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By applying the stationary wave functions for an electron interacting with a circularly polarized standing-
wave photon field, and a nonperturbative scattering theory, we obtain a theoretical description of the Kapitza-
Dirac effect in strong radiation fields. The theory predicts that large momentum transfers can occur, when two
propagating light waves have the same angular momentum and opposite helicity, as observed by Bucksbaum,
Schumacher, and Bashkansky as a half process in multiphoton ionization. The theory and possible experiments
to detect the full Kapitza-Dirac effect in electron scattering from a strong radiation field are discussed. The
theory also predicts that with the participation of ponderomotive energy, the incident electron beam, after
interacting with a standing photon wave, may have symmetric reflection, asymmetric reflection, penetration,
and refraction. Transition rate formulas of these processes are presented.@S1050-2947~96!00206-5#

PACS number~s!: 32.80.Rm

I. INTRODUCTION

In 1933, Kapitza and Dirac@1# pointed out that when an
electron crosses a standing-wave light beam with an incident
angleui , a reflection of the electron motion may occur due to
a stimulated light emission. The momentum of the incident
electronPi , the photon energyv, and the incident angle are
related by Bragg’s law

uPi ucosu i5v, ~1!

where natural units\5c51 are used throughout this paper.
This effect is known as the Kapitza-Dirac~KD! effect. Sev-
eral experiments@2–5# and theories@5–8# have attempted to
show this effect. In the original work of Kapitza and Dirac,
the photon numbers absorbed and emitted are both 1, so the
total transferred photon number is 2. The resulting small mo-
mentum transfer requires an incident angleui , which is so
close top/2 that the reflection is difficult to observe.

At first sight, one might think that it is easy to generalize
the argument made by Kapitza and Dirac to multiphoton
cases. But there are some theoretical difficulties:~1! Multi-
photon processes are significant only when the radiation field
is strong, but in a strong radiation field, the ponderomotive
potential energy becomes significant@9#. With the participa-
tion of ponderomotive energy, the argument made by
Kapitza and Dirac no longer holds;~2! since multiphoton
transition rates typically decrease exponentially with the
transferred photon number, it seems impossible to observe
the KD effect with large momentum transfer.

Recently, in a standing-wave multiphoton ionization ex-
periment @10#, Bucksbaum, Schumacher, and Bashkansky
showed that the angular distribution of photo-electrons has a
large splitting angle when the two light beams have the same
angular momentum. They interpreted this effect as a KD
effect in a strong radiation field with more than 500 trans-
ferred photons, and attributed this effect to the periodicity of
the ponderomotive potential energy. In a recent paper@11#
~referred to as I! we developed a nonperturbative quantum
electrodynamical scattering theory for standing-wave multi-

photon ionization which agrees well with experiment. We
proved that the large angle splitting is due to a large momen-
tum transfer between the two oppositely traveling modes
through a scattering process by the ponderomotive potential
energy. Thus we confirmed the interpretation by Bucksbaum,
Schumacher, and Bashkansky that the splitting process is a
KD effect in a strong radiation field. However, an ionization
process is a half-scattering process. The question addressed
here is, can this kind of KD effect exist as a full-scattering
process? If the answer is yes, one could expect that an elec-
tron beam may be reflected with large momentum transfer by
crossing a standing light wave.

The scattering wave functions in this paper are treated as
solutions of the Lippmann-Schwinger~LS! equation@12,13#.
In this treatment, one needs to express propagators in terms
of a complete set of energy eigenstates with corresponding
eigenvalues. The nonperturbative quantum electrodynamic
~NPQED! approach to multiphoton processes@14–17,11# de-
veloped in recent years possesses unique advantages in the
treatment of interactions between atoms, electrons, and
strong radiation fields. In the NPQED theory, photons and
electrons are treated as elementary particles on the same
footing in an isolated system where the radiation field is no
longer an external field. Stationary wave functions with cor-
responding energy eigenvalues for an electron interacting
with single-mode@14,16#, standing-wave@11#, and general
multimode photon fields@17# have been obtained by solving
the Schro¨dinger and Dirac equations directly. The use of
these stationary wave functions to formulate propagators ap-
pearing in the LS equation has been discussed thoroughly
@15#. An experimental verification for this scattering ap-
proach was worked out in I.

This paper is organized as follows. Section II is devoted
to developing a nonperturbative scattering method to calcu-
late the transition matrix elements. In Sec. III we extend the
approach in paper I to the full-scattering process. We prove
that symmetric reflections with a large momentum transfer
can occur when the two circularly polarized light beams have
the same angular momentum and opposite helicity. We also
prove that with the participation of ponderomotive potential
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energy, asymmetric reflections, penetrations, and refractions
of the electron beam can occur. The transition rates for these
processes are also given. In Sec. IV we give a brief discus-
sion on some subtle questions in the theory.

II. TRANSITION MATRIX ELEMENTS

Starting with a complete set of eigenstates of an interact-
ing Hamiltonian, in this section we develop a nonperturba-
tive expansion technique to evaluate the transition matrix
elements due to the interaction.

We assume that a scattering state satisfies the Lippmann-
Schwinger equation@12,13#

C i
15f i1

1

E i2H01 i e
VC i

1 , ~2!

whereH0 is the noninteracting Hamiltonian,V is the inter-
action, andfi is the eigenstate ofH0. We usei to stand for
the initial state, andf for the final state. By projectingC i

1

onto a final plane waveff , from Eq. ~2! we have

V f i[^f f uC i
1&5d f i1

1

E i2E f1 i e
^f f uVuC i

1&, ~3!

i.e.,

V f i2d f i52 ipd~E f2E i !^f f uVuC i
1&

1P
1

E i2E f
^f f uVuC i

1&, ~4!

whereVf i is called the Mo” ller operator matrix element and P
stands for the principal value. By limiting transitions to the
energy shell, one gets

V f i2d f i52 ipd~E f2E i !Tf i ,
~5!

Tf i[^f f uVuC i
1& for E i5E f .

The transition rate in momentum spacedW/d3Pf is ob-
tained by

dW

d3Pf
52pd~E f2E i !uTf i u25

4

T
uV f i2d f i u2, ~6!

whereT is total interaction time. In deriving Eq.~6!, we need
a formula to treat the square of the energyd function. In later
sections, we need to treat the squares of momentumd func-
tions. These formulas are@18#

S 2p

T
d~E f2E i ! D 252p

T
d~E f2E i !,

~7!

S ~2p!3

Ve
d3~Pf2Pi !D 25~2p!3

Ve
d3~Pf2Pi !,

whereVe is the normalization volume for the free electron
with momentumPf or Pi . The angular distribution of the
transition rate can be obtained by integrating both sides of
Eq. ~6! along the radial direction ofPf , therefore we have

dW

dV
5E

0

`

duPf u
Ve

~2p!3
Pf
22pd~E f2E i !uTf i u2. ~8!

The scattering wave functions are derived from another form
of the Lippmann-Schwinger equation

C i
15

i e

E i2H1 i e
f i , ~9!

whereH is the full Hamiltonian of the interacting system.
Using the complete set of eigenstates ofH as the basis to
expand the right hand side of Eq.~9!, one gets

C i
15 (

~m,Em5E i !
uCm&^Cmuf i&

1 (
~m,EmÞE i !

e2

~E i2Em!21e2
uCm&^Cmuf i&

1 (
~m,EmÞE i !

i e~E i2Em!

~E i2Em!21e2
uCm&^Cmuf i&. ~10!

The leading term of the right hand side of the above equation
agrees with an earlier theoretical result@15#, and has been
verified in standing-wave multiphoton ionizations by the ex-
periment of Bucksbaum, Schumacher, and Bashkansky and
Guo and Drake@10,11#. The second term yields a Lorentzian
distribution of the near-resonance energies. The second and
the third terms could be significant for cases with a finite
time duration of the light pulse in near-resonance transitions.
In this paper we calculate the transition matrix elements by
constructing the Mo” ller operator matrix elements, so we keep
only the leading term in calculations as in I. Thus the initial
scattering state in the standing light wave case has the form

C i
15 (

~m,Em5E i !
uCm&^Cmuf i ; l 1 ,l 2&, ~11!

wherel 1 andl 2 are the initial free photon numbers of the two
traveling modes, and the initial free state for the electron-
photon system is

uf i ; l 1 ,l 2&5Ve
21/2eiPi•ru l 1 ,l 2&. ~12!

The Mo” ller operator matrix element in this kind of scattering
state has the form

V f i5 (
~m,Em5E i !

^f f ;m1 ,m2uCm&^Cmuf i ; l 1 ,l 2&. ~13!

III. ELECTRON REFLECTION AND REFRACTION
BY STANDING WAVES

The scattering treatment developed in the preceding sec-
tion is quite general. In this section we restrict the discussion
to an interacting system including an electron and a circu-
larly polarized standing light wave in the following two
cases.

4312 53DONG-SHENG GUO



A. Case I. Two light beams with the same angular momentum
and opposite helicity

The existence of this type of KD effect is indicated by the
experiment of Bucksbaum, Schumacher, and Bashkansky,
where two circularly polarized laser beams of 1064-nm
wavelength with the same angular momentum propagating
along opposite directions are applied to xenon gas. An un-
usual deep peak splitting was found in the photoelectron an-
gular distributions. In this experiment, the initial state of the
electron is an atomic bound state. The angular distribution
peak splittings can be interpreted as an absorption of photons
from one mode with an emission to the other mode when the
photoelectron leaves the radiation field. This mechanism is
the same as the one described in the original paper of
Kapitza and Dirac except the transferred photon numbers are
much larger. To perform a full KD scattering process, one
needs to send a free electron beam instead of a bound-state
beam to strike the standing light wave. Thus the initial scat-
tering state expressed by Eq.~11! is the proper one.

The generalized quantum field Volkov solutions and their
energy eigenvalues in the current case were derived in I as

Cm5Ve
21/2ei @Pm2k~Na1

2Na2
!#•r(

j
un11 j ,n2&cJ2 j~z!e2 i j wm,

~14!

Em5
Pm
2

2me
1~n11

1
2 !v1~n21

1
2 !v12upv.

The terms in Eq.~14! are defined as follows. The photon
stateun1 ,n2&c is defined by

un1 ,n2&c5
~c1

†!n1

An1!
~c2

†!n2

An2!
u0,0&. ~15!

The photon operatorsc1 andc2 represent the recombined two
normal modes related to the original modes by

c15
1

&
~a11a2!,

~16!

c25
1

&
~a12a2!.

The notationsNa1
andNa2

stand for the number of operators
of the original photon modes and are defined by

Nai
5
1

2
~aiai

†1ai
†ai !, i51,2. ~17!

The argument of the Bessel function is defined by

z5
2&ueuL
mev

uPm•eu. ~18!

The anglewm5arctan$(Pm)y/(Pm)x%. The polarization vector
is defined by

e5
1

&
~ex1 iey!, ~19!

2L is the classical amplitude for the vector potentialA of
each photon mode, and 2upv is the total ponderomotive po-
tential energy.

Now, we calculate the first overlap factor in the Mo” ller
operator matrix element in Eq.~13!,

^Cmuf i ; l 1 ,l 2&5
~2p!3

Ve
d~Pi2Pm1 l 1k2 l 2k!

3(
j

^n11 j ,n2ucl 1 ,l 2&J2 j~z!ei j w i.

~20!

The photon part can be evaluated in the large-photon-number
limit, as described in detail in the Appendix of I, to obtain

^n1 ,n2ucl 1 ,l 2&522 lF S 2l2n2
l2n2/2

D S n2
n2/2

D G1/2~21!n2/2

3cos~Dg!d l11 l2 ,n11n2
, ~21!

where

2l5 l 11 l 2 ,

D[ l 22 l 1 ~! l !, ~22!

g5cos21 S 2l2n2
2l D 1/2 .

By noticing thatn1 appears only in the indices of the
Kroneckerd, the above expression can be generalized to

^n11 j ,n2ucl 1 ,l 2&522 lF S 2l2n2
l2n2/2

D S n2
n2/2

D G1/2~21!n2/2

3cos~Dg!d l11 l2 ,n11n21 j . ~23!

The other overlap factor in the Mo” ller operator matrix ele-
ment can be evaluated in a similar way to obtain

^f f ;m1 ,m2uCm&5
~2p!3

Ve
d~Pm2Pf1m2k2m1k!

3(
j 8

^m1 ,m2un11 j 8,n2&c

3J2 j 8~z!e2 i j 8w f ~24!

and

^m1 ,m2un11 j 8,n2&c522 lF S 2l2n2
l2n2/2

D S n2
n2/2

D G1/2~21!n2/2

3cos~D8g!dm11m2 ,n11n21 j 8 , ~25!

where

D8[m22m1 ~! l !. ~26!

The Mo” ller operator matrix element has the explicit form
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V f i5
~2p!3

Ve
d~Pi2Pf1D8k2Dk!

3(
j , j 8

J2 j~z!ei j w iJ2 j 8~z!e2 i j 8w fF, ~27!

where the factorF is

F[(
n2

^m1 ,m2un11 j 8,n2&c^n11 j ,n2ucl 1 ,l 2&

5
1

p S sin@~D81D!p/2#

D81D
1
sin@~D82D!p/2#

D82D D
3d l11 l22m12m2 , j2 j 8 . ~28!

The evaluation ofF is described in the Appendix. Thed
symbol in Eq. ~28! gives the value of the net transferred
photon numberj2 j 8. From Eqs.~23! and ~25!, we know

j5 l 11 l 22n12n2 ,
~29!

j 85m11m22n12n2 .

Thus we can say thatj is the photon number absorbed by the
electron when it enters the radiation field, andj 8 the photon
number emitted when it leaves the field.

Next we determine the values forD andD8, and set the
constraints forj , j 8, and the incident angleui . Consider the
entry process first. Energy conservation in the entry process
gives

Pm
2

2me
1~2up2 j !v5

Pi
2

2me
. ~30!

Combining the above equation with momentum conservation
determined by Eq.~20!,

Pm5Pi2Dk, ~31!

we have the quadratic equation forD,

D222DuPi uv21cosu i12mev
21~2up2 j !50, ~32!

with two solutions

D1,25uPi uv21cosu i7@Pi
2v22cos2u i

22mev
21~2up2 j !#1/2. ~33!

Thus we havem51,2 in Eq.~30!. The existence condition for
D from the above equations is

~2up2 j !v<
Pi
2

2me
cos2u i . ~34!

This gives the constraint betweenj and the incident angleui .
There are three cases according to the values ofj : ~a!
j.2up , extra-absorption case, or accelerating case;~b!
0< j<2up , absorption case, or decelerating case;~c! j,0,
emission case, or extra-decelerating case. For simplicity, we
consider the case~b! first. This is the ordinary case. We have
treated a similar case in I, but in an exit process for photo-
electrons. In the following analysis, we always assume

0,ui<p/2. The geometric relations in momentum space of
the entry process are shown in Fig. 1.

Case (b).When an electron enters the radiation field, the
electron needs to absorb an integer numberj of photons to
contributejv energy as an integer part to the total pondero-
motive potential energy 2upv. Since 2upv as a number de-
pends only on the properties of the field, it can be determined
whether or not the electron enters the field. The remaining
noninteger part of the ponderomotive energy (2up2 j )v will
be obtained from a reduction of the kinetic energy of the
electron. In this case, the electron absorbs photons. Since the
electron and the field both contribute their energies to the
interaction energy, except whenj52up , the electron is de-
celerated. From Eqs.~30! and ~33! we have the following
inequalities:

A2me~2up2 j !v<uPi u,

u i<cos21S ~2up2 j !v Y Pi
2

2me
D 1/2,

~35!
uPmu<uPi u,

u1>u i ,

by specifyingu1<p/2.
Case (a).In this case, when the electron enters the field,

the electron absorbs extra photons beyond the number
needed to form the ponderomotive potential energy. The ex-
tra energy (j22up)v turns into electron kinetic energy. The
electron is accelerated. Thus we have the following inequali-
ties:

uPmu.uPi u,
~36!

u1,u i for u1<
p

2
.

The incident angleui has no restriction in this case.
Case (c).In this case, when the electron enters the field,

the electron emits photons. All ponderomotive energy and

FIG. 1. Momentum space of the entry process,~a! j.2up ,
extra-absorption case, or accelerating case;~b! 0< j<2up , absorp-
tion case, or decelerating case;~c! j,0, emission case, or extra-
decelerating case. By setting 2me51, the circles represent the ki-
netic energy sphere of the photoelectron. The lighter one is for the
electron in the radiation field, and the darker for the free electron.
The arrows represent momentum vectors. The notations are for all
figures in this paper.
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the emitted photon energy are obtained from a reduction of
the electron kinetic energy. In this case, we have the follow-
ing inequalities:

~2up1u j u!v<
Pi
2

2me
,

u1.u i , ~37!

u i<cos21S ~2up1u j u!v Y Pi
2

2me
D 1/2.

Now, we consider the exit process. Energy conservation in
the exit process is

Pm
2

2me
1~2up2 j 8!v5

Pf
2

2me
. ~38!

Momentum conservation from Eq.~24! is

Pm5Pf2D8k, ~39!

we have a quadratic equation forD8,

D8222D8uPf uv21cosu f12mev
21~2up2 j 8!50. ~40!

The existence condition forD8 from the above equations is

~2up2 j 8!v<
Pf
2

2me
cos2u f . ~41!

This gives the constraint betweenj 8 and the scattering angle
uf . There are, as in the entry process, also three cases ac-
cording to the values ofj 8: ~a! j 8.2up , extra-emission case,
or decelerating case;~b! 0<j 8<2up , emission case, or ac-
celerating case;~c! j 8,0, absorption case, or extra-
accelerating case. The geometric relations in momentum
space for the exit process are shown in Fig. 2. Here we do
not need to go through the whole analysis, as in the treatment
of the entry process, since it may not be the simplest way to
establish the final-state properties by going through the inter-
mediate states. A set of conditions for the final states can be
obtained from relations linking directly to the initial state.

Momentum and energy conservation relations between
the initial and the final states are

Pi5Pf2~D82D!k,
~42!

Pi
2

2me
5

Pf
2

2me
1~ j 82 j !v.

By cancelingPf in the above equations, a quadratic equation
for ~D82D! is obtained:

~D82D!212~D82D!uPi uv21cosu i22mev
21~ j2 j 8!50,

~43!

which will be used to establish the value ofD8 directly from
parameters of the initial state.

The momentumd function has the following factoriza-
tion:

d$Pf2@Pi1~D82D!k#%

5Pf
22d„uPf u2uPi1~D82D!ku…

3dS cosu f2
uPi ucosu i1~D82D!v

uPi1~D82D!ku D
3d~w f2w i !. ~44!

For different final states, there are the following two
cases:~1! f5 i , the penetration case;~2! fÞ i , the reflection
and refraction cases.

To treat these cases, we need to prove a necessary and
sufficient condition forf5 i , that is,

D85D. ~45!

The necessary condition is trivial, since from the photon
wave part, the conditionsl 15m1 andl 25m2 alone must lead
to Eq.~45!, while the sufficient condition is not. Suppose we
haveD85D, which yields j5 j 8 by Eq. ~43!. From Eq.~29!,
we getm11m25 l 11 l 2 , which combining with the assumed
condition immediately leads tom15 l 1 andm25 l 2 . Thus the
final and initial photon waves are the same. Returning to Eq.
~42!, we havePi5Pf . Thus the electron waves are also the
same. The statement has thus been proven.

We need to expressdf i in an explicit form for later use as

d f i5
~2p!3

Ve
d~Pf2Pi !dm1l1

dm2l2

5
~2p!3

Ve
Pf

22d~ uPf u2uPi u!

3d~cosu f2cosu i !d~w f2w i !dm1l1
dm2l2

. ~46!

Now, we discuss the two cases individually. The geomet-
ric relations for the following cases are shown in Fig. 3.

FIG. 2. Momentum space of the exit process,~a! j 8.2up ,
extra-emission case, or decelerating case;~b! 0< j 8<2up , emission
case, or accelerating case;~c! j 8,0, absorption case, or extra-
accelerating case.
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1. f5 i , penetration case

From Eqs.~5!, ~27!, and~28!, we have@see Fig. 3~a!#

2 ipd~E f2E i !Tii5
~2p!3

Ve
Pf

22d~ uPf u2uPi u!

3d~cosu f2cosu i !d~w f2w i !

3dm1l1
dm2l2S 12 (

j
J2 j
2 ~z!21D U

f5 i

.

~47!

The angular distribution of the transition rate according to
Eqs.~6!–~8! and ~27! is

dW

dV
5
4

T S 12
1

2 (
j
J2 j
2 ~z! D 2d~cosu f2cosu i !

3d~w f2w i !. ~48!

The transition rate in this case is interpreted as the rate of
non-penetration. The time lengthT can be evaluated as the
ratio of the widthL of the photon beam to the transverse
velocity of the electron beam, i.e.,

T5L/~v sinu i !. ~49!

The differential cross section for the electron can be obtained
by dividing the differential rate by the light beam intensity,

ds

dV
5
dW

dV
I215

4 sinu i
rL S 12

1

2 (
j
J2 j
2 ~z! D 2

3d~cosu f2cosu i !d~w f2w i !, ~50!

wherer is the density of background photon numbers. Equa-
tion ~50! provides an example which shows the relation be-
tween the cross section and the differential rate. In the rest of
the paper, we only give the differential rates for various
cases.

2. fÞ i , reflection and refraction cases

From Eqs.~5! and ~27! we have

2 ipd~E f2E i !Tf i

5
~2p!3

Ve
Pf

22d„uPf u2uPi1~D82D!ku…

3dS cosu f2
uPi ucosu i1~D82D!v

uPi1~D82D!ku D
3d~w f2w i !(

j j 8
J2 j~z!J2 j 8~z!ei ~ j2 j 8!w iF.

~51!

The angular distribution of the transition rate for fixed
q[ j2 j 8 according to Eqs.~6!–~8!, and~27! is

dWq

dV
5
4

T
T q

2~z!dS cosu f2
uPi ucosu i1~D82D!v

uPi1~D82D!ku D
3d~w f2w i !F

2, ~52!

where the functionT q~z! is defined by

T q~z!5(
j
J2 j~z!Jq2 j~z!. ~53!

For theq50 case, Eq.~43! has the nonvanishing solution

D82D522uPi uv21cosu i , ~54!

which gives a symmetric reflection@see Fig. 3~b!#. The tran-
sition matrix and the differential rate are

2 ipd~E f2E i !Tf i

5
~2p!3

Ve
Pf

22d~ uPf u2uPi u!

3d~cosu f1cosu i !d~w f2w i !(
j
J2 j
2 ~z!F

~55!

and

dW0

dV
5
4

T
T 0

2~z!d~cosu f1cosu i !d~w f2w i !F
2. ~56!

For theqÞ0 case, Eq.~43! has two solutions. The solu-
tion

D82D52uPi uv21cosu i1~Pi
2v22cos2u i12mev

21q!1/2

~57!

corresponds to the refraction case, sincePf , as well asPi ,
has a positive component in thek direction in this case@see
Fig. 3~c!#.

The solution

D82D52uPi uv21cosu i2~Pi
2v22cos2u i12mev

21q!1/2

~58!

FIG. 3. Momentum space of the whole process,~a! penetration;
~b! symmetric reflection;~c! refraction;~d! asymmetric reflection.
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corresponds to the asymmetric reflection case, sincePf has a
negative component in thek direction in this case@see Fig.
3~d!#.

B. Case II. Two light beams with the same helicity
and opposite angular momentum

The generalized quantum field Volkov solutions and their
energy eigenvalues in this case are@14,10#

CPn1 ,n2
~r !5Ve

21/2eiP•r (
j 152n1 , j 252n2

`

un11 j 1 ,n21 j 2&

3T j 1 j 2
~z!* e2 i ~ j 12 j 2!~k•r1w!,

~59!
E5P2/2me1~n11

1
2 !v1~n21

1
2 !v12upv.

The generalized Bessel functions are defined as

T j 1 j 2
~z!5(

s
J2 j 11s~z1!J2 j 21s~z1!J2s~z5!, ~60!

where

z15
2ueuL
mev

uP•eu,

~61!

z55
e2L2

mev
5up .

The overlap factor to the initial plane wave is

^Cmuf i ; l 1 ,l 2&5
~2p!3

Ve
d~Pi2Pm1 j 1k2 j 2k!

3T j 1 j 2
~z!ei ~ j 12 j 2!w,

~62!
j 1[ l 12n1 , j 2[ l 22n2 .

Energy and momentum conservations in the entry process
look the same as in case I,

Pm
2

2me
1~2up2 j !v5

Pi
2

2me
,

~63!
Pm5Pi2Dk,

but with slightly different meanings of the symbols

j5 j 11 j 2 ,
~64!

D5 j 22 j 1 .

The overlap factor to the final plane wave is

^f f ;m1 ,m2uCm&5
~2p!3

Ve
d~Pm2Pf1 j 28k2 j 18k!

3T j
18 j 28

~z!* e2 i ~ j 182 j 28!w, ~65!

j 18[m12n1 , j 28[m22n2 .

Energy and momentum conservations in the exit process also
look the same as in case I,

Pm
2

2me
1~2up2 j 8!v5

Pf
2

2me
,

~66!
Pm5Pf2D8k,

but with the definitions

j 85 j 181 j 28 ,
~67!

D85 j 282 j 18 .

The Mo” ller operator matrix element is

V f i5
~2p!3

Ve
d~Pi2Pf1D8k2Dk!

3(
j , j 8

T j 1 j 2
~z!e2 iDwT j

18 j 28
~z!* eiD8w. ~68!

The angular distribution of the transition rate for fixedD
andD8 in fÞ i case is

dW

dV
5
4

T
uT j 1 j 2

~z!u2uT j
18 j 28

~z!u2

3dS cosu f2
uPi ucosu i1~D82D!v

uPi1~D82D!ku D d~w f2w i !.

~69!

As pointed out in I, the rate for this kind of transition
process with large momentum transfer is too small to ob-
serve. The reason is as follows. The ponderomotive param-
eter 2up usually is not an integer. When the electron enters
the field, j photons are absorbed by the electron from the
field to form a part of the ponderomotive energy. The re-
maining part (2up2 j )v is obtained from a reduction of the
kinetic energy of the electron@see Eq.~30! or ~63!#. Due to
the large ratio ofme/v, if (2up2 j ) is of magnitude 1, the
photon mode changing numberD to provide the momentum
transfer@see Eq.~31!# is of the order ofA2me/v @see Eq.
~33!#. In the experiment of Bucksbaum, Schumacher, and
Bashkansky,D is of the order of 1000–2000. The transition
rate in case I is proportional toD22, while in case II it is
proportional to a function likez2D, since the indices of the
Bessel functionsj and j 8 are of the magnitude ofD/2. This is
the reason one can observe effects of large momentum trans-
ferred in case I, not in case II.

IV. DISCUSSIONS

The first thing we want to discuss is the case without
participation of ponderomotive potential. In the derivation
we did not see explicitly Bragg’s relation, Eq.~1!, originally
pointed out by Kapitza and Dirac. Our general treatment
should include the original KD effect as a special case. To
fulfill this task, we consider an ideal situation where the laser
beam intensity is adjusted such that the ponderomotive pa-
rameter is an integer, i.e.,
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2up5 j . ~70!

Thus Eq.~32! has two solutions,

D150, ~71a!

D252uPi uv21cosu i . ~71b!

If we set D252, which is the simplest case of the second
solution, Eq.~71b! is exactly Bragg’s relation, Eq.~1!, which
yields the original KD effect. If the exit process has a full
ponderomotive decay such that

j5 j 8, ~72!

from Eq. ~43!, we have two solutions,

D82D50, ~73!

D82D522uPi uv21cosu i .

Combining with Eqs.~71!, actually we have four combined
solutions,

D50, D850,
~74!

D52uPi uv21cosu i , D852uPi uv21cosu i ,

and

D52uPi uv21cosu i , D850,
~75!

D50, D8522uPi uv21cosu i .

Equation~74! describes two different penetrations via differ-
ent generalized intermediate states. The first one is a straight-
forward penetration, while the second has a reflection in the
entry process and a successive reflection which turns the
electron back to the original motion in the exit process.
Equation ~75! describes two different reflections. The first
one has a reflection in the entry process, while the second
does in the exit process. From Eq.~75!,

uPi ucosu i5nv, ~76!

wheren is an integer equal toD/2 or2D8/2. This is exactly
the direct generalization of the original KD effect. Since
there is no ponderomotive energy transfer or ponderomotive
energy scattering, from Eq.~30!, the electron in the field and
the free electron have the same kinetic energy. Thus a reflec-
tion will occur due to an absorption from one mode and an
emission to another mode with the same number of photons.
The restriction for the incident angle is also removed by Eq.
~34!, and a small momentum transfer is allowed. IfD520 to
30, both case I and case II will result in observable effects
from considerations of the magnitude of the Bessel func-
tions, and the amount of transferred momentum. A difficulty
in this kind of experiment is to produce standing waves with
certain intensities, such that the ponderomotive parameter
2up is exactly an integer or close to an integer. The difficulty
might be removed by developments both in technique and
theories.

The second thing to discuss is the meaning of the condi-
tion of DÞ0 for the initial state. One may think thatDÞ0 is

unphysical and the initial states should be assumed such that
the two initial light beams have an equal photon number. To
resolve this problem, let us look back to how the condition
DÞ0 originated. At the beginning, we assume that the initial
free state has free photon numbersl 1 and l 2, without any
restriction on their difference. When we project the free state
onto a certain generalized quantum field Volkov state,DÞ0
occurs to satisfy energy and momentum conservation. Thus
the conditionDÞ0 is a requirement for forming a general-
ized quantum field Volkov state as an intermediate state with
energy and momentum conservation. When an electron hits a
standing-wave light beam, it does not pick up all surrounding
photons, rather it picks up the right number of photons in
each mode to form the intermediate states. The photons
passed by do not participate in any interaction and reaction
with the electron, thus will not appear in the formalism at all.
A good example is shown by the simplest case of Eq.~75!.
One cannot say that theD50 with D852 case is more physi-
cal than theD52 with D850 case, since two photon differ-
ence is meaningless in the determination of the light beam
intensity. The difference between these two cases lies just in
the different requirements for formation of the different in-
termediate states. With this interpretation, we have confi-
dence that the initial conditionDÞ0 does not lead to an
unphysical situation.
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APPENDIX

The evaluation of the factorF is as follows. According to
the definition

F[(
n2

^m1 ,m2un11 j 8,n2&c^n11 j ,n2ucl 1 ,l 2&,

we need to evaluate the overlap factor

^n1 ,n2ucl 1 ,l 2&5S ~ l 11 l 22n2!!n2!

2l11 l2l 1! l 2!
D 1/2d l11 l2 ,n11n2

3(
s

~21!sS l 1
n22sD S l 2s D .

In the Appendix of I, we showed that, if
D[ l 22 l 1!2l[ l 11 l 2 , then

(
s

~21!sS l 1
n22sD S l 2s D

[~21!n2/2 (
p

~21!pS D

2pD S l 1

n2/22pD
'~21!n2/2S l 1

n2/2
D S 2l

2l2n2
D D/2

cos~Dg!.

We also showed in the same limiting condition
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S ~ l 11 l 22n2!!n2!

2l11 l2l 1! l 2!
D 1/2S l 1

n2/2
D

'22 lF S 2l2n2
l2n2

D S n2
n2/2

D G 1/2S 2l

2l2n2
D 2D/2

.

Combining the above two expressions, we have

^n1 ,n2ucl 1 ,l 2&522 lF S 2l2n2
l2n2

D S n2
n2/2

D G1/2~21!n2/2

3cos~Dg!d l11 l2 ,n11n2
. ~A1!

Using this result we simplifyF,

F5222l(
n2

S 2l2n2
l2n2

D
3S n2

n2/2
D cos~D8g!cos~Dg!dm11m22 l12 l2 , j 82 j .

~A2!

By introducing a new variablex[n2/2, the sum can be
changed to an integral,

F5p21E
0

l dx

~ l2x!1/2x1/2
cos~D8g!cos~Dg!

3dm11m22 l12 l2 , j 82 j . ~A3!

By changing variablex to g5cos21A12x, F is simplified as

F5p21E
0

p/2

dg cos~D8g!cos~Dg!dm11m22 l12 l2 , j 82 j .

~A4!

After carrying out the integration, we get the result in Eq.
~28!.
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