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The single-mode rate equations for a semiconductor laser subject to optical injection are investigated ana-
lytically. We determine the first branch of periodic solutions for low values of the injection field. For larger
values of the injection field, we derive a third-order pendulum equation for the phase difference of the laser
field of the formc-1c85L cos~c!, whereL groups all the key laser parameters. This equation captures
several aspects of the numerical bifurcation diagram, namely, the fixed amplitude of the period-one solution
and the period-doubling bifurcation. Finally, we compute the optical power spectrum utilizing the perturbation
solutions of the phase equation before and after the period-doubling transition. We also obtain very good
agreement with the numerically computed spectrum.

PACS number~s!: 42.55.Px, 05.45.1b

I. INTRODUCTION

Experimentally observed spectra of a laser diode subject
to strong injection have been reproduced numerically using a
single-mode injection model by Simpsonet al. @1,2#. The
numerical study allows a detailed analysis of a period-
doubling route to chaos and has clarified the role of the line-
width enhancement factor. Of particular interest is the fact
that period doubling appears at relatively low values of the
injection field. The main objective of this paper is to capture
analytically the mechanism leading to these period-doubling
instabilities and to obtain simple analytical expressions of
the optical power spectra. To this end, we propose an asymp-
totic approximation of the laser equations based on two large
parameters, namely, the ratio of the carrier to the photon
lifetimes and the linewidth enhancement factor. We obtain a
simple nonlinear problem that exhibits the dominant role of
the phase of the laser field. This particular feature of the
semiconductor laser with an injected signal has been dis-
cussed before by Lang@3# and has been suspected by Winful
and Wang@4# and Winful @5# for coupled semiconductor
lasers. However, the actual mechanism of how the phase
induces the first two bifurcations has never been analyzed.

The single-mode rate equations used successfully in@1,2#
to compute the optical power spectra consist of three equa-
tions for the amplitude of the electrical fieldE, the phase
difference between master and slave electrical fieldsc, and
the carrier density above thresholdN. They are given by

dE

dt
5NE1h cos~c!, ~1.1!

dc

dt
5D2bN2hE21 sin~c!, ~1.2!

T
dN

dt
5P2N2P~112N!E2. ~1.3!

In these equations, timet is measured in units of the photon
lifetime ~t5t/tp , wheretp'10212 s!. T is defined as the ratio
of the carrier to the photon lifetimes~T5ts/tp , where
ts'1029 s!. b is the linewidth enhancement factor~b'324!.
h is proportional to the amplitude of the injected field and is
the control parameter.P is the pumping current above
threshold@P50.375 is proportional to~J/Jth21!, whereJ
andJth denote the pumping current and the pumping current
at threshold, respectively#. D is the frequency offset of the
master laser from the free-running frequency of the slave
laser. In this system of equations the nonlinear gain was not
included in order to simplify the analytical calculations.
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FIG. 1. Bifurcation diagram of the periodic solutions for the
experimentally determined parameters. The values of the param-
eters areT5155,b54, andP50.375.
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A typical bifurcation diagram of the possible solutions of
Eqs.~1.1!2~1.3! is shown in Fig. 1 for zero detuning~D50!.
The figure representsa5(E/Es)21 as a function ofh for the
experimental parameter values extracted with the four-wave-
mixing technique@6# and used in the numerical simulations
@1,2#. From low to moderate values ofh, we note a cascade
of period-doubling bifurcations. We also note from the time
evolution that the oscillations remain nearly harmonic. This
contrasts the pulsating oscillations observed in other cases of
period doubling in classB laser systems@7,8#. In this paper,
we concentrate on the first two bifurcations, namely, a Hopf
bifurcation at a relatively low value ofh, and the first period-
doubling bifurcation, which occurs as the amplitude of the
Hopf bifurcation branch saturates to a constant. We consider
the caseD50 in detail and then discuss the effect ofDÞ0.
The fact thatT, the ratio of the two fundamental time scales,
is a large quantityO~;102–103! suggests an approximation
of the laser equations~1.1!–~1.3!. This approximation must
be derived carefully because the limit of largeT is singular.

The paper is organized as follows. In Sec. II we eliminate
the large-T singularity by reformulating the laser equations
in terms of deviations from the nonzero intensity solution. In
Sec. III we determine a branch of periodic solutions that
emerges from a Hopf bifurcation as the injection field is
progressively increased. The fact that this Hopf bifurcation
appears at a very low value of the control parameter is ex-
plained by considering the large-b limit. Furthermore, this
limit allows us to explain why the amplitude of the periodic
solutions saturates at a fixed value as the control parameter is
further increased. The results described in Sec. III then mo-
tivate an asymptotic analysis of the laser equations, assuming
a specific scaling betweenT andb. This is done in Sec. IV
where we derive a third-order pendulum equation for the
phase of the laser field and obtain an approximation of the
first period-doubling bifurcation. We compute the optical
spectra in Sec. V. Section VI discusses the effect of detuning
~D! and summarizes the main results. All mathematical de-
tails are deferred to the Appendixes for clarity.

II. FORMULATION

In the case of a free-running laser~h50!, we note from
the linearized theory that small perturbations from the
steady-state solutionEs51 andNs50 are oscillating with
relaxation frequencyvR'(2P/T)1/2 and are slowly decaying
with damping rategR'(112P)/2T. We also note from the
solution of the linearized problem thatN is ;O(T21/2),
while E21 remainsO~1! asT→`. This suggests the refor-
mulation of the laser equations in terms of new variables
defined as

s5~2P/T!1/2t, ~2.1!

E511a, ~2.2!

and

N5~2P/T!1/2n, ~2.3!

where the factor~2P!1/2 has been introduced in~2.3! so that
the leading-order equations asT→` do not depend on any
parameter. We consider small values of the injected signal
and scaleh as

h5T21l. ~2.4!

This scaling is motivated by the linearized theory, which
indicates that the first Hopf bifurcation appears at
hH15O(T21) @9#. Note that there is a second Hopf bifurca-
tion located athH25O(T21/2). The basic steady-state solu-
tion is unstable forhH1,h,hH2 and cascading period-
doubling bifurcations are observed as soon ash.hH1. In this
paper, we only consider the caseh5O(T21). After introduc-
ing ~2.1!–~2.4! into Eqs.~1.1!–~1.3!, we obtain the following
equations fora, c, andn:

a85n~11a!1el cos~c!, ~2.5!

c852bn2
el

a11
sin~c!, ~2.6!

n852~a1 1
2a2!2en@112P~11a!2#, ~2.7!

where the prime means differentiation with respect tos ande
is defined by

e5~2PT!21/2!1. ~2.8!

Becausee5O(T21/2) is small, we investigate Eqs.~2.5!–
~2.7! in the limit e→0. If e50, Eqs.~2.5!–~2.7! reduce to the
following problem fora5a0, n5n0 , andc5c0:

a085n0~a011!, ~2.9!

n0852~a01
1
2a0

2!, ~2.10!

c0852bN0 . ~2.11!

These equations can be integrated once. We find the integrals

E05
1
2 ~11a0!

22 ln~11a0!1n0
2 ~2.12!

and

C05c01b ln~11a0!, ~2.13!

whereE0 andC0 are the constants of integration@10#. An
analysis of the solutions of Eqs.~2.9! and~2.10! in the phase
plane shows that these equations admit a one-parameter fam-
ily of periodic solutions for allE0.0. We denote by~a0,n0!
the P-periodic solution of Eqs.~2.9! and ~2.10!. Equation
~2.13! implies thatc0 is P periodic becausea0 is P periodic,
but its mean value is arbitrary sinceC0 is arbitrary. In order
to find howE0 andC0 depend on the bifurcation parameter
l, we formulate solvability conditions for the higher-order
terms multiplyinge in Eqs.~2.5!–~2.7!. These conditions are
formulated in Appendix A and are given by

E
0

PF2a01a0
2

11a0
l cos~c0!22n0

2@112P~11a0!
2#Gds50

~2.14!

and

53 4373MECHANISM FOR PERIOD-DOUBLING BIFURCATION INA . . .



E
0

P

@2sin~c0!1b cos~c0!#
1

11a0
ds50. ~2.15!

In the next section, we investigate these conditions in detail
and determine the first branch of periodic solutions.

III. HOPF BIFURCATION

Equations ~2.14! and ~2.15! are called the bifurcation
equations because they relate the amplitude of the periodic
solutions~proportional toE0! and the bifurcation parameter
l. They cannot be solved analytically because we do not
have an explicit expression fora0 andn0. However, the nu-
merical bifurcation diagram shown in Fig. 1 indicates that
the amplitude of the Hopf bifurcation branch remains small
and quickly approaches a constant amplitude ash increases.
By considering successive larger values ofb, we have noted
numerically that the amplitude ofa is clearly a quantity
;b21 and the saturation of the amplitude after a thin layer
near the Hopf bifurcation point becomes more transparent.
See Fig. 2. This suggests the determination of a small-
amplitude solution of Eqs.~2.9! and ~2.10!, assuming
a05O(b21), n05O(b21), andc05O~1! as b→`. All de-
tails are given in Appendix B. The leading expressions for
a0, n0, andc0 are given by

a05a sin~s!, n05a cos~s!,

and

c05ba sin~s! ~3.1!

where a5O(b21). Substituting ~3.1! into the conditions
~2.14! and ~2.15! and assuming that

l5O~b21! ~3.2!

leads to the following conditions for amplitudea andC0:

l sin~C0!2aJ1~ab!2a2~112P!50, ~3.3!

cos~C0!bJ0~ab!2sin~C0!@baJ1~ba!1J0~ab!#50,
~3.4!

where the Bessel functions come from the expansion of
cos~c0!5cos@ba sin(s)# in Fourier series@11#. Eliminating
C0 from these equations gives an implicit amplitude equation
for a5a(l):

l5
a~112P!

2J1~ab! F11
1

b2J0
2~ab!

@baJ1~ba!1J0~ab!#2G1/2.
~3.5!

This function is shown in Fig. 3. Asa→0, we note from
~3.5! thatl approaches a constant given by

lH5b21~112P!1O~b23!. ~3.6!

We have verified that~3.6! matches the exact expression of
the Hopf bifurcation point obtained from the linearized
theory and evaluated forb large@8#. We also note from~3.5!
that l→` as a→a* , wherex5a* b is defined as the first
zero of the Bessel functionJ0(x). In a first approximationa*
is given by

a*'2.4b21. ~3.7!

In summary, we have shown that the amplitude of the Hopf
bifurcation branch quickly approaches a constant value as
l5O~1!. In the next section, we considerl5O~1!, assume a
specific scaling betweenb andT, and determine an approxi-
mation for the first period-doubling bifurcation.

IV. PERIOD-DOUBLING BIFURCATION

In Sec. III we found that a branch of periodic solutions
emerges from a Hopf bifurcation atlH5O(b21) and
quickly approaches a constantO(b21) amplitude as
l5O~1!. In this section we investigate the bifurcation dia-

FIG. 2. Bifurcation diagram of the periodic solutions forT large
andb large. The values of the parameters areT51000,b510, and
P50.375. FIG. 3. Period-one solution. The period-one branch of the solu-

tion is given bya'a sin(s), n'a cos(s), and c'C1ba sin(s).
The figure represents the amplitudea~l! and is defined by~3.5!.
The branch is first quasivertical near the Hopf bifurcation point
l5lH and then saturates at a constant amplitudea5a*52.4b21.
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gram forl5O~1! in detail. To this end, we assume the scal-
ings

l5O~1!, a5O~b21!, n5O~b21!,

and

c5O~1!. ~4.1!

In addition, we introduce a specific scaling betweene
~equivalentlyT21/2! andb21:

e5O~b21!. ~4.2!

This scaling is motivated by the numerical values ofe andb,
which were used for the bifurcation diagram in Fig. 2~i.e.,
e5431022 andb2151021!. Using ~4.1! and ~4.2!, we find
from Eqs.~2.5!–~2.7! that the leading order solution satisfies
the equations

a85n1el cos~c!, ~4.3!

c852bn, ~4.4!

n852a. ~4.5!

Equivalently, we may eliminatea and obtain two equations
for n andc:

n91n52el cos~c!, ~4.6!

c852bn. ~4.7!

Equations~4.6! and~4.7! reveal the main effect of injection.
If l50 ~no injection!, the laser is described in first approxi-
mation as a harmonic oscillator. IflÞ0, the phase of the
laser field produces the essential nonlinearity leading to in-
stabilities. It is mathematically interesting to formulate an
equation forc only. From~4.6! and~4.7!, we eliminaten and
obtain the equivalent third-order equation forc

c-1c85L cos~c!, ~4.8!

whereL5O~1! is defined by

L5ebl5bhT1/2~2P!21/2. ~4.9!

This is the main mathematical result of this paper. Equation
~4.8! has appeared in a different area of physics as a geo-
metrical model for dentrite growth but with very specific
boundary conditions@12#.

The original laser exhibits cascading period-doubling bi-
furcations and we are interested in determining periodic so-
lutions of Eq. ~4.8!. We have found numerically that Eq.
~4.8! admits a branch of periodic solutions characterized by
an almost constant amplitude and a first period-doubling bi-
furcation located at

L5LPD'0.62. ~4.10!

Figure 4 representshPD5(2P)1/2T21/2b21LPD as a function
of b. The points in the figure are the numerical values ofhPD
computed from the original equations~1.1!–~1.3!. As ex-
pected, we note that our approximation becomes better for
largeb. We next investigate Eq.~4.8! in detail and determine

analytical expressions forhPD as well as the period-one and
period-two branches of solutions.

A. Period-one solution

An approximation of the period-one solution is obtained
by a perturbation analysis. See Appendix C. In the first ap-
proximation, we find that

cP15C1D sin~S!1O~L!, ~4.11!

whereS5[11O(L)]s. C is equal to 0 orp andD'2.4 is
the first root of the Bessel functionJ0(x). Figure 5 represents
the exact and approximate solutions forC50 and
L50.6171. This value ofL is slightly below the period-
doubling bifurcation point located atL'0.62. Note that the
general solution of Eq.~4.8! is quasiperiodic. In order to
obtain a bounded periodic solution, we have integrated the
modified equation

c-1c85L cos~c!2zc9 ~4.12!

for successive smaller values ofz ~from z50.1 to 0.05!. The
additional term in~4.12! is suggested by the higher-order
damping term in the original equations@specifically, the term
2en(112P) in Eq. ~2.7!, which leads to a term propor-
tional toc9 in the phase equation~4.12!#.

B. Period-doubling bifurcation point

In order to determine a possible bifurcation point from the
period-one solution, we consider the linearized problem for
the period-one solution:

u-1u852L sin~cP1!u, ~4.13!

where u5c2cP1 is defined as the small perturbation. A
period-doubling bifurcation located atL5LPD corresponds
to a period-two solution of Eq.~4.13!. In Appendix D we
determine an approximation forLPD that matches the nu-

FIG. 4. Period-doubling bifurcation point. The figure
compares the exact values of the period-doubling bifurcation points
~solid squares! with the asymptotic approximation
hPDT5(2PT)1/2b210.62 ~full line!.
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merical estimate~4.10! for the caseC50. The period-two
solution of Eq.~4.13! is obtained from a four-term Fourier
expansion. We find an approximate solution given by

u'cos~S/2!1r cos~3S/2!, ~4.14!

wherer'20.17.

C. Period-two solution

We now investigate the period doubling bifurcation. In
Appendix E we seek a solution of the nonlinear problem of
the form

c5cP11v, ~4.15!

wherecP1 is given by~4.11! andv is small. The linearized
theory suggests the search for a solution of the formv5Au,
whereu is defined by~4.14! andA is an unknown amplitude.
We obtain

v'@12~L2LPD!/LPD#
1/2@cos~S/2!1r cos~3S/2!#,

~4.16!

where LPD'0.62. The bifurcation is clearly supercritical
since ~4.16! only exists ifL.LPD. Figure 6 represents the
period-two solution for a valueL slightly above the period-
doubling bifurcation point and is compared to the approxi-
mation ~4.15! and~4.16!. The high accuracy that is required
for the determination ofLPD prevents us from making a
complete quantitative comparison. The amplitude ofv in
~4.16! has been fixed arbitrarily to20.1. This implies
L2LPD5531024, which then impliesLPD50.6203.

V. OPTICAL POWER SPECTRA

Direct experimental evidence of the successive bifurca-
tions is difficult because the intensity oscillates in the giga-
hertz regime. In practice, the bifurcation diagram is recon-
structed from Fourier spectra obtained using a scanning
Fabry-Pe´rot spectrum analyzer@1,2#. In this section, we ob-
tain analytical expressions for the optical power spectra. The
optical power spectrum is defined by

F~v!5uS~v!u2, ~5.1!

where

S~v!5E
2`

`

exp~2 ivs!~11a!exp~ ic!ds, ~5.2!

whereE5~11a!exp(ic) is the complex electrical field ex-
pressed as a function of times, wheres is the original time
scaled by the relaxation frequency of the free-running laser,
i.e., s5vRt5(2P/T)1/2t. a andc satisfy Eqs.~2.5!–~2.7!.
Figures 7~a! and 7~b! show the exact numerical spectra for
the period-one and period-two solutions, respectively. The
period-two solution is computed near the period-doubling
bifurcation point. By comparing the two figures, we clearly
note in Fig. 7~b! the emergence of the subharmonic frequen-
cies located atv'6n/2 ~n51,2,...!.

We now determine analytical expressions for these spec-
tra using the asymptotic approximation of the solution valid
for T and b large. For the period-one solution, recall that
a5O(b21)!1 andc'D sin(s), whereD is defined as the
first zero of the Bessel functionJ0(x). Using the generating
function of the Bessel functions@11#, i.e.,

FIG. 5. Approximation of the period-one solution of the phase
equation. The full line represents the period-one solution of Eq.
~4.8! for a value ofL before the period-doubling bifurcation point
LPD'0.62 ~L50.6171!. The dotted line is the approximation
~4.11!, i.e., c52.4 sin(s). The progressive shift between the two
curves as time increases is due to the fact that our approximation
neglects the small nonlinear change of the frequency.

FIG. 6. Period-two solution. The period-two solution of
Eq. ~4.8! is represented for a value ofL slightly above the period-
doubling bifurcation point~L50.6208!. Note the periodic alterna-
tion of the maxima and minima, which allows us to recognize
the period-two solution. The dotted line denotes the approxima-
tion c52.4 sin(s2s0)20.1 $cos@(s2s0)/2#20.17 cos@3(s2s0)/2#%,
wheres0 is introduced so thatc~0!50.
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exp@ iD sin~s!#5 (
m52`

`

Jm~D !exp~ ims!, ~5.3!

we obtain from~5.2! that

S~v!' (
m52`

`

Jm~D !d~v2m!, ~5.4!

whered(x) denotes the delta function. Substituting~5.4! into
~5.1! gives a power spectrum that exhibits peaks centered at
v56m of sizeJm

2 (D). Note that there is no contribution at
m50 sinceJ0(D)50. This explains the small contribution at
the center line in Fig. 7~a!. If mÞ0, the analysis predicts
symmetric side bands. The apparent asymmetry in Fig. 7~a!
can be explained by taking into account theO~L! correction
term forc ~see Appendic C!. Specifically, we have computed
S~v! usingc5D sin(s)1B sin(2s), whereB52LJ2(D)/3,
and found good agreement with the numerically computed
spectrum.

A similar analysis is possible for the period-two solution.
The simplest approximation is given by~4.16! for the period-
two solution near the period-doubling bifurcation point. We
have the approximationa5O(b21)!1 and c'D sin(s)
1R cos~s/2!. From ~5.2! and using~5.3! twice, we obtain

S~v!' (
m52`

`

Jm~D ! (
n52`

`

Jn~R!einp/2d~v2m2n/2!.

~5.5!

Substituting~5.5! into ~5.1!, we find that there is no contri-
bution at v50, the v561 peaks have sizeJ 1

2(D)J 0
2(R)

@'J 1
2(D)#, and the new peaks atv561

2 have size
J 1
2(D)J 1

2(R) @'J 1
2(D)R2#.

VI. SUMMARY AND DISCUSSION

Our asymptotic analysis is based on two large parameters
that appear in the dimensionless laser equations. The param-
eterT is the ratio of the carrier to the photon lifetimes and is
equivalent to the ratio of the cavity to the inversion of popu-
lation lifetimes for gas or solid-state lasers. For many prac-
tical lasers this ratio is a large quantity. Thus our analysis of
the large-T limit ~Sec. II! should apply to other lasers as
well. The parameterb is the linewidth enhancement factor
and is typically a semiconductor laser parameter. Our analy-
sis of the large-b limit could be useful for a gas laser with an
injected signal@14–16#, but only for a particular range of
values for the cavity and atomic detunings.

From a mathematical point of view, the key point of our
analysis was the derivation of a third-order pendulum equa-
tion for the phase of the laser field@i.e., Eq. ~4.8!#. In par-
ticular, this equation revealed the destabilizing mechanism
for small injection but sufficiently large values of the line-
width enhancement factorb. A different aspect of the bifur-
cation problem is revealed by the equivalent equations for
the carrier density and the phase of the laser field, respec-
tively @i.e., Eqs. ~4.6! and ~4.7!#. The laser behaves as a
harmonic oscillor, but is driven by a phase that depends on
the state of the oscillator. Thus it is the phase that introduces
the essential feedback nonlinearity leading to instabilities.

The case of nonzero detunings~DÞ0! can be analyzed by
a similar method. We find that the response of the laser is
described by the phase equation

c-1c85D̄1L cos~c!, ~6.1!

whereL is defined by~4.9! and D̄5DT1/2(2P)21/2 is pro-
portional toD. This equation is similar to Eq.~4.8! and we
expect similar results ifuD̄u is small andL5O~1!. We are
currently investigating the case whereuD̄u and L are both
O~1!.
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FIG. 7. Optical power spectra. Represented are the numerical
power spectra for~a! h51.431023 and ~b! h51.6231023. The
other parameters areT51000,b510, andP50.375.
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APPENDIX A: BIFURCATION EQUATIONS

In this appendix we derive the bifurcation equations for
the periodic solutions~a0,n0,c0! of Eqs.~2.5!–~2.7!. To this
end, we introduce the functionsE5E(a,n) andC5C(c,a)
defined by

E5 1
2 ~11a!22 ln~11a!1n2, ~A1!

C5c1b ln~11a!. ~A2!

These functions are motivated by the first integrals~2.12!
and ~2.13!. If e50, we know thatE5E0 and C5C0 are
constants. IfeÞ0 and small, we expect thatE8 andC8 are
proportional toe. We obtain differential equations forE and
C by differentiating ~A1! and ~A2! and using Eqs.~2.5!–
~2.7!. We find

E85eF2a1a2

11a
l cos~c!22n2@11xJ~11a!2#G ~A3!

and

C85el@2sin~c!1b cos~c!#
1

11a
. ~A4!

We now require thatE andC are bounded periodic functions
of s as e→0. This implies the conditions~2.14! and ~2.15!
~standard averaging!.

APPENDIX B: SMALL-AMPLITUDE SOLUTIONS

In this appendix we apply the Poincare´-Lindstedt method
@13# and determine a small-amplitude solution of Eqs.~2.9!
and ~2.10! of the form

a0~S,a!5aa1~S!1a2a2~S!1••• , ~B1!

n0~S,a!5an1~S!1a2n2~S!1••• , ~B2!

where

S5~11a2s1••• !s ~B3!

anda is a small parameter defined as the amplitude of the
critical mode

a5
1

p E
0

2p

a0~S,a!sin~S!dS. ~B4!

Introducing~B1!–~B3! into Eqs.~2.9! and ~2.10! and equat-
ing to zero, the coefficients of each power ofa lead to a
sequence of problems for the unknown coefficients. Solving
these equations, we obtain

a05a sin~S!2a2@ 1
41 5

12 cos~2S!#1O~a3!,

~B5!
n05a cos~S!1a2 13 sin~2S!1O~a3!.

The frequency corrections is obtained from a solvability
condition and is given by

s52 1
6 . ~B6!

The expression forc0 is then obtained by substituting
~B5! into ~2.11!:

c05C02b ln~11a0!5C02ba sin~S!1O~ba2!. ~B7!

With ~B7!, we may determine cos~c0! and sin~c0!, which
appear in the bifurcation equations. We find@11#

cos~c0!5cos@C02ba sin~S!#1O~ba2!

5cos~C0!@J0~ab!12J2~ab!cos~2S!1•••#

1sin~C0!@2J1~ab!sin~S!

12J3~ab!sin~3S!1•••# ~B8!

and

sin~c0!5sin@C02ba sin~S!#1O~ba2!

5sin~C0!@J0~ab!12J2~ab!cos~2S!1•••#

2cos~C0!@2J1~ab!sin~S!

12J3~ab!sin~3S!1•••#, ~B9!

whereJn(x) denotes a Bessel function of ordern.

APPENDIX C: PERIOD-ONE SOLUTION OF EQ. „4.8…

We seek a 2p periodic solution of Eq.~4.8! of the form

c~S,L!5c0~S!1Lc1~S!1••• , ~C1!

where

S5~11L2s1••• !s. ~C2!

Introducing~C1! and ~C2! into Eq. ~4.8! leads to a succes-
sion of problems for the unknown coefficients given by

O~1!c0-1c0850, ~C3!

O~L!c1-1c185cos~c0!, ~C4!

O~L2!c2-1c2852sin~c0!c123sc0-2sc08 , ~C5!

where the prime means differentiation with respect toS. The
solution of Eq.~C3! is

c05C1D sin~S!, ~C6!

where we have defined the time origin so thatc0 has no
contribution proportional to cos(S). cos~c0! is needed for the
O~L! problem and is given by

cos~c0!5cos~C!@J0~D !12J2~D !cos~2S!1•••#

2sin~C!@2J1~D !sin~S!1•••#, ~C7!

where the missing terms correspond to higher-order harmon-
ics. BecauseC andD are unknown, we next consider Eq.
~C4!. This equation must satisfy two solvability conditions
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because the homogeneous problem admits two solutions
@namely,c15C1 andc15D1 exp(6 iS)#. Using ~C7!, these
conditions require that

J0~D !50

and

sin~C!50. ~C8!

Equivalently,~C8! implies thatD'2.4 is the first zero of the
Bessel functionJ0(x) and

C50 or p. ~C9!

We next determine the solution of Eq.~C4! and obtain

c15C11~D1e
iS1c.c.!2 1

3 cos~C!J2~D !sin~2S!1••• .
~C10!

We have foundC andD, but the frequency corrections is
still unknown. Therefore, we examine Eq.~C5!. To this end,
we need sin~c0!, given by

sin~c0!52 cos~C!J1~D !sin~S!1••• . ~C11!

Then the solvability conditions for Eq.~C5! give

D̄15D1 , C150,

and

s52
1

6D
J1~D !J2~D !1••• . ~C12!

Thus we have found thatD1 is real,C1 is zero, and we have
obtained the correction of the frequencys.

APPENDIX D: PERIOD-DOUBLING
BIFURCATION POINT

In this appendix we seek a solution of Eq.~4.13! with cP1
given by ~4.11! using a four-term Fourier series

u5aeiS/21be2 iS/21ge3iS/21de23iS/2. ~D1!

Substituting ~D1! into Eq. ~4.13! with sin~cP1!
5sin@C1D sin(S)#'2 cos(C)J1(D)sin(S), whereC50 or
p, leads to four equations for the coefficients of exp(6 iS/2)
and exp(63iS/2):

3
8a5L cos~C!J1~D !~b2g!, ~D2!

3
8b5L cos~C!J1~D !~a2d!, ~D3!

15
8 g52L cos~C!J1~D !a, ~D4!

15
8 d52L cos~C!J1~D !b. ~D5!

Eliminatingg andd leads to two equations fora andb. The
condition for nontrivial solution then requires that

8
15 @cos~C!LJ1~D !#21cos~C!LJ1~D !2 3

850, ~D6!

which admits the roots cos(C)LJ1(D)5x1'0.32 and
x2'22.20. Thus we have two cases. Either

C50, L5LPD50.32/J1~D !'0.62 ~D7!

or

C5p, L5LPD52.2/J1~D !'4.23, ~D8!

where we useJ1(D)5J1(2.4)'0.52. Note that the solution
at L5LPD verifies

a5b, g5d, g5ra, ~D9!

where

r52 8
15x1'20.17. ~D10!

Thus the solution~D1! can be rewritten as

u52a@cos~S/2!1r cos~3S/2!#. ~D11!

APPENDIX E: PERIOD-TWO SOLUTION

We now concentrate on the caseC50 and determine an
approximation of the period-two solution. We seek a solution
of the form

c5cP11v, ~E1!

wherecP1 is given by ~4.11! with C50 andv is assumed
small. Substituting~E1! into Eq. ~4.8! gives

v-1v852L sin~cP1!v2 1
2L cos~cP1!v

2

1 1
6L sin~cP1!v

31••• . ~E2!

Using

sin~cP1!'2J1~D !sin~s!, ~E3!

cos~cP1!'2J2~D !cos~2s!, ~E4!

we determine an approximation forv of the form of ~D11!
given by

v5A@cos~S/2!1r sin~S/2!#, ~E5!

whereA!1 andr are unknown. Inserting~E5! into Eq. ~E2!
and equating to zero, the coefficients of exp(iS/2) and
exp(iS/3) lead to the conditions

2 3
8 A52LJ1A~12r !1

L

3
J1

A3

8
~223r16r 223r 3!,

~E6!

15
8 Ar52LJ1A1LJ

A3

18
~11r12r 2!, ~E7!

whereJ15J1(D). From ~E7!, we obtainr as

r52 8
15LJ11O~A2LJ1!. ~E8!

Then, from~E6!, we find

A@2 3
81LJ1~11 8

15LJ1!#5A3@ 1
12LJ11O„~LJ1!

2
…#.

~E9!
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The coefficient ofA on the left-hand side of Eq.~E9! is
identical to the expression~D6! with C50 for the period-
doubling bifurcation point. In the vicinity ofL5LPD50.62,
we evaluate~E9! and obtainA as

A'@12~L2LPD!/LPD#
1/2, ~E10!

which implies that the period-two solution is only defined for
L.LPD.
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