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We point out that the local density approximation~LDA ! of Oliva is an adaptation of the Thomas-Fermi
method, and is a good approximation whene5\v/kT!1. For the case of scattering lengtha.0, the LDA
leads to a quantitative result, Eq.~148!, easily checked by experiments. Critical remarks are made about the
physics of the many-body problem in terms of the scattering lengtha. @S1050-2947~96!10306-1#

PACS number~s!: 03.75.Fi, 32.80.Pj

Bose-Einstein condensation~BEC! of free particles was a
great contribution to physics and provides one more example
of the awesome and daring insight of Einstein. For some 60
years, experimental observation of BEC was considered
hopeless. Now, through a series of ingenious developments,
BEC has finally been observed@1–3# for trapped bosons. We
would like to discuss here BEC of such trapped particles
with and without mutual interactions@4#. First some prelimi-
naries.

Four lengths are involved in harmonic traps. They are

L15~2pmv2b!21/2, L25~\/mv!1/2,

l5~2p\2b/m!1/2, a, ~1!

whereb51/kT, L1 gives the order of the classical oscilla-
tion amplitude of a particle in the oscillator with energy
kT, L2 is the size of the ground state in the oscillator,l the
thermal wave length, anda thes-wave scattering length. For
recent experimentsl@uau. We notice also that

L1 :L2 :l51:A2pe:2pe, e5b\v. ~2!

I. THOMAS-FERMI METHOD AND THE LOCAL
DENSITY APPROXIMATION, GASEOUS PHASE

For small values ofe and large number of particles, the
Thomas-Fermi method for atoms can be adapted to the
present problem: We divide space up into cells of volume
larger than (L2)

3 but smaller than (L1)
3, and consider the

potential energyV of the trap to be a constant in each cell.
Each cell contains a collection of particles and mutual inter-
action described by a scattering lengtha. All particles in a
cell have the same external potentialV(r ) per particle. If
V50 this problem for a cell has been studied@5,6# in the
1950s. For the present problem, in each cell we need only
replace the fugacityz of the 1950 result byzexp(2bV).

This adaptation of the Thomas-Fermi method to the
present problem has been used in a paper by Oliva~see Ref.
@4#!. We shall follow his terminology and call it the local
density approximation~LDA !. In this approximation, in the
gaseous phase~i.e., without BEC! in each cell,r(r ) is given
by Eq. ~20! of @6#,

r~r !5l23g3/2~z!@12~4a/l!g1/2~z!#, ~3!

where

z5zexp~2bV!, gn~x!5(
1

`

l2nxl ~4!

andz is the fugacity.
To ordera/l we can also write~3! as

r~r !5l23g3/2~j!, ~5!

j5zexp@2bV~r !24al2r~r !#. ~6!

II. VALIDITY OF LDA FOR CASE a50

If a50, LDA @i.e., ~5! and ~6!# gives immediately an
explicit expression forr(r ) provided z<1. If we pack in
more particles, i.e., if we try to increasez beyond 1, since
j cannot further increase atr50, BEC sets in atr50, in the
same way as the original Einstein description of BEC in
momentum space atp50. But this case ofa50 andV5 1

2

mv2r 2 can be rigorously solved, allowing for an understand-
ing of how LDA approaches the rigorous result. This is what
we shall do in the present section.

The density of atoms isr(r )5^r uDur &, whereD is the
density matrix equal toze2bH(12ze2bH)215(1

`zle2bHl .
The matrix elements ofe2bHl are known explicitly from@7#.
~Using it we avoid the tedious process of summing over
squares of Hermite polynomials.! We thus obtain

r~r !5e3/2l23(
1

`

~sinhl e!23/2zlexp@2s2tanh~ l e/2!#,

~7!

wheres5r /L2 . The summand in~7! behaves at largel like
a geometrical series with the ratio of successive terms equal
to

z15ze23e/2. ~8!

Thus the summation converges at allr for z1,1 and be-
comes divergent atz151 for all r . To study how it diverges
we write the summation as(1

`al where
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lnal5 l ~ lnz!2 3
2 ln~sinhl e!2s2tanh~ l e/2!

5 l @ lnz23e/2#1~ 3
2 ln22s2!1Cl ,

whereCl→0 asl→`.
Thusal523/2e2s2z1

l 123/2e2s2z1
l (eCl21). Therefore the

summation is equal to

( al523/2e2s2
z1

12z1
123/2e2s2( z1

l ~eCl21!. ~9!

The first term on the right is the divergent part asz1→1. We
notice happily that it is exactly proportional touc0(r )u2,
wherec0 is the normalized ground-state wave function of
the harmonic oscillator. Thus~7! becomes

r~r !5
z1

12z1
uc0~r !u21rn~r !, ~10!

showing that the BEC is in the ground state.rn is the normal
fluid part of the density functionr(r ). It is the last term of
~9! multiplied byl23e3/2:

rn~r !5l23~2e!3/2(
1

`

z1
l H 1

~12e22l e!3/2

3exp@2s2tanh~e l /2!#2exp@2s2#J . ~11!

So far ~10! and ~11! are exact. Notice that for largel , the
sum in ~11! is convergent forz151, unlike the first term of
~10!. Now we go to the case ofe!1. The contribution to the
sum in~11! for e l.1 is negligible. Fore l,1, we can drop
the last term in the curly brackets and replace 12e22l e by
2l e and tanh(e l /2) by e l /2, obtaining

r~r !>
z1

12z1
uc0~r !u21l23g3/2~z1e

2~1/2!bmv2r2!. ~12!

The second term here is the result of LDA with the replace-
ment ofz by z1 . See~8!. For e!1, this replacement creates
negligible errors.

In the gaseous phase, i.e., 12z1'O(1), thesecond term
in ~12! dominates and the LDA is good.

In the BEC phase, the first term is the condensate, with
12z1'O(N21). Thus we can putz151 in the second term,
obtaining exactly the result of LDA, except for the fact that
in the rigorous result the condensate has the spatial depen-
dence ofuc0(r )u25const3exp@2s2# while in the LDA the
condensate has ad-function dependence onr . But this is
hardly surprising since in LDA each cell has a linear dimen-
sion large compared withL2 , so that any structure of the
order ofL2 is shrunk to a point. This fact also means that in
LDA the cells should not be chosen to be<O(L2).

To further check the error in~12! we evaluated numeri-
cally its error divided by the second term on the right for
certain cases and found that the ratio is generally of the order
of Ae. For example, ife50.05, the ratio is,0.28, and for
e50.01, the ratio is,0.12.

In summary, ase→0, the LDA expression forr(r ) ap-
proaches the rigorous result at every fixeds15r /L1 .

We mention here that witha50, there is the well-known
basic symmetry in the Hamiltonian between the coordinate
and the momentum. To be precise, if we keep\, v, andb
unchanged, but replacem with (mv2)21 and switchx and
p, the problem is unchanged~for a50). Thus we easily
obtain the exact momentum space density distribution
n(p). The condensate is of course in the stateuc0(p)u2.

III. CONDENSATE FOR THE CASE a>0 IN LDA

For a.0, the thermal equilibrium in each cell can be
studied as in@6#. For large enough density, condensation
takes place in the cell. The cell then consists of a saturated
gaseous part with densityr05l23g3/2(1) plus a super part
with density r2r05rs . The free-energy density then be-
comes, according to Eq.~33! of Ref. @6#,

f ~r !52kTl23g3/2~1!12al2kTr22al2kTrs
2 . ~13!

From this free energy we obtain the chemical potential,
which should be equated withkT ln@zexp(2bV)# giving

kT lnz2V54pa@r1r0#\
2/m ~r,r 0!. ~14!

At r5r 02, rs50 andr5r0 . Thus

V~r !14par~r !\2/m5V~r 0!14par0\
2/m. ~148!

This simple equation is valid in the LDA for any trap poten-
tial V(r ) and should betestable experimentally~see Fig. 1!.

Outside of r 0 , ~5! and ~6! give the dependence ofr
on r . At r 0 , j51 and r5r0 on both sides; i.e.,r is
continuous. The value ofdr/dr is finite also but discontinu-
ous atr 0 , a fact already emphasized by Oliva@4#. d2r/dr2

is also finite and discontinuous.

FIG. 1. Example ofr(r ) as a function ofr for a.0 according
to Eq. (148). The curve is for a harmonic trap. Notice that the first
and second derivatives are both finite but discontinuous atr 0 .
r05l23g3/2(1) is the normal part ofr, andrs the condensate part.
For smaller total number of particles (5N), r 0 becomes smaller. It
eventually shrinks to zero and the condensate disappears.

4258 53T. T. CHOU, CHEN NING YANG, AND L. H. YU



IV. REMARKS

The pseudopotential interaction@5# is, in q-number lan-
guage,

Vpp5
4pa\2

m

1

2E dr1dr2c
†~r1!c

†~r2!

3d~r12r2!
]

]r 12
@r 12c~r1!c~r2!#. ~15!

The commonly usedd-function interaction@5# is, also in
q-number language,

Vd5
4pa\2

m

1

2E dr c†~r !c†~r !c~r !c~r !. ~16!

~a! We point out that there has been great confusion in the
theoretical literature of factors of two aboutVpp and Vd .
Furthermore, the approximate one-particlec-number equa-
tion written down from~16! also has confusions of factors of
two in the literature.

~b! Strictly speaking~16! does not make sense: The two-
body interactionAD(r12r2) for A,0 is not defined and for
A.0 it is equivalent to zero. To prove the first statement, we
calculate thes-wave phase shift for such a case. The inter-
action is considered as the limitR→0 of a potential well of
magnitudeU and radiusR, keepingUR3 a negative con-
stant. The wave function in the center-of-mass system at
R2 is R21sin@(2mU/\2)1/2R#. The argument of sine ap-
proaches infinity asR→0. To prove the second statement we
do the same calculation and find all phase shifts to be zero.

~c! Although ~16! is strictly meaningless, the perturbation
calculations based on~15! and ~16! in Refs. @5,6# give the

same result to the ordera1, and is meaningful to that order.
The considerations of the present paper are based on these
results to ordera and are thus meaningful.

How about higher orders? This is a matter of some
subtlety. It was found in Ref.@5# that to the second order in
a, ~16! gives infinity, confirming its sickness, but that~15!

gives a meaningful answer, which is proportional toa2/L
whereL is the size of the box. To ordera3 ~15! gives an
energy containing a term equal to const3N3a3/L5, which
approaches infinity asL→` while r5N/L35const. This di-
vergence was later removed@8# by a method of summation
over most divergent terms in a perturbation expansion: A
summation starting with this divergent term leads to the con-
vergent expression (4paNr)(128/15)(a3r/p)1/2 for the
ground-state energy. This result was later confirmed by sev-
eral authors who extended it to even higher orders.

The method of Ref.@8# was further extended to cover
finite temperatures@9#. These and related developments had
been summarized in Ref.@10#.

~d! It is tempting to interpret~5! and ~6! as indicating an
additional effective potentialVa5kT4al2r58par\2/m,
and to interpret (148) as indicating an additional potential of
Va54par\2/m. Such interpretations must be used with
care. In particular, it is not correct to assert that the conden-
sate is in the ground state ofV1Va .
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