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The Bogoliubov approximation is used to study the ground state and low-lying excited states of a dilute gas
of N atomic bosons held in an isotropic harmonic potential characterized by frequencyv and oscillator length
d05A\/mv. By assumption, the self-consistent condensate has a macroscopic occupation numberN0@1, with
N2N0!N0. A linearized hydrodynamic description yields operator forms of the particle-conservation law and
Bernoulli’s theorem, expressed in terms of the small density fluctuation operatorr̂8 and velocity potential
operatorF̂8, along with the condensate densityn0 and velocityv0. For positive scattering lengtha and large
stationary condensate (N0@d0/a andv050!, the spherical condensate has a well-defined radiusR0@d0 , and
the low-lying excited states are irrotational compressional waves localized near the surface. Approximate
variational energiesE0l of the lowest radial modes (n50) for successive values of orbital angular momentum
l form a rotational band given byE0l'E001

1
2\2l ( l11)/mR0

2 , with radial zero-point energy
E00}\v(R0/d0)

2/35~\2 mv4R0
2!1/3. @S1050-2947~96!02006-9#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.1z

The recent experimental demonstration of Bose-Einstein
condensation in dilute confined87Rb @1# has stimulated theo-
retical research into the physical properties of such a system,
based largely on the Bogoliubov approximation@2#, origi-
nally introduced as a model for bulk superfluid4He. Al-
though this simple description of liquid He has long been
familiar, much of its application to Bose condensed dilute
atoms has involved numerical analysis@3–5#. In contrast,
Baym and Pethick@6# have provided a more physical de-
scription of the confined ground state, emphasizing the rel-
evant dimensionless parameters for87Rb. The present work
introduces a hydrodynamic description of the quantized nor-
mal modes, along with a variational analysis of the low-lying
excited states for large spherical condensate in an isotropic
harmonic confining potential.

The Bogoliubov model is most simply understood by con-
sidering the familiar second-quantized field operators that
obey boson commutation relations@c~r !,c†~r 8!#5d~r2 r 8!
~in general, a second-quantized operator will be denoted by a
circumflex to distinguish it from its expectation value, al-
though the circumflex will be omitted from the field operator
itself!. The dynamics follows from the ‘‘grand-canonical
Hamiltonian’’ operator

K̂[Ĥ2mN̂

5E dV c†~T1U2m!c12pa\2m21E dV c†c†cc,

~1!

whereN̂5*dV c†c is the number operator,Ĥ is the Hamil-
tonian operator, andm is the chemical potential@7,8#. Here
T52\2¹2/2m is the kinetic energy,U~r ! is the external
confining potential, and the short-range interatomic two-
body potential has been approximated by a pseudopotential
with ans-wave scattering lengtha @9#. The presence of Bose
condensation implies that the field operator has a macro-
scopic ensemble averagêc~r !&[C~r !, identified as the
~temperature-dependent! condensate wave function@10#. For

a dilute system at low temperature, most of the particles are
in the condensate, and thedeviation operatorf~r ![c~r !
2C~r ! is treated as small. By definition,^f~r !& vanishes,
and, in the thermodynamic limit (N→`), these deviation
operators obey approximate boson commutation relations
@f~r !,f†~r 8!#'d~r 2r 8! @8#.

An expansion ofK̂ through second order in these small
field amplitudes immediately yieldsK̂'K01K̂8, where

K05E dV C* ~T1U2m!C12pa\2m21E dVuCu4,

~2a!

K̂85E dV f†~T1U2m!f12pa\2m21

3E dV~4uCu2f†f1C2f†f†1C* 2ff!. ~2b!

The first-order contribution vanishes becauseK0 is stationary
for the condensate wave function that satisfies the nonlinear
Hartree~or Gross-Pitaevskii! equation@11,12#

~T1U2m!C14pa\2m21uCu2C50. ~3!

In addition, the ensemble average of the total number opera-
torsN̂[N01N̂8 determines the temperature-dependent num-
ber of particles in the condensateN05*dVuCu2 and in the
excited statesN85*dV^n̂8&5*dV^f†f&. The Bogoliubov
approximation assumes thatN8!N0 , thus neglecting terms
of third and fourth order in the deviation operators; this as-
sumption fails sufficiently close to the onset temperatureTc ,
sinceN0(Tc) vanishes.
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For many purposes, the particle-density operatorn̂5c†c
and particle current-density operatorĵ5~\/2mi!@c†¹c
2~¹ c†!c# are the more relevant physical quantities. Rewrite
the condensate wave function as

C~r ![eiS~r !An0~r !, ~4!

with real phaseS and amplitudeuC0u5An0. To leading or-
der in the deviation operatorsf and f†, the density and
current operators separate into two parts.

~1! The condensate contributions,

n05uCu2 and j05n0
\

m
¹S, ~5!

identify n0 as the condensate density and\¹S/m as the mac-
roscopic condensate velocityv05¹F0, with velocity poten-
tial F05\S/m. For example, takingS to be the cylindrical
polar anglef yields a singly quantized rectilinear vortex line
in bulk fluid @12–14#.

~2! The fluctuation contributions

r̂85C*f1f†C5An0~e2 iSf1eiSf†!, ~6a!

ĵ 85
\

2mi
@C*¹f1f†¹C2~¹C* !f2~¹f†!C#

~6b!

show thatr̂8 and ĵ 8 are transition operators that change the
particle number and thus have vanishing ensemble averages;
hence r̂8 differs from the condensate density operator
n̂[f†f, which has a finite ensemble average forT,Tc .

The Gross-Pitaevskii Eq.~3! determines the spatial form
of the condensate wave functionC, which then provides
static interaction potentials for the low-lying excitations, as
seen in the last term of Eq.~2b!. A combination of Eqs.~3!
and ~4! yields a single complex equation, whose real and
imaginary parts can be rewritten as

n0
21/2Tn0

1/21 1
2mv0

21U2m14pa\2m21n050, ~7a!

¹• j05¹•~n0¹F0!50. ~7b!

The first relation is simply Bernoulli’s theorem for steady
irrotational isentropic condensate flow in a compressible in-
viscid fluid @15#, and the second expresses the conservation
of the condensate current for steady irrotational flow. In the
special case of a bulk uniform stationary condensate with
U50, Eqs.~7a! and ~2a! show that the chemical potential
has the valuem54pa\2n0/m with constant condensate en-
ergy densitye052pa\2n 0

2/m; the thermodynamic relation
p052(]E0/]V)N0 then gives the condensate pressure
p052pa\2n 0

2/m.
The next step is to consider the noncondensate, which is

described by the boson field operatorsf and f† . In the
grand-canonical ensemble, the time dependence of any
Heisenberg operatorÔ follows from the general commutator
i\]Ô /]t5@Ô ,K̂#. SinceK̂8 in Eq. ~2b! is a quadratic form in
the field operators, the relevant commutators are readily
evaluated to yield

i\
]f

]t
5S T1U2m1

8pa\2uCu2

m Df1
4pa\2C2

m
f†,

~8a!

2 i\
]f†

]t
5S T1U2m1

8pa\2uCu2

m Df†1
4pa\2C* 2

m
f.

~8b!

A straightforward calculation verifies that the fluctuation
density r̂8 and current densityĵ 8 from Eq. ~6! obey the ex-
pected operator conservation equation

]r̂8

]t
1¹• ĵ 850. ~9!

It is convenient to introduce the transformed deviation
operators

f̃[e2 iSf and f̃†[eiSf† ~10!

that obey the transformed equations of motion

i\
]f̃

]t
5Lf̃1

4pa\2n0
m

f̃†

and ~11!

2 i\
]f̃†

]t
5L†f̃†1

4pa\2n0
m

f̃.

Here L[T̃1U2m18pa\2n0/m is Hermitian, with
T̃5e2 iSTeiS5(\2/2m)(2 i¹1¹S)2. Correspondingly, Eq.
~6b! becomesĵ 85r̂8v01 n0v̂8, with v̂85¹F̂8, and

F̂8[
\

2min0
1/2~f̃2f̃†! ~12!

is the linear fluctuation part of the velocity potential opera-
tor. As expected from Eqs.~7b! and~9!, the difference of the
two Eqs.~11! eventually shows that the operatorsr̂8 andF̂8
obey the conservation law

]r̂8

]t
1¹•~v0r̂8!1¹•~n0¹F̂8!50. ~13!

A similar but lengthy calculation shows that the sum of the
two Eqs.~11! yields the dynamical equation

n0S ]F̂8

]t
1v0•¹F̂8D 1

4pa\2n0
m2 r̂81

\2

4m2¹•S r̂8
¹n0
n0

D
2

\2

4m2¹2r̂850. ~14!

To interpret this last result, recall the exact classical form
of Bernoulli’s equation for irrotational isentropic flow of an
inviscid compressible fluid@15#,

U1
1

2
mv21

e1p

n
1m

]F

]t
5const, ~15!
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which follows directly from thermodynamics and Newtonian
dynamics. Here,e is the energy density andF is the velocity
potential, withv5¹F. Let e(n) and p(n) have the func-
tional form

e~n!5n1/2Tn1/212pa\2n2/m and p~n!52pa\2n2/m,
~16!

appropriate for the energy operator in Eq.~1!. A direct ex-
pansion of Bernoulli’s theorem~15! to first order in the fluc-
tuation quantitiesr8[n2n0 andF8[F2F0 reproduces Eq.
~14!, which thus becomes an operator version of Bernoulli’s
theorem for a dilute Bose gas in an external potentialU with
steady macroscopic condensate velocityv0 and condensate
densityn0.

Although Eqs.~13! and~14! look identical to their classi-
cal counterparts, it is essential to remember that they are
operator relations that involve not only annihilation and cre-
ation operators but also wave functions. To separate these
two aspects, it is preferable to return to the transformed field
operatorsf̃ and f̃†, since only the condensate densityn0
appears in Eq.~11!, whereas Eqs.~13! and~14! also involve
various spatial derivatives ofn0 ~note that n 0

21/2r̂8 and

n 0
1/2F̂8 are merely linear combinations off̃ andf̃†!. Define

the linear transformation@8#

f̃~r ,t !5( 8
j

@uj~r !a j~ t !2v j* ~r !a j
†~ t !#,

~17!

f̃†~r ,t !5( 8
j

@uj* ~r !a j
†~ t !2v j~r !a j~ t !#,

where the primed sum means to omit the condensate mode.
Here,a j

† anda j are ‘‘quasiparticle’’ creation and annihila-
tion operators that obey boson commutation relations
[a j ,a k

†]5d jk , anduj andv j are wave functions. Substitute
Eq. ~17! into Eq. ~11! and assume that the annihilation op-
erator a j satisfies the simple time-dependent equation
i\]a j /]t5Eja j along with its adjoint2 i\a j

†/]t5Eja j
†; it

follows immediately that the wave functions satisfy the
coupled ‘‘Bogoliubov’’ equations

Luj2~4pa\2n0 /m!v j5Ejuj ,
~18!

L* v j2~4pa\2n0 /m!uj52Ejv j .

Note thatT̃5T2 1
2 i\(¹•v0 1v0•¹!11

2mv 0
2 differs from T̃*

in the presence of a macroscopic condensate velocityv0; this
situation resembles that of a superconductor in a magnetic
field, with v0 analogous to the vector potential.

It is easy to verify that the eigenvaluesEj are real and that
the eigenfunctions obey the normalization*dV(u j* uk
2v j* vk)5d jk . Furthermore, substitution of Eq.~17! into Eq.
~2b! yields the elegant and physical result@8#

K̂852( 8
j

EjE dVuv j u21( 8
j

Eja j
†a j , ~19!

so that the linear transformation~17! diagonalizes the opera-
tor K̂8. In addition, if uj andv j are a solution with energy
Ej , then the pairv j* andu j* are also a solution with energy
2Ej ; since the quasiparticle number operatora j

†a j has non-

negative integral eigenvalues, it is necessary to takeEj>0.
Finally, Eq. ~18! also has the solutionu05v0}n 0

1/2 with
E050, verifying that the Bose condensation indeed occurs in
the lowest self-consistent single-particle mode.

The structure ofK̂8 in Eq. ~19! leads to a very simple
description of the equilibrium states of the condensed Bose
system. The quasiparticle ground stateu0& satisfies the con-
dition a j u0&50 for all jÞ0, and the excited states follow by
applying an arbitrary number of quasiparticle creation opera-
torsa j

† to u0&. In addition, the well-known properties of these
harmonic-oscillator operators mean that the low-temperature
behavior is determined entirely by the eigenvalues and
eigenfunctions of the Bogoliubov equations~18!. If
^•••&[ Tr@•••exp~2bK̂8!#/Tr@exp~2bK̂8!# denotes a self-
consistent ensemble average at temperatureT5(kBb)21,
then the only nonzero averages of one- or two-quasiparticle
operators are ^a j

†ak&5^aka j
†&2d jk5d jk f j , where

f j[@exp~bEj !21#21 is the usual Bose-Einstein distribution
function. For example@8#, the total number densityn~r ! has
a condensate contributionn0~r !5uC~r !u2 and a nonconden-
sate contribution

n8~r !5( 8
j

@ f j uuj~r !u21~11 f j !uv j~r !u2#, ~20!

where the condition N5*dV n0~r !1*dV n8~r !5N0(T)
1N8(T) determines the temperature-dependent condensate
fractionN0(T)/N; at T50, the quantityf j vanishes, andn8
then involves onlyuv j u

2.
Although the actual experimental traps are anisotropic@1#,

it is simplest to consider an isotropic three-dimensional har-
monic potentialU~r !5 1

2mv2r 2, with a characteristic oscilla-
tor lengthd05 A\/mv ~the effect of the anisotropy can be
treated in perturbation theory!. For a stationary spherical
condensate in a spherical confining potentialU(r ), where
C(r )5An0(r ) satisfies Eq.~3!, the Bogoliubov equations
simplify greatly because the excited states can be character-
ized by the usual angular-momentum quantum numbers
( l ,m) associated with the spherical harmonicsYlm , along
with a radial quantum numbern. Given a solution forn0(r ),
standard numerical techniques can determine the eigenvalues
Enl and associated (2l11)-fold degenerate radial eigenfunc-
tions unl(r ) and vnl(r ) @5#. In order to gain more physical
insight, however, it is valuable to consider a special limiting
case in which the kinetic energy of the condensate wave
function is negligible compared to the confining energy and
the repulsive interparticle interaction energy. As discussed in
@6# ~see also Refs.@3,16#!, this condition holds for a har-
monic confining potential when the dimensionless parameter
N0a/d0 is large. As a result, the Hartree equation~3! for the
condensate wave function then has the simple solution

4pa\2m21uC~r !u25@m2U~r !#u@m2U~r !#, ~21!

whereu(x) denotes the unit positive step function. In this
limit, the condensate is spherical with radiusR0 determined
by the normalization condition onC; the dimensionless ra-
dius R[R0/d0 has the valueR5515N0a/d0 with chemical
potential given bym51

2\vR2. Although this approximation
clearly fails in the immediate vicinity of the condensate sur-
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face ~see, for example, Fig. 1 of Ref.@3#!, its use in the
Bogoliubov equations produces only a small error in the
limit N0a/d0@1.

A combination of Eqs.~18! and~21! yields the following
dimensionless coupled eigenvalue equations:

~Dl1V!unl2V,vnl5enlunl

and ~22!

2V,unl1~Dl1V!vnl52enlvnl ,

where r is the dimensionless radial coordinate measured
in units of d0 and enl52Enl/\v. Here,
Dl[2r22(d/dr)r 2(d/dr)1 l ( l11)/r 2 is the kinetic en-
ergy, V5ur 22R2u is the potential energy, and
V,5(R22r 2)u(R2r ). Apart from the coupling betweenu
andv, which occurs only forr,R throughV, , these equa-
tions look like those for radial eigenstates with orbital angu-
lar momentuml in an isotropic repulsive potentialV, which
has a central peak of heightR2 at the origin, reaches a mini-
mum near the surface where it vanishes linearly, and rises
quadratically forr@R. Thus the low-lying eigenfunctions
~those withe!R2! are expected to be ‘‘surface’’ modes lo-
calized in the vicinity of the condensate surface.

In principle, these coupled differential equations can be
solved numerically, but more physical insight comes from
recognizing that they have a variational basis. IfU denotes a
two-component vector with elementsu andv, Eq. ~22! has a
simple matrix representation involvingD l5Dlt0, and V
5Vt02V,t1, with t0 the 232 unit matrix andt i the famil-
iar 232 Pauli matrices. It follows immediately that the varia-
tional quantity

e0l<

E
0

`

r 2dr U†~D l1V !U

E
0

`

r 2dr U†t3U

~23!

provides an upper bound on the lowest eigenvaluee0l for
each separatel . As a very simple model, takeu(r )

5coshxf (r ) and v(r )5sinhxf (r ) with *0
`r 2dru f (r )u251.

Substitution into Eq.~23! givese0l<A cosh 2x2B sinh 2x,
where

A5E
0

`

r 2dr f ~r !* ~Dl1V! f ~r !

and ~24!

B5E
0

R

r 2dr f ~r !*V, f ~r !.

Minimization with respect tox yields the condition tanh 2x
5B/A, with e0l< AA22B2.

If f also depends on a parameter, it can be varied to find
the minimum upper bound fore0l . For example, take
f (r )} exp@2 1

2g
2(r2R)2#; for R@1, the potential can be ap-

proximated by its linear formV(r )'2Rur2Ru near the sur-
face, and it is easy to evaluate the integralsA andB. The
minimum ofe0l with respect tog occurs forg0}R

1/3, so that
the radial statef (r ) has a dimensionless width of order
R21/3. The corresponding energy eigenvalue is given by the
sum of a radial zero-point energye00 and a rotational term
}l ( l11)R22:

e0l'H 1.53R2/311.07l ~ l11!R22 for l ~ l11!!R8/3

1.63R2/31 l ~ l11!R22 for l ~ l11!@R8/3.
~25!

Evidently, these variational solutions can be used to find the
corresponding variational fluctuation operatorsr̂8 andF̂8, so
that an equivalent fully hydrodynamic description is feasible.
As noted previously, however, the operator character and the
appearance of gradients ofn0 render this latter approach
more intricate than one based directly on the field operators
and the Bogoliubov equations, whose familiar quantum-
mechanical structure also simplifies the boundary conditions.

This variational solution provides an estimate of the non-
condensate contribution of these low-lying states. AtT50,
the spatial integral of Eq.~20! shows that each of the 2l11
states with energy eigenvalueE0l makes a contribution
*dVuv0l u

2 to N8, and the preceding variational solution
yields the approximate result

E dVuv0l u2' sinh2x0l'H 0.03520.050l ~ l11!/R8/3 for l ~ l11!!R8/3

0.147@R8/3/ l ~ l11!#2 for l ~ l11!@R8/3.
~26!

Each low-lying mode makes only a small noncondensate
contribution that decreases with increasingl .

The fluctuation density operatorr̂8~r ! plays a central role
in the response of a physical system to external perturba-
tions. The Heisenberg operatorsf̃~r ,t! and f̃†~r ,t! oscillate
harmonically at the frequencies given by the eigenvalues of
the Bogoliubov equations, and the noncondensate part of the
density-density correlation function becomes simply a corre-
lation function of the transformed deviation operators, given
by

^r̂8~r ,t !r̂8~r 8,0!&
uC~r !C~r 8!u

'( 8
j

$~11 f j !@uj~r !2v j~r !#

3@uj* ~r 8!2v j* ~r 8!#e2 iE j t/\

1 f j@uj* ~r !2v j* ~r !#@uj~r 8!

2v j~r 8!#eiE j t/\%. ~27!

Consequently, a measurement of the frequency spectrum of
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density oscillations~for example, by studying the resonant
response to small modulations of the trapping potential!
would directly characterize the eigenvaluesEj . The density-
current and current-current correlation functions involve
similar expressions.

Note added in proof.Further analysis, motivated in part
by the hydrodynamic description, has yielded much lower
~and, hence, better! estimates for the energy eigenvalue of
the lowest excited state for each positivel.0. The acoustic
radial eigenfunctions of a uniform classical gas in a spherical
container are spherical Bessel functionsj l(kr), and the
variational trial function f (r )}(r /R) l [12(r /R)2]u(R2r )
has the same qualitative behavior. In particular, the resulting
Bogoliubov energy is given byE0l'\vATl212TlVl , where
Tl5( l1 3

2 )( l1
7
2 )/R

2 and Vl53R2/~2l19! are the expecta-

tion values of the kinetic energy and interaction potential
energy~21!, respectively~this energy is very similar to that
for a uniform condensed Bose gas@2,7#!. Furthermore, the
zero-temperature noncondensate occupation isNl8

5sinh2x0l5
1
2(Tl1Vl)/ ATl212TlVl2

1
2 . For Tl!Vl ~namely

large R and smalll!, the energy is independent ofR, and
Nl8@1. Reference@17# contains a brief summary of this
work, and improved variational and numerical studies are in
progress. I thank B. V. Svistunov for valuable correspon-
dence.
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