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Ground state and excited states of a confined condensed Bose gas
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The Bogoliubov approximation is used to study the ground state and low-lying excited states of a dilute gas
of N atomic bosons held in an isotropic harmonic potential characterized by frequesueg oscillator length
do= Vi/mw. By assumption, the self-consistent condensate has a macroscopic occupationNg#nbenith
N—Ng<<Np. A linearized hydrodynamic description yields operator forms of the particle-conservation law and
Bernoulli's theorem, expressed in terms of the small density fluctuation operatnd velocity potential
operator&)’, along with the condensate density and velocityv,. For positive scattering length and large
stationary condensatég>dy/a andvy=0), the spherical condensate has a well-defined radj¥sd,, and
the low-lying excited states are irrotational compressional waves localized near the surface. Approximate
variational energiek, of the lowest radial modes& 0) for successive values of orbital angular momentum
| form a rotational band given byEqy~Eqy+3%2(1+1)/mR3, with radial zero-point energy
Ego*h o(Ro/dg) ?= (1% mw*R3)Y>. [S1050-294196)02006-9

PACS numbsgs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.9C

The recent experimental demonstration of Bose-Einsteim dilute system at low temperature, most of the particles are
condensation in dilute confinédRb[1] has stimulated theo- in the condensate, and thdeviation operator ¢(r)=yir)
retical research into the physical properties of such a system; W (r) is treated as small. By definitiofg(r)) vanishes,
based largely on the Bogoliubov approximatifffi, origi-  and, in the thermodynamic limitN— ), these deviation
nally introduced as a model for bulk superfiuftie. Al-  operators obey approximate boson commutation relations
though this simple description of liquid He has long been[(r) 4'(r')]~&r —r’) [8].
familiar, much of its application to Bose condensed dilute  An expansion oK through second order in these small

atoms has involved numerical analy$-5|. In contrast, g amplitudes immediately yield§~K,+K’, where
Baym and PethicK6] have provided a more physical de-

scription of the confined ground state, emphasizing the rel-
evant dimensionless parameters ¥&Rb. The present work
introduces a hydrodynamic description of the quantized nor- K,= j dV ¥*(T+U —,u)\lf+27-rah2m‘1f dv|w|4,
mal modes, along with a variational analysis of the low-lying 24
excited states for large spherical condensate in an isotropic
harmonic confining potential.

The Bogoliubov model is most simply understood by con-
sidering the familiar second-quantized field operators that ? /:J t _ 201
obey boson commutation relatiorﬁge(r),w‘t(r’)]:&(r— r' K dV ¢{(T+U-p)¢+2mar™m
(in general, a second-quantized operator will be denoted by a
circumflex to distinguish it from its expectation value, al- X f dV(4| V2T p+P2pTpT+W*20¢). (2b)
though the circumflex will be omitted from the field operator
itself). The dynamics follows from the “grand-canonical

Hamiltonian” operator ] o ) . )
The first-order contribution vanishes becalisgs stationary

R=HA-puN for the condensate wave function that satisfies the nonlinear
Hartree(or Gross-PitaevsKiiequation[11,12]

:f dv ¢T(T+U—M)¢+2waﬁ2m‘1f dv ¢'ytyy,
(1) (T+U— )V +4mahm Y w|2¥=0. ©)

whereN= [dV :pTw is the number operatoH is the Hamil-

tonian operator, angk is the chemical potentidl7,8]. Here  In addition, the ensemble average of the total number opera-
T=—%2V?2m is the kinetic energyl(r) is the external torsN=Ny+N’ determines the temperature-dependent num-
confining potential, and the short-range interatomic two-ber of particles in the condensatgy= fdV|¥|? and in the
body potential has been approximated by a pseudopotentiakcited statesN’ = [dV(R')=[dV(¢'¢). The Bogoliubov
with ans-wave scattering length [9]. The presence of Bose approximation assumes thiit <N, thus neglecting terms
condensation implies that the field operator has a macrosf third and fourth order in the deviation operators; this as-
scopic ensemble averagei(r))=V(r), identified as the sumption fails sufficiently close to the onset temperaiye
(temperature-dependemondensate wave functigdO]. For ~ sinceNg(T.) vanishes.
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For many purposes, the particle-density operélterzﬂw L) 877aﬁ2|\}r|2 Amah P2
and particle current-density operatof=(/2mi)[ 'V ih—-= ( T+U—-pu+ m ) o+ —, h
—(V ¢")y] are the more relevant physical quantities. Rewrite (8a)
the condensate wave function as
‘ ag' 8mah?|V|? 4mahi®¥*?
W(r)=e""no(r), (4 —ih&izz T+U—p+ il ) T4+ -

with real phases and amplitudd ¥ | = @. To leading or- (8b)
der in the deviation operatorg and ¢', the density and A straightforward calculation verifies that the fluctuation

current operators separate into two parts. densityp’ and current density’ from Eq. (6) obey the ex-
(1) The condensate contributions, pected operator conservation equation
. h ap’ A
no=|¥|?> and j,=ny—VS, (5) L+V.jr=0_ 9
m ot
identify ny as the condensate density dWS/m as the mac- It is convenient to introduce the transformed deviation

roscopic condensate velocity=Vd,, with velocity poten-  operators
tial ®,=hS/m. For example, taking to be the cylindrical

polar angleg yields a singly quantized rectilinear vortex line Pp=e"S¢ and P'=e'Sep' (10
in bulk fluid [12-14.
(2) The fluctuation contributions that obey the transformed equations of motion
ﬁ,:qf* b+ d)T\I,:\/n—O(e*iqu_’_eiS(ﬁT)’ (68) . (9(1)_ ~ 47Taﬁ2n0~1_
ih—=Lp+ ———¢
ot m
A f
ji’= m[q’*VQb‘l' SVY —(VI*)p— (Vo) W] and (11
(6b) " gt i~y Amahi®ng~
~ —1 JE—
show thatp’ andj’ are transition operators that change the ot m

particle number and thus have vanishing ensemble averages; ~ ) . . .

hence p' differs from the condensate density operator1ereé L=T+U—u+8mafns/m is Hermitian, with

n= ¢'¢, which has a finite ensemble average Tor T,. T=e 'STeS=(A’/2m)(—iV+VS)% Correspondingly, Eq.
The Gross-Pitaevskii Eq3) determines the spatial form (6b) becomeg’=p'vy+ ngv’, with v'=V®’, and

of the condensate wave functiolt, which then provides

static interaction potentials for the low-lying excitations, as 2, h ~ 7t

seen in the last term of E42b). A combination of Eqs(3) o= 2min(1)32(¢ ¢ (12
and (4) yields a single complex equation, whose real and

imaginary parts can be rewritten as is the linear fluctuation part of the velocity potential opera-

tor. As expected from Eq$7b) and(9), the difference of the
no Y2Tng%+ 3mud+U—u+4mrah®m no=0, (78  two Egs.(11) eventually shows that the operatgrsand @’
obey the conservation law

J R ~
a—’)t+v.(v0p’)+v-(nov¢’)=o. (13

VJOZV(novq)O):O (7b) ,
The first relation is simply Bernoulli’'s theorem for steady
irrotational isentropic condensate flow in a compressible in-
viscid fluid [15], and the second expresses the conservatioA similar but lengthy calculation shows that the sum of the
of the condensate current for steady irrotational flow. In thewo Egs.(11) yields the dynamical equation

special case of a bulk uniform stationary condensate with .

U=0, Egs.(7a and (2a show that the chemical potential g ﬂJrvo-ch)’

!

4mahi’ng,. — h? ( . ,Vno)

has the valugu=4mafi’ny,/m with constant condensate en- at t— Pt 4m2V' P e
ergy densitye,=2ma%?ng/m; the thermodynamic relation 5
po=—(dEyx/dV)y. then gives the condensate pressure 2~y

g, No - —Vp'=0. (14)
po=2mahi’n§/m. 4m

The next step is to consider the noncondensate, which is ) _ )
described by the boson field operatagsand ¢'. In the To interpret this last result, recall the exact classical form
grand_canonicaj ensemb]e, the time dependence of ar@; Bernoulli's equation for irrotational isentropic flow of an
Heisenberg operata? follows from the general commutator inviscid compressible fluifi15],
ihaclot=[?,K]. SinceK' in Eq. (2b) is a quadratic form in
the field operators, the relevant commutators are readily U+Emv2+ e+p+mﬁzconst (15)
evaluated to yield 2 n at '
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which follows directly from thermodynamics and Newtonian negative integral eigenvalues, it is necessary to &ake0.
dynamics. Heree is the energy density andl is the velocity  Finally, Eq. (18) also has the solutiorm0=voo<né’2 with
potential, withv=V®. Let e(n) and p(n) have the func- E;=0, verifying that the Bose condensation indeed occurs in
tional form the lowest self-consistent single-particle mode.

The structure ofK’ in Eqg. (19) leads to a very simple
e(n)=n""Tn'?+27af’n’/m and p(n)=2mak’n®m,  description of the equilibrium states of the condensed Bose
system. The quasiparticle ground stdip satisfies the con-
dition aj|0)=0 for all j #0, and the excited states follow by
applying an arbitrary number of quasiparticle creation opera-
torsajT to |0). In addition, the well-known properties of these
harmonic-oscillator operators mean that the low-temperature
behavior is determined entirely by the eigenvalues and
eigenfunctions of the Bogoliubov equationél8). If

appropriate for the energy operator in Ed). A direct ex-

pansion of Bernoulli's theorerl5) to first order in the fluc-
tuation quantitiep’'=n—n, andd’'=>d—d, reproduces Eq.
(14), which thus becomes an operator version of Bernoulli’s
theorem for a dilute Bose gas in an external potefdiavith

steady macroscopic condensate velogifyand condensate (Y= Tr[-—-exp(— BR Y Trexp(— BK')] denotes a  self-

densityno. consistent ensemble average at temperafirg(kg) 1,

Although Egs.(13) and(14) look identical to their classi- hen the only nonzero averages of one- or two-quasiparticle
cal counterparts, it is essential to remember that they ar}a y F o 9 + - q b
Operators — are (ajay)=(aya|)—6x=0yf;, where

operator relations that involve not only annihilation and cre-{ E[exp(BEj)—l]’l ie the usual Bose-Einstein distribution

ation operators but also wave functions. To separate these - .

two aspects, it is preferable to return to the transformed ﬁel??;th:\%rgnzgieegwt?ilgﬁgi' th%g?&}?ﬁ?gﬂ ddznnstlnuﬁggnrljaesn-
operators¢ and ¢', since only the condensate density sate contribution Mo

appears in Eq(11), whereas Eqg13) and(14) also involve

various spatial derivatives ofi, (note thatny %2y’ and

ng/?®’ are merely linear combinations ¢f and ¢"). Define n'(N=2"[flu(O2+@+f)lo;(DI%, (20
the linear transformatiof8] j

where the condition N=[dV ny(r)+fdV n’(r)=Ng(T)
+N'(T) determines the temperature-dependent condensate
(17  fraction Ny(T)/N; at T2=0, the quantityf; vanishes, ana’
~ , then involves onlyjv;|*.
¢(rt)= Z [uf (Naf () —vj(ra;(t)], Although the aﬂtujlll experimental traps are anisotrfipic
it is simplest to consider an isotropic three-dimensional har-
where the primed sum means to omit the condensate modgnonic potentiall (r)=3mw?r?, with a characteristic oscilla-
Here,ajT and «; are “quasiparticle” creation and annihila- tor lengthd,= #%/mw (the effect of the anisotropy can be
tion operators that obey boson commutation relationsreated in perturbation theoryFor a stationary spherical
[« @{]=5), andu; andv; are wave functions. Substitute condensate in a spherical confining potentigr), where
Eq. (17) into Eq. (11) and assume that the annihilation op- y(r)=\/n,(r) satisfies Eq.(3), the Bogoliubov equations
erator «; satisfies the simple Flme_-degrendent equationsimplify greatly because the excited states can be character-
ifida;/ 9t=E;a; along with its adjoint—i%aj/dt=Ejaj; it  jzed by the usual angular-momentum quantum numbers
follows immedi_ately that the wave functions satisfy the(|,m) associated with the spherical harmoni¢g,, along
coupled “Bogoliubov” equations with a radial quantum number. Given a solution fong(r),
standard numerical techniques can determine the eigenvalues
E, and associated {2 1)-fold degenerate radial eigenfunc-
(18 tions uy(r) andv,(r) [5]. In order to gain more physical
insight, however, it is valuable to consider a special limiting
Note thaﬁ:=T—%ih(V'v0 +Vg V) +2mw?2 differs from T* case. in yvhich _th_e kinetic energy of the qo_ndensate wave
function is negligible compared to the confining energy and
e repulsive interparticle interaction energy. As discussed in
6] (see also Refd3,16]), this condition holds for a har-
monic confining potential when the dimensionless parameter
Ngald, is large. As a result, the Hartree equati@ for the
condensate wave function then has the simple solution

B(r)=2" [Y(Nay(t)—v} (Naf ()],

Lu;— (4mah’ng/m)v;=E;u;,

L*v;—(4mah’ng/m)u;= —Ejv;.

in the presence of a macroscopic condensate velggithis
situation resembles that of a superconductor in a magneti
field, with v, analogous to the vector potential.

Itis easy to verify that the eigenvalugs are real and that
the eigenfunctions obey the normalizatiofidV(uj uy
—v {'vy) = djx . Furthermore, substitution of EGL7) into Eq.

(2b) yields the elegant and physical resi8i
Amah®m W (r)|2=[u—-U(r)]16[p—Ur)], (21

where 6(x) denotes the unit positive step function. In this
limit, the condensate is spherical with radigg determined
so that the linear transformatidf7) diagonalizes the opera- by the normalization condition oW; the dimensionless ra-
tor K'. In addition, ifu; andv; are a solution with energy dius R=R/d, has the valueR®=15N,a/d, with chemical
E;, then the paiv | andu; are also a solution with energy potential given byu=3%wR?. Although this approximation
—E;; since the quasiparticle number operakjraj has non- clearly fails in the immediate vicinity of the condensate sur-

K'=—2' EJ dVivj|?+ X" Ejefa;, (19
j j
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face (see, for example, Fig. 1 of Ref3]), its use in the =coshyf(r) andv(r)=sinhxf(r) with [gradr|f(r)|>=1.
Bogoliubov equations produces only a small error in theSubstitution into Eq(23) gives eq;<A cosh Z—B sinh 2y,
limit Nga/dy>1. where
A combination of Eqs(18) and(21) yields the following .
dimensionless coupled eigenvalue equations: A:f r2dr f(r)*(D,+V)f(r)
0

(Dy+V)u, —Vov=enu
| nl <Unl niYnl and (24)
and (22

R
B=f re2dr f(r)*vV_f(r).

=Vl +(Di+Vivg=—€qun, 0

where r is the dimensionless radial coordinate measuredMinimization with respect tgy yields the condition tanhy

in units of dj and e,=2E,/fo. Here, =B/A, with 5= JAZ-RBZ.
Dy=—r"%(d/dr)r?(d/dr)+I(I+1)/r* is the kinetic en- If f also depends on a parameter, it can be varied to find
ergy, V=[r’~R?’| is the potential energy, and the minimum upper bound for,. For example, take
V_=(R?~r?)6(R—r). Apart from the coupling betweem  f(r)ec ex—212(r —R)2]; for R>1, the potential can be ap-
andv, which occurs only for <R throughV_, these equa- proximated by its linear fornv(r)~2R|r —R| near the sur-
tions look like those for radial eigenstates with orbital angu-face, and it is easy to evaluate the integral@nd B. The

lar momentum in an isotropic repulsive potenti®, which  minimum of €5, with respect toy occurs for'yooch/3, so that
has a central peak of heigRf at the origin, reaches a mini- the radial statef(r) has a dimensionless width of order
mum near the surface where it vanishes linearly, and riser=13 The corresponding energy eigenvalue is given by the

quadratically forr>R. Thus the low-lying eigenfunctions sum of a radial zero-point energy, and a rotational term
(those withe<R?) are expected to be “surface” modes lo- «|(I+1)R™ 2

calized in the vicinity of the condensate surface.
In principle, these coupled differential equations can be _
solved numerically, but more physical insight comes from_ _ LERPH10(I+R? for I(1+1)<R* (25)
recognizing that they have a variational basisAtdenotesa  ° | 1.6R?3+1(1+1)R"2 for I(1+1)>R%3
two-component vector with elemenisandv, Eq.(22) has a
simple matrix representation involving/,=D, 7y, and 7~
=V71y—V_7q, With 75 the 2X2 unit matrix andr; the famil-
iar 2x2 Pauli matrices. It follows immediately that the varia-
tional quantity

Evidently, these variational solutions can be used to find the
corresponding variational fluctuation operatpfsand®’, so

that an equivalent fully hydrodynamic description is feasible.
As noted previously, however, the operator character and the
appearance of gradients ofy, render this latter approach
more intricate than one based directly on the field operators

o o 7 and the Bogoliubov equations, whose familiar quantum-
f r2dr 2N A+ 7% mechanical structure also simplifies the boundary conditions.
<0 This variational solution provides an estimate of the non-
€01 p” (23) O .
c2dr 2t condensate contribution of these low-lying states.TAtO,
0 R the spatial integral of Eq20) shows that each of thel 2 1

states with energy eigenvalug, makes a contribution
provides an upper bound on the lowest eigenvadgefor  fdV|vy|? to N’, and the preceding variational solution
each separatd. As a very simple model, takeu(r) vyields the approximate result

f AVl P sinf? 0.035-0.050(1+1)/R®® for I(I+1)<R®3 06

[vall™= SINMX0~| 0 147R%1(1+ 1) 2 for 1(1+1)> RO (20
|

Each_ Iov_v—lying mode makes. on_Iy a small noncondensate (p'(r,)p'(r',0)) )

contribution that decreases with increasing e ()| “2 {(1+1)[uj(r)—v;(r)]
The fluctuation density operatpf(r) plays a central role !

i_n the response of a physical_system to~$xternal perturba— X[u}\-(r/)_v?(rr)]e—iEjt/ﬁ

tions. The Heisenberg operatoggr,t) and ¢'(r,t) oscillate

harmonically at the frequencies given by the eigenvalues of +HLur () —of (N][u(r")

the Bogoliubov equations, and the noncondensate part of the e

density-density correlation function becomes simply a corre- —v;(r') et (27)

lation function of the transformed deviation operators, given
by Consequently, a measurement of the frequency spectrum of
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density oscillationgfor example, by studying the resonant tion values of the kinetic energy and interaction potential

response to small modulations of the trapping potentialenergy(21), respectively(this energy is very similar to that

would directly characterize the eigenvalugs The density-  for a uniform condensed Bose gg&7]). Furthermore, the

current and current-current correlation functions involvezero-temperature  noncondensate  occupation I/

similar expressions. _ _ _ =sintxg=3(T,+ W)/ VTZ+2T\V,— 1. For T\<V, (namely
Note added in pr_oofFurth_er_ analysis, _motlvated in part large R and smalll), the energy is independent & and

by the hydrodynamic description, has yielded much lower,

(and, hence, betteestimates for the energy eigenvalue ofN">1' Reference[17] contains a brief summary of this
the Ié)west e;<cite d state for each positl \zeogyThg acoustic work, and improved variational and numerical studies are in

o . ) positived). The icgprogress. | thank B. V. Svistunov for valuable correspon-
radial eigenfunctions of a uniform classical gas in a spherlcad

. : - ence.

container are spherical Bessel functiopgkr), and the
variational trial functionf(r)o(r/R)'[1—(r/R)?] 6(R—r) | am grateful to M. Kasevich and M. Levenson for stimu-
has the same qualitative behavior. In particular, the resultinqhting discussions. This work was supported in part by the
Bogoliubov energy is given bl ~#w \/TZI +2T,V,, where  National Science Foundation, under Grant No. DMR 94-
Ti=(1+2)(1+%)/R? and V,=3R?(21 +9) are the expecta- 21888.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, Onsager, Phys. Rew04, 576 (1956; C. N. Yang, Rev. Mod.

and E. A. Cornell, Scienc269, 198(1995. Phys.34, 694 (1962.
[2] N. N. Bogoliubov, J. PhystMoscow 11, 23 (1947). [11] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. F&4,
[3] M. Edwards and K. Burnett, Phys. Rev.54, 1382(1995. 1240(1958 [Sov. Phys. JETR, 858(1958].
[4] P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edwards, [12] E. P. Gross, Nuovo Cimen&0, 451(1961); J. Math. Phys46,
Phys. Rev. A51, 4704(1995. 137 (1963.
[5] M. Edwards, P. A. Ruprecht, K. Burnett, and C. W. Clark [13] L. P. Pitaevskii, Zh. Eksp. Teor. Fizl0, 646 (1961 [Sov.
(unpublished Phys. JETPL3, 451(1961)].
[6] G. Baym and C. Pethick, Phys. Rev. Let6, 6 (1996. [14] A. L. Fetter, Phys. Rev138 A429 (1965; 138 A709 (1965;
[7] See, for example, A. L. Fetter and J. D. Waleckaantum 140, A452 (1965.
Theory of Many-Particle Systeni®cGraw-Hill, New York, [15] See, for example, A. L. Fetter and J. D. Waleckhgoretical
1971, Chaps. 2, 10, and 14. Mechanics of Particles and ContinuéMcGraw-Hill, New
[8] A. L. Fetter, Ann. Phys(N.Y.) 70, 67 (1972. York, 1980, Sec. 48, and Ref48], and Ref[7], Sec. 55.
[9] T. D. Lee and C. N. Yang, Phys. Rel05 1119(1957); T. D. [16] D. A. Huse and E. D. Siggia, J. Low Temp. Phy&, 137
Lee, K. Huang, and C. N. Yangpid. 106, 1135(1957. (1982.

[10] O. Penrose, Philos. Mag2, 1373(195J); O. Penrose and L. [17] A. L. Fetter, Czech. J. Phy$to be published



