v—3A codPpy)v?

+ A sin(¢p) v+ . (E2

Using
sin(py)~2J,(D)sin(s), (E3)
coq p1)~2J,(D)cogq2s), (E4)

we determine an approximation for of the form of (D11)
given by

v=A[cogS/2)+r sin(S/2)], (E5)
whereA<1 andr are unknown. Insertin¢gg5) into Eq.(E2)

and equating to zero, the coefficients of i) and
exp(S/3) lead to the conditions

3 A A3 2 3
-3 A=—AJ1A(1—r)+§ Jq 3 (2—3r+6r-—3rv),
(E6)
A3
B Ar=—AJ;A+AJ E(1+r+2r2), (E7)
whereJ;=J,(D). From(E7), we obtainr as
r=—2AJ;+0(A%AJ,). (E8)

Then, from(E6), we find

AL =5+ AJ1(1+ 541 ]=A% A3;+ O((AI)?)].
(E9)
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The coefficient ofA on the left-hand side of EqEE9) is A~[12(A — App)/ App]*?, (E10
identical to the expressiofD6) with C=0 for the period-

doubling bifurcation point. In the vicinity oA=Ap;=0.62,  which implies that the period-two solution is only defined for

we evaluatgE9) and obtainA as A>App.
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