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Coherence properties of entangled light beams generated by parametric down-conversion:
Theory and experiment
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Using a multidimensional Gaussian approximation of the wave function for the signal and idler light
generated by spontaneous parametric down-conversion, we derive analytical expressions for the second-order
coherence function and the fourth-order coherence fungtidrich is proportional to the signal-idler photon
coincidence rate The magnitudes of these functions are expressed as products of Gaussian functions of the
azimuthal angles, the polar angles, and the time delay. Their widths determine six parameters: the coherence
angles and coherence time, and the entanglement angles and entanglement time. We show how these param-
eters are governed by the pump-beam waist, the pump spectral width, and the crystal length. We thereby derive
relations analogous to the van Cittert—Zernike theorem and the Siegert relation for thermal light. We show that
the normalized photon coincidence rate decreases sharply as the signal and idler apertures become mismatched
or misaligned. We experimentally confirm this latter prediction by using parametrically down-converted light
obtained from a LilQ crystal pumped by Ki-ion laser radiation at 413 nm.

PACS numbds): 42.50.Ar, 42.50.Dv, 42.65.Ky

[. INTRODUCTION time delay, i.e., the entanglement time is infinite.
For a crystal of finite length, however, momentum mis-

Spontaneous parametric down-converted light has unmatching in the longitudinal direction is tolerated. For a
usual spatiotemporal coherence properties that are imposgadimp of finite spectral width, this also applies and, in addi-
by the requirements of energy and phase matcling7].  tion, energy matching is more flexible. As a result, the signal
The signal and idler beams have spectra that vary with diin any given direction is no longer monochromatic and is
rection, forming rainbow-type rings, and the coherence anglentangled with the idler photons within a sector of finite
and coherence time are also dependent on direfti@gh7,§, angle in the polar direction, viz., the polar entanglement
so that these beams are clearly not cross-spectrally pure angle[7]. For a plane-wave pump, the entanglement angle in
second ordef9]. The fourth-order coherence function deter- the azimuthal direction is zero and the entanglement time
mines the coincidence rate of the signal and idler photons agemains infinite[3,7]. When the pump beam has a finite
a function of their time delay and propagation directions andransverse width, however, the pump wave vector occupies a
therefore governs the degree of spatiotemporal entanglemeoatne of finite angle so that momentum conservation in the
between the twin photong2—-7,10-14. The entanglement transverse direction can be satisfied in more than one way.
angles and the entanglement time, representing angular ardhis too affects both the coherence and entanglement angles
temporal widths of the fourth-order coherence function, areand results in a nonvanishing azimuthal entanglement angle,
also dependent on directi¢8,7]. When apertures are used to as well as a finite entanglement time. All of these effects are,
collect signal and idler photons, the ratios between the apelf course, present in real experiments.
ture angles and the corresponding entanglement angles haveln a previous study7] we developed a theory for the
a significant effect on the rate of photon coincidence. Anysecond- and fourth-order spatiotemporal coherence proper-
misalignment of either of the apertures with respect to thdies of spontaneous parametrically down-converted light, as-
direction of maximum entanglement also has a strong effectuming a crystal of finite length and a pump of finite spectral
on the measured coincidence raf@s width. However, the pump was assumed to be a plane wave.

In the ideal case of a monochromatic, plane-wave pumpn this paper we extend our theory to include the effect of the
interacting with an infinite-length nonlinear crystal, energypump transverse width and develop the theory further to
and momentum conservation restrict the down-convertegdtudy the interplay among these three effects in determining
light so that it is monochromatic in each direction, and eachthe coherence and entanglement angles and times. We also
signal direction has one and only one matching idler direcreport the results of an experiment in which the signal-idler
tion. Thus the entanglement angle is zero everywhere and thghoton coincidence rate was observed through apertures of
coincidence rate at matched directions is independent of thearious sizes and different misalignments from the optimal
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is the wave function irk space, sinc{)=sin(wx)/7x, and
F(k,) denotes the two dimensional Fourier transform of
f(x,y). The wave vectork,, ks, andk; of the pump, the
signal, and the idler have magnitudesync(wy)/c,
wsho(wg)/c, andw;ny(w;)/c, respectively. The wave func-
tion in Eq. (2b) is the same as its counterpart[ifi [see Eq.
(6) in [7]], except for the delta functiod(k,), which is
replaced here b¥(k,), accounting for the finiteness of the
pump beam waist.

It is convenient to select central signal and idler wave
vectorskg and kiO that are phase and frequency matched to
the central pump wave vectkgz kgi and to take the wave
vectorsk? andk? to lie in thex-z plane. These central wave
vectors are determined by their azimuthal angids-0 and

FIG. 1. Geometry for spontaneous parametric down-conversioi = 7, polar angles? and 67 (internal to the crystaj and
arrangement. Arrow directions indicate positive-sign conventionsfrequenCieSwg and inA, as SVJOWH in Fig. 1. We are only
for signal and idler polar ) and azimuthal §) angles. interested in directionkg andk; and in frequenciesg and

w; in the vicinity of these central directions and frequencies.

directions. The experimental results agree with the theory. To obtain an explicit expression for the wave function in
Eq.2b), we expand the wave vectokg andk; to first order

Il. QUANTUM STATE OF DOWN-CONVERTED LIGHT in frequency and in angular deviations from their central val-

: . L ues, to obtain
Consider type-l(oog parametric down-conversion in a

crystal of lengtH, with ordinary and extraordinary refractive N. sing® N sing®
indicesn,(w) andng(w) at the angular frequenay and an Ak, (ws, s, w; , ;) =Keyt Kix= ——— Qg— — !
effective second-order nonlinear susceptibilip?). The
pump is a beam pointing in the direction, as depicted in 27rNng OS2 2mn; cosh?

Fig. 1, with a waistw in the transverse direction and a spec- 0 0s— 0 0;,
tral width Aw,. The pump field is treated classically and is As Ai
expressed by the spectral expansion (3a)

s c i

27Ny sinG?

(wpne(wp)
Ns

Z—a)pt)

+c.c., 1)

E(r;t)=¢ef(x,y) f:da)pA(wp) exp{i

Aky(¢s:¢i)zksy+ kiy= (hs— i), (3b)

and
wheree is the pump extraordinary polarization direction and
f(x,y) is the pump amplitude distribution in the transverse Ak,(ws,fs,0;,0;)=Ks,+ki,—kp
plane, which is assumed to be the same throughout the crys- 0 0
tal and to have a widthv. The pump spectral width w,, _Ns COSHS_NDQ N N; cosfi _NPQ
determined fromA(w,), is assumed to be sufficiently small c S c
so that the beam’s spatial distribution in the transverse plane
is frequency independent. Heeds the speed of light in free
space.

Using this expression for the pump field, in first-order
perturbation with the quadratic interaction Hamiltonian, thewhereﬂjzwj—w?, 6, and ¢; are internal to the crystal and
state of the down-converted light can be shown to be a Syneasured from their respective central val#ésand ¢ as
perposition of the vacuum state and a state Wlth a singl&nown in Fig. 1.nj=no(w?). andN, andN; are group in-
photon in each of the 5|g_nal _and idler beams. This twin stat€yices of refraction {=s,i). These equations give the com-
expressed as an expansion in the wave-vector §9at8, IS onents of the wave-vector mismatch and include dispersion.

We also used the relatiork®,=k%, (i.e., na\? sing?
|.,7>=J j dkedk (ks ki) Ke)e Ki)i (28 =n;\? sind?) to obtain Egs(3b) and (3c).
Using Eq.(3), the twin state can be expressed in the form

27y sing?
-0 (6t 6, (30
S

where.7 denotes the twin state,
IH=| deodod
¥(Ks ki) = X A(wst o)) F (kg +Ki,) 17 f ©sd6509s
I
X1 Sin%z{kzls-l-kZ’i—kp(ws-l—wi)} XJ dwidé’id(bilﬂ(ws,ﬁs,(f)s,wi ,ai 1¢i)

(2b) X|ws,bs,ds)d i, 0; ,di)i , (4a)
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where the two signal directions are not the same. In this paper, the
assumption of finite pump-beam waist results in nonvanish-

W ws,0s,bs, 0 ,0;, ) =NA(ws+ ;) ing polar and azimuthal coherence angles for the down-

converted light, as will be seen later.

(4b) The fourth-order coherence function within the sigfe

the idlep beam vanishes, so that only random coincidences

arjse within the signalor the idlej) beam. This is a conse-

ﬁglence of the fact that the twin state projects into a one-

photon state in the signal subspace and a one-photon state in

the idler subspace.

) I
XF(AK,) smc{zAkz .

Here the second-order susceptibility and the Jacobian need
in transforming fromdk® to dw dé d¢ are assumed to be
slowly varying in comparison with the remaining function

and are included in the normalization constAhtEquation The coincidence rate for a signal photon and an idler pho-

(4) is the counterpart of E10) in [7]. ton is determined by the signal-idler fourth-order coherence
The wave function is therefore the product of three func—,,ction [16]. Using an analysis similar to that §iv], we

tions, representing the effects of the pump spectral width, thg ;i

pump beam width, and the crystal length. The properties o

the emitted light are therefore governed by the three normalG<2>(95 \ b, 0, i T)

ized variables\ w, /w3, NJ/w, and\Y/| representing these

three effects, respectively. The ultimate goal of this paper is

to examine the effect of these three variables on the coher- =f dQ S (6, bs,6;,¢;;Q) expiQr), (63
ence and entanglement properties of the signal and idler
light. where

Ill. COHERENCE FUNCTIONS S(s?)(gsa(ﬁs:ei L biQ)

A. General results

In this section, general expressions for the second-order =f dwsf dw* (s, 05, ds, 0 ,6; , ;)

(amplitude and fourth-ordeKintensity) coherence functions

for the signal and idler fields of the down-converted light are

determined. As in7], the far-field electric-field operators are X(ws=Q, 05, b5, 0+ 0,6, i) (6b)

written in terms of annihilation and creation operators satis- . .

fying appropriate commutation relations. The coherencdepresents the fourth-order cross-power sriectral density. Itis

functions are then determined by averaging the appropriatetraightforward to verify thas’(— Q) =S" (Q), indicat-

field operators using Eq4a) for the twin state and integrat- ing that the fourth-order coherence function in Efa) is

ing over timet to obtain the stationary results. Since thereal. The integral in Eq(6b) implies that, for fixed signal

analysis is a straightforward generalization of that carried ouand idler directions, the overlap betweetf (ws, ;) and

in [7] we only report the results here. (o, o) contributes to the cross-power spectral density at
Because the projected signal and idler states are singlérequencyQ only if wi=w—Q andw{ =w;+Q, i.e., from

photon states, the second-order coherence function at a poigibwn-conversion originating from the same pump frequency

within the signal field and at another within the idler field wp= st wi=wl+ ol . In[7], g)(Q) was proportional to

vanishee. _The sec_ond-o.rder. coherence function at pairs ¢f(()) so that the wave functions overlapped only at

points within the signal field is given by Q=ws— w.=0, resulting in a coincidence rate independent
(1) b of the time delayr.

Css (05, s, 65 ¢b5:7) Since the dependence of this functionois known to be

in the picosecond rangé,11,13, slower detectors will in-

=f dwss<515>(95,¢s,gé L wg) expliogr), (58  tegrate Eq(6a) over 7, leading to an integrated fourth-order

coherence function

where

S (s, s, 0L, bl ;09

GZ(0s,s,6;, )

:fdwsj dwi|‘/’(ws-0s-¢51wi-0i1¢i)|2- (7)
ZJ dwidﬁid¢i¢*(ws,9§ !¢é 0, 6; !¢i)

This function describes the degree of entanglement between
X wg,0s,bs, i ,0; , ;) (5p)  the twin photons as a function of their directions. It is pro-
portional to the rate of photon coincidences observed by a
is the signal cross-power spectral density. In our previoupair of detectors with fine angular resolution. The counter-
paper[7], the dependence of this cross-power spectral denpart to Eq.(7) given by Eq.(44) in [7] involves integration
sity on the signal angles is described by function, i.e., the  over only signal frequencies since, for fixed propagation di-
signal field is spatially incoherent. This is a direct conse-rections, there is only one idler frequency matching each
guence of the plane-wave pump assumption and implies thaignal frequency. This is not the case here because of the
the product wave functions in E¢bb) do not overlap when added tolerance to transverse wave-vector matching.
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For coincidence detection through apertures centered at B. Gaussian approximations
the signal and idler central wave vectors, of respective sizes |, grder to evaluate the integrals in E¢5a) and(6a), and
A#;xXA¢s and A6 X Ad;, the coincidence rate is propor- i ohtain explicit expressions for the dependence of the co-

tional to herence functions on the key parameters of the interacting
beams, we make several simplifying assumptions and ap-
G(S?):J dasdd,sj dé,de, proximations. The pump spectral distribution is assumed to
AfsxAgps AGiX A, be a Gaussian function
X | dogdo;| 0 I |G ) (0—wp)?
odoi| v, 05, ds, i, 0, ;)| A(w)ocex . P (10)
4Aa)r2J

In the case of misalignment of one of the apertures from its
central direction, the coincidence rate remains identically agnd its transverse spatial distribution is also assumed to be a
in Eq. (8), with the misalignment accounted for by appropri- Circularly symmetric Gaussian function fandy, so that its
ate change of the limits of integration. Fourier transform is also Gaussian:
The normalized coincidence rate, which is a measure of

. 2 2
the degree of entanglement of the detected photons, is F(kl)ocex;{ w2 kx: ky 1D
2 G&
si ™ NI (%3 We also approximate the sinc function in Egb) by the
Gaussian function
where ,
sinc{l—Ak )mex;{—w} (12
27w 2 4 ’

[ aods.| dode,
ABX A g
where @=0.430 is chosen such that the two functions have
% [ dodan|ptos, 05, 60,000, 0)F  (ob)  equal 16 widths,
and |l; is given by a similar expressiof¥]. Equation(9b) 1. The wave function
differs from Eq.(8) in that it is integrated over the entire Using Eqgs.(10)—(12), the twin-state wave function takes
idler space. the following jointly Gaussian form:

0 N N 8 Lfef of & 6.
P(Qs, 05,85, 0,0, ) =N expg — 5 (?;JF?;JF Mg, Psbi [€X0 — 7 ;Z+?;+?6:+;§+ N s
27,6 Q05+ 27, Qs+ 27,0 Qi 05+ 27, Qi0i+ 27,4 esai} 1 ; (13
|
where 1 1 1
S + 14
Teogo, Awg AwgAwiy AwgAw;,’ (149
! ——1 14
o2 " AL (149 1 1
Y Mg, = - (149
“s%  AwsAlsy  AwsAbs,
! (14b 1 1
6™ " Ao Ay’
syl Piy 0 =" - , 14
70" Ragdby AwsAd, 9
1 _t 11 140 1 1
= 2 2 2 C __
0o, Awp Awg Awg, Mo, Aeserix+AeszA0iz, (14h)
1 1 and the remaining coefficients are given by the interchange

1
P (149 of the signal and idler indices. The spectral and angular pa-
‘gs

2 T
Abs Afs rameters that appear in Eq449—(14h) are given by
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)\?/nj the line in the (s, ¢;) plane determined fromk, =0 in Eq.
A¢sy:A¢iy:mv (158 (3b) (i.e., ps=¢;) and the line in the Qs, 65,9, ,6;) space
i

(spectral-polar spagaletermined fromAk,=0 in Eq. (3a),

Ak,=0 in Eg.(3c¢), andQ¢+ Q;=0; for the noncollinear and
(15h  degenerate down-conversiofide 67+ 0 andwd= w;) used
here to illustrate the theory and the reported experiment, the
spectral-polar line is given by the parametric equations
0;=— 065, Qg=—(nsw? cot/NJb,, andQ;=— Q.

0
0 )‘j/Ni

Awy=0; =————3,
XTI 20w sing}

0 0

Awj,= o , (1590
! 2mal
2. Second-order coherence function
0
Ag. = Ajin; (150) Using the Gaussian wave function in E43), the signal
X 2mw cosﬁ?’ second-order coherence function in Efa can be cast in
the separable form
and
(¢ps— be)?
\o/n; Gl (6, ps, 0L, pL TV 7EX] — ——F8—
Abg,=Ab=—— 7, 15 5 = 2¢°
277 2mal sing) (159 s
L . ('95_ 692
wherej =s,i and the second subscript,{/, or z) denotes the Xexpg — ———
component of the phase mismatch contributing to the given 265

frequency or angular broadening. 5
The jointly Gaussian expression for the wave function in xex;{ - }

Eq. (13) is characterized by coefficients forming €6 ma- 27-22

trix that is separable into22 and 4<4 blocks, so that the

signal and idler azimuthal anglegs{ and ¢,) are uncorre- X exgi{wd+ &0+ 0)} 7.

lated with the signal and idler polar angleg, (and 6;) and (16)
frequencies ¢ and w;). This factorization follows from the

expressions in Eqg3a—(3c) in which only the azimuthal The first factor, representing the amplitude coherence of the
angles determine the wave-vector mismatch inyhdirec-  signal field in the azimuthal direction, is a Gaussian function
tion and do not contribute to the mismatch in tkeandz  of width

directions. The structure of thexd4 matrix is indicative of

. K . 0
coupling between the signal and idler polar angles and fre- e _ As/ng
guencies resulting from their mutual contributions to wave- bs=204= 7w sing?’ (17)
vector mismatch in th& and thez directions, as indicated by
Egs. (33 and(30). which is the azimuthal signal coherence angle. The second

The magnitude of the wave function in E@.3) has its  factor in Eq.(16) in which a small term proportional 6,6
maximum value at points in thek{,k;) space that are per- in the exponent has been neglected, represents the amplitude
fectly phase and frequency matchedktga and ). These coherence of the signal field in the polar direction and has a
points, in the linear approximation used here, are given byvidth 65, the polar signal coherence angle, given by

2 2 2 2 2 2
1 1 1 ( Mg Mo, 6 e N8N w; 0 Mwgw, Nws8,7646, Mo, Nw; 0766, w;6,

—= - + +

2 2 ) 7 2 7 2 2 2 2
C

65 20'9s 4 0008 T00h 0004 o, o, T

i [

S

2 2 2 2 2 2
+2 nwsﬂsna)i Gsnwsﬂi 77wi 0; +2 ﬂwsosﬂesai nwswi 77wi 0; +2 nwi 057]050i nwswi stai - stasﬂwi o - na)i Hsna)SHi - 770$0i nwswi

2 2 2 -1
1 nwswi 77w50i nwi ;i
X\ 2000 Moo Mo T 2 2 7~ "2 T 2 T 2 : (18
wg” 0~ 0; o wg

The third factor is a Gaussian function efof width 7%, the signal coherence time, given by

2 2 2 2 2 2
2 1 2 nws(ui 7]w5(9i 7]wi 0; 0-0i O-wi TN w-o-wi - an()i O-Gi

sl
2
@i

19
= 1= 70750 19

The fourth factor in Eq(16) indicates a frequency shift
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%505
05+ 0) === (05 6)) (209

Ts

that is a linear function of)s+ 6., where

2 2 2 2 _ 2 2
ﬂmsa)i 7’050i nwi 0; O-aia-‘”i + ﬂmsﬁi nmi 0577 ;6 O-Gio-wi nwswi nwi OSo-mi 7]ws0i 7]030i O-Gi

Nwgbs— 77w565+ 1— 773)i ) U?)i o2 (20b

@i

As expected from the form of the wave function in Eq. Awp, w, andl (it is completely set by phase matchifig]).
(13), the second-order coherence function factors into are signal intensityl =GY(0s, bs, 0., b<:0) is indepen-
- . . Ss 1 L 1 1
product of a functlpn of azimuthal angles_ and a fun_ctlon ofyent of direction in this approximation.
polqr ang]es qnd time delay. Thus the S'g(‘m.d S|m|larl_y The expression fopS in Eq. (17) has the same form as
the idlen field is cross-spectrally pure in the azimuthal dwec—the coherence angle for light emitted from an incoherent

tion, but not so in the polar direction. The lack of Cross- ' +ea with a circular cross section of diam 'neg. This

spectral purity of the signal field in the polar direction is ™. .
eghibitedpby g signal po?ar-angle-dependgnt frequency shii’in'ght suggest that the second-order coherence properties of

in the fourth factor of Eq(16). The frequency shift in Eq. spontaneous param'etrically down-converted light are equiva-
(209 can also be determined directly from the spectral—polallent to those of an incoherent sour@. However, the ex-

phase and frequency matching line and is independent ressions fowg and 7¢ in I_Eqs.(18) and(19) are very differ-
ent from those for an incoherent source and incorporate

- coherent effects imposed by phase- and frequency-matching
. . . . . requirements. The coherence paramet#rsand 7¢ have a
complex dependence on the wave-function coefficients in
Eq. (13) resulting from the integration ovesg,w;, and 6, .

I
(7%

3. Fourth-order coherence function

S
L8]

Using the Gaussian wave function in E¢3), the signal-
idler fourth-order coherence function in E@a) can be cast

Coherence angles (mrad)

0.1 in the separable form
(s— b1)°
0 Gé?ws,%ai,¢>i;r)o<exp[—s—ez'
24
(05+B6)? 7
Xexg ———=—| exg — —=|.
T 2068 27°
= (b)
£, (21)
; The first factor, representing entanglement in the azimuthal
Eo direction, is a Gaussian function of width
o
R / An
g It e s'S
[ = = " f 22
3 Ps=%0= 2w sing? 22
<
which we call the signal azimuthal entanglement angle.
0 Points for whichgs= ¢; have the highest entanglement, and
-5 points for which|¢s— ¢;| exceedes are weakly entangled.

Because of the symmetry of the down-converted lumines-

0 cence about the pump propagation direction in type-1 phase
logm|_1’| matching, the idler azimuthal entanglement angfds equal
w to its signal counterparg (even for nondegenerate down-

FIG. 2. Dependence of the poléolid curve$ and azimuthal conversio. ) .
(dashed curvescoherence anglés and ¢ of the signal on(a) the The Secon,d faCtor in Eq21), whose exponent IS gener-
crystal lengthl for fixed values of the pump-beam waistand(b)  &lly @ quadratic function ofs and 6, takes the specifiic form
the pump-beam waist for fixed values of crystal length Both ~ Shown in Eq.(21) for | >w; it represents entanglement in
coherence angles do not depend on the pump spectral widthe polar direction, is a Gaussian function of width, the
Aw,. signal polar entanglement angle, given by
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1
T2 _2
0

2 2 2 2

277w S@i nw O s 05 “’s ; - nw Oso-w - steso'ws

+ 1_ 2 2 .
nwswlo-wso-a)l

(23) and 022

where

65 _ \IndN; cos 65+ 67) —Ns]

p= g

67 NIMi[Ng cog 63+ 67) —N;]

53

expression. This second factor has its peak value when

=—pB0o;,

(24

6° only when 8=1 as in the case of degenerate

down-conversion. The third factor is a Gaussian function of
The idler polar entanglement angle is given by a similarr whose width7¢, the entanglement time, is given by

2 11 1 ) sirg?  sire? Zsinﬁ?sinog
= — + _ —
Ty oz Mogo, (C/NS)Z (/N2 (cZININ)
o217 1 . 1 2
4 {czl(NscosﬁS—Np)2 c?/(Nijcos#?—N,)? ¢/ (NgcosfS—N,) (Njcost{ —N,)

(29

The azimuthal dependence of the fourth-order coherence In Fig. 2 we show the dependence of the azimuthal and
function is expected to factor, as in the case of the secongolar coherence angles: and 65, given in Egs.(17) and
order coherence function, because of the factorization of th€l8), respectively, onl [Fig. 2(a)] andw [Fig. 2b)]. The
Gaussian wave function itself. In general, Eg1) should azimuthal coherence angle depends only on the pump beam

have a phase factfas in the case of second-order coherence
in Eq. (16) due to the cross term betweéhand the angles

6s and 6;]. However, because the fourth-order coherence
function is real, the cross term betweéh and the angles
cancels out and the polar-temporal part of this coherence
function also factors.

The signal azimuthal entanglement angle in E2p) is
inversely proportional to the pump waist and is indepen-
dent of the pump spectral widthw, and the crystal length
[. Also, this angle is related to its corresponding coherence
angle bypc=2¢S. This is similar to the situation for inco-
herent light, in which the Siegert relation is obey&d. In
general, the signal and idler polar entanglement angfes
and 67, and the signal-idler entanglement tim# depend in
a complex manner on all three variables of interAst, , w
andl. Also, there are no simple relations that we can recog-
nize between these fourth-order coherence parameters and
their corresponding second-order coherence parameters. Fi-
nally, the fourth-order coherence function in Eg1) is con-
stant at¢s— ¢;=const andfs+ B6;=const and the wave
function in Eqg.(13) is not normalizable.

4. Example

As an example, we consider degenerate noncolinear
down-conversion in a lithium iodaté.ilO3) crystal in the
configuration shown in Fig. 1 and determine the dependence
of the coherence angle# and ¢ (Fig. 2), the coherence
time 75 (Fig. 3, the entanglement anglé§ and ¢S (Fig. 4),
and the entanglement time (Fig. 5 on Aw,, w, andl.

The following parameters, which are applicable to the ex-
periment reported in Sec IV, are useki0 413.1 nm,
A0=\7?=826.2 nm,02=+¢
n,=1.7786 (extraordmary, ng=
Np=1.9479, and\lS=Ni=1.9095.

o

N N Ce

LN

Coherem{'f time (ps)

“w

D~

LN

(ps)

“w

[

Coherence time

b~

(b)

-5

-4

-3

log,, [

Aw,
-]

10~ lOwO

-2

-1

FIG. 3. (a) Dependence of the signal coherence tifieon the
crystal lengthl for fixed values of the pump-beam waistand for
=17.5° (|nternal tO the crystd)  a pump spectral width fixed atw,= . (b) Dependence of
=1.8649 (ordinary, 7% on the pump spectral width w, for fixed values of the crystal

lengthl and fixed beam waist=1 mm.
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FIG. 5. The entanglement time® in the case of degenerate
down-conversion.

fixed value governed by, i.e., set by the phase-matching
requirement in the direction. A similar result is obtained in
the limit of smallw. As for the azimuthal coherence angles,
it turns out that the polar coherence angle is independent of
the pump spectral widtA w,. This can be explained by the
fact that even though a largévw,, corresponds to a larger
signal bandwidth, any frequency component of the signal in
a fixed direction contributes to the signal cross-power spec-
trum in other directions extending over the polar coherence
angle 6;.

The dependence of the signal coherence tithén Eq.
(19 on Awy, w, andl is shown in Fig. 3. In the limit of
largew, largel, or smallAw,, the coherence time is set by
the remaining two parameters. In the opposite limits, the
coherence time reduces to zero. As shown in Fip),3he
pump spectral width begins to reduce the coherence time
only at relatively large valuesw,> 10*5w3), so that the
often-made assumption of a monochromatic pump is easily
achievable(at least in this configuration

The dependence of the signal entanglement angfesnd
6sonl, w, andAw, is shown in Fig. 4. As expected from
Eq. (22), the azimuthal entanglement angle depends only on
w. The polar entanglement angle generally depends on all
three variables. However, for the degenerate down-
conversion case under consideration, it dependd amd
Aw,, but is independent ofr. Whenl is sufficiently large
so that exact longitudinal wave-vector matching is required,
and for 6;=0, fixed w,, and different values ob;, down
conversion occurs only fobs= w,— w; and fixed signal di-
rection. Thus the polar entanglement angféds independent
of the beam waistv, as shown in Fig. é). On the other
hand, when exact transverse wave vector matching is re-
quired and forg; =0, fixed w,,, and different values ob;,

waist, while the polar coherence angle depends on both th@own-conversion still occurs only fabs= w,— w; but now
pump beam waist and the crystal length. The polar coherendée signal direction is a function ab; . Thus the polar en-

angle vanishesé—0) asl—c [Ioglo()\gll)—>—00] regard-
less ofw. In this limit of exact phase matching in the

tanglement angled; depends on the crystal length as
shown in Fig. 4a). The dependence af on | is similar to

direction, there is no overlap between the power spectrahe dependence @ onw; both 65 and ¢¢ are reduced als

densities at two different signal directiomg and 6. origi-

or w increase. However, in the limit of small pump spectral

nating from down-conversion with a fixed idler wave vector width Aw,, the entanglement anglé€ is governed by the
[7]. The same is true in the limitv—o. As | decreases crystal length and does not approach zero, as shown in Fig.
(valid for | larger than)\g), 65 increases and saturates to a4(c). The pump spectral widtihw, has an effect on the
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entanglement angle 65 only at large values
(Awp>1074w0 .

For degenerate down-conversion, the entanglement time
7° in Eq. (25 does not depend on the crystal lendthits
dependence on the beam waistis shown in Fig. 5. In the
case of exact longitudinal wave-vector matching, and for
0;=0, fixedw,, and different values ab; (i.e., idler photon
emitted in the central idler directigndown-conversion oc-
curs only forws= w,— w; and fixed signal directiorfs=0
(i.e., the signal photon is emitted in the central signal direc-
tion). Thus the width of the fourth-order power spectrum in
Eq. (6b), for the given signal-idler directions, is expected to
vary in an inverse proportionality t (even for a mono-

chromatic pump because = wg—wi does not fixwg and

w;) and therefore, as shown in Fig. 55—0 asw—0 and sizes, namely, A6,=0.063 mrad, A¢,=0.112 mrad,
T°—® asw—c. However, in the case of exact transverse 9.=0.107 mrad SémquS:O 190 mrag internal to the
i . ’ 1 . !

phase matching, and fd# =0, fixed w,, and different val- - qta) 10 hoth cases, the pump power was set at 180 mw
ues of w;, down-conversion _St'” oceurs only er and the output pulses from the detectors were counted for 10
ws=wp= wj, but NOW#s=0(w;), i.e., the signal photon is 54 hrovide a measure of the rate of photon detection in each
emitted in different signal directions depending on the fre-o¢ ha channels. The sequence of standardized pulses from
quency of the _idler photon. '_I'herefore, the crystal lenigth 6 1y detector were also passed through a 10-ns AND gate
does not contribute to the width of the fourth-order powerynq counted for 10 s to provide a measure of the coincidence
spectrum in Eq(6b) and the entanglement time is inde-  (4te The dots in the figures represent the raw coincidence
pendent of . data.

Finally, the pump spectral width w, has no effect on the In Fig. 8 we present the results when the signal polar
entanglement time®, in agreement with experimental obser- giraction was scanned, with the signal aperture still set by the
vations[11]. detector size and with the idler apertum@etermined by a

variable aperture and a lens that focused the light onto the
IV. EXPERIMENT idler detectoy varied from A¢,=1.069 mrad and
=1.908 mrad in Fig. &), to A#,=2.715 mrad and

Signal
Counter

Scanning in the
6 and ¢ directions

Coincidence
Counter

Idler
Counter

FIG. 6. Experimental setup.

We have experimentally investigated the predictions oiAd’i -
the jointly Gaussian twin state model by measuring coinci ¢i=4.846 mrad n F'g' &), a_nd toA §;=3.802 mrad and
dence rates of down-converted photons observed through®i=6-784 mrad in Fig. &), internal to the crystal. The
aligned and misaligned apertures of various sizes, as showjfpunting time was set to 10 s and the pump power varied
in Fig. 6. The 413.1-nm line of a krypton-ion laser was fo- TOM 75 MW in Fig. &) to 25 mW in Figs. &) and §c) to

cused to a waist ofv~0.4 mm to create the pump. A 10- minimize dead-time effects i_n the idler detectqr.

mme-long (=210 mm) lithium iodate crystal was oriented for To compare these experl'me'ntal results'WIth the theory,
type-l (008 phase matching with the extraordinary pump € EXPress the observed coincidence rate in the form
incident at 90° to the crystal's optic axis. Avalanche photo- _ 1265(2)

diodes operated in the photon-counting Geiger mode were Re=Rict 7(RsR) ™Ry, (26)
used as detectors. They have a diameter of approximately o

100 um and were placed at distancesref=738 mm and where R, represents the observed random coincidence rate
r,=435 mm from the center of the crystal. The down- (determined from completely misaligned apertiiyesrepre-
converted light was filtered by RG695 filters placed in frontsents the quantum efficiencies of the signal and idler chan-
of the detectors to block the pump radiation. The signal andels (assumed to be the same for both channd¥s= 7l
idler directions for degenerate down-conversion were set @&nd R;=7l; represent the observed signal and idler single
maximum coincidence rate when filters centered at 830 nnfates, an®R{? is the normalized coincidence rate in Ega).
()\2=AP=826.2 nm and linear polarizeréoriented to let the  This latter quantity is evaluated from the theory by integrat-
o rays throughwere placed in front of both detectors. The ing the Gaussian-model expression in E21) over 7 and
directions obtained were consistent with the computed value@ver the given apertures. The required entanglement angles
of 6= 6°=17.5° (internal to the crystal The 830-nm filters ¢ and 6 (j=s,i) are evaluated from Eqg22) and (23),

and polarizers were then removed and one apeftheesig-  Where the indices of refraction and the group indices of re-
nal aperturg was fixed by the detector area, whereas thefraction, calculated from Sellmeier formulal?], are
other aperturéidler aperturgwas varied, as shown in Fig. 6. N,=1.7786 (extraordinary, ns=n;=1.8649 (ordinary),
With this setup, we measured the signal-idler coincidencdNp=1.9479, andNs=N;=1.9095, as given in the example
rate, for different idler apertures, as a function of misalign-provided in Sec. lIl.

ment of the signal aperture in the polar and azimuthal direc- This theoretical expression is represented by the solid

tions. curves in Figs. 7 and 8. To fit the theory to the experiment
In Fig. 7 we present the results when the polar and aziwe adjusted the values of the entanglement angles by varying
muthal signal directions were scanned, in Figs) and 7b), | for 0}9 and varyingw for ¢f (j=s,i). We have been able to

respectively, with both apertures defined by the detectofit all data sets by choosing=7 mm andw=0.4 mm. The
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FIG. 7. Experimental data and theoretical curves for the photon
coincidence ratécounts per 10)sas a function of signal aperture FIG. 8. Experimental data and theoretical curves for the photon
misalignment in(a) the ¢ direction and(b) the ¢ direction. The  coincidence ratécounts per 10)sas a function of signal aperture
ratios of the aperture angles to the entanglement angles werisalignment in thed direction. The normalized signal aperture

A6;165=0.35, Aps/ps=0.19, A6;/67=0.59, and A¢;/P{= angles are as in Fig. 6. The remaining parameters (@e
0.35; »=0.1. (8 R,=18, Re=17930, andR;=39036; ()  A6;/6;=5.90, Ag;/¢{=3.26, n=0.14, R,.=15, R,=9787, and
Ri.= 20, R,=21 400, andR; =45 403. R=55790; (b) A#,/6°=15.00, A¢;/¢p¢=8.27, n=0.14,

R=13, R,=4099, and R,=143104; (c) A#6,/6°=21.00,
Al $p=11.58,7=0.11, R,.=24, R;=6210, andR, =226 657.
difference between the actual value of the crystal length, 10
mm, and the value used to achieve the fit, are related to

possible walkoff of the signal and idler beams with respect toobtained by settingy=0.13, which is intermediate between

the pump be_am so that an effect_ive crystal length Smalle{he values used to obtain the best fits in Figs. 7 and 8. The
thanl determines the phase-matching tolera@eFor these optimal value oﬂ?g), for the given signal aperture, is 6.1%,

values of| and w, the entanglement angles ad= 6] ) . : A .

=0.181 mrad andp:= ¢ =0.586 mrad. The quantum effi- Whe'Ch e \ivas a_lttalnable by choos_lng A.e'XAd")/

ciency » required fosr beslt fit was 10% in Figs(a and b) (67X ¢;)=7. This value of the normalized idler aperture
Y7 red 9 ’ giving the optimaRg is higher than that reported |i@], but

14% in Figs. 8 and 8b), and 11% in Fig. &), consistent . . ; , .
with the 10% efficiency reported if18], in which a similar the re;ult in[7] is for. a ont—;—dlmensmnal model whereas this
e(I%sult is for a two-dimensional model.

experimental apparatus was used. The remaining paramet

R, Rs, andR;, required in Eq(26), are estimated from the

data for each plot and are reported in the figure captions.
The effect of aperture mismatch on the normalized coin- V. CONCLUSION

cidence ratR} for perfectly aligned apertures is shown as  \ye have developed an approximate Gaussian expression
the solid curve in Fig. 9. Here the signal aperture is fixed afor the wave function of the twin photon beams emitted by
(AGsX Agpg)/(65X ) =0.067, as set by the detector area,the spontaneous parametric down-conversion process, with
and the idler aperture is varied. The dots are calculated bshe effects of pump spectral width, pump beam waist, and
solving for R(S?) using Eq.(26), and substituting from the crystal length accounted for. This simple model was used to
data, averaged values for the maximum coincidenceRate determine the second-order coherence function at pairs of
(the coincidence rate for perfect alignmgrthe random co- points within the signaland idley beams, and the fourth-

incidence ratéR,; and the singles rateR; andR;. The fitis  order coherence functiofphoton coincidence probabilityat
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The photon coincidence rate is also separable as a product
of Gaussian functions of the azimuthal angles, polar angles,
and time delay, with widths representing the entanglement
angles and time. The azimuthal entanglement angle increases
with decreasing pump-beam width, but is independent of the
crystal length and the pump spectral width. The polar en-
tanglement angle, in contrast, is independent of the pump
beam width, but increases with a reduction of the crystal
length or an increase of the pump spectral width. The en-
tanglement area is also elliptical, but it does not match the
coherence area, so that the Siegert reldi@ms not satisfied.

i1 ] The entanglement time increases with an increase of the
pump beam width or with a decrease of the pump spectral

0 50 100 150 200 250 width. When the signal and idler photons are collected by
Normalized idier aperture 22 A, apertures of finite area, the photon coincidence rates drop
o 4, sharply if the aperture areas mismatch the entanglement ar-

eas in size or locations. These effects have been demon-
FIG. 9. Experimental data and theoretical fit for the normalizedStrated experimentally.
coincidence rat®(® as a function of the normalized idler aperture ~ The Gaussian model of the twin-beam wave function has
area. The signal and idler apertures are perfectly aligned. proven to be very helpful in analytically determining the
coherence and photon coincidence properties of parametri-
one point within the signal beam and the other within theca|ly down-converted light. It can also be employed in more
idler beam. general situations such as in interferometers of the following
The magnitude of the second-order coherence function i§pes: Hong-Ou-Manddt19—21], Michelson[22,23, Mach-
a product of Gaussian functions of the azimuthal angles, pozehnder6,18,24, and Fransofi22,23,25,2% as well as for

lar angles, and time delay. Its phase is a linear function ofight passing through slits as in Young-type experiments
time delay, representing a spectral shift that varies with theg 14],

polar angles. The coherence angles generally decrease as the

pump beam width or the crystal length increase. The coher-

ence time increases as the length of the crystal or the beam ACKNOWLEDGMENTS

width increases and also as the pump spectral width is re-

duced. Although the pump beam possesses complete spatial This work was supported in part by the Joint Services
coherence, the down-converted beam has an ellipticall§electronics Program through the Columbia Radiation Labo-
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