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Theory of the Kapitza-Dirac effect in strong radiation fields
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By applying the stationary wave functions for an electron interacting with a circularly polarized standing-
wave photon field, and a nonperturbative scattering theory, we obtain a theoretical description of the Kapitza-
Dirac effect in strong radiation fields. The theory predicts that large momentum transfers can occur, when two
propagating light waves have the same angular momentum and opposite helicity, as observed by Bucksbaum,
Schumacher, and Bashkansky as a half process in multiphoton ionization. The theory and possible experiments
to detect the full Kapitza-Dirac effect in electron scattering from a strong radiation field are discussed. The
theory also predicts that with the participation of ponderomotive energy, the incident electron beam, after
interacting with a standing photon wave, may have symmetric reflection, asymmetric reflection, penetration,
and refraction. Transition rate formulas of these processes are pre4&#680-29476)00206-3

PACS numbd(s): 32.80.Rm

I. INTRODUCTION photon ionization which agrees well with experiment. We
proved that the large angle splitting is due to a large momen-
In 1933, Kapitza and Dirafl] pointed out that when an tum transfer between the two oppositely traveling modes
electron crosses a standing-wave light beam with an incidenthrough a scattering process by the ponderomotive potential
angleé, , a reflection of the electron motion may occur due toenergy. Thus we confirmed the interpretation by Bucksbaum,
a stimulated light emission. The momentum of the incidentSchumacher, and Bashkansky that the splitting process is a
electronP;, the photon energw, and the incident angle are KD effect in a strong radiation field. However, an ionization

related by Bragg's law process is a half-scattering process. The question addressed
here is, can this kind of KD effect exist as a full-scattering
|P;|costi= w, (1)  process? If the answer is yes, one could expect that an elec-

tron beam may be reflected with large momentum transfer by

where natural unité=c=1 are used throughout this paper. crossing a standing light wave.
This effect is known as the Kapitza-DirédkD) effect. Sev- The scattering wave functions in this paper are treated as
eral experiment§2-5] and theorie$5—8] have attempted to solutions of the Lippmann-SchwingérS) equation[12,13.
show this effect. In the original work of Kapitza and Dirac, In this treatment, one needs to express propagators in terms
the photon numbers absorbed and emitted are both 1, so tleé a complete set of energy eigenstates with corresponding
total transferred photon number is 2. The resulting small moeigenvalues. The nonperturbative quantum electrodynamic
mentum transfer requires an incident angle which is so  (NPQED approach to multiphoton procesgé4—-17,1] de-
close to7/2 that the reflection is difficult to observe. veloped in recent years possesses unique advantages in the

At first sight, one might think that it is easy to generalize treatment of interactions between atoms, electrons, and
the argument made by Kapitza and Dirac to multiphotonstrong radiation fields. In the NPQED theory, photons and
cases. But there are some theoretical difficultids:Multi- electrons are treated as elementary particles on the same
photon processes are significant only when the radiation fielfboting in an isolated system where the radiation field is no
is strong, but in a strong radiation field, the ponderomotivdonger an external field. Stationary wave functions with cor-
potential energy becomes significafi. With the participa- responding energy eigenvalues for an electron interacting
tion of ponderomotive energy, the argument made bywith single-mode[14,16], standing-wavd11], and general
Kapitza and Dirac no longer hold$2) since multiphoton multimode photon field§17] have been obtained by solving
transition rates typically decrease exponentially with thethe Schrdinger and Dirac equations directly. The use of
transferred photon number, it seems impossible to observiiese stationary wave functions to formulate propagators ap-
the KD effect with large momentum transfer. pearing in the LS equation has been discussed thoroughly

Recently, in a standing-wave multiphoton ionization ex-[15]. An experimental verification for this scattering ap-
periment[10], Bucksbaum, Schumacher, and Bashkanskyproach was worked out in I.
showed that the angular distribution of photo-electrons has a This paper is organized as follows. Section Il is devoted
large splitting angle when the two light beams have the samt developing a nonperturbative scattering method to calcu-
angular momentum. They interpreted this effect as a KDate the transition matrix elements. In Sec. Ill we extend the
effect in a strong radiation field with more than 500 trans-approach in paper | to the full-scattering process. We prove
ferred photons, and attributed this effect to the periodicity ofthat symmetric reflections with a large momentum transfer
the ponderomotive potential energy. In a recent pdftéf  can occur when the two circularly polarized light beams have
(referred to as)lwe developed a nonperturbative quantumthe same angular momentum and opposite helicity. We also
electrodynamical scattering theory for standing-wave multiprove that with the participation of ponderomotive potential
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energy, asymmetric reflections, penetrations, and refractions
of the electron beam can occur. The transition rates for these
processes are also given. In Sec. IV we give a brief discus-

sion on some subtle questions in the theory.

II. TRANSITION MATRIX ELEMENTS
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dw e Ve 2 & g 2

The scattering wave functions are derived from another form
of the Lippmann-Schwinger equation

Starting with a complete set of eigenstates of an interact- ie

Pt

ing Hamiltonian, in this section we develop a nonperturba- i :é{;—H+ie bi ©
tive expansion technique to evaluate the transition matrix

elements due to the interaction.

whereH is the full Hamiltonian of the interacting system.

We assume that a scattering state satisfies the Lippmanﬂrsing the complete set of eigenstatestbfas the basis to

Schwinger equatiop12,13

it — +
q,i _¢I+E/(|_H0+|€V‘PI ’ (2)

whereH, is the noninteracting Hamiltoniary, is the inter-
action, andg; is the eigenstate dfl,. We usei to stand for
the initial state, and for the final state. By projecting’;"
onto a final plane wave , from Eq. (2) we have

1
inE<¢f|\I’r>:5ﬁ+m<¢f|V|q’i+>v ©)

Q= 8= —im8( 41— 5| VI¥])

1
- h

expand the right hand side of E(), one gets

V= (M,K§=Ki) |V (P | bi)
2

+ |V (V| &
(M:?f##?fi) (gi_@r#)Z_'_EZ | ,u>< ;L|¢I>
ie(£—7,)

(s ) (;{I_XM)ZiEZ |\I’#><\I’ﬂ|¢)|> (10)
N ’ é

+
The leading term of the right hand side of the above equation
agrees with an earlier theoretical resul6], and has been
verified in standing-wave multiphoton ionizations by the ex-
periment of Bucksbaum, Schumacher, and Bashkansky and
Guo and Drak¢10,11]. The second term yields a Lorentzian
distribution of the near-resonance energies. The second and
the third terms could be significant for cases with a finite
time duration of the light pulse in near-resonance transitions.

where(}y; is called the Mder operator matrix element and P |n this paper we calculate the transition matrix elements by
stands for the principal value. By limiting transitions to the constructing the Miter operator matrix elements, so we keep

energy shell, one gets

Q= =—1mo( 5= )T,
+ L= (5)
Tr=(pe|V|W{") for &=

The transition rate in momentum spad&/d>P; is ob-
tained by

dw . = 2 4 2
d3—Pf=2775((5f—5i)|Tfi| =f|in_5fi| ; (6)

whereT is total interaction time. In deriving E@6), we need
a formula to treat the square of the ene&jynction. In later
sections, we need to treat the squares of momeritdumc-
tions. These formulas afé 8]

27 _\*2m .
? 5(@/f_(/(|) z? 5((§f_(§i)l

()
(2m)°
Ve

(2m)
Ve

2 3
OG(Pf_Pi)) = B(P—Py),

only the leading term in calculations as in I. Thus the initial
scattering state in the standing light wave case has the form

V= 2 ), (19

(&, =1¢

wherel; andl, are the initial free photon numbers of the two
traveling modes, and the initial free state for the electron-
photon system is

[i511. 020 =V "ePT14,1,). (12

The Mdler operator matrix element in this kind of scattering
state has the form

Q= X

(& =25)

<¢f lm1!m2|‘y,u><qf,u|¢l ;|11|2>' (13)

Ill. ELECTRON REFLECTION AND REFRACTION
BY STANDING WAVES

The scattering treatment developed in the preceding sec-

whereV, is the normalization volume for the free electron tion is quite general. In this section we restrict the discussion
with momentumP; or P;. The angular distribution of the to an interacting system including an electron and a circu-
transition rate can be obtained by integrating both sides odlfarly polarized standing light wave in the following two

Eq. (6) along the radial direction d?;, therefore we have

cases.
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A. Case |. Two light beams with the same angular momentum  2A is the classical amplitude for the vector potent#alof
and opposite helicity each photon mode, andigw is the total ponderomotive po-

The existence of this type of KD effect is indicated by the t€ntial energy. _ _
experiment of Bucksbaum, Schumacher, and Bashkansky, NOW, we calculate the first overlap factor in the/Néo
where two circularly polarized laser beams of 1064-nmOPerator matrix element in EG13),
wavelength with the same angular momentum propagating (2)?
along opposite dlrec_tpns are applleq to xenon gas. An un- (W, i:11,10)= Lem) S(P,—P,+1.k—1,k)
usual deep peak splitting was found in the photoelectron an- a Ve a
gular distributions. In this experiment, the initial state of the
electron_is_ an atomic _bound state. The angula_tr distribution XZ <nl+j,n2|c|l’|2>\]7j(§)eij¢’i_
peak splittings can be interpreted as an absorption of photons ]
from one mode with an emission to the other mode when the (20)
photoelectron leaves the radiation field. This mechanism is
the same as the one described in the original paper ofhe photon part can be evaluated in the large-photon-number

Kapitza and Dirac except the transferred photon numbers afgnit, as described in detail in the Appendix of I, to obtain
much larger. To perform a full KD scattering process, one

needs to send a free electron beam instead of a bound-state [ 20=n5\ [ ny |\ ]¥2 -
beam to strike the standing light wave. Thus the initial scat-  (N1.Nzfcl1,12)=2 | —n,/2/ | nyf2 (=)™
tering state expressed by Ed.l) is the proper one.
The generalized quantum field Volkov solutions and their X COYAY) S| +1,n,+n, (21)
energy eigenvalues in the current case were derived in | as
where
\I’M:Ve_1l2€|[PM_k(Na1_Na2)]'r; |nl+J ,n2>c‘]_](§)e_” <P/U’, 2| = I 1+|2!
) 19 A=l (<) 22
Z ==+t Hot(n+ 3 e+2u. 2 ’
2me 1/2
2=
The terms in Eq(14) are defined as follows. The photon y=CO0S o1
state|n,,n,). is defined by
Fyng [ otyng By noticing thatn, appears only in the indices of the
_(Cl) (c2) Kroneckerd, the above expression can be generalized to
Iny,ny) .= [0,0). (15
vni! yny!
_ o [f21=ny\ [ ny | 1M ngf2
The photon operators, andc, represent the recombined two (n1+]inglely,l5)=2 | —ny/2/\ n,/2 (=1)
normal modes related to the original modes by
XCOS{AY)5I1+I2,n1+n2+j . (23
1
01:‘7 (a1 +ay), The other overlap factor in the Mer operator matrix ele-
2 16 ment can be evaluated in a similar way to obtain
Cr=— (a1—ap) : vy =2 b bt mk—mik
2=~ (01— %), (deimy,my M>_V—e (P,—Ps+myk—m;k)
The nota.tignﬂ\lEll and Na, stand for the nurpber of operators « E (my,mylny+j’ o)
of the original photon modes and are defined by i’
foatay XJ_j(He e (24
Naizz(aiai"_ai ai)v |:l,2 (17)
and
The argument of the Bessel function is defined by 2l—n . |12
(Mg, my|n;+j’ ny)e=2" ( 2)( 2) (—1)"2?
_ 2\/§|e|A | | (18) ¢ | - n2/2 n2/2
Mew =% X COLA" ) Sy smyuny enytjr s (25)
The a_ngle%:arctar{(PM)y/(PM)X}. The polarization vector where
is defined by
= (&tiey), (19 _ .
v2 The Mdler operator matrix element has the explicit form



4314 DONG-SHENG GUO 53
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FIG. 1. Momentum space of the entry proce&s, j>2up,
extra-absorption case, or accelerating cége0<|j <2u,, absorp-
tion case, or decelerating cage) j<0, emission case, or extra-
decelerating case. By settingr=1, the circles represent the ki-

. . . . . netic energy sphere of the photoelectron. The lighter one is for the
The evaluation off is described in the Appendix. The electron in the radiation field, and the darker for the free electron.

symbol in Eq.(28},gives the value of the net transferred The arrows represent momentum vectors. The notations are for all
photon numbejj—j’. From Eqgs.(23) and(25), we know figures in this paper.

3
(Z\Z) S(P,— P+ A’k— AK) o) b)

m
~—

Ofi=

=~
==
=

X2 I (DIl (e VR, (27)
i’

where the factoF is

7D

FEnZ (my,myIng+j’no) (N +j,nolclg,l0)
2

1 (SiM(A"+A)m/2] sir’{(A’—A)w/Z])
p AM+A T A-A

X O +1,—my—my j—j - (28)

j=li+l,—n;—n,, . . .
J= 72 0< @ =<m/2. The geometric relations in momentum space of

the entry process are shown in Fig. 1.

Case (b).When an electron enters the radiation field, the
Thus we can say thatis the photon number absorbed by the €lectron needs to absorb an integer numbef photons to
electron when it enters the radiation field, gridhe photon  contributej  energy as an integer part to the total pondero-
number emitted when it leaves the field. motive potential energy B,w. Since 2,0 as a number de-

Next we determine the values far and A’, and set the pends only on the properties of the field, it can be determined
constraints forj, j’, and the incident anglé . Consider the whether or not the electron enters the field. The remaining
entry process first. Energy conservation in the entry procesgoninteger part of the ponderomotive energy(2 j) o will
gives be obtained from a reduction of the kinetic energy of the
electron. In this case, the electron absorbs photons. Since the
i electron and the field both contribute their energies to the
2_me+(2”p_l)“’: 2m,’ (30) interaction energy, except when-2u,, the electron is de-

celerated. From Eq¥30) and (33) we have the following
Combining the above equation with momentum conservatioinequalities:
determined by Eq(20),

. (29)
j’=mi+my—n;—n,.

V2me(2up,—j)w<|P],

P,=Pi—Ak, (31
p2 |12
we have the quadratic equation far 0iscosl( (2up—jw / 5 ! ) ,
me
A?=2A|P|w ™~ tcost;+2mew1(2u,—})=0, (32 (35)
. . IP.I<IPil,
with two solutions
0,=86,,

A1 ,=|P|o~ ot ¥ [P?w 2coS6,

_ -1 _iy1L2 by specifying6,=</2.
2Mew(2up= )T 33 Case (a).In this case, when the electron enters the field,
Thus we havg.=1,2 in Eq.(30). The existence condition for the electron absorbs extra photons beyond the number
A from the above equations is needed to form the ponderomotive potential energy. The ex-

X tra energy [ —2u,) w turns into electron kinetic energy. The

) P; electron is accelerated. Thus we have the following inequali-
(2up—j)o< 75— oS (B39 fes:
e
This gives the constraint betwegmnd the incident anglé . [P.I>[Pil,
There are three cases according to the valueg:ofa) (36)

j>2u,, extra-absorption case, or accelerating cad®;
0=<j=2u,, absorption case, or decelerating cagg;j <0,
emission case, or extra-decelerating case. For simplicity, we
consider the casi) first. This is the ordinary case. We have The incident anglé, has no restriction in this case.

treated a similar case in |, but in an exit process for photo- Case (c).In this case, when the electron enters the field,
electrons. In the following analysis, we always assumehe electron emits photons. All ponderomotive energy and

an
0,<6, for ;< 5
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0) h) c) P=P;—(A'—A)k,
(42

P2 P?

k Lk ;

N \ 2me - 2me
J y By cancelingP; in the above equations, a quadratic equation

=
=
===

(' -] o.

for (A’—A) is obtained:

N/

(A"—A)?+2(A"—A)|P|o tcosd—2meo1(j—j') =0,

FIG. 2. Momentum space of the exit process) j'>2up,
extra-emission case, or decelerating calge0<j ’s2up, emission (43
case, or accelerating case) j'<0, absorption case, or extra-
accelerating case. which will be used to establish the value &f directly from

parameters of the initial state.
the emitted photon energy are obtained from a reduction of The momentums function has the following factoriza-
the electron kinetic energy. In this case, we have the followtion:

ing inequalities:

. P! 8{Pi—[Pi+ (A"~ A)k]}
(Zup+|]|)w$ﬁv -2 '
0,> 0., 3 Pi|costi+ (A" —A
1 i (7) ><5C059f—||| |,( Jw
. [P+ (A" —A)K|
0§cos‘1((2up+|j|)w/ﬁ> . X o(@i— @i). (44)
e

Now, we consider the exit process. Energy conservation in

. ; For different final states, there are the following two
the exit process is

cases(l) f=i, the penetration cas€?) f#i, the reflection

2 p2 and refraction cases.
" . f
+(2up—j o= ) (39 To treat these cases, we need to prove a necessary and
2me 2me sufficient condition forf =i, that is,

Momentum conservation from ER4) is

A'=A, 45
P,=P—A'k, (39) &

we have a quadratic equation faf, The necessary condition is trivial, since from the photon
12 oa 1 1 TN wave part, the conditiorls =m; andl,=m, alone must lead
A"2=2A'|Pilo " tcodf+ 2mew” H(2up—j')=0. (40) Eq.(45), while the sufficient condition is not. Suppose we
haveA’=A, which yieldsj=j' by Eqg.(43). From Eq.(29),

. " , . .
The existence condition fak’ from the above equations is we getm, + m,=1,+1,, which combining with the assumed

p2 condition immediately leads tm; =1, andm,=1I,. Thus the
(2up—jes f cogb; . (41) final and initial photon waves are the same. Returning to Eq.
2me (42), we haveP,=P; . Thus the electron waves are also the

same. The statement has thus been proven.

This gives the constraint betweg¢hand the scattering angle We need to express, in an explicit form for later use as

0; . There are, as in the entry process, also three cases ac-
cording to the values gf': (a) j'>2u,, extra-emission case,

or decelerating caseéb) 0<j’'<2u,, emission case, or ac- (2m)°

celerating case;(c) j'<0, absorption case, or extra- St ==y O(Pr=Pi) 81, Omy,

accelerating case. The geometric relations in momentum €

space for the exit process are shown in Fig. 2. Here we do (2m)3 s

not need to go through the whole analysis, as in the treatment =—v. P 8(|P¢|—[Pil)

of the entry process, since it may not be the simplest way to €

establish the final-state properties by going through the inter- X 6(cos—cosb,;) 8( s — ¢;) Om,1,Omyl,: (46)

mediate states. A set of conditions for the final states can be
obtained from relations linking directly to the initial state.

Momentum and energy conservation relations between Now, we discuss the two cases individually. The geomet-
the initial and the final states are ric relations for the following cases are shown in Fig. 3.
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a) b) 0) ) 2. f#1i, reflection and refraction cases
From Egs.(5) and (27) we have
k k k k
i 1 ! B —imo(#= 40Ty
[ L1 (277_)3 _2 ,
=—y_ P 8(Ps| =[P+ (A" = A)k|)
e
t e p: s i e { d s |Pi|CO$i+(A,_A)w
X O TP (A A
FIG. 3. Momentum space of the whole procds$ penetration; =i
(b) symmetric reflection(c) refraction;(d) asymmetric reflection. X o(ps— @i)Z, J_(DI_j(HeNI9F,
ji
1. f=i, penetration case (51)
From Egs.(5), (27), and(28), we have[see Fig. 8a)] The angular distribution of the transition rate for fixed
g=j—j' according to Eqs(6)—(8), and(27) is
. (2m?® dw, 4 |Pi|cosi+ (A" —A)w
—iwo(&— &) T =—— P; “6(|Ps| — |P; Z9_ _ 5 _ ! !
(3 i) Tii Ve f (| f| | ||) a0 T./q(§)5 COY¢ |Pi+(A’—A)k|
X 5(coshs—cost;) 5( ¢ — i) X 8(@1— @) F?, (52
1 . . )
. 2 _ where the function7,(¢) is defined b
xaml|16m2|2(2 2 2,0 1) g a9 y
(47) !ﬂ@):; 3_5(0)3q-5(0). (53

The angular distribution of the transition rate according to For theq=0 case, Eq(43) has the nonvanishing solution
Egs.(6)—(8) and(27) is

A’—A=—2|Pi|w_lcos9i, (54)
dw 4 1 ) 2 which gives a symmetric reflectidisee Fig. 8)]. The tran-
0°T 1- > Z J_j(g) 8(coh;— cos,) sition matrix and the differential rate are

i
X 81— ). (48) il AT
2 o251 - R)
= | —|P,
The transition rate in this case is interpreted as the rate of Ve '

non-penetration. The time length can be evaluated as the
ratio of the widthL of the photon beam to the transverse ><5(c099f+cosﬁi)5(gof—goi)2 Jz,j(g)F
velocity of the electron beam, i.e., J

(59

T=L/(v sing,). (49) and

dw, 4 5 )
The differential cross section for the electron can be obtained aQ T To(£) o(cody+cosy) 81— )P (56)

by dividing the differential rate by the light beam intensity,
For theq+#0 case, Eq(43) has two solutions. The solu-

tion
do  dwW . 4sing, I o, \°
a0 _do! T L 1—523—1'(5) A —A=—|P|o Lcost; + (P2 2c0£06, + 2mew 1q) 2
5
X 5(coshs—cost;) (@t — i), (50 =7

corresponds to the refraction case, sifge as well asP; ,
has a positive component in tlkedirection in this casg¢see
wherep is the density of background photon numbers. EquaFig. 3(c)].
tion (50) provides an example which shows the relation be- The solution
tween the cross section and the differential rate. In the rest of
the paper, we only give the differential rates for various A’'—A=—|P,|o *coss;— (P?w 2coS 6+ 2mew1q)*?
cases. (58)
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corresponds to the asymmetric reflection case, dhdeas a Energy and momentum conservations in the exit process also
negative component in the direction in this casg¢see Fig. look the same as in case |,

3(d)]. » -
—_® —iVo=
B. Case Il. Two light beams with the same helicity 2m, H(2up=jhe 2m,’
and opposite angular momentum (66)
The generalized quantum field Volkov solutions and their P.=Pr—Aa'k,

energy eigenvalues in this case étd,10 but with the definitions

o

anlvnz(r)zveillzeip‘r > Ing+j1,n+jo) I'=iitiz,
j1=—n1.jp=—ny 67)
X,,”/‘jljz(g)*e_i(il—iz)(k'rﬂp)’ A'=j5—i}.
(59 The Mdler operator matrix element is

£=P?2me+ (N + 3) 0+ (Np+ 3) 0+ 2U 0.

: : . (2m)°
The generalized Bessel functions are defined as Q4= v S(P,—P;+A’k—Ak)
e
Til =2 I D3 e E)I-lLs) (60 X2 Ty De e et (69
i
where The angular distribution of the transition rate for fixad
ole|A andA’ in f#i case is
0= |P- €,
Mew dW_ 4 - o )
g 1z (61) aa = 7 7101 750!
57 “Up- |P/|cost + (A" —A)w
Mew T i _
o - X O COS&f |PI+(A,_A)k| 6((Pf QDI)'
The overlap factor to the initial plane wave is 69)
(2m)° o . : o .
Gl )= —— . — - s pointed out in |, the rate for this kind of transition
(W, ldi;511.10) v S(P—P,+j1k—j2k) A ted out in |, the rate for this kind of t t
e process with large momentum transfer is too small to ob-
X7, (0ellimide serve. The reason is as follows. The ponderomotive param-
.~ 1 2 1

eter 21, usually is not an integer. When the electron enters
the field, j photons are absorbed by the electron from the
field to form a part of the ponderomotive energy. The re-
Energy and momentum conservations in the entry proces@am_Ing part (21,~j)w is obtained from a reduction of the
look the same as in case |, Kinetic energy of the elgctroiseg E_q.(30) or (63)]. Due to
the large ratio ofmy/w, if (2u,—j) is of magnitude 1, the
2 pi2 photon mode changing numbaArto provide the momentum
ﬁ*‘(ZUp—j)w transfer[see Eq.(31)] is of the order ofy2mJ/w [see EQq.
€ (33)]. In the experiment of Bucksbaum, Schumacher, and
(63 BashkanskyA is of the order of 1000—2000. The transition
rate in case | is proportional tA~2, while in case Il it is
proportional to a function like 2, since the indices of the
Bessel functiong andj’ are of the magnitude a¥/2. This is
i=jiitia, the reason one can observe effects of large momentum trans-
(64) ferred in case I, not in case Il.

' ' (62
j1=li—ng, jo=l—n,.

- 2m,’
P'u:Pi_Ak,

but with slightly different meanings of the symbols

A=jr—]j;.
IV. DISCUSSIONS

The overlap factor to the final plane wave is ) . . . .
The first thing we want to discuss is the case without

(2m)3 participation of ponderomotive potential. In the derivation
(¢rimy,my| W)= ~ S(P,—Ps+jok—j1k) we did not see explicitly Bragg’s relation, E@.), originally
€ pointed out by Kapitza and Dirac. Our general treatment
X7 () e Uimiye (65) should include the original KD effect as a special case. To
. ]’j’ y . . . . . .
12 fulfill this task, we consider an ideal situation where the laser

, , beam intensity is adjusted such that the ponderomotive pa-
Ji=Mg—Ng,  J=Mp—Ns. rameter is an integer, i.e.,
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2u,=]. (70 unphysical and the initial states should be assumed such that
the two initial light beams have an equal photon number. To
Thus Eq.(32) has two solutions, resolve this problem, let us look back to how the condition
A+#0 originated. At the beginning, we assume that the initial
A,=0, (718 free state has free photon numbégsand I,, without any

restriction on their difference. When we project the free state
onto a certain generalized quantum field Volkov stat&0
occurs to satisfy energy and momentum conservation. Thus
the conditionA+#0 is a requirement for forming a general-
ized quantum field Volkov state as an intermediate state with
energy and momentum conservation. When an electron hits a
standing-wave light beam, it does not pick up all surrounding

A,=2|Pj|o lcos; . (71b)

If we set A,=2, which is the simplest case of the second
solution, Eq(71b) is exactly Bragg's relation, Eq1), which
yields the original KD effect. If the exit process has a full
ponderomotive decay such that

i=j (72) photons, rather it picks up the right number of photons in
each mode to form the intermediate states. The photons
from Eq. (43), we have two solutions, passed by do not participate in any interaction and reaction
with the electron, thus will not appear in the formalism at all.
A'=A=0, (73 A good example is shown by the simplest case of @§).
One cannot say that the=0 with A’=2 case is more physi-
A'—A=-2|P|w 'cosh. cal than theA=2 with A’=0 case, since two photon differ-

ence is meaningless in the determination of the light beam

Combining with Eqs(71), actually we have four combined jiensity. The difference between these two cases lies just in

solutions, the different requirements for formation of the different in-
A=0 A’'=0 termediate states. With this interpretation, we have confi-
' ' (74 dence that the initial conditiod+#0 does not lead to an
A=2|P|o lcod;, A'=2|P|w ‘cod;, unphysical situation.
and ACKNOWLEDGMENT
A=2|P,|w lcoss;, A'=0, The author would like to thank G. W. F. Drake for sug-
(75) gesting this problem, continuous encouragement, and gener-
A=0, A'=-2|P|w ‘coss;. ous support.
Equation(74) describes two different penetrations via differ- APPENDIX

ent generalized intermediate states. The first one is a straight-

forward penetration, while the second has a reflection in the The evaluation of the factd¥ is as follows. According to
entry process and a successive reflection which turns thiée definition

electron back to the original motion in the exit process.
Equation (75) describes two different reflections. The first
one has a reflection in the entry process, while the second
does in the exit process. From E{5),

FEHZ (my,mong+j’ng)(ny+j,nolel,15),
2

we need to evaluate the overlap factor

|Pi|costi=nw, (76)
(I1+1,—ny)Inyt | 2

wheren is an integer equal ta/2 or —A’/2. This is exactly (ny,Nylcly, 1oy = _Z‘F'W) 5|1+,2’n1+n2
the direct generalization of the original KD effect. Since e
there is no ponderomotive energy transfer or ponderomotive I I,
energy scattering, from E¢30), the electron in the field and XZ (= )S< n —s)( s)'
the free electron have the same kinetic energy. Thus a reflec- S 2
tion will occur due to an absorption from one mode and aL  the Appendix of I, we showed that, if

emission to another mode with the same number of photonsAEI l.<2l=].+1. then
The restriction for the incident angle is also removed by Eq.~ 2 ! 1
(34), and a small momentum transfer is allowedAH20 to | |
30, both case | and case Il will result in observable effects)’ (_1)S< ! ) 2)
from considerations of the magnitude of the Bessel func-s S
tions, and the amount of transferred momentum. A difficulty A |
in this kind of experiment is to produce standing waves with =(—1)"2/2 2 (- 1)p( ) ( 1 )
certain intensities, such that the ponderomotive parameter ) 2p/\ny/2—p
2u, is exactly an integer or close to an integer. The difficulty Al
might be removed by developments both in technique and ~(—1)ne2 1 ) 2 cogAy)
theories. ny/2/\ 21—n Y-

The second thing to discuss is the meaning of the condi-
tion of A+#0 for the initial state. One may think that#0 is = We also showed in the same limiting condition

n,—s
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)iyt 12 | By introducing a new variablx=n,/2, the sum can be
(I1+12—ny)!ny! 1 changed to an integral,
21+ 2|1!|2! n2/2

1/2 —A2
o <2I—n2>( nz) ( 2l )
- I_n2 n2/2 2|_n2 )

Combining the above two expressions, we have

l dx
F= 7T71JA0 “—T)lw cogA’y)cogAy)

2l—ny\[ ny |12 X O, +my—1,—1y,j" =] - (A3)
_n—l _ n,/2
(n1.nglclq,lp)=2 I—n, (n2/2) (=)™
. . — 71 _ . - . pe
x cogAy) 5|1+|2’n1+n2. (A1) By changing variable to y=cos ~\/1—Xx, F is simplified as
Using this result we simplifyF,
/2
F=2-23 (2||_—nﬂz) szlfo dy COSA’ y)COLAY) Sy 11,7~ -
ny 2 (A4)
n, ,
x n/2 COS A" y)COSLAY) O, +m,—1,~1,.57 ] -

After carrying out the integration, we get the result in Eq.
(A2) (28).
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