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We analyze the fluorescence and absorption spectra of a two-level atom driven by a bichromatic field with
frequenciesv1 andv2, separated byv22v152d, and Rabi frequencies~at resonance! 2V1 and 2V2 such that
their ratioa5V2/V1,1. We focus on the case ofv1 close to the atomic frequencyv0 andv2 near the Rabi
sideband frequencyv112V1; the detunings are denoted byD15v02v1 andD25v112V12v2. We find that
the spectra depend critically on the detuningD2: For largeD2, the fluorescence spectrum consists of the well
known Mollow triplet, centered atv1; for smaller~but nonzero! D2, the spectrum is composed of a triplet at
v1 together with doublets near the sideband frequenciesv162V1. However, whenD250 ~and a!1!, the
spectrum consists of a doublet centered atv1 and triplets atv162V1: there is then no fluorescence atv1. As
a increases, additional triplet structures appear in the spectrum at frequenciesv162nV1 with intensities
proportional toa2(n21), n.1, and a line reappears atv1, with intensity proportional toa

4. The absorption by
the system of a weak probe beam is also strongly dependent on the detuning, and the spectrum is composed of
emission-dispersion-absorption features located nearv1 andv162nV1. An analysis in the dressed-atom pic-
ture is presented which explains the physical origin of all these features, in both fluorescence and absorption.
@S1050-2947~96!06305-6#

PACS number~s!: 42.50.Hz, 32.80.2t

I. INTRODUCTION

The resonance fluorescence and absorption of a weak
probe beam by a strongly driven atom has been studied ex-
tensively for many years. Initially, these studies involved an
intense monochromatic driving field. Their most dramatic
results included the prediction and observation of the ‘‘Mol-
low triplet’’ for the fluorescence spectrum@1,2#, consisting
of a central component at frequencyvL and sidebands at
vL62V, wherevL is the driving frequency and 2V the Rabi
frequency of the laser field.

The fluorescence and probe absorption by an atom in a
strong bichromatic driving field has also been studied exten-
sively, both theoretically and experimentally@3–23#. The in-
terest stems mostly from the observation that the bichromatic
nature of the driving field leads to a number of novel features
which are not present in the monochromatic case. For ex-
ample, the transient fluorescence intensity exhibits an inter-
esting dependence on the initial phase difference between the
driving field components, and resonances at subharmonics of
the Rabi frequency as well as at the components’ beat fre-
quency@10,17#.

In this paper, we concentrate on the spectra corresponding
to fluorescence and probe absorption in a bichromatic driv-
ing field. The fluorescence spectrum has been calculated for
equal-amplitude field components symmetrically detuned
from the atomic frequencyv0 @5,9,11–13#, equal-amplitude
components asymmetrically detuned@14,16#, and compo-
nents having unequal amplitudes@16#. The spectra consist of

a central component at the average driving frequency
vs5~v11v2!/2 and a series of sidebands separated by inte-
ger multiples ofd, half the separation frequency. When the
driving components are symmetrically detuned fromv0 and
have equal Rabi frequencies 2V, the peak separations are
independent of 2V, but their number increases with increas-
ing 2V, and their widths and amplitudes oscillate. For un-
equal Rabi frequencies and/or asymmetrically detuned driv-
ing field components, the central component of the spectrum
and the peaks separated from it by even multiples ofd split
into doublets@16#, whose positions and splittings vary as a
function of the detunings and Rabi frequencies. This splitting
has recently been observed experimentally@22#. A physical
understanding of these effects is achieved by using a
dressed-atom description of the atom-field system@23,24#. In
this approach, eigenstates of the atom-plus-driving-field
serve as the basis states for the system. In the case of bichro-
matic excitation, the energy spectrum corresponds to mani-
folds of states separated byvs ; within each manifold, the
states are separated by integer multiples ofd @12#. The mul-
tipeak spectra are interpreted as the result of transitions be-
tween the dressed states of neighboring manifolds.

The multipeak sidebands in the fluorescence spectrum are
features which arise in a bichromatic driving field whose
components have equal or almost equal Rabi frequencies.
Although most of the theoretical work to date has been con-
cerned only with equal Rabi frequencies~equivalent to an
amplitude-modulated field with the resonant carrier sup-
pressed!, there are also~different! novel features which occur
for the case of one strong and one weak component of the
bichromatic field. There have now been several experiments
which examine the subharmonic resonances@10#, the tran-
sient behavior of the atoms@17#, and the Autler-Townes
spectrum@20# in this limit. The remarkable features of these
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experiments are the multiphoton resonances at subharmonics
of the Rabi frequencies@6–8#, the phase-dependent atomic
dynamics even if the interaction begins with atoms in their
ground states@17#, and a four-peak structure of the Autler-
Townes spectrum@20#. These effects associated with unequal
driving-field intensities suggest the possibility of interesting
modifications of the spectral properties of the fluorescence
field as well.

One purpose of this paper is to present a detailed analysis
of the fluorescence spectrum in the limit of one strong and
one weak component of the bichromatic field. As we will see
below, the spectrum is qualitatively different from both the
Mollow triplet observed for a monochromatic driving field
and the multipeak spectrum characteristic of a bichromatic
driving field with equal component intensities. In particular,
the components of the~original! Mollow triplet are each split
into either a triplet or a doublet depending on the detuningD2
of the weak field component from the Rabi sideband induced
by the strong field. In the special case ofD250 anda!1, the
component atv1 of the fluorescence spectrum completely
disappears. These features are explained by the effect on the
v1 dressed states of thev2 field component and by the spon-
taneous emission transition rates between the resultant dou-
bly dressed states. We emphasize too the following signifi-
cant difference: For a bichromatic driving field with one
strong and one weak component the spectral features are
centered about the frequencyv1 of the strong component and
its Rabi sidebands, whereas for a bichromatic field with
~nearly! equal amplitudes, they are centered about the mean
frequencyvs of the field components andvs6md.

In addition to modifications in the fluorescence spectrum,
one can also observe changes in the absorption spectrum of a
probe beam that interacts with a bichromatically driven
atom. The probe and bichromatic fields can be tuned to the
same atomic transition, or alternatively, the probe can be
tuned to a transition sharing one common level with the
bichromatically driven transition. In the first case a Mollow
type @25#, whereas in the second case an Autler-Townes@26#
type spectrum is monitored. Recent studies of the Mollow-
type absorption spectrum with a bichromatic driving field of
equal amplitudes have led to the prediction of new regions of
frequency where the probe beam can be amplified. More-
over, whenvs is detuned fromv0 and/or the amplitudes of
the field components are slightly different, the central com-
ponent of the absorption spectrum and the even sidebands
split into emission-absorption doublets, whereas the odd
sidebands remain dispersionlike@16#. This splitting has re-
cently been observed experimentally in the Autler-Townes
spectrum in both a detuned bichromatic field@22#, and a
resonant bichromatic field with unequal component ampli-
tudes@20#. In this paper we calculate the absorption spec-
trum in the limit of one strong and one weak component of
the driving field; we restrict the calculations to the~Mollow-
type! absorption spectrum. As in the case of fluorescence,
these spectra are again very different from those obtained
previously. We find that two different types of spectra can be
observed, depending on the detuningD2. ForD2Þ0 the spec-
trum exhibits triplet emission-dispersion-absorption struc-
tures aboutv1 andv162V1. In contrast, forD250, the cen-
tral component atv1 is suppressed. A simple physical
interpretation of these results is given in terms of the dressed

states of the system. Positions, intensities, and widths of the
spectral features are determined from the energies, popula-
tions, and transition rates associated with the dressed-atom
states.

The paper is organized as follows: In Sec. II we describe
in detail our model and discuss the methods we use to cal-
culate the fluorescence and absorption spectra and to explain
their features. In Sec. III we calculate the spectral expres-
sions in the framework of a classical driving field. The cal-
culations are based on a Floquet method using the optical
Bloch equations and continued fraction techniques@16#. In
Sec. IV we present a quantum dressed-atom model of the
system and calculate analytically the fluorescence and ab-
sorption spectra. We analyze in detail intensities, widths and
positions of the spectral features and compare them with the
numerical results presented in Sec. III. Finally, in Sec. V, we
summarize our results.

II. THE SYSTEM

We consider a two-level atom with ground stateug&, ex-
cited stateue&, transition frequencyv0 and dipole transition
momentmW . The atom is driven by a bichromatic field~Fig. 1!
with frequency componentsv1 and v2 separated by
v22v1[2d and with detunings

D15v02v1 , D25v112V12v2 . ~2.1!

The atom is also coupled to all other modes of the electro-
magnetic field, which are assumed to be initially in their
vacuum state. This coupling leads to spontaneous emission
with a rate given by the EinsteinA coefficient.

The time evolution of the atomic system can be described
by the reduced atomic density operator%, which in the
Schrödinger picture obeys the master equation@27#

]%

]t
52

i

\
@H,%#2

1

2
G~S1S2%1%S1S222S2%S1!,

~2.2!

whereS15ue&^gu andS25ug&^eu are the usual raising and
lowering atomic operators andG is the radiative damping
constant,G5A. The HamiltonianH is composed of two
terms,

H5H01VL , ~2.3!

FIG. 1. System composed of a two-level atom driven by a
bichromatic field whose components have different intensities.
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where

H05\v0S
z, ~2.4!

is the unperturbed atomic Hamiltonian, withSz the atomic
inversion 1

2(ue&^eu2ug&^gu).
The second term in Eq.~2.3! describes the coupling be-

tween the driving field and the atom. If we treat the driving
field classically, the interaction HamiltonianVL ~in the
rotating-wave approximation! may be written as

VL5\@V1S
1exp~2 iv1t !1V2S

1exp~2 iv2t !1H.c.#,
~2.5!

where

2V
2
15mW •EW

2
1 /\, ~2.6!

are the Rabi frequencies~at resonance! associated with the
components of the driving field at frequenciesv

2
1. If we use

a fully quantum-mechanical description of the system, the
effective Hamiltonian~2.3! ~in the rotating-wave approxima-
tion! takes the form

H5H081VL8 , ~2.7!

where

H085\v0S
z1\v1a1

1a11\v2a2
1a2 ~2.8!

is the Hamiltonian of the uncoupled atom and field,

VL85\g1~a1
1S21S1a1!1\g2~a2

1S21S1a2! ~2.9!

is the atom-field interaction,g is the atom-field coupling con-
stant ~equal to the one-photon Rabi frequency!, and
a1,2 (a 1,2

1 ) are the annihilation~creation! operators for the
driving field modes. In the classical description of the pro-
cess, the basis states for the system are simply the atomic
statesug& andue&. For the quantum treatment, the basis states
are product statesu j &uN,M & involving products of atomic
u j & ( j5g,e) and driving field (uN,M &) states, whereN and
M denote the number of photons in modes 1 and 2, respec-
tively. These states are the eigenstates of the uncoupled atom
and field Hamiltonian~2.8!.

In the classical treatment, the termVL in the Hamiltonian
~2.3! is periodic in time, with separation frequency 2d. The
periodicity of the problem makes it advantageous to analyze
the system in terms of Floquet states of the atom. In Sec. III,
we present in detail Floquet’s theorem@28# adapted to the
case of a bichromatic field and derive expressions for the
fluorescence and absorption spectra in terms of the Floquet
states.

In Sec. IV, in the quantum treatment of the problem, the
interaction ~2.9! is first diagonalized to obtain the dressed
states of the atom-field system. We then calculate the fluo-
rescence and absorption spectra in terms of transitions be-
tween these dressed-states. The quantum description allows
us to obtain both a physical understanding of the process and
analytical expressions for the spectra. We find that there is
good quantitative agreement between these analytical ex-
pressions and those obtained by the full numerical calcula-
tions of Sec. III.

III. FLUORESCENCE AND ABSORPTION SPECTRA:
A CONTINUED-FRACTION APPROACH

A. Optical Bloch equations

We now consider the fluorescence and absorption spectra
of a two-level atom driven by a bichromatic classical field.
The spectra were calculated in Refs.@14,16# for equal and
nearly equal amplitudes of the two field components, both by
a numerical continued-fraction method and~for nearly equal
amplitudes! by an analytical perturbation theory method in
the dressed-atom basis. In this paper, we focus on the case of
one strong and one weak component of the driving field
which, as we shall see later, produces dramatically different
spectra. A full discussion of the method used to calculate the
spectra is given in our basic paper, Ref.@16#. In the interest
of brevity, only the key formulas will be given here.

The master equation~2.2! with the Hamiltonian ~2.3!
leads to a closed set of three equations of motion for the
expectation values of the atomic operators~optical Bloch
equations!, which in a frame oscillating with the frequency
vs , can be written as

^ Ṡ̃2~ t !&52S 12 G1 iD D ^S̃2~ t !&

12~V1e
idt1V2e

2 idt!^Sz~ t !&,

^ Ṡ̃1~ t !&52S 12 G2 iD D ^S̃1~ t !&

12~V1e
2 idt1V2e

idt!^Sz~ t !&,

^Ṡz~ t !&52
1

2
G2G^Sz~ t !&2~V1e

2 idt1V2e
idt!^S̃2~ t !&

2~V1e
idt1V2e

2 idt!^S̃1~ t !&, ~3.1!

where

^S̃6~ t !&56 i ^S6&exp~7 ivst !, ~3.2!

are slowly varying parts of the atomic operators,

D5v02vs ~3.3!

is the detuning between the atomic transition frequency and
the average frequency of the driving field components, andd
is half the separation frequency.

In order to solve the system of equations~3.1!, we decom-
pose the components^S̃2(t)&, ^S̃1(t)&, and^Sz(t)& into am-
plitudes that oscillate at frequencyd and its harmonics. This
decomposition is given by the relation

Xi~ t !5 (
l52`

1`

Xi
~ l !~ t !exp~ i l dt !, i51,2,3, ~3.4!

where Xi(t) are components of the vector
XW (t)5(^S̃2(t)&,^S̃1(t)&,^Sz(t)&). On substituting~3.4! into
~3.1! and taking the Laplace transform

Xi
~ l !~z!5E

0

`

exp~2zt!Xi
~ l !~ t !dt, ~3.5!
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of the slowly varying amplitudesX i
( l )(t), we find the trans-

formsX i
( l )(z) satisfy a vector recurrence relation

AlXW
~ l21!~z!1~Bl1zl I !XW

~ l !~z!1ClXW
~ l11!~z!5XW ~ l !~0!,

~3.6!

wherezl5z1 i l d, XW ( l ) are column vectors

XW ~ l !~z!5S X1
~ l !~z!

X2
~ l !~z!

X3
~ l !~z!

D , XW ~ l !~0!5S X1
~ l !~0!

X2
~ l !~0!

X3
~ l !~0!2

G

2z
d l ,0
D ,

~3.7!

andAl , Bl , andCl are matrices:

Al5S 0 0 22V1

0 0 22V2

V2 V1 0
D , ~3.8!

Bl5S 1

2
G1 id 0 0

0
1

2
G2 id 0

0 0 G

D , ~3.9!

Cl5S 0 0 22V2

0 0 22V1

V1 V2 0
D . ~3.10!

We solve Eq.~3.6! numerically by a continued-fraction
approach using a truncated basis of harmonic amplitudes.
The validity of the truncation is ensured by requiring that
X i

( l )(z) not change as the number of harmonics increases by
one. Equation~3.6! is valid for arbitrary values ofV1, V2,
D1, D2, andd, and all our numerical calculations are based
on this exact equation.

B. Fluorescence spectrum

The steady-state fluorescence spectrum is given by the
Fourier transform of the two-time correlation function of the
atomic operators

S~v!5u~rW !Re E
0

`

dt lim
t→`

^S̃1~ t !S̃2~ t1t!&ei ~v2vs!t,

~3.11!

whereu(rW) is a normalization constant containing geometric
and atomic factors@16,27#. From the quantum regression
theorem@29#, it is well known that fort.0 the two-time
averagê S̃1(t)S̃2(t1t)& satisfies the same equation of mo-
tion as the one-time average^S̃2~t!&. It is not difficult to
show that the optical Bloch equations~3.1! for the two-time
averages lead to equations of the same form as~3.6!, but
with the componentsX i

( l )(t) replaced by

X1
~ l !~ t !→Y1

~ l !~t !5^S̃1~ t !S̃2~ t1t!&,

X2
~ l !~ t !→Y2

~ l !~t !5^S̃1~ t !S̃1~ t1t!&,

X3
~ l !~ t !→Y3

~ l !~t !5^S̃1~ t !Sz~ t1t!&, ~3.12!

and theXW ( l )~0! vector replaced by

XW ~ l !~0!→YW ~ l !~0!5S X3
~ l !~ t !
0

2
1

2
X2

~ l !~ t !2
G

2z
X2~ t !d l ,0

D .

~3.13!

The spectrum~3.11! contains an incoherent as well as a
coherent part of the field scattered by the atom. Introducing
the fluctuation operators

DS̃6~ t !5S̃6~ t !2^S̃6~ t !&, ~3.14!

we can write the atomic correlation function appearing in Eq.
~3.11! as

^S̃1~ t !S̃2~ t1t!&5^DS̃1~ t !DS̃2~ t1t!&

1^S̃1~ t !&^S̃2~ t1t!&, ~3.15!

where the first term on the right-hand side represents the
incoherent part of the field, while the second represents the
field scattered coherently by the atom. The incoherent part
Sin~v! of the spectrum can then be calculated by subtracting
out the coherent part from the total scattered field

Sin~v!5u~rW !Re E
0

`

dtei ~v2vs!t@^S̃1~ t !S̃2~ t1t!&

2^S̃1~ t !&^S̃2~ t1t!&#. ~3.16!

Introducing the Laplace transform, we express the incoherent
fluorescence spectrum in terms of the components of the
YW ( l )(z) andXW ( l )(t) vectors as

Sin~v!5u~rW !ReG~z!uz52 in , ~3.17!

wheren5~v2vs!/G, and

G~z!5 lim
t→`

„Y1
~0!~z!2X1~ t !X2~ t !…. ~3.18!

The fluorescence spectrum can be plotted from Eq.~3.17!
with the componentsY 1

(0)(z) and X i
( l )(t) found from the

recursion relation~3.6!. We plot the incoherent fluorescence
spectra for the case ofv15v0 ~D150!,1 while v2 is tuned
close to v112V1. In Fig. 2 the spectrum is shown for
2V1550G, v15v0, a5V2/V150.1 and different values of
D2. For largeD2, the spectrum shows the well known Mol-
low triplet @1#. For small but nonzeroD2, the spectrum ex-
hibits a triplet at the central frequency, with components at
v5$v1 andv162V2%, and doublets atv5$v2 andv212V2%

1The intensity in the coherently scattered field is proportional to
~G/2V!2, and is completely negligible, both in our calculations and
experimentally~see, e.g., Wuet al. @2#!.
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andv5$2v12v2 and 2v12v222V2%. A quite different situ-
ation develops whenD2 is exactly zero: In this case the in-
coherent central peak atv1 is also suppressed~leaving be-
hind a doublet, atv162V2!,

2 and additional peaks emerge at
v5v112V122V2 and v5v122V112V2. The spectrum
then consists of a doublet nearv1 and triplets centered at
v162V1.

When we increase the intensity of the weak component
~i.e.,a!, the peak atv1 reemerges. Moreover, additional side-
bands ~triplets! appear, centered aboutv164V1. This is
shown in Fig. 3, where we plotSin~v! for D15D2[0,
2V1550G, and differenta. For smalla the spectrum exhibits
two peaks nearv1 and triplets centered aboutv162V1. As a
increases, additional triplets emerge atv164V1. For still
larger a ~a50.6!, the peak atv1 reemerges, but with an
amplitude significantly smaller than the amplitudes of the
remaining peaks. It should be noted that the central peak
reappears in the spectrum only fora significantly larger than

that required for appearance of the additional triplets at
v164V1. Furthermore, asa increases still further, additional
triplets will emerge atv166V1, v168V1, etc.

The numerical calculations of the fluorescence spectrum
indicate that qualitatively new types of behavior arise when
the atom is driven by a bichromatic field with one strong and
one weak component. As expected, we have found that in
this case the fluorescence spectrum is more complex than
that for a monochromatic driving field. Moreover, different
types of spectra are observed depending on the values ofD2
anda. In the next section, we present a dressed-atom calcu-
lation, which provides analytical expressions for the fluores-
cence spectra, and gives a physical interpretation of the ap-
pearance and disappearance of the spectral peaks, their
intensities and their widths.

C. Absorption spectrum

We now introduce a third tunable probe beam of fre-
quencyvp and amplitudeEp , sufficiently weak that it does
not appreciably perturb the atom-driving field system. The
steady-state absorption spectrum of the probe field can be
written in terms of the Fourier transform of the average value
of the two-time commutator of the atomic operators as@25#

W~vp!5W0ReE
0

`

dtei ~vp2vs!tD~t!, ~3.19!

2In Sec. IV we will find that the intensity of the incoherent peak at
v1 is proportional toD2

2/~V2
21D2

2! for smallD2. Our numerical cal-
culations show a peak atv1 beginning to emerge atD2;0.2G, hav-
ing an amplitude;10% that of the doublet peak amplitudes for
D2;G, and;20% forD2;1.6G.

FIG. 2. The fluorescence spectrum forv15v0, 2V1550G,
a5V2/V150.2 and differentD2: ~a! D2@50G, ~b! D257G, ~c!
D250.

FIG. 3. The fluorescence spectrum forv15v0, 2V1550G,
D250 and differenta: ~a! a50.2, ~b! a50.4, ~c! a50.6.
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where

W052vpGu~rW !umW •EW pu2/\, ~3.20!

and

D~t!5 lim
t→`

^@S̃2~ t1t!,S̃1~ t !#&. ~3.21!

Using Laplace transforms, we rewrite the absorption spec-
trum ~3.19! in the form

W~vp!5W0ReD~z!uz52 ih , ~3.22!

whereh5(vp2vs)/G, andD(z) is the Laplace transform of
the commutatorD~t!.

For the commutators

R1~t!5^@S̃2~ t1t!,S̃1~ t !#&,

R2~t!5^@S̃1~ t1t!,S̃1~ t !#&,

R3~t!5^@Sz~ t1t!,S̃1~ t !#&, ~3.23!

the optical Bloch equations~3.1! lead to the same recurrence
relation as Eq.~3.6!, but with the componentsXi(t) replaced
by Ri~t! andXW ( l )~0! by

XW ~ l !~0!→RW ~ l !~0!5S 22X3
~ l !~ t !
0

2X2
~ l !~ t !

D . ~3.24!

The steady-state absorption spectrum takes the form

W~vp!5W0ReR1
~0!~z!uz52 ih . ~3.25!

In Fig. 4, we plot this spectrum for 2V1550G, a50.1 and
different detuningsD1 andD2. ForD15D250, we observe an
emission-absorption feature centered atv1 and emission-
dispersion-absorption features centered atv2 and 2v12v2.
As in the fluorescence spectrum, there is no central compo-
nent atv1. When bothD1 andD2 differ from zero an addi-
tional dispersionlike feature develops atv1. Moreover, the
amplitudes of the features centered nearv112V1 increase as
the detunings increase, whereas the feature centered at
v122V1 is reduced to an emission line. In Fig. 5, we plot the
spectrum forD15D250, with a50.1 and 0.2, respectively.
The spectrum is qualitatively unchanged, but the intensity of
the emission and absorption lines increases linearly witha
and fora50.2 is double that fora50.1.

It is difficult to understand the physical origin of these
spectral features from the calculations described thusfar.
However, in the next section we study the system and recal-
culate the absorption spectrum in terms of the doubly-
dressed-atom model@30#. Since one of the bichromatic com-
ponents is more intense than the other, this model provides a
good approach for studying the problem, both qualitatively
and quantitatively, and in the limit of well-separated spectral
features leads to both simple analytical solutions and a trans-
parent physical explanation.

IV. FLUORESCENCE AND ABSORPTION SPECTRA:
A DRESSED-ATOM APPROACH

In this section we calculate analytically the fluorescence
and absorption spectra of a two-level atom driven by a
bichromatic field with one strong and one weak component.
We treat the field quantum mechanically, and first derive the
eigenstates~dressed states! of the combined system. We then

FIG. 4. The absorption spectrum for 2V1550G, a50.1, and
different u,f. ~a! u5f5p/4, ~b! u5f5p/6, ~c! u5f5p/8.

FIG. 5. The absorption spectrum for 2V1550G, u5f5p/4 and
differenta: a50.1 ~solid line!, a50.2 ~dashed line!.

4280 53Z. FICEK AND H. S. FREEDHOFF



use these states as basis states for further calculations. The
model is valid in the limits

vs@V1.V2.G. ~4.1!

A. Dressed states

The Hamiltonian~2.8! of the uncoupled system of atom
and driving field has eigenstatesu j &uN,M & which satisfy the
eigenvalue equation

H08u j &uN,M &5~Ej1N\v11M\v2!u j &uN,M &, ~4.2!

whereEj is the energy of the atom in stateu j & ( j5e,g), and
N(M ) is the number of photons in laser mode 1~2!. We find
the eigenstates of the coupled system by performing a
‘‘double-dressing’’ calculation, recently used@30# to study a
system consisting of a~monochromatically! strongly driven
atom coupled to a single mode of a cavity. In these calcula-
tions, we first find the eigenstates of the Hamiltonian of the
atom and strong field component

Hda5\v0S
z1\v1a1

1a11\g1~a1
1S21S1a1!. ~4.3!

This Hamiltonian has eigenstatesu i ,N&, i51,2, satisfying the
eigenvalue equation

Hdau i ,N&5\@Nv12~21! iV#u i ,N&, ~4.4!

where

u1,N&5sinuug,N&1cosuue,N21&,

u2,N&5cosuug,N&2sinuue,N21&, ~4.5!

are the~singly! dressed-atom states, with

cos2u5
1

2
1

D1

4V
, ~4.6!

and

2V5~4V1
21D1

2!1/2 ~4.7!

the detuned Rabi frequency of the strong component@24#.
The HamiltonianH2 of the noninteracting singly dressed

atom and weak component

H25Hda1\v2a2
1a2 ~4.8!

has the eigenvalue equation

H2u i ,N,M &5\@Nv12~21! iV1Mv2#u i ,N,M &, ~4.9!

where 1!M!N. In the following, as in Sec. III, we will
assume that the frequency of the weak component is close to
the Rabi sideband frequencyv112V, with a detuning
D25v112V2v2.

The statesu i ,N,M &, appearing in Eq.~4.9!, are the ‘‘un-
dressed’’ states of the~uncoupled! system. It is easy to show
from Eq. ~4.9! that these states group into manifolds each
containing an infinite number of doublets@see Fig. 6~a!#.
Neighboring manifolds are separated by frequencyv1, while
neighboring doublets within each manifold are separated by
2d. The states within each doublet are separated byD2.

When we include the interactionW between the singly
dressed atom and the weak field component,

W5\g2~a2
1S21S1a2!, ~4.10!

the doublets recombine into new doublets with eigenstates

uN1M ,n1&5sinfu2,N2n21,M1n11&

1cosfu1,N2n,M1n&,

uN1M ,n2&5cosfu2,N2n21,M1n11&

2sinfu1,N2n,M1n&, ~4.11!

corresponding to energies

EN1M ,n65~N1M !v11~2M12n11!V2~M1n!D26G,
~4.12!

where

cos2f5
1

2
1

D2

4G
~4.13!

and

2G5~4V2
2cos4u1D2

2!1/2 ~4.14!

is the detuned Rabi frequency of the weak field component.
Thus, the states~4.11! are ~also! grouped into manifolds,
each containing an infinite number of doublets@Fig. 6~b!#.
Neighboring doublets are separated by 2V, while the intra-
doublet separation is 2G.

FIG. 6. Energy level diagram of the undressed system~a!, and
of the doubly dressed atom~b!.
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B. Transition rates

Interaction between the atom and the vacuum modes of
the electromagnetic field leads to a spontaneous emission
cascade by the dressed atom down its energy manifold lad-
der. The probability of a transition between any two dressed
states is proportional to the absolute square of the dipole
transition moment connecting them@24#. It is easily verified
that nonzero dipole moments occur only between states
within neighboring manifolds. Using~4.11!, we find that the
dipole transition moments betweenuN1M ,n6& and
uN1M21,m6& are

^n1,N1M uS1uN1M21,m1&

5cos2f sinu cosudn,m1
1

2
sin2f cos2udn,m11

2
1

2
sin2f sin2udn,m21 , ~4.15!

^n1,N1M uS1uN1M21,m2&

52sin2f sinu cosudn,m1cos2 fcos2udn,m11

1sin2f sin2udn,m21 , ~4.16!

^n2,N1M uS1uN1M21,m1&

52sin2f sinu cosudn,m2sin2f cos2udn,m11

2cos2f sin2udn,m21 , ~4.17!

^n2,N1M uS1uN1M21,m2&

52cos2fsinu cosudn,m2
1

2
sin 2f cos2udn,m11

1
1

2
sin 2f sin2udn,m21 . ~4.18!

The presence of thed functions in Eqs.~4.15!–~4.18! indi-
cates that from a given doubletuN1M ,n6& spontaneous
emission can occur to doubletsuN1M21,m6& with
m5n,n61 only. These transitions occur with probabilities

Gni,mj5G z^ni,N1M uS1uN1M21,mj& z2 ~4.19!

at ~nine different! frequencies

vni,mj5\21~EN1M ,ni2EN1M21,mj!, ~4.20!

given by the expressions

Gn6,n65G cos22f sin2u cos2u, vn6,n65v1 ,

Gn6,n75G sin22f sin2u cos2u, vn6,n75v162G,

Gn6,~n21!65
1

4
G sin2 2f cos4u, vn6,~n21!65v2 ,

Gn6,~n11!65
1

4
G sin22f sin4u, vn6,~n11!652v12v2 ,

Gn1,~n21!25G cos4f cos4u, vn1,~n21!25v212G,

Gn1,~n11!25G sin4f sin4u,

vn1,~n11!252v12v212G,

Gn2,~n21!15G sin4f cos4u, vn2,~n21!15v222G,

Gn2,~n11!15G cos4f sin4u,

vn2,~n11!152v12v222G. ~4.21!

The total spontaneous emission decay rates from
uN1M ,n6& are then given by

Gn15(
mj

Gn1,mj5G~cos2u cos2f1sin2u sin2f!,

~4.22!

Gn25(
mj

Gn2,mj5G~sin2u cos2f1cos2u sin2f!.

~4.23!

From the transition rates of Eq.~4.21!, it is apparent that
the spectrum contains nine lines for general values off and
u. If we keep the strong driving component nearly resonant
with the atom~v1'v0 or u'p/4!, the number of lines will
vary with the detuning of the weak component. For example,
for f5p/4 ~D250!, the transition ratesGn6,n6 vanish, the
spectral line atv1 disappears, and eight lines remain in the
spectrum; this case is plotted in Figs. 2~c! and 7~c!. Simi-
larly, for largeD2, sin

2f, sin22f→0. The number of spectral
lines is then reduced to three, atv1,v212G'v112~V1d!,
and 2v12v222G'v122~V1d!, very similar to the Mollow
triplet @Figs. 2~a! and 7~a!#. The spectra will be discussed in
detail in Sec. IV E.

C. Populations of the dressed states

To study the evolution of the populations of the dressed
states, we project the master equation~2.2! ontouN1M ,n6&
on the right and̂n6,N1M u on the left. We make the secu-
lar approximation~ignoring nonsecular couplings between
populations and coherences!, denote the populations of states
uN1M ,n6& by P n6

N1M,

Pn6
N1M[^n6,N1M uruN1M ,n6&, ~4.24!

and introduce the ‘‘reduced’’ populationsP n
65(N,MP n6

N1M

@24#. The equations of motion ofP n
6~t! can be written in the

form
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d

dt
Pn

1~t!52S 14 sin22f sin22u1cos2f cos4u1sin2f sin4u DPn
1~t!1

1

4
sin22f sin22uPn

2~t!

1sin2f cos4u@cos2fPn11
1 ~t!1sin2fPn11

2 ~t!#1cos2f sin4u@sin2fPn21
1 ~t!1cos2fPn21

2 ~t!#,

~4.25!

d

dt
Pn

2~t!52S 14 sin22f sin22u1sin2f cos4u1cos2f sin4u DPn
2~t!1

1

4
sin22f sin22uPn

1~t!

1cos2f cos4u@cos2fPn11
1 ~t!1sin2fPn11

2 ~t!#1sin2f sin4u@sin2fPn21
1 ~t!1cos2fPn21

2 ~t!#, ~4.26!

where t5Gt. BecauseM@1, as in the case of monochro-
matic driving @24# we can assume that the populations vary
slowly with n, and write

Pn
15Pn61

1 5•••5P1,

Pn
25Pn61

2 5•••5P2. ~4.27!

Equations~4.25! and ~4.26! then reduce to a set of two
coupled equations, which in the steady-state~t→`! has the
solution:

P1

P2 5

1

4
sin22f sin22u1sin4f cos4u1cos4f sin4u

1

4
sin22f sin22u1sin4f sin4u1cos4f cos4u

.

~4.28!

It is evident from Eq.~4.28! that for generalf,u the dressed
states are unequally populated. However, it is easily verified
that when eitherf5p/4 or u5p/4, the population is equally
distributed, andP15P2.

D. Coherences and spectral linewidths

The fluorescence spectrum is related to the time evolution
of the atomic dipole moment operatorS1 @24#

S15 (
ni,mj
N,M

Sni,mj
1 rni,mj,N,M

~1 ! , ~4.29!

where Sni,mj
1 5^ni,N1M uS1uN1M21,mj& are given by

Eqs.~4.15!–~4.18!, andr ni,mj,N,M
(1) are the coherences

rni,mj,N,M
~1 ! 5uN1M ,ni&^mj,N1M21u, ~4.30!

which are off-diagonal elements of the density matrix, and
oscillate at frequencies~4.21!.

First, we consider the transitions atv162G, v262G, and
2v12v262G. For values ofV andG corresponding to the
range~4.1!, it is easily verified that the spectral lines are all

nonoverlapping. The equations of motion of the correspond-
ing density matrix elements are therefore uncoupled and
from the master equation~2.2! we find that they are given by

ṙni,mj,N,M
~1 ! 52~ ivni,mj1Gc!rni,mj,N,M

~1 ! , ~4.31!

wherevni,mj5v162G,v262G,2v12v262G are the fre-
quencies of the spectral lines, and

Gc5
1

4
G@21sin22f~cos4u1sin4u!1cos22f sin22u#,

~4.32!

is their linewidth.
For the central component of the spectrum, the two matrix

elementsr n1,n1,N,M
(1) and r n2,n2,N,M

(1) oscillate at the same
frequencyv1, and therefore have coupled equations of evo-
lution. When we average over the driving field, the reduced
coherencesr n6,n6

(1) 5(NMr n6,n6,N,M
(1) are found to obey the

same coupled equations of motion as do the populationsP6,
with the addition in each of the freely oscillating term
2 iv1r n6,n6

(1) , and are given by

ṙn1,n1
~1 ! ~ t !52~ iv11A!rn1,n1

~1 ! ~ t !1Brn2,n2
~1 ! ~ t !,

ṙn2,n2
~1 ! ~ t !52~ iv11B!rn2,n2

~1 ! ~ t !1Arn1,n1
~1 ! ~ t !, ~4.33!

where

A5S 14 sin22f sin22u1cos4f cos4u1sin4f sin4u DG,

~4.34!

B5S 14 sin22f sin22u1sin4f cos4u1cos4f sin4u DG.

~4.35!

The associated dipole momentsp n6,n6
(1) 5Sn6,n6

1 r n6,n6
(1)

then obey the equations

ṗn1,n1
~1 ! ~ t !52~ iv11A!pn1,n1

~1 ! ~ t !2Bpn2,n2
~1 ! ~ t !,

ṗn2,n2
~1 ! ~ t !52~ iv11B!pn2,n2

~1 ! ~ t !2Apn1,n1
~1 ! ~ t !, ~4.36!

whose solutions are readily found to be
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S pn1,n1
~1 ! ~ t !

pn2,n2
~1 ! ~ t ! D 5

a1

AA21B2 S B
2ADe2 iv1t1a2S 11De2~ iv11Gp!t,

~4.37!

where the constantsa1 and a2 can be found from initial
conditions. We do not, however, require the values ofa1 and
a2 in order to calculate the fluorescence spectrum and there-
fore do not solve for them. The first term in Eq.~4.37! cor-
responds to the elastic component, while the second term
corresponds to the inelastic central component at frequency
v1 with linewidth given by

Gp5A1B5GF12 sin22f sin22u

1~sin4f1cos4f!~sin4u1cos4u!G . ~4.38!

Finally, we consider the evolution of the off-diagonal el-
ementsp n1,(n61)1

(1) , which are related to the components at
frequencies 2v12v2 andv2. These elements are coupled to
the matrix elementsp n2,(n61)2

(1) , which oscillate at the same
frequencies. It is easily verified that the dipole moments as-
sociated with these elements obey the same equations of mo-

tion as~4.33!, but with v1 replaced by 2v12v2 for the ele-
mentsp n6,(n11)6

(1) and byv2 for the elementsp n6,(n21)6
(1) .

Their solutions are the same as given in Eq.~4.37! and their
linewidths the same as that of the central component atv1
@Eq. ~4.38!#.

E. Fluorescence spectrum

The fluorescence spectrum is given by the real part of the
Fourier transform of the correlation function of the dipole-
moment operator̂p(1)(t)p(2)(t8)&, t.t8. From the quan-
tum regression theorem@29#, it is well known that fort.t8
the two-time averagêp ni,mj

(1) (t)p(2)(t8)& satisfies the same
equation of motion as the one-time average^p ni,mj

(1) (t)&, with
the initial conditions

^pni,mj
~1 ! ~ t8!p~2 !~ t8!&5Gni,mjP

i , ~4.39!

whereGni,mj are given by Eq.~4.21!, andPi are the steady-
state populations of the dressed states given by Eq.~4.28!.
The equations of motion for the one-time averages
^p ni,mj

(1) (t)& were obtained in Sec. IV D. Thus, in the limit of
largeG(G.G), where the spectral lines do not overlap, the
fluorescence spectrum is given by

Sin~v!5u~rW !H ~Gn1,n1P11Gn2,n2P2!Gp

~v2v1!
21Gp

2 1
~Gn1,~n11!1P11Gn2,~n11!2P2!Gp

~v22v11v2!
21Gp

2

1
~Gn1,~n21!1P11Gn2,~n21!2P2!Gp

~v2v2!
21Gp

2 1
Gn1,n2P1Gc

~v2v122G!21Gc
2 1

Gn2,n1P2Gc

~v2v112G!21Gc
2 1

Gn1,~n21!2P1Gc

~v2v222G!21Gc
2

1
Gn2,~n21!1P2Gc

~v2v212G!21Gc
2 1

Gn1,~n11!2P1Gc

~v22v11v222G!21Gc
2 1

Gn2,~n11!1P2Gc

~v22v11v212G!21Gc
2 J . ~4.40!

In Fig. 7, we plot the analytical expression~4.40! for the
incoherent part3 of the fluorescence spectrum for the same
parameters as in Fig. 2, where we have plotted the spectrum
calculated numerically. It is seen that the positions of the
spectral lines, their linewidths and intensities calculated from
the analytical expression~4.40! are in good agreement with
the numerical results.

Having available the analytical solution for the fluores-
cence spectrum, it is easy to explain its strong dependence on
the detuningD2, which is seen in Figs. 2 and 7. For largeD2
@Figs. 2~a! and 7~a!#, sin2 f→0 and most of the transition
rates Gni,mj vanish, except forGn6,n6 , Gn1,(n21)2, and
Gn2,(n11)1. In this limit the spectrum reduces to the familiar
Mollow triplet @1#. As D2 decreases@Figs. 2~b! and 7~b!#,
sinf increases somewhat, which results in nonzero transi-
tion ratesGn6,n6 , Gn6,(n11)6, Gn6,n7 , andGn6,(n21)6; the
remaining ratesGn1,(n11)2 andGn2,(n21)1 are proportional
to sin4 f and still very small. In this case the spectrum ex-

hibits three lines near the central component and two lines
near each Rabi sideband. WhenD2[0, f5p/4 and all tran-
sition rates are different from zero except forGn6,n6 , caus-
ing the central component atv1 to disappear, as seen in Figs.
2~c! and 7~c!.

For higha, the numerical calculation of the fluorescence
spectrum@Fig. 3~c!# predicts additional triplet structures lo-
cated nearv164V. Moreover, these calculations predict the
reappearance of the central component atv1 even whenu5f
5p/4. The analytical expression~4.40!, however, predicts
neither the additional triplet structures nor the reappearance
of the central component. In order to explain these features
analytically, we have to go beyond the zero-order approxi-
mation ina in the calculation of the dressed states. We have
thus far neglected the coupling viaW of the statesuN
1M ,n6& to the statesuN1M ,(n61)6& and uN1M ,(n
62)6&. This coupling is of order\G, while the states are
separated fromuN1M ,n6& in energy by amounts of order
\V, so that the coupling introduces correction terms into the
dressed states of orderG/V'a. Here, we include this cou-
pling and calculate the first-order corrections to the states.

From Eq.~4.11!, we find that the statesuN1M ,n6& are

3The coherent part of the spectrum vanishes for the parameters
chosen~v15v0 or u5p/4!.
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coupled to the statesuN1M ,(n61)6& and uN1M ,(n
62)6& with the following nonzero matrix elements:

^N1M ,~n61!2uWuN1M ,n1&

5^N1M ,~n61!1uWuN1M ,n2&

52G,

^N1M ,~n22!6uWuN1M ,n1&

5^N1M ,~n12!1uWuN1M ,n6&

52 1
2G,

^N1M ,~n22!6uWuN1M ,n2&

5^N1M ,~n12!2uWuN1M ,n6&

5 1
2G, ~4.41!

where, for simplicity, we have assumed thatu5f5p/4. Us-
ing first-order perturbation theory, we find the statesuN
1M ,n6& correct to first order ina to be

uN1M ,n1&~1!5uN1M ,n1&1
a

2
@ uN1M ,~n11!2&

2uN1M ,~n21!2&]

2
a

8
@ uN1M ,~n22!2&

1uN1M ,~n22!1&2uN1M ,~n12!1&

1uN1M ,~n12!2&], ~4.42!

uN1M ,n2&~1!5uN1M ,n2&1
a

2
@ uN1M ,~n11!1&

2uN1M ,~n21!1&]

1
a

8
@ uN1M ,~n22!2&

1uN1M ,~n22!1&1uN1M ,~n12!1&

2uN1M ,~n12!2&]. ~4.43!

Using the above corrections to the dressed states, we find
that additional transitions are predicted at the frequencies
v164~V21

2D2! andv164~V21
2D2!62G with probability

Gn6,~n12!65Gn6,~n22!65Gn6,~n12!75Gn6,~n22!75
a2G

64
.

~4.44!

Thus, the additional triplet structures in the spectrum in the
vicinity of v164V occur with intensities proportional to
a2/64, and appear only for higha.

In a similar way, it is straightforward to show that for
u5f5p/4 transitions at the central frequencyv1 occur with
probability

Gn6,n6
~1! 5

a4G

16
, ~4.45!

which is two orders ina smaller than those of the additional
triplet structures atv164V. Thus the central component re-
appears only for relatively larger values ofa than those at
which the additional triplet structures become visible. In a
similar way too, by including in our calculations terms in-
volving successively higher powers ofa, we predict the ap-
pearance of additional triplets in the spectrum centered at
frequenciesv162nV, n>1, with intensities proportional to
a2(n21).

F. Absorption spectrum

According to Eq.~3.19!, the absorption spectrum of a
weak probe beam is given by the real part of the Fourier
transform of the commutator^[S2(t),S1(t8)] &, the first term
of which is associated with absorption and the second with
stimulated emission by the system. From the quantum re-
gression theorem@29#, it is well known that for t.t8 the
two-time commutator̂[Sni,mj

2 (t),S1(t8)] & satisfies the same
equation of motion as does the density matrix element

FIG. 7. The fluorescence spectrum plotted from the analytical
expression, Eq.~4.40!, for v15v0, 2V1550G, a50.2 and different
D2: ~a! D2@50G, ~b! D257G, ~c! D250.
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[r ni,mj
(1) (t)] * , with the initial condition

^@Sni,mj
2 ~ t8!,S1~ t8!#&5Gni,mj~P i2P j !. ~4.46!

Thus, it is straightforward to show that in the case of non-
overlapping spectral components, the absorption spectrum of
a probe beam is given by

W~vp!5W0H Gn2,n1~P12P2!Gc

~vp2v112G!21Gc
2 1

Gn1,n2~P22P1!Gc

~vp2v122G!21Gc
2 1

Gn1,~n21!2~P22P1!Gc

~vp2v222G!21Gc
2 1

Gn2,~n21!1~P12P2!Gc

~vp2v212G!21Gc
2

1
Gn1,~n11!2~P22P1!Gc

~vp22v11v222G!21Gc
2 1

Gn2,~n11!1~P12P2!Gc

~vp22v11v212G!21Gc
2 J . ~4.47!

It is easily verified that the components of the absorption
spectrum have the same positions and linewidths as their
counterparts in the fluorescence spectrum but that they have
widely differing intensities. The net absorption at any fre-
quency is proportional to the transition rateGni,mj and the
difference between the populations of the lower and upper
levels in the transition. In Figs. 4~b! and 4~c!, we plot the
absorption spectrum foru5fÞp/4, corresponding to popu-
lationsP2.P1. In Fig. 4~a!, we plot the spectrum foru5f
5p/4, and hence, according to Eq.~4.28!, for equalP6. Yet,
in this case too, amplification lines appear atv122G,
v222G, and 2v12v222G, and absorption lines at their cor-
responding12G counterparts, indicating thatP2.P1 in
Fig. 4~a! as well. In order to explain these features, it is
necessary to go beyond the zero-order ina expressions
~4.28! for the steady-state populations.

In Eqs.~4.42! and~4.43!, we obtained expressions for the
eigenstatesuN1M ,n6& correct to first order ina. If we use
these corrected eigenstates to study the evolution of the
populations, as in Sec. IV C, foru5f5p/4 we obtain forP6

the coupled equations

Ṗ152
3G

8
P11GS 382

a

2 DP2,

Ṗ252
3G

8
P21GS 381

a

2 DP1, ~4.48!

with the steady-state solutions

P65
3

664a
. ~4.49!

Thus the population difference to first order ina is

P22P15
2a

3
, ~4.50!

giving rise to the nonvanishing spectral lines of Figs. 4~a!.
Moreover, it is evident from Eqs.~4.47! and ~4.50! that the
intensities fora50.2 are double those fora50.1, in agree-
ment with the spectrum shown in Fig. 5.

V. SUMMARY

We have studied the fluorescence and absorption spectra
of a two-level atom driven by a bichromatic field composed
of one strong and one weak frequency component. The spec-
tra have been found to be a sensitive function of the detuning
of the weak component from a Rabi sideband induced by the
strong component of the driving field. For smalla, the fluo-
rescence spectrum consists in general of nine lines. For large
D2, however, the spectrum reduces to the Mollow triplet at
v1 andv162V; for smaller~but nonzero! D2 it can exhibit a
triplet structure nearv1 and doublets near the sideband fre-
quencies. In contrast, whenD250 the fluorescence spectrum
exhibits a doublet structure nearv1 and triplets nearv162V,
with no fluorescence atv1. For larger values ofa, additional
triplet structures appear at frequenciesv162nV(n.1) with
intensities proportional toa2(n21), and the central compo-
nent reemerges even forD15D250, with an intensity propor-
tional to a4. All these features are explained by using the
dressed-atom model of Cohen-Tannoudji and Reynaud@24#,
adapted to the case of a bichromatic driving field. The
dressed states have been identified, and the spectral features
interpreted in terms of transitions among these dressed states.
We have found that the appearance and vanishing of the
spectral lines for some values ofD2 anda is related to the
vanishing of the transition rates between the corresponding
dressed states.

We have also calculated the absorption spectrum of a
weak probe beam monitoring the bichromatically driven
two-level atom. The absorption spectrum too is a sensitive
function ofD2, and novel spectral features are observed, con-
sisting of absorption and emission lines located nearv1 and
v162nV. Again, we have explained these features in terms
of the dressed-atom model, and found that the emission-
absorption features are related to the unequal populations of
the dressed states, which are calculated as a function ofa.
The dressed-atom model both allows a physical interpreta-
tion of all the spectral features and gives good quantitative
agreement with the full numerical calculations.
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