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Fluorescence and absorption by a two-level atom in a bichromatic field
with one strong and one weak component
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We analyze the fluorescence and absorption spectra of a two-level atom driven by a bichromatic field with
frequenciesw; and w,, separated bw,—w;=245, and Rabi frequencie&@t resonange2(); and ), such that
their ratio a=Q,/Q1<1. We focus on the case of; close to the atomic frequenay, and w, near the Rabi
sideband frequency,+2(),; the detunings are denoted By=wy—w, and A,=w,+20;—w,. We find that
the spectra depend critically on the detunikg For largeA,, the fluorescence spectrum consists of the well
known Mollow triplet, centered abq; for smaller(but nonzerp A,, the spectrum is composed of a triplet at
wq together with doublets near the sideband frequeneigs2(),. However, whenA,=0 (and a<1), the
spectrum consists of a doublet centeredatnd triplets aw;+2(),: there is then no fluorescenceat. As
a increases, additional triplet structures appear in the spectrum at frequenci@n(),; with intensities
proportional toa®™ ™), n>1, and a line reappears a§, with intensity proportional tar*. The absorption by
the system of a weak probe beam is also strongly dependent on the detuning, and the spectrum is composed of
emission-dispersion-absorption features located ngand w;*+2n();. An analysis in the dressed-atom pic-
ture is presented which explains the physical origin of all these features, in both fluorescence and absorption.
[S1050-294{@6)06305-9

PACS numbes): 42.50.Hz, 32.80-t

[. INTRODUCTION a central component at the average driving frequency
ws=(w+w,)/2 and a series of sidebands separated by inte-
The resonance fluorescence and absorption of a weeler multiples ofs, half the separation frequency. When the
probe beam by a strongly driven atom has been studied exriving components are symmetrically detuned fragand
tensively for many years. Initially, these studies involved anhave equal Rabi frequencie€)2the peak separations are
intense monochromatic driving field. Their most dramaticindependent of @, but their number increases with increas-
results included the prediction and observation of the “Mol-iNg X2, and their widths and amplitudes oscillate. For un-
low triplet” for the fluorescence spectrufil,2], consisting f—:-que_ll Rabi frequencies and/or asymmetrically detuned driv-
of a central component at frequenay and sidebands at ing field components, the centrgl component o_f the spectrum
o £2Q), wherew, is the driving frequency and(2 the Rabi gnd the peaks separated fror.n. it by even m“.'“p'e§ oplit
frequency of the laser field. into doublets[16], whose positions and splittings vary as a

The fluorescence and probe absorption by an atom in function of the detunings and Rabi frequencies. This splitting

strong bichromatic driving field has also been studied extenﬁas recently been observed experimentgd]. A physical

. ) . . understanding of these effects is achieved by using a
sively, both theoretically and experimental§-23|. The in- dressed—aton? description of the atom-field sysﬁéﬁj)ézl]. In ’
terest stems mostly from the observation that the bichromati

AR this approach, eigenstates of the atom-plus-driving-field
nature of the driving field leads to a number of novel feature§grye as the basis states for the system. In the case of bichro-

which are not present in the monochromatic case. FOr xyatic excitation, the energy spectrum corresponds to mani-
ample, the transient fluorescence intensity exhibits an intefy|qs of states separated iy : within each manifold, the
esting dependence on the initial phase difference between tl@@ates are Separated by integer mu|t|p|e§ 0|I12] The mul-
driving field components, and resonances at subharmonics @peak spectra are interpreted as the result of transitions be-
the Rabi frequency as well as at the components’ beat freween the dressed states of neighboring manifolds.
quency[10,17. The multipeak sidebands in the fluorescence spectrum are
In this paper, we concentrate on the spectra correspondirfgatures which arise in a bichromatic driving field whose
to fluorescence and probe absorption in a bichromatic driveomponents have equal or almost equal Rabi frequencies.
ing field. The fluorescence spectrum has been calculated falthough most of the theoretical work to date has been con-
equal-amplitude field components symmetrically detunedterned only with equal Rabi frequenciésquivalent to an
from the atomic frequencwy [5,9,11-13, equal-amplitude amplitude-modulated field with the resonant carrier sup-
components asymmetrically detun¢ti4,16/, and compo- pressey there are alsidifferend novel features which occur
nents having unequal amplitudgkf]. The spectra consist of for the case of one strong and one weak component of the
bichromatic field. There have now been several experiments
which examine the subharmonic resonangk3], the tran-
*Permanent address: Department of Physics and Astronomy, Yorgient behavior of the atomfl7], and the Autler-Townes
University, Toronto, Ontario, Canada M3J 1P3. spectrum 20] in this limit. The remarkable features of these
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experiments are the multiphoton resonances at subharmonics TR
of the Rabi frequencief6—8|, the phase-dependent atomic
dynamics even if the interaction begins with atoms in their 2%
ground state$17], and a four-peak structure of the Autler- | e>
Townes spectruf0]. These effects associated with unequal 2
driving-field intensities suggest the possibility of interesting
modifications of the spectral properties of the fluorescence ©
field as well. 0
One purpose of this paper is to present a detailed analysis
of the fluorescence spectrum in the limit of one strong and | g> —=
one weak component of the bichromatic field. As we will see
below, the spectrum is qualitatively different from both the
Mollow triplet observed for a monochromatic driving field ~ FIG. 1. System composed of a two-level atom driven by a
and the multipeak spectrum characteristic of a bichromati®ichromatic field whose components have different intensities.
driving field with equal component intensities. In particular, . ) . )
the components of th@riginal) Mollow triplet are each split ~ States of the system. Positions, intensities, and vv_ldths of the
into either a triplet or a doublet depending on the detutipg SPectral features are determined from the energies, popula-
of the weak field component from the Rabi sideband inducedions, and transition rates associated with the dressed-atom
by the strong field. In the special case/of=0 anda<1, the  States. . . .
component atw, of the fluorescence spectrum completely The.paper is organlzed_ as follows: In Sec. Il we describe
disappears. These features are explained by the effect on tHe detail our model and discuss the methods we use to cal-
w, dressed states of the, field component and by the spon- culgte the fluorescence and absorption spectra and to explain
taneous emission transition rates between the resultant doffleir features. In Sec. Ill we calculate the spectral expres-
bly dressed states. We emphasize too the following signifiSions in the framework of a classical driving field. The cal-
cant difference: For a bichromatic driving field with one culations are based on a Floquet method using the optical
strong and one weak component the spectral features aRloch equations and continued fraction technig(§]. In
centered about the frequenay of the strong component and S€c. [V we present a quantum dressed-atom model of the
its Rabi sidebands, whereas for a bichromatic field withSystem and calculate analytically the fluorescence and ab-
(nearly equal amplitudes, they are centered about the mea?prpt]on spectra. We analyze in detail intensities, Wldth.S and
frequencyws of the field components ang,+ms. positions of the spectral featyres and co_mpare.them with the
In addition to modifications in the fluorescence spectrumnumerical results presented in Sec. Ill. Finally, in Sec. V, we
one can also observe changes in the absorption spectrum ofgmmarize our results.
probe beam that interacts with a bichromatically driven
atom. The probe and bichromatic fields can be tuned to the Il. THE SYSTEM
same atomic transition, or alternatively, the probe can be ) ]
tuned to a transition sharing one common level with the W€ consider a two-level atom with ground Statg, ex-
bichromatically driven transition. In the first case a Mollow €ited statele), transition frequencyy, and dipole transition
type[25], whereas in the second case an Autler-Towi263 m_oment,u. The atom is driven by a bichromatic figlBig. 1)
type spectrum is monitored. Recent studies of the MollowWith frequency componentsw; and w, separated by
type absorption spectrum with a bichromatic driving field of @2~ @1=28 and with detunings
equal amplitudes have led to the prediction of new regions of
frequency where the probe beam can be amplified. More- Ar=wo— w1, Az=w;+20;~ ;. 2.
over, whenws is detuned fromw, and/or the amplitudes of .
the field components are slightly different, the central com-The atom is also coupled to all other modes of the electro-
ponent of the absorption spectrum and the even sideband@agnetic field, which are assumed to be initially in their
split into emission-absorption doublets, whereas the oddacuum state. This coupling leads to spontaneous emission
sidebands remain dispersionlik&6]. This splitting has re- With a rate given by the EinsteiA coefficient. _
cently been observed experimentally in the Autler-Townes 1he time evolution of the atomic system can be described
spectrum in both a detuned bichromatic figeP], and a Py the reduced atomic density operator which in the
resonant bichromatic field with unequal component ampli-Schralinger picture obeys the master equatiai]
tudes[20]. In this paper we calculate the absorption spec-
trum in the limit of one strong and one weak component of ‘9_92
the driving field; we restrict the calculations to tfidollow- ot
type) absorption spectrum. As in the case of fluorescence, (2.2
these spectra are again very different from those obtained
previously. We find that two different types of spectra can bewvhereS" =|e)(g| andS™ =|g)(e| are the usual raising and
observed, depending on the detunitg For A,#0 the spec- lowering atomic operators anb is the radiative damping
trum exhibits triplet emission-dispersion-absorption struc-constant,I'=A. The HamiltonianH is composed of two
tures aboutw; and w;+2(),. In contrast, forA,=0, the cen- terms,
tral component atw; is suppressed. A simple physical
interpretation of these results is given in terms of the dressed H=Hy+V_, (2.3

i 1
— 7 [He]-5(S"S e+eS'S™-257¢S"),
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where I1l. FLUORESCENCE AND ABSORPTION SPECTRA:
A CONTINUED-FRACTION APPROACH
HOZﬁwOSZ, (24) . .
A. Optical Bloch equations
is the unperturbed atomic Hamiltonian, wigi the atomic We now consider the fluorescence and absorption spectra
inversion;(|e)(el —[g)(g)- _ , of a two-level atom driven by a bichromatic classical field.
The second term in E¢2.3) describes the coupling be- 1o gpectra were calculated in Refé4,16 for equal and
tween the driving field and the atom. If we treat the driving near1y equal amplitudes of the two field components, both by
field _ classically, the_ interaction Ham_lltoma\rlL (in the 5 numerical continued-fraction method afffidr nearly equal
rotating-wave approximatiommay be written as amplitude$ by an analytical perturbation theory method in
_ + . + . the dressed-atom basis. In this paper, we focus on the case of
VL=ALQSTexp—Twgt) + 0,5 expl IwthH'C'gé 5  One strong and one weak component of the driving field
' which, as we shall see later, produces dramatically different
where spectra. A full discussion of the method used to calculate the
_ spectra is given in our basic paper, Rgf6]. In the interest
201=p-E1/h, (2.6 of brevity, only the key formulas will be given here.
2 2 The master equatiori2.2) with the Hamiltonian (2.3
are the Rabi frequencigst resonangeassociated with the leads to a closed set of three equations of motion for the

components of the driving field at frequencies. If we use expectation values of the atomic operatéoptical Bloch

a fully quantum-mechanical description of the system, theequation}s which in a frame oscillating with the frequency

effective Hamiltonian(2.3) (in the rotating-wave approxima- “s’ can be written as
tion) takes the form

~ 1 _
St))=—|=T+IiA (S (t
— o Ewy=-[3ria)Ew)
where +2(Qqe%+ Qe 1 (SY1)),
H =% w S+ hwala; +Hw-.as a (2.9 TN R
0 0 185 8 28 8 (ST (t))= (ZF iA (S (1))

is the Hamiltonian of the uncoupled atom and field, _ _
+2(Q,e7 %+ 0,6 (SH(t)),
V| =hgi(a; S +S*a;)+hg.(a; S +Stay) (2.9

- 1 ) o o~
is the atom-field interactiony is the atom-field coupling con- (S (t))=—3 I =T(SH(t))— (Qe7""+ Qe (S (1))
stant (equal to the one-photon Rabi frequepcyand
a1, (a1, are the annihilatior{creation operators for the — (€24 0,6 1M (S (1)), (3.1
driving field modes. In the classical description of the pro-
cess, the basis states for the system are simply the atomichere
stategg) and|e). For the quantum treatment, the basis states -
are product state§)|N,M) involving products of atomic (ST (1))=*i(S")exp Find), (3.2
li) (j=g,e) and driving field (N,M)) states, wher& and _ _
M denote the number of photons in modes 1 and 2, respe@'€ Slowly varying parts of the atomic operators,
tively. These states are the eigenstates of the uncoupled atom
and field Hamiltonian2.8). A=wo—ws 3.3

In the classical reatment, the tei in the Hamiltonian is the detuning between the atomic transition frequency and

(2'?.’) IS penodlc in time, with separation frequency. ZThe the average frequency of the driving field components, &nd
periodicity of the problem makes it advantageous to analyz¢ia-S half the separation frequency

the system in terms of Floquet states of the atom. In Sec. IlI, In order to solve the system of equatidBsl), we decom-

we present in detail Floquet's theordi?8] adapted to the §Ose the componen{S™ (1)), (S* (1)), and(S(t)) into am-

fclﬁz(raegieict:alcgg?jma?scorﬂ?ilgna;degtigviﬁ tee );Fr)]::sosf'otﬂz ];glro t: itudes that oscillate at frequendyand its harmonics. This
P P q composition is given by the relation

states.
In Sec. IV, in the quantum treatment of the problem, the +oo
interaction (2.9) is first diagonalized to obtain the dressed Xi(t)= 2 Xi(')(t)exp(il ), i=1,23, (3.9
|=—o

states of the atom-field system. We then calculate the fluo-

rescence and absorption spectra in terms of transitions be-

tween these dressed-states. The quantum description allodere ~_Xi(t) _are ~ components of the vector
us to obtain both a physical understanding of the process and(t) = (S (1)).{(S™(1)),(S(1))). On substituting3.4) into
analytical expressions for the spectra. We find that there i§3-1) and taking the Laplace transform

good quantitative agreement between these analytical ex- .

pressions and those obtained by the full numerical calcula- Xf')(z)=f exq—zt)xi(')(t)dt, (3.5
tions of Sec. Ill. 0
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of the slowly varying amplitudeX ("(t), we find the trans- XP() =YV (1) =(3" ()3 (t+ ),
forms X (V(z) satisfy a vector recurrence relation
N N . N XP ) =YL () =(ST(1)S" (t+ 7)),
AXTY(2)+ (B +z1)XD(2)+C, XV (z2)=x1(0),

(3.6 XP(t)—=YP(r)=(ST () S (t+ 1)), (3.12
wherez,=z+il 8, X" are column vectors and theX"(0) vector replaced by
X§(t)
n x{(0) 3
: X (@) x(0) X1(0)—Y(0) = 0
XV(z)=| XP (@) |, XV(0)= 2 Mgy L
x1(2) , X(')(O)—L s , —5 X2 (=5 XD b0
3 3 27 1,0 (313)
(3.7 ' _
The spectrum(3.11) contains an incoherent as well as a
andA,, B,, andC, are matrices: coherent part of the field scattered by the atom. Introducing
the fluctuation operators
0 0 -2 AS*()=5*() - (5" (1), (3.14
A= 0 0 -—-20,], (3.9 . . . . _—
we can write the atomic correlation function appearing in Eq.
Q; O 0 (3.1 as
1 (S*()S (t+7))=(AST(1)AS (t+7))
=T'+ié 0 0 ~ -
2 +H(ST (NS (t+7), (3.19
Bi= 0 } r—is 0]’ (3.9 where the first term on the right-hand side represents the
2 incoherent part of the field, while the second represents the
0 0 r field scattered coherently by the atom. The incoherent part
Sin(w) of the spectrum can then be calculated by subtracting
. out the coherent part from the total scattered field
0 O 20,
C={ 0 0 =20,/ (3.19 Sn(w)=u(F)Rej drel @0 (SH ()8 (1+ 7))
0 Q 0 0

N -
We solve Eq.(3.6) numerically by a continued-fraction (STONS (t+7)]. (3.1

approach using a truncated basis of harmonic amplitudesntroducing the Laplace transform, we express the incoherent

The validity of the truncation is ensured by requiring thatfluorescence spectrum in terms of the components of the

X{(z) not change as the number of harmonics increases by()(z) andX()(t) vectors as

one. Equation3.6) is valid for arbitrary values of);, (,, .

A, A,, and 8, and all our numerical calculations are based Sin(@)=u(r)Re G(2)|,= i, , (3.17)

on this exact equation. Wherev=(w—ws)/l“, and

B. Fluorescence spectrum G(z)=Iim (Y(lo)(z)—Xl(t)Xz(t)). (3.18
t—oo

The steady-state fluorescence spectrum is given by the
Fourier transform of the two-time correlation function of the  The fluorescence spectrum can be plotted from(Bd.7)

atomic operators with the componentsr {%(z) and X((t) found from the
recursion relatior(3.6). We plot the incoherent fluorescence

—u(MHRe | dr lim(S*(1)S (t+7r))ei@ w97 spectra for the case aﬁ'lzwo (A;=0)," while w, IS tuned
Sw)=ulr) 0 THJ OS (t+n) close to w;+20Q);. In Fig. 2 the spectrum is shown for

(3.1)  204=50I", w=wy, a=0,/2;=0.1 and different values of

A,. For largeA,, the spectrum shows the well known Mol-
whereu(r) is a normalization constant containing geometricloW triplet [1]. For small but nonzerd,, the spectrum ex-
and atomic factor§16,27. From the quantum regression hibits a triplet at the central frequency, with components at
theorem[29], it is well known that for7>0 the two-time ~@=1{w andw; =20y}, and doublets ab={w, and w,+20y}
average(S*(t)S™(t+ 7)) satisfies the same equation of mo-
tion as the one-time averad& (7)). It is not difficult to
show that the optical Bloch equatio(.1) for the two-time 1The intensity in the coherently scattered field is proportional to
averages lead to equations of the same form(38), but  (I/2Q)? and is completely negligible, both in our calculations and
with the componentX ('(t) replaced by experimentally(see, e.g., Wt al. [2]).
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FIG. 2. The fluorescence spectrum fan=w,, 20;=50I, FIG. 3. The fluorescence spectrum fon=wqy, 20,=50I,

a=0,/0,=0.2 and differentA,: (a) A,>500", (b) A,=7I", (c) A,=0 and differentw: (8) «=0.2, (b) @=0.4, (c) «=0.6.
AZZO.
that required for appearance of the additional triplets at
w,+4(),. Furthermore, a& increases still further, additional
triplets will emerge atw;+6(),, w,+8(,, etc.
The numerical calculations of the fluorescence spectrum
indicate that qualitatively new types of behavior arise when
h " the atom is driven by a bichromatic field with one strong and
tran consists of a doublet heas and tiplats contered at 01 Weak comporent. As expected. we have found that i
.20 this case the fluorescence spectrum is more complex than
1= hat for a monochromatic driving field. Moreover, different
pes of spectra are observed depending on the valuas of
and a. In the next section, we present a dressed-atom calcu-
lation, which provides analytical expressions for the fluores-
cence spectra, and gives a physical interpretation of the ap-
pearance and disappearance of the spectral peaks, their
intensities and their widths.

and o={2w;— w, and 2v;—w,—2(),}. A quite different situ-
ation develops when, is exactly zero: In this case the in-
coherent central peak af; is also suppressegeaving be-
hind a doublet, at; +20),),2 and additional peaks emerge at

When we increase the intensity of the weak componen
(i.e., @), the peak atv; reemerges. Moreover, additional side-
bands (triplets appear, centered aboui;=4(),;. This is
shown in Fig. 3, where we plo§,(w) for A;=A,=0,
2Q),=50I", and differente. For smalle the spectrum exhibits
two peaks neaw, and triplets centered abouwi+2(}),. As «
increases, additional triplets emerge @t+4Q,. For still
larger @ («=0.6), the peak atw; reemerges, but with an )
amplitude significantly smaller than the amplitudes of the C. Absorption spectrum
remaining peaks. It should be noted that the central peak We now introduce a third tunable probe beam of fre-
reappears in the spectrum only fersignificantly larger than  quencyw, and amplitudeE,,, sufficiently weak that it does

not appreciably perturb the atom-driving field system. The
steady-state absorption spectrum of the probe field can be
2In Sec. IV we will find that the intensity of the incoherent peak at written in te_rms of the Fourier transform Qf the average value
w, is proportional taA%/(Q3+A3) for small A,. Our numerical cal- ~ Of the two-time commutator of the atomic operatord 26
culations show a peak at; beginning to emerge a,~0.2I", hav- -
ing an amplitude~10% that of the doublet peak amplitudes for W(w,)=WgRe dre'(“p= 99D (7), (3.19
A,~T', and ~20% for A,~1.6I". 0
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where e ————— —
Wo=2w,Iu(F)| - Ep| 24, (3.20 3t ©
N
and S
~ ~ o
D(7)=Ilim{[S™ (t+7),S"(1)]). (3.21 ot
t—oo ol
Tl
Using Laplace transforms, we rewrite the absorption spec- = oottt
trum (3.19 in the form i
ol
W(w,)=WoRe D(2)|5- i, (3.22 o | ®
g s}
where n=(w,— wg)/T’, andD(2) is the Laplace transform of ,s\“
the commutatoD (7). ¥ ° Y
For the commutators
st
~_ ~ 1k
Ri(7)=([S (t+7),S+(t)]>, ................
o [T
- - of
Ro(7)=([S"(t+7),S"(1)]), ()
!
Ra(7)=([S(t+7),5" (1)]), (3.23 °
ol
the optical Bloch equation@.1) lead to the same recurrence °
relation as Eq(3.6), but with the component¥;(t) replaced JL
by R;(7) andX"(0) by o — TA v
—ax0(1) -100 -50 0 50 100
X(0)—R(0)=| 0 (3.24 (@ = w/T
-5

FIG. 4. The absorption spectrum fo)2=50I", «=0.1, and

different 6,¢. (a) 6=¢=mn/4, (b) 6=¢p=m/6, (c) 6= p=l8.

The steady-state absorption spectrum takes the form

W(wp)=WoRe R (2)],— i, (329
In Fig. 4, we plot this spectrum for(2=50I", «=0.1 and
different detuningg\; andA,. ForA;=A,=0, we observe an

emission-absorption feature centered gt and emission-

IV. FLUORESCENCE AND ABSORPTION SPECTRA:
A DRESSED-ATOM APPROACH

In this section we calculate analytically the fluorescence
and absorption spectra of a two-level atom driven by a
bichromatic field with one strong and one weak component.
We treat the field quantum mechanically, and first derive the

dispersion-absorption features centeredogtand 2v;— w,.
As in the fluorescence spectrum, there is no central comp
nent atw,. When bothA; and A, differ from zero an addi-
tional dispersionlike feature develops @t. Moreover, the
amplitudes of the features centered neat2(), increase as
the detunings increase, whereas the feature centered at
w—2(), is reduced to an emission line. In Fig. 5, we plot the
spectrum forA;=A,=0, with =0.1 and 0.2, respectively.
The spectrum is qualitatively unchanged, but the intensity of
the emission and absorption lines increases linearly with
and for@=0.2 is double that for=0.1.

It is difficult to understand the physical origin of these
spectral features from the calculations described thusfar.
However, in the next section we study the system and recal-
culate the absorption spectrum in terms of the doubly-
dressed-atom modgBQ]. Since one of the bichromatic com-
ponents is more intense than the other, this model provides a
good approach for studying the problem, both qualitatively
and quantitatively, and in the limit of well-separated spectral

Oe_igenstatexédressed statesf the combined system. We then

' .
8 |
i
]
(=] '|
3 » \ \
T o \
S “}/‘A ‘ ‘Wk
|
f
| !
s g~ 5 %
(mp - w,)/T

features leads to both simple analytical solutions and a trans- FIG. 5. The absorption spectrum fof)2=50I", §=¢=7/4 and

parent physical explanation.

different a: «=0.1 (solid line), «=0.2 (dashed ling
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use these states as basis states for further calculations. The

model is valid in the limits R L

wS>Ql>Qz>F (41) —— -

2 I -
A. Dressed states e —
The Hamiltonian(2.8) of the uncoupled system of atom J »
and driving field has eigenstatgy|N,M) which satisfy the Ay -
eigenvalue equation
- . q
whereE; is the energy of the atom in stdte (j=e,g), and - T 26
N(M) is the number of photons in laser mod@)1 We find T
the eigenstates of the coupled system by performing a -
“double-dressing” calculation, recently us¢a0] to study a —_—
system consisting of é&monochromatically strongly driven -
atom coupled to a single mode of a cavity. In these calcula- —
tions, we first find the eigenstates of the Hamiltonian of the }
atom and strong field component p— '
Hya=f0oS*+how,a] a;+hg.(af S +STa;). (4.3 (a) (b)

This Hamiltonian has eigenstatgsN), i =1,2, satisfying the FIG. 6. Energy level diagram of the undressed systamand
eigenvalue equation of the doubly dressed atofh).

Hyali,N)=7% —-(=1'0]i . . . . .

aall,N) =#[Noy = (= 1)'Q]Ji,N), (4.4 When we include the interactiow between the singly

where dressed atom and the weak field component,

|1,N)=sin#|g,N)+cosd|e,N—1), W=7g,(a; S +S"ay,), (4.10

|2N)=cos9|g,N)—sing|e,N—1), (4.5

the doublets recombine into new doublets with eigenstates

are the(singly) dressed-atom states, with )
IN+M,n+)=sing|2N—n—1M+n+1)
1 A

co§0:§+m, (4.6) +cosp|ILN—n,M+n),
and IN+M,n—)=cosp|2N—n—1M+n+1)
20=(402+A2)12 4.7 —sing|LN—n,M+n), (4.1
the detuned Rabi frequency of the strong compon24t corresponding to energies
The HamiltonianH, of the noninteracting singly dressed
atom and weak component Ensmne=(N+M)w;+(2M+2n+1)Q—(M+n)A,*G,
Ho=Hyatfiw,a; a, (4.9 (4.12
has the eigenvalue equation where
Ho|i,N,MY=%A[Nw;—(—1)'Q+Mw,]]i,N,M), (4.9 CO§¢:1+£ 413

where XM <N. In the following, as in Sec. lll, we will 2 4G

assume that the frequency of the weak component is close to
the Rabi sideband frequency,+2Q), with a detuning and
Ar=w;+20—w,. ) 21

The stategi,N,M), appearing in Eq(4.9), are the “un- 2G=(40Q5c08'6+A3) (4.14
dressed” states of th@incoupledl system. It is easy to show
from Eq. (4.9 that these states group into manifolds eachis the detuned Rabi frequency of the weak field component.
containing an infinite number of doublefsee Fig. 6a)].  Thus, the state$4.11) are (also grouped into manifolds,
Neighboring manifolds are separated by frequeagywhile ~ each containing an infinite number of doubléEsg. 6(b)].
neighboring doublets within each manifold are separated biNeighboring doublets are separated Ky, 2vhile the intra-
24. The states within each doublet are separatedy doublet separation is@.
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B. Transition rates

1 .
Interaction between the atom and the vacuum modes oF”i'(””)i:Z [ sinf2¢ sint'o, @nz (n+1)x =201 02,

the electromagnetic field leads to a spontaneous emission

cascade by the dressed atom down its energy manifold lad-

der. The probability of a transition between any two dressed I'y, ,—;)-=T cod'¢ codd, Ony (n-1)- =02+ 2G,
states is proportional to the absolute square of the dipole
transition moment connecting the@4]. It is easily verified
that nonzero dipole moments occur only between states
within neighboring manifolds. Usingt.11), we find that the
dipole transition moments betweefN+M,n+) and Ony (n+1)- = 2w~ wr+2G,
IN+M—1m=) are

Fn+‘(n+1), = F S|r|4¢) Sil’149,

(n+,N+M[STIN+M—1m+) o n-1+ =T sinf¢ co'6,  on n-1)+=w2~2G,

1 — [y
=C0S2p Sind cosHS,, m+ > sin2¢ co€ 08, ms1 Lo i1+ =T codg sirf'e,

1 wn_’(n+1)+=2w1— (1)2_2G (421)
— 5 sin2p SifO8, m—1., (4.15

The total spontaneous emission decay rates from
IN+M,n=) are then given by

(n+,N+M|STIN+M—1m—)

= —sirt¢ sind coBS, m+cog $cogh5, m 1 Thi=2 Toy =T (cogd cog ¢+ sirtd sire),
m)
+sirt e Sif08, m_1, (4.16 (4.22
(n= ,N+M|S"[N+M—1m+) Fn,:% To_ mi=T(sirP8 codp+ oo sirfep).
= —sin2¢ sind coHS,, ;—Sif e COFOS, m+1 (4.23
—cog¢ SinfO8, m-1, (4.17

From the transition rates of E4.21), it is apparent that
the spectrum contains nine lines for general valueg ahd
(n—=,N+M|STIN+M—1m-) 6. If we keep the strong driving component nearly resonant
with the atom(w;~w, or #~/4), the number of lines will
vary with the detuning of the weak component. For example,
for ¢p=ml4 (A,=0), the transition rate$’,. ,. vanish, the
spectral line atw, disappears, and eight lines remain in the

1 ] spectrum; this case is plotted in FiggcRand 7c). Simi-
+5sin2 Sy (418 |arly, for largeA,, sirfe, sirf2¢—0. The number of spectral
lines is then reduced to three, @f,w,+2G~w,+2(Q+ ),
and 2v;— w,—2G~w;—2(Q+ ), very similar to the Mollow

The presence of thé functions in Eqs(4.19-(4.18 indi- triplet [Figs. 4a) and 7a)]. The spectra will be discussed in
cates that from a given doubléN+M,n=) spontaneous detail in Sec. IV E.

emission can occur to doublettN+M—1m=) with
m=n,n=1 only. These transitions occur with probabilities

1
= —COS2pSING COH Ty m— 5 SiN 2 coS 08, ms1

L imi= T(ni,N+M|STIN+M— 1,mj>|2 (4.19 C. Populations of the dressed states

To study the evolution of the populations of the dressed
states, we project the master equatidr2) onto|N+M,n=+)
4.20 on the right andn=,N+ M| on the left. We make the secu-
' lar approximation(ignoring nonsecular couplings between
populations and coherengedenote the populations of states
IN+M,n+) by ITNM,

at (nine differenj frequencies

@nimi=h (Entmni— Entm—1m))s
given by the expressions

Fhene=Tl 00522¢ sinf@ cos 9, Wp+ e =01,
INM=(n= N+M[pIN+M,nx),  (4.24
[pe ng =1 sinf2¢ sirfd cofd, wps ns=w1*2G,

and introduce the “reduced” population$, == [T <M

[24]. The equations of motion dfl ; (7) can be written in the

1
Fni,(nfl)t:Z I si® 2¢ cos'6, wps+ (n-1)+= w2, form
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d . 1 . , , , N 1 . _
s I (r)=— (Z Sinf2¢ sirf26+ cos ¢ cos 6+ sirt ¢ sm“ﬁ) I, (7)+ 7 sirf2¢ sirf2611,, (7)
+5sirf¢ codd[cod @Il , (1) +SirPpIl, ., ,(7)]+coge sinto[sif Il (7)+coell,_,(7)],
(4.25

(;j—T I, (rn=-— (% sin2¢ sirf26+ sirf¢ cos' 9+ cos ¢ sin“@)l’[;(r)+ % Sinf2¢ sirf2611, (1)

+cog ¢ codtO[cog Il , (1) +SiP @Il . (7)]+SirPe sinto[sif eIl _ (7)+cospll,_,(7)], (4.26

where =I"t. BecauseM>1, as in the case of monochro- nonoverlapping. The equations of motion of the correspond-
matic driving[24] we can assume that the populations varying density matrix elements are therefore uncoupled and

slowly with n, and write from the master equatioi2.2) we find that they are given by
My =M,.,==07, P minm=—(onimTT)phhinm, (4.3
O, =M,,,=--=I". (4277  Wherew, = w;*2G,0,*2G,20w; ~ w,*2G are the fre-

qguencies of the spectral lines, and

Equations(4.25 and (4.26) then reduce to a set of two

- S 1
ggﬁﬁ:ﬁg- equations, which in the steady-state:») has the F°:Z T[2+sir2¢(cod 6+ sin 6) + cod2¢ sint26],

(4.32
1 . . . 4 . - . . .
n+ Sirf2¢ sinf26+ sint¢ cos 0+ cos ¢ sinto is their linewidth.
—_—= ) For the central component of the spectrum, the two matrix
1 siP2¢ sir?20-+ it sirf 9+ cod b codd elementsp (), v andp P, v oscillate at the same
4 frequencyw,, and therefore have coupled equations of evo-

(4.28 lution. When we average over the driving field, the reduced
coherencep (2. =S wp 2= v are found to obey the
It is evident from Eq(4.28) that for generalp,d the dressed Same coupled equations of motion as do the populafibns
states are unequally populated. However, it is easily verifiedVith thg)addltlon in each of the freely oscillating term
that when eithegs= /4 or 6=m/4, the population is equally ~@1Pnz\nx, @nd are given by

distributed, and1*=I1". . .
Pt (D=—(iw1+A)pt) L () +BpL (1),
P\t () =—(iw1+B)pit o () + A (D), (4.33

The fluorescence spectrum is related to the time evolutiomwhere
of the atomic dipole moment operatsi [24]

D. Coherences and spectral linewidths

A= (% SirP2¢ sinf26+ cos'¢ cos 6+ sint ¢ sin“&)l",
St= 2 SrTi,ijgJir,r)nj,N,M ) (4.29 (4.39

ni,mj
N,M

B= (% SirP2¢ sinf26+sint¢ cos 0+ cos ¢ sin“&)r.

where Sg; ;i =(ni,N+M|STIN+M—1mj) are given by

Eqs.(4.15—(4.18, andp'; ), n.u are the coherences (4.39
i i (+) —gft (+)
pET,?nLN,M=|N+M,ni)(mj,N+M—1|, (4.30 The associated dipole momentsy’ . =S; . n=pne/n=

then obey the equations

which are off-diagonal elements of the density matrix, and ~ p\ ., (1)=—(iw+A)pLL  (H—Bp,, (1),
oscillate at frequencie@t.2]).

First, we consider the transitions@+2G, w,=2G, and  p{") _(t)=—(iw;+B)p\"~ _(1)—Ap\} . (1), (4.36)
2w;—w,*2G. For values of() andG corresponding to the
range(4.1), it is easily verified that the spectral lines are all whose solutions are readily found to be
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() (¢ B 1 tion as(4.33, but with w; replaced by @,—w, for the ele-
pn+,n+( ) a —iwqt —(iwg+T )t (+) (+)
+ )= =3 | —Al® Utap| o |e el mentsp 2’ 41y« and by w, for the elementp >’ 1y .
n—n-(0) JAZ+B Their solutions are the same as given in B437 and their
(4.37  linewidths the same as that of the central componena#;at

where the constanta; and a, can be found from initial [Eq. (4.38].

conditions. We do not, however, require the valueacénd

a, in order to calculate the fluorescence spectrum and there- E. Fluorescence spectrum
fore do not solve for them. The first term in Ed.37) cor-
responds to the elastic component, while the second terrlg0
corresponds to the inelastic central component at frequenc';ﬁ
w1 With linewidth given by

The fluorescence spectrum is given by the real part of the
urier transform of the correlation function of the dipole-
oment operatoftp{*)(t)p(")(t")), t>t'. From the quan-
tum regression theorefi29], it is well known that fort>t’

1 the two-time averagép i ),(t)p¢)(t')) satisfies the same
I'y,=A+B=T|5 sinf2¢ sirf26 equation of motion as the one-time averdg ﬂnj(t)>, with

2 - " :

the initial conditions

+(sintp+cod)(sifo+cod0)|.  (4.39 (PP W)Y =T i 1T, (4.39

Finally, we consider the evolution of the off-diagonal el- wherel'; ,; are given by Eq(4.21), andII' are the steady-
ementsp gi{(nﬂH, which are related to the components atstate populations of the dressed states given by(&£889.
frequencies @,— w, and w,. These elements are coupled to The equations of motion for the one-time averages
the matrix elementp () 1), which oscillate at the same (p i h(t)) were obtained in Sec. IV D. Thus, in the limit of
frequencies. It is easily verified that the dipole moments aslarge G(G>TI"), where the spectral lines do not overlap, the
sociated with these elements obey the same equations of midorescence spectrum is given by

(rn+,n+H++Fn—,n—H7)Fp (Fn+,(n+l)+H++Fn—,(n+1)—H7)Fp

Sin(w)=u(r)

(w—wl)z-i—l_'g (w—2w1+w2)2+1—‘§
+ (Fn+,(nfl)+H++Fn7,(nfl)7H7)rp I‘nJr,nfl_[Jrl_‘c + 1_‘nf,nJrHirc 1_‘nJr,(nfl)fl_[Jch
(0—w,y)?+T73 (0—w;—2G)?+TZ  (w—1+2G)%+T%  (w—w,—2G)2+T2
1—‘n—,(n—1)+H_l—‘c 1—‘n-%-,(n-%-l)—l_[+1—‘c 1—‘n—,(n+1)-%—1_[_1—‘c

4 + . 4.4
(0—w+2G)?+T2 " (w—2w1+w;—2G)?+T2 " (w—2w1+wy+2G)?+T2 (4.40

In Fig. 7, we plot the analytical expressidd.40 for the hibits three lines near the central component and two lines
incoherent partof the fluorescence spectrum for the samenear each Rabi sideband. Whag=0, ¢=7/4 and all tran-
parameters as in Fig. 2, where we have plotted the spectrusition rates are different from zero except 1y~ . , caus-
calculated numerically. It is seen that the positions of thang the central component a} to disappear, as seen in Figs.
spectral lines, their linewidths and intensities calculated fron2(c) and 7c).
the analytical expressiof#.40 are in good agreement with For high «, the numerical calculation of the fluorescence
the numerical results. spectrum[Fig. 3(c)] predicts additional triplet structures lo-
Having available the analytical solution for the fluores- cated neaw,+4(). Moreover, these calculations predict the
cence spectrum, it is easy to explain its strong dependence @Bappearance of the central componenbgéven wherd= ¢
the detuningd,, which is seenin Figs. 2 and 7. For lar§¢ ~ =7/4. The analytical expressiof.40), however, predicts
[Figs. 2a) and 7a)], sir’ —0 and most of the transition nejther the additional triplet structures nor the reappearance
rates I'y; m; vanish, except forl'y. ., I'hy (n-1)-, @nd  of the central component. In order to explain these features
Fn,,(nﬂ)f. In this limit the spectrum rgduces to the familiar analytically, we have to go beyond the zero-order approxi-
Mollow triplet [1]. As A, decreasesFigs. ab) and 1b)],  mation inw in the calculation of the dressed states. We have
s_lnqb increases somewhat, which results in nonzero transig, .« far neglected the coupling v/ of the states|N
tion ratesly. s, e (nea)s Tns oz @NALns (n-y= the 4y navy 107 the stategN+M, (n=1)+) and [N+M, (n
remaining rated 'y, (n+1)- andly_ (1), are proportional . 5y+y “This coupling is of ordefG, while the states are
to sirf* ¢ and still very small. In this case the spectrum €X-separated froiN-+M,n=+) in energy by amounts of order
rQ), so that the coupling introduces correction terms into the
dressed states of ord&/Q~a. Here, we include this cou-
3The coherent part of the spectrum vanishes for the parametepling and calculate the first-order corrections to the states.
chosen(w;=wq or 6=1/4). From Eq.(4.13), we find that the statedN+M,n+) are
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|N+M,n+)<1)=|N+M,n+>+%[|N+M,(n+1)—)
—IN+M,(n=1)—-)]
o
—§[|N+M,(n—2)—)
+|N+M,(n=2)+)—|N+M,(n+2)+)
+|N+M,(n+2)—-)], (4.42
[N+ M =)D =[N+Mn=)+ 5 [IN+M,(n+1)+)
—IN+M,(n—=1)+)]
a
+ g [IN+M.(n-2)-)

+IN+M,(n=2)+)+|N+M,(n+2)+)
(4.43

Using the above corrections to the dressed states, we find
that additional transitions are predicted at the frequencies
0+ 4Q—3A,) and w;74(Q—3A,)+2G with probability

—[IN+M,(n+2)-)].

a’T
Fnt,(n+2)t:Fnt,(n—2)i:Fnt,(n+2)1:Fnt,(n—Z)I:H-

(4.44

Thus, the additional triplet structures in the spectrum in the

FIG. 7. The fluorescence spectrum plotted from the analyticaViCinity of w;*4Q occur with intensities proportional to

expression, Eq(4.40, for w;=wq, 2Q;=50I", @=0.2 and different
AZ: (a) A2>50F, (b) A2:7F, (C) AZZO

coupled to the state$N+M,(n=1)=) and [N+ M,(n
+2)=*) with the following nonzero matrix elements:

(N+M,(n£1)—|W|N+M,n+)
=(N+M,(n£1)+|W|N+M,n—)
:_G,

(N+M,(n=2)=|W|N+M,n+)
=(N+M,(n+2)+|W|N+M,n=)
=—%G,

(N+M,(n=2)=|W|N+M,n—)
=(N+M,(n+2)—|W|N+M,n=*)

=1G, (4.41)

where, for simplicity, we have assumed tlgat = m/4. Us-
ing first-order perturbation theory, we find the statéé
+M,n=) correct to first order inx to be

a?/64, and appear only for high.

In a similar way, it is straightforward to show that for
0= ¢=nl4 transitions at the central frequeney occur with
probability

4
ro  _«T
nx,nt 16 ’

(4.45
which is two orders inx smaller than those of the additional
triplet structures atv;+4€). Thus the central component re-
appears only for relatively larger values efthan those at
which the additional triplet structures become visible. In a
similar way too, by including in our calculations terms in-
volving successively higher powers af we predict the ap-
pearance of additional triplets in the spectrum centered at

frequenciesw;=2n(), n=1, with intensities proportional to
2(n—1)
o .

F. Absorption spectrum

According to Eq.(3.19, the absorption spectrum of a
weak probe beam is given by the real part of the Fourier
transform of the commutatdf S~ (t),S* (t')]), the first term
of which is associated with absorption and the second with
stimulated emission by the system. From the quantum re-
gression theorenp29], it is well known that fort>t" the
two-time commutato([S;i,mj(t),S*(t’)]) satisfies the same
equation of motion as does the density matrix element
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[p & hi(t)1*, with the initial condition
<[Sr:i,mj(t,)7s+(t,)]>:Fni,mj(Hi_Hj)- (4.49

an,n+(H+_H_)Fc

1—‘nJr,n—(H__H*—)l—‘c

Z. FICEK AND H. S. FREEDHOFF 53

Thus, it is straightforward to show that in the case of non-
overlapping spectral components, the absorption spectrum of
a probe beam is given by

1—‘n+,(nfl)f(H__1_[4—)1—‘0 1-‘nf,(nfl)Jr(H-*—_H_)Fc

Wlon)=Wo (0. +2G)7+ T2

Coi neyy-(ITT =TT

(0p— 01— 2G)*+T'%

l_‘n—,(n+1)-¢—(H+_H_)Fc

(w0p—wy—2G)*+T'¢ (wp—wy+2G)%+T2

(wp—2w1+ wy—2G)?+T72

It is easily verified that the components of the absorption
spectrum have the same positions and linewidths as their
counterparts in the fluorescence spectrum but that they hav
widely differing intensities. The net absorption at any fre-

quency is proportional to the transition ralfg; ,; and the

difference between the populations of the lower and upper

levels in the transition. In Figs.(d) and 4c), we plot the

absorption spectrum fof= ¢+ /4, corresponding to popu-

lationsIT">II". In Fig. 4@), we plot the spectrum fof= ¢
=4, and hence, according to E¢.28), for equalll*. Yet,
in this case too, amplification lines appear @j—2G,

w,—2G, and 2v,—w,—2G, and absorption lines at their cor-

responding+2G counterparts, indicating thdil~>II" in

Fig. 4@ as well. In order to explain these features, it is
necessary to go beyond the zero-order dnexpressions

(4.28 for the steady-state populations.

In Egs.(4.42 and(4.43, we obtained expressions for the

eigenstategN+M,n=) correct to first order inv. If we use

these corrected eigenstates to study the evolution of th

populations, as in Sec. IV C, f@= ¢=n/4 we obtain fodl~
the coupled equations

_oar 3
H+:——H++F(—— %)H

8 8
= 3F1T+1“ 3+aﬂ+ 4.4
T8 g/t 148
with the steady-state solutions
= ——3 4.4
C6+4a’ (4.49
Thus the population difference to first orderdnis
2a
Hi—HJr:?, (45@

giving rise to the nonvanishing spectral lines of Fig&)4
Moreover, it is evident from Eqg4.47) and(4.50 that the
intensities fora=0.2 are double those far=0.1, in agree-
ment with the spectrum shown in Fig. 5.

(wp—2w1+ w,+2G)>+T2 )

(4.47)

V. SUMMARY

We have studied the fluorescence and absorption spectra
5t a two-level atom driven by a bichromatic field composed
of one strong and one weak frequency component. The spec-
tra have been found to be a sensitive function of the detuning
of the weak component from a Rabi sideband induced by the
strong component of the driving field. For smallthe fluo-
rescence spectrum consists in general of nine lines. For large
A,, however, the spectrum reduces to the Mollow triplet at
w, and w;+=2(); for smaller(but nonzerd A, it can exhibit a
triplet structure neaw,; and doublets near the sideband fre-
guencies. In contrast, wheX,=0 the fluorescence spectrum
exhibits a doublet structure neag and triplets neaw, +2(),
with no fluorescence ab, . For larger values of, additional
triplet structures appear at frequencigs-2nQ(n>1) with
intensities proportional ta?"~ Y, and the central compo-
nent reemerges even fag=A,=0, with an intensity propor-
jonal to a*. All these features are explained by using the
ressed-atom model of Cohen-Tannoudji and Reyrhad{
adapted to the case of a bichromatic driving field. The
dressed states have been identified, and the spectral features
interpreted in terms of transitions among these dressed states.
We have found that the appearance and vanishing of the
spectral lines for some values A and « is related to the
vanishing of the transition rates between the corresponding
dressed states.

We have also calculated the absorption spectrum of a
weak probe beam monitoring the bichromatically driven
two-level atom. The absorption spectrum too is a sensitive
function of A,, and novel spectral features are observed, con-
sisting of absorption and emission lines located negand
w;=2n). Again, we have explained these features in terms
of the dressed-atom model, and found that the emission-
absorption features are related to the unequal populations of
the dressed states, which are calculated as a functian of
The dressed-atom model both allows a physical interpreta-
tion of all the spectral features and gives good quantitative
agreement with the full numerical calculations.
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