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Bose-Einstein condensation of atoms in a trap
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We point out that the local density approximatitDA) of Oliva is an adaptation of the Thomas-Fermi
method, and is a good approximation when% w/kT<1. For the case of scattering lengib~0, the LDA
leads to a gquantitative result, E(.4'), easily checked by experiments. Critical remarks are made about the
physics of the many-body problem in terms of the scattering leag{t$1050-294{®@6)10306-1

PACS numbg(s): 03.75.Fi, 32.80.Pj

Bose-Einstein condensati¢BEC) of free particles was a p(N=\"3ga(O[1—(4a/N)gy )], 3
great contribution to physics and provides one more example
of the awesome and daring insight of Einstein. For some 6@vhere
years, experimental observation of BEC was considered .
hopeless. Now, through a series of ingenious developments, _ B el
BEC has finally been observti—3] for trapped bosons. We {=zexp(—BV),  9u(X)= ; 17" @
would like to discuss here BEC of such trapped particles
with and without mutual interactiorfg]. First some prelimi-  andz is the fugacity.

naries. To ordera/\ we can also writg3) as
Four lengths are involved in harmonic traps. They are
p(1)=\"%gyAé), )

g=zexg — BV(r)—4ar?p(r)]. (6)

L,=(2mme?B) Y2 L,=(hlmw)*?

A=(2wh2BIM)Y2  a, (1)
Il. VALIDITY OF LDA FOR CASE a=0
where 8=1/kT, L, gives the order of the classical oscilla- ) ) ) )
tion amplitude of a particle in the oscillator with energy If @=0, LDA [i.e., (5) and (6)] gives immediately an
KT, L, is the size of the ground state in the oscillatothe ~ €xplicit expression foip(r) providedz<1. If we pack in
thermal wave length, ana the s-wave scattering length. For more particles, i.e., if we try to increagebeyond 1, since

recent experiments>|al. We notice also that £ cannot further increase at=0, BEC sets in at=0, in the
same way as the original Einstein description of BEC in
L1:L2:)\=1:\/ﬁ:2we e=pho. 2) momentum space ai=0. But this case oh=0 andV=}

mw?r? can be rigorously solved, allowing for an understand-

ing of how LDA approaches the rigorous result. This is what
|l. THOMAS-FERMI METHOD AND THE LOCAL we shall do in the present section.

DENSITY APPROXIMATION, GASEOUS PHASE The density of atoms i$(|’):<r|D|r>, whereD is the
density matrix equal tee PH(1—ze A1) 1=377Ze At
For small values ok and large number of particles, the The matrix elements & #"" are known explicitly fron{7].
Thomas-Fermi method for atoms can be adapted to th@Using it we avoid the tedious process of summing over
present problem: We divide space up into cells of volumesquares of Hermite polynomialsiVe thus obtain
larger than ,)® but smaller thanl(,)°, and consider the
potential energyv of the trap to be a constant in each cell. *
Each cell contains a collection of particles and mutual inter- p(r)= 63/2)\_3; (sinH e)~¥2Z'exd — o*tant(l €/2)],
action described by a scattering length All particles in a @
cell have the same external potentir) per particle. If
V=0 this problem for a cell has been studiggi6] in the  whereoc=r/L,. The summand iff7) behaves at largelike
1950s. For the present problem, in each cell we need onlg geometrical series with the ratio of successive terms equal

replace the fugacity of the 1950 result by exp(— BV). to
This adaptation of the Thomas-Fermi method to the
present problem has been used in a paper by Qiea Ref. 7=z 32, (8)

[4]). We shall follow his terminology and call it the local

density approximatiofLDA). In this approximation, in the Thus the summation converges at alfor z;<1 and be-
gaseous phadge., without BEQ in each cellp(r) is given  comes divergent a; =1 for all r. To study how it diverges
by Eq. (20) of [6], we write the summation as7a, where
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Ina,=1(Inz) — 2In(sinH ) — o’tank(1 €/2)

=
=I[Inz—3e/2]+(3In2—a?)+C|, -
°
whereC,—0 asl—oo. 2
Thusa,=23% 7°z, +2%% "7, (©1— 1). Therefore the &
summation is equal to EX
z =
S a=2%% 1 12 +23% "% 2 (eC—1). (9) =
4
The first term on the right is the divergent partzas-1. We ‘ 5 o 15

notice happily that it is exactly proportional tasy(r)|?,
where i is the normalized ground-state wave function of
the harmonic oscillator. Thug) becomes

r (10°m)

FIG. 1. Example ofo(r) as a function of for a>0 according
to Eq. (14). The curve is for a harmonic trap. Notice that the first
|l//0(r)|2+Pn(r), (10) and sie;:ond dgrivatives are both finite but discontinuous,at

po=N""d3p(1) is the normal part op, andp the condensate part.
] o ) For smaller total number of particlessN), r, becomes smaller. It
showing that the BEC is in the ground statg.is the normal  eventually shrinks to zero and the condensate disappears.
fluid part of the density functiop(r). It is the last term of
(9) multiplied by A ~3€%2

Z;
1_21

p(r)=

We mention here that wita=0, there is the well-known
o 1 basic symmetry in the Hamiltonian between the coordinate
r=x"3(2¢)3 7 ( — and the momentum. To be precise, if we kéepw, and g
onlr) (2¢) ; Y (1-e ¥9% unchanged, but replaga with (mw?) ! and switchx and
p, the problem is unchangedor a=0). Thus we easily
x exf — o?tanh el /2)]—exp[—(rz]}. (11)  obtain the exact momentum space density distribution
n(p). The condensate is of course in the siatg(p)|>.

So far(10) and (11) are exact. Notice that for large the

sum in(11) is convergent fOIZ]_: 1, unlike the_ firs_t term of IIl. CONDENSATE FOR THE CASE a>0 IN LDA

(10). Now we go to the case @<1. The contribution to the o _

sum in(11) for el >1 is negligible. Forel <1, we can drop For a>0, the thermal equilibrium in each cell can be
the last term in the curly brackets and replaceel ?< by ~ studied as in[6]. For large enough density, condensation
2l e and tanh¢l/2) by el/2, obtaining takes place in the cell. The cell then consists of a saturated

gaseous part with densiy,=\"3gs3,(1) plus a super part
with density p—po=ps. The free-energy density then be-
comes, according to E@33) of Ref. [6],

Z;
1_21

p(r)= | o(r) |2+ \~3gg(z,e V2EM"%) | (12)

The second term here is the result of LDA with the replace- 3 o D ol 2
ment ofz by z,. See(8). For e<1, this replacement creates f(r)=—KkTA"°g3(1)+2ankTp“—aNkTps. (13)
negligible errors.

In the gaseous phase, i.e52,~0(1), thesecond term £y this free energy we obtain the chemical potential,

in (12) dominates and the LDA is good. hich should b ted witkT | — B\ qivi
In the BEC phase, the first term is the condensate, Witk\lN ich should be equated wiiTIn[ zexp(~ AV)] giving

1—2z,~O(N™1). Thus we can put;=1 in the second term,

obtaining exactly the result of LDA, except for the fact that kTInz—V=4ma[p+polh?/m (r<ryp). (14
in the rigorous result the condensate has the spatial depen-

dence of| o(r)|?>=constxexd — o] while in the LDA the

condensate has &function dependence on But this is At F=ro—, ps=0 andp=p,. Thus

hardly surprising since in LDA each cell has a linear dimen-
sion large compared with,, so that any structure of the
order ofL, is shrunk to a point. This fact also means that in
LDA the cells should not be chosen to keO(L>).

To further check the error ifil2) we evaluated numeri- This simple equation is valid in the LDA for any trap poten-
cally its error divided by the second term on the right fortial V(r) and should beestable experimentallisee Fig. 1
certain cases and found that the ratio is generally of the order Outside ofr,, (5) and (6) give the dependence qf
of Ve. For example, ife=0.05, the ratio is<0.28, and for on r. At ry, é&=1 and p=p, on both sides; i.e.p is
€=0.01, the ratio is<0.12. continuous. The value afp/dr is finite also but discontinu-

In summary, as—0, the LDA expression fop(r) ap-  ous atr,, a fact already emphasized by Oli{. d?p/dr?
proaches the rigorous result at every fixeg=r/L;. is also finite and discontinuous.

V(r)+4map(r)h2im=\V(ro)+4mapoh?/m. (14')
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IV. REMARKS same result to the order’, and is meaningful to that order.
The considerations of the present paper are based on these
results to ordera and are thus meaningful.

How about higher orders? This is a matter of some

The pseudopotential interactigh] is, in g-number lan-
guage,

Aman? 1 ; : subtlety. It was found in Ref5] that to the second order in
Vo™ Ef drodrog(r)¢'(ra) a, (16) gives infinity, confirming its sickness, but thét5)
5 gives a meaningful answer, which is proportionalat/L
X S(Fr— )Tt r r1. 15 whereL is the size of the box. To ordex® (15) gives an
(" Z)ar [razp(ra)uAra)] = energy containing a term equal to coxdN3a®/L%, which

approaches infinity als— o while p=N/L3=const. This di-
vergence was later remové¢f] by a method of summation
over most divergent terms in a perturbation expansion: A
Amwah? 1 summation starting with this divergent term leads to the con-
Ef dr ¢ (n) g () () w(r). (16 vergent expression @aNp)(128/15)@3p/m)Y? for the
ground-state energy. This result was later confirmed by sev-
(a) We point out that there has been great confusion in theral authors who extended it to even higher orders.
theoretical literature of factors of two abowMi,, and V5. The method of Ref[8] was further extended to cover
Furthermore, the approximate one-partickaumber equa- finite temperaturef9]. These and related developments had
tion written down from(16) also has confusions of factors of been summarized in Ref10].
two in the literature. (d) It is tempting to interpret5) and (6) as indicating an
(b) Strictly speaking16) does not make sense: The two- additional effective potentiaV,=kT4ax2p=8maph?/m,
body interactiomAA(r;—r,) for A<O is not defined and for and to interpret (14 as indicating an additional potential of
A>0 itis equivalent to zero. To prove the first statement, wey,=4maphi?/m. Such interpretations must be used with

calculate thes-wave phase shift for such a case. The inter-care, In particular, it is not correct to assert that the conden-
action is considered as the linfit—0 of a potential well of  gate is in the ground state bf+V,.

magnitudeU and radiusR, keepingUR® a negative con-

stant. The wave function in the center-of-mass system at

R™ is Rfl_si_r[_(—mU/hz)l’zR]. The argument of sine ap- ACKNOWLEDGMENTS
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The commonly useds-function interaction[5] is, also in
g-number language,
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