
Atomic de Broglie waves in multiple optical standing waves

Chang Jae Lee
Department of Chemistry, Sunmoon University, Asan 336-840, Korea

~Received 12 September 1995!

In this work the dynamical behavior of the center of mass of a two-level atom in sequences of multiple
optical standing waves is explored. In a standing wave the atomic momentum distribution fans out. But with a
suitably designed sequence of standing waves it is possible to refocus the momentum-space wave packet and
bring the momentum distribution to the initial value, which may be regarded as an atom optical analog to spin
or photon echo. If the total interaction time is fixed, the refocusing performance gets better as the number of
standing waves in a sequence increases. Also the atomic wave packet in position space evolves as if in free
space.@S1050-2947~96!03805-X#

PACS number~s!: 03.75.Be, 42.50.Vk

I. INTRODUCTION

The manipulation of the external degrees of freedom, i.e.,
the center of mass, of atoms has grown into an immensely
active field of atom optics@1#. Often the center-of-mass dy-
namics can be described in terms of classical trajectories.
Such is the approach taken by McClellandet al. to account
for their experiments on direct-writing atom lithography, the
nanoscale deposition of atoms on a substrate by use of a laser
@2#. But there are effects and applications that may be attrib-
utable only to the wave nature of the atoms. The wave nature
becomes increasingly significant, for example, as the tem-
perature of the atoms gets lower as in cooling experiments,
and a full description of the wavelike behavior requires the
use of quantum mechanics.

A well-known configuration to investigate various effects
due to the wave nature of the atomic center of mass is the
deflection of an atomic beam by a laser standing wave~SW!.
Recently, applications of the configuration but with two or
more SW’s were reported@3–6#. The goal of this work is to
reveal a close analogy between the atom–multiple-SW inter-
action and coherent transient effects, especially the photon-
or spin-echo phenomena. A SW is utilized also in schemes
for atomic position measurement@7# or in depositing atoms
on a substrate as in atom lithography@2,8#. In such experi-
ments it is desirable to remove the motion of the atoms. Thus
a simultaneous goal is to develop an all-optical method em-
ploying SW’s for removing the transverse motion of the at-
oms.

The system under consideration is a beam of two-level
atoms initially prepared with a narrow~coherent! momentum
distribution. The atoms are then made to cross a sequence of
optical SW’s and the dynamical behavior of the atomic de
Broglie waves is observed. An atomic beam is diffracted by
a SW into components whose momenta are even multiples of
the photon momentum~the Kapitza-Dirac effect!, which was
observed by Pritchard and co-workers@9#. The atomic mo-
mentum distribution spreads in the regime where the inter-
action time is short. Beyond the regime, however, the mo-
mentum spread undergoes a series of collapses and revivals
@10#, or Pendello¨sung-type oscillations@11#. Here we will
limit discussions in the short-interaction-time regime. The
SW provides spatial inhomogeneity to the atomic wave

packet and the momentum spreading~and hence the loss of
momentum coherence! is due to this inhomogeneity. The
process is not irreversible, however, and the momentum co-
herence can be restored by a second, suitably chosen SW or
a sequence of SW’s. This may be considered as an atom
optical analog to spin or photon echo, which involves a se-
quence of radio frequency or laser pulses, so we term it
‘‘atom echo.’’ While the echo technique developed by Che-
botayevet al. @3# is concerned with spatial rephasing of an
atomic beam, the schemes considered above work in mo-
mentum space. We also calculate the evolution of the atomic
wave packet in the accompanying position space to see the
effects of the schemes. In these calculations we integrate the
time-dependent Schro¨dinger equation numerically, without
using the usual Raman-Nath approximation.

The paper is organized as follows. In the next section a
discussion is given on the evolution of the atomic wave
packet in a SW in the Kapitza-Dirac regime, paying attention
to the analogy with the precession of the Bloch vectors in the
presence of spatial inhomogeneity. The analogy of the mo-
mentum refocusing with spin or photon echo is discussed in
Sec. III. A comparison of refocusing performances of various
SW sequences is also given in that section. The paper con-
cludes with a summary of the main results in Sec. IV.

II. ATOM INTERACTING WITH A STANDING
LIGHT WAVE IN A CAVITY

Consider a beam of two-level atoms moving along thez
direction, which subsequently enters a cavity and interacts
with a classical SW applied along the transverse direction~x
direction!. For large detunings spontaneous emission can be
suppressed and the effective Hamiltonian for an atom is@12#

H5
p2

2m
1
1

2
\dvsz1\

V2cos2~kx1w!

dv
sz , ~1!

wherem andp are the mass and the center-of-mass momen-
tum of the atom andsz is a Pauli spin operator describing the
population difference between the two internal states of the
atom.dv5v2v0 is the detuning between the atomic reso-
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nance frequencyv0 and the field frequencyv. The Rabi
frequency isV andk andw are, respectively, the wave vector
and the phase of the SW.

The longitudinal component of the atomic momentum is

unchanged in the course of interaction, so it suffices to con-
sider only the transverse motion of the atom. It will be as-
sumed that throughout the interaction the atom stays adia-
batically in the ground state, which is initially given by a
Gaussian wave packet

c~x,t50!5~2ps2!21/4expF ik0x2S x

2s D 2G , ~2!

wherek0 is the initial atomic wave vector ands is the spread
of atomic position. Thus we only have to solve the reduced
one-dimensional Schro¨dinger equation for the ground state

i\
]

]t
c~x,t !5Hc~x,t !, ~3!

where
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V2cos2~kx1w!
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. ~4!

FIG. 2. rms momentum spread~in units of\k! as a function of
interaction time~in units of t rec! for the parameters of Fig. 1.

FIG. 3. Schematics of the two-SW sequence for momentum
refocusing.V denotes the potential corresponding to the SW in
cavity 1 andV̄ the sign-reversed potential. The atom evolves inV
for a period oft int and then inV̄ also for t int . The scheme will be
calledVV̄ for simplicity.

FIG. 1. Probability of finding an atom in a SW as a function of
interaction time withdv51500,V5300, w50, and t int50.16: ~a!
P(K,t), in momentum space;~b! P(x,t), in position space; and~c!
in position space, but withdv521500 orw5p/2. The frequencies
and time are in units of respective recoil values of the atom. The
momentum and position are in units of the momentum and wave-
length of the SW field.
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There is no known analytical solution to the above equa-
tion, so it has to be integrated numerically. In this work we
employed both the Crank-Nicholson method as in Ref.@5#
and the pseudospectral method@13#. Both methods gave no
visible difference, but the former took much less computa-
tion time. If the kinetic-energy operator is ignored~the
Raman-Nath approximation!, which is valid for interaction
times much shorter than the recoil time, the resultant solution
is given by

c~x,t !5expF i S 12 dv1
V2

2dv D t GexpF i V2t

2dv

3cos2~kx1w!Gc~x,0!

5expF i S 12 dv1
V2

2dv D t G (
n52`

`

i nJnS V2t

2dv D
3e2in~kx1w!c~x,0!. ~5!

The second equality of Eq.~5! follows from the Jacobi-
Anger identity~see, for example, Refs.@14, 15#!. Likewise,

the exact wave functionc(x,t) may be expanded in terms of
plane waves modulated by the initial wave packet in the
form

c~x,t !5 (
n52`

`

cn~ t !exp~ ipnx/\!c~x,0!, ~6!

where pn5n\k. A Fourier transform ofc(x,t) yields
f(px ,t), which exhibits the near-field atomic~transverse!
momentum distribution. Figure 1~a! shows as a function of
interaction timet int the probabilityuf(px ,t) u

2 of finding mo-
mentum in units of photon momentum\k.

The initial atomic Gaussian wave packet is assumed to
have a widths50.5 ~in units of optical wavelengthl! and
k050. From the uncertainty relationDxDp5\/2 for a Gauss-
ian wave packet one has the initial momentum spreadDp5\
centered about zero. For convenience we introduce the recoil
frequency vrec and the recoil time t rec defined by
vrec5\k2/(2m)51/t rec. Then other parameters aredv ~in
units ofvrec!, 1500;V ~in units ofvrec!, 300;w ~in units of
2p!, 0; andt int ~in units of t rec!, 0.16.

We see that as the interaction proceeds, the atomic mo-
mentum distribution fans out, giving rise to the well-known
diffraction pattern that involves only integer multiples of
2\k. Although each diffraction process is coherent, theover-
all momentum coherence is lost because of the admixture of

FIG. 4. ~a! Momentum-space and~b! position-space probabili-
ties as a function of interaction time for the two-SW sequenceVV̄
with tint50.08 for each component SW. Other parameters are the
same as in Figs. 1~a! and 1~b!.

FIG. 5. Same as in Fig. 4 for the four-SW sequenceVV̄VV̄ with
tint50.04 for each SW.
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partial waves withpnÞ0 in Eq.~6!. To be more quantitative,
the rms momentum spread as a function oft int is shown in
Fig. 2. This resembles the fanning out of Bloch vectors due
to spatial inhomogeneity as they precess in the rotating
frame, with subsequent loss of coherence. The spatial inho-
mogeneity for the atomic momentum decoherence mecha-
nism is due to the optical SW, although the inhomogeneity is
not completely random but periodic. Kurtsieferet al. @16#
recently reported the time-resolved experimental detection of
momentum diffraction along with the rms momentum trans-
fer for metastable helium atoms. The experimental results
too show a linear growth of the rms momentum spread for
short interaction times, which they explained in the context
of the Raman-Nath approximation.

Although most studies on the atom-SW interaction con-
centrate on the momentum wave packet, it is also of interest
how the position wave packet changes as a function of inter-
action time. The Raman-Nath solution given by Eq.~5! pre-
dicts that only the phase of the atomic wave packet changes
as a result of the interaction with the SW. Without the
Raman-Nath approximation, however, both the phase and the
amplitude of the atomic wave packet are modulated, as dis-
cussed in Ref.@5#. Hence care has to be taken when one
makes the~transmission! phase grating analogy to the SW.
Figure 1~b! shows the dynamical localization of the initial
Gaussian wave packet for blue detuning~dv.0! with w50
and Fig. 1~c! for red detuning withw50 ~or blue detuning
with w5p/2!. In the former case the wave packet localizes at
the nodes of the SW,l/4, 3l/4, 5l/4, . . . ,where the poten-
tial minima are located, while for the latter case the wave
packet localizes at the SW antinodes, 0,l/2,l, . . . .

III. REFOCUSING OF ATOMIC MOMENTUM

A. Refocusing with two SW’s

If the interaction time is much longer thant rec the momen-
tum spread exhibits a series of collapses and revivals@10#, or
Pendelo¨sung oscillations@11#, if k0Þ0. However, one can
reverse the process and make the momentum spread collapse
within a time arbitrarily shorter than the collapse-revival pe-
riod by a second SW with either an opposite sign of detuning
or ap/2 phase shift. Either one of the parameters reverses the
sign of the SW potential, which is analogous to applying ap

pulse in coherent transient experiments. In this new environ-
ment the atoms with various momenta ‘‘race backward’’ and
at t52t int they regroup. Let us denoteV as the optical po-
tential corresponding to the first SW with the parameters of
Fig. 1 andV̄ the sign-reversed potential. The dynamical re-
focusing of atomic momentum with the schemeVV̄ depicted
in Fig. 3, where the potentials are applied back to back, is
shown in Fig. 4~a!. For each potential the interaction time is
taken to be equal to 0.08, so the total interaction time is
again 0.16.

Note that the two SW regions touch in the schemeVV̄.
The free evolution period between the regions should de-
grade the refocusing performance. This is in contrast to the
scheme of Ref.@3#, in which the SW’s are spatially sepa-
rated. The resurrection of momentum coherence by applying
two SW’s is the aforementioned atom optical analog to spin
or photon echo. The residual momentum spread at the end of
the second SW is due to the kinetic-energy term in the
Hamiltonian, the sign of which is not reversed by the
scheme. The corresponding evolution of probability in posi-
tion space is shown in Fig. 4~b!.

B. Performance of multi-SW sequences

The refocusing performance can be improved with more

SW’s, e.g.,VV̄VV̄, which corresponds to applying a se-
quence of twop pulses, which results in the formation of
two echoes. Figure 5 shows the refocusing with the four-SW
sequence and position-space probability. We taket int50.04
for each component SW potential to give the same total in-
teraction time. The performance improvement over the
simpleVV̄ sequence is obvious.

It is rather easy to explain the performance improvement
of a longer~in terms of the number of theVV̄ unit! sequence.
To that end let us rewrite the Hamiltonian in Eq.~4! as

H5
px
2

2m
1\

V2cos2~kx1w!

2dv
[T1V, ~7!

whereT andV denote the kinetic-energy and the potential-
energy operators, respectively, and the constant terms have
been dropped, since they have no dynamical effects. Let us

TABLE I. Atomic rms momentum and position values for various standing-wave sequences~see the text
for notations! at t int50.16.

Sequence Dp/\ Dx

R 7.913 240 614 926 905 45 0.503 925 657 721 535 165
S 3.128 035 685 509 044 59 0.501 010 541 169 153 691
Q 1.690 932 654 971 640 02 0.500 149 584 574 719 074
SS 1.692 068 295 072 820 33 0.500 291 382 516 725 094
SS̄ 1.107 309 984 298 619 28 0.500 070 496 767 292 066
QQ 1.102 580 576 941 442 43 0.500 056 039 550 526 377
QQ̄ 1.099 618 696 330 666 87 0.500 051 827 940 291 846
QQQQ 1.026 157 196 583 899 15 0.500 050 137 745 488 153

QQQQ 1.025 912 902 334 779 37 0.500 049 863 071 251 198

A A A
free-space values 1.000 000 000 000 000 00 0.500 065 697 970 206 690
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denote the evolution operator byU1 ~U2!, which corre-
sponds to the potentialV (V̄). The evolution operator for a
time dt→0 may be split as

U65expF2 i

\
~T6V!dt G'expS 2 i

\
Tdt DexpS 7 i

\
Vdt D

'expS 7 i

\
Vdt DexpS 2 i

\
Tdt D , ~8!

which is accurate to first order indt. Thus, within this degree
of accuracy, ifdt5t int/2,

U1U25expS 2 i

\
Tdt DexpS 2 i

\
Vdt DexpS i\ Vdt D

3expS 2 i

\
Tdt D

5expS 22i

\
Tdt D5expS 2 i

\
TtintD . ~9!

Therefore, the accuracy improves as the number of theVV̄
unit increases in a sequence of fixed overall interaction time
t int , and eventually as the number tends to infinity the atom
moves as if it were infreespace. In Table I the rms momen-
tum and position spreads for various multiple-SW sequences
are listed. We introduced the notationR for theVV̄ unit and
S[RR5VV̄VV̄ and Q[RR̄5VVVV. Indeed, as the se-
quence gets longer, the spreads converge to the free space
values for a Gaussian wave packet@17#

~Dp/\! t5~Dp/\!0 , ~10!

~Dx! t5~Dx!0H 11F 1

2p~Dx!0
G4t int2 J 1/2, ~11!

which are 1.0 and 0.500 065 7, respectively, for the param-
eters (Dx)050.5 andt int50.16. The convergence ofDp is
uniform. ButDx values of very long sequences are slightly
less than that of the pure Gaussian wave packet, and as
shown in Fig. 6 the behavior is due to the increased prob-
ability about the center.

FIG. 6. Comparison of position-space wave packets. Dotted
line, Gaussian wave packet evolved freely fort50.16, solid line, in
the 16-SW sequenceQQQQ with t int50.01 for each SW.

FIG. 7. Comparison of momentum distributions for various SW
sequences withk053: ~a! V, ~b! VV̄, ~c! VV̄VV̄, and~d! VVVV.
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One may also note from Table I that there are substantial
differences in refocusing performance among the sequences
with the same length. For example, the rms momentum for
the four-SW sequenceQ is only half of that ofS. Also,
among the eight-SW sequencesQQ̄5RRRR delivers the
best performance. Moreover, the performance of the
four-SW sequenceQ is better than that of the eight-SW se-
quenceSS. We note that bothQ andQQ̄ have the structure
WWWWwith W5V andW5R, respectively.

The refocusing schemes work also for the nonzero initial
momentum. Figure 7 shows refocusing of atomic momentum
for k053, keeping other parameters the same. Here too one
finds the superior performance of the sequenceVVVV over
theVV̄VV̄. Thus it appears that a sequence with a structure
WWWW is highly efficient for refocusing.

C. Far-field momentum and position distributions

Thus far, we concentrated on the near-field evolution of
the atomic wave packets. However, often measurements are
made outside the cavity, where the atom evolves freely, so it
is also of interest to investigate the far-field behavior of the
atomic de Broglie waves. Figure 8 shows the localization as
well as the momentum distribution with the SW on for
t int50.08 followed by a free evolution periodt free50.08, the

total evolution time being also 0.16. As expected, no further
momentum transfer to the atom occurs during the free evo-
lution period. However, there is a substantial localization
during the free evolution period, although the degree of lo-
calization is slightly less than that of Fig. 1~b!. The continu-
ation of the localization of the position wave packets after
the SW is switched off is because of the fact that a certain
portion of the atom possesses nonzero momentum as a result
of a previous interaction with the SW. Hence, by removing
the momentum it is possible to stop~or at least reduce! the
localization during the free evolution period. Figure 9 shows
the momentum and the position probabilities for the se-
quenceVVVVapplied for a period of 0.08 followed by a free
evolution period of 0.08. As one can see, most of the mo-
mentum probability remains about the center~the zero mo-
mentum! and the localization is almost negligible during the
free evolution period.

IV. SUMMARY

In this paper@18# we studied numerically the near- and
the far-field transverse position and momentum distributions
of a two-level atom in sequences of optical SW’s. The se-
quences are designed to compensate the effects of an initial
SW. So the linear growth of the rms momentum distribution
and the localization of position that characterize the atomic

FIG. 8. ~a! Momentum-space and~b! position-space probabili-
ties as a function of evolution time for a SW withtint50.08 fol-
lowed by a free evolution periodtfree50.08.

FIG. 9. Same as in Fig. 8 for the four-SW sequenceVVVVwith
tint50.02 for each SW andtfree50.08.
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wave-packet dynamics in a SW are either reversed~the
former! or reduced~the latter! with the sequences. The co-
herent refocusing of diffracted partial waves with different
center-of-mass momenta bears an analogy to spin or photon
echo. Such a coherent manipulation of atomic momentum
may be beneficial in atomic position measurements or in
atom lithography. The refocusing performance can be im-

proved by increasing the number of SW’s used, while keep-
ing the total interaction time fixed.
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