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We propose an experimental scheme to probe the relative global phase of two condensates and thus dem-
onstrate the spontaneous symmetry breaking of global gauge invariance in Bose-Einstein condensation. A
positive measurement would justify the standard view of the condensate wave function as a coherent state
when there are interparticle interactions.@S1050-2947~96!09306-7#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj

With the realization of Bose-Einstein condensation~BEC!
by various groups@1–3# comes a variety of opportunities for
further work with these systems. Among the possibilities are
studies elucidating the nature of the condensate and its for-
mation. In this paper we propose to study the breaking of
global gauge symmetry which is believed to be necessary for
the condensation phase transition@4,5#. Recently, Javanainen
et al. have addressed similar issues for noninteracting con-
densates using an atom counting formulation@6#. Our focus
will be on interacting systems.

The second quantized Hamiltonian describing a system of
interacting bosons in a background potentialVt(r ) is
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In what follows we will use V(r )→u0d(r ) with
u054pasc\

2/M . Hereasc is thes-wave scattering length of
the atom-atom interaction potentialV(r ). This shape-
independent approximation can be justified in a homoge-
neous system@7,8#. Motivation of its validity in the inhomo-
geneous case is beyond this paper but we note that in these
systems at temperatures orders of magnitude higher than the
critical temperature for BEC already onlys-wave scattering
contributes to the ground state-ground state collision pro-
cesses@9#. The Hamiltonian is seen to be invariant under the
global gauge transformationC(r )→eiuC(r ) where u is a
real number independent of position. This symmetry, how-
ever, is not manifested by the ground state of the system or
its order parameter@4#. The order parameter of the BEC
transition, also called the condensate wave function, is be-
lieved to bec(r )5^C(r )&. Above the transition tempera-
ture, wherec(r )50, the order parameter trivially shows the
global phase symmetry. Below the transition temperature
c(r )Þ0 and the global phase symmetry is broken. One
would expect that during repeated experiments producing
Bose-Einstein condensates there would be no correlation be-
tween the phases of the resulting condensates. We propose a
simple experimental scheme to demonstrate this difference in
phase.

The trap used by the MIT group produces two separate
condensates each time Bose-Einstein condensation is
achieved. This is due to the way in which the leak of the
quadrupole magnetic trap is circumvented@3#. Let us write
the order parameter of the two condensates in the form
cLe

iuL and cRe
iuR with cL and cR real functions. In the

experimental setup the potential barrier between the two con-
densates is practically infinite and it is assumed that no tun-
neling occurs between the two condensates. As a result,uL
and uR are assumed to be different. We believe this phase
difference can be observed by studying the interaction be-
tween the two condensates.

The physical picture is the following. Two independent
condensates are formed within the two wells of the MIT trap.
The trapping potential is removed at timet50 leaving the
two condensates to ballistically expand. There will be a time
when the two condensates begin to overlap. What will hap-
pen?

We suggest the following answer. Since there are no ob-
vious dissipation mechanisms, we assume that each conden-
sate maintains its macroscopic coherence during ballistic ex-
pansion. This assumption is consistent with the work of
Hollandet al. @10#; however, further work on the kinetics of
condensates is needed for its proper justification. When the
two condensates occupy the same region of space, interac-
tions between the condensates should either destroy their co-
herence or bring about a uniform condensate. The time scale
for such a transformation should be the time needed for a
significant number of collisions to take place, on order of the
thermalization time. For times much shorter than this we
believe it is reasonable to treat the condensates as indepen-
dent with the sum of their wave functions approximating the
total amplitude of the system. Thus, the probability density
will be of the form

r~r ,t,u!5ucL~r ,t !1cR~r ,t !eiuu2. ~2!

This will produce an interference pattern in space.
To demonstrate this explicitly, we work with a one-

dimensional model of the system—the essential physics re-
mains the same in the three-dimensional case. First, the con-
densate wave function of a set of bosons in a harmonic
trapping potential must be found. We assume it is the solu-
tion of the nonlinear Schro¨dinger equation@11#
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which is solved numerically. Details on how various groups
obtain solutions can be found elsewhere@12–14#. For our
purposes, once a solution is found, a duplicate can be made,
given a phase and translated to represent a second conden-
sate. In this way we represent the two condensates of the
MIT trap. We explore the time evolution of the ballistic ex-
pansion by using Eq.~3! with no trapping potential and
mc replaced byi\(]c/]t). As was stated previously, the
two condensates are propagatedindependentlyand it is as-
sumed that the sum of the amplitudes will give a reasonable
approximation to the total amplitude. Also in keeping with
our preceding discussion we assume the nonlinear Schro¨-
dinger equation is valid for the description of condensates
undergoing ballistic expansion@10#.

Plots of the probability density~2! based on this model
are given in Figs. 1 and 2 for two cases of interest. In both
figures lengths are scaled by the size of the harmonic trap-
ping potential,a5A\/2Mv, times are scaled by the oscilla-
tor frequency, 1/v, and energies by\v. Each condensate
hasN05103 particles, a scattering length ofasc51023a, and

chemical potentialm54.46(\v). The strength of the two-
body interaction is given byu0

1D54p\2asc/Ma2. These
values are reasonable for approximating the MIT trap in this
model. In Fig. 1 we show the time evolution of the spatial
part of the probability density~2! as given by our one-
dimensional model of the experiment. Initially the two con-
densates were located atx5625a and were assumed to be
independent. Their ballistic expansion starts with the sudden
turning off of the trap potential att50. One sees that, as the
two condensates begin to overlap, an interference pattern de-
velops. This pattern appears to be extremely robust and
maintains its form during ballistic expansion. Figure 2 rep-
resents a prediction that may be easier to measure. There the
density at the point of reflection symmetry (x50 in Fig. 1!
as a function of time and relative phase between the two
condensates is plotted. Such a measurement could be made
by using a laser to probe the density of atoms in a region of
space. All of the plots in Figs. 1 and 2 represent times up to
about five or six oscillation periods of the original trapping
potential.

We have proposed a measurement that would test our
understanding of Bose-Einstein condensation as a state with
broken global gauge invariance.

We acknowledge very fruitful discussions with V.
Kharchenko and W. Ketterle. This work is supported by NSF
through a grant for the Institute for Theoretical Atomic and
Molecular Physics at Harvard University and Smithsonian
Astrophysical Observatory.

FIG. 1. The time development of the interference pattern of two
condensates as they ballistically expand through one another.

FIG. 2. The time development of the density atx50 due to the
interference for various values of the relative phase. In practice this
density is proportional to the total number of photons scattered.
Therefore, resonant light can be used such that each atom can scat-
ter many photons during the time it is inside the light sheet located
in the planex50.
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