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In calculating the elastic differential cross section for electron scattering from linear nonpolar molecules, one
must include elements of the transition matrix corresponding to a large number of partial waves in order to
obtain convergence at small angles. We present an analytic correction to the widely used expression for the
differential cross section in terms of body-frameT-matrix elements calculated in the fixed-nuclear-orientation
approximation. This correction incorporates contributions from all high-order partial waves via the Born
approximation. It efficiently produces accurate differential cross sections and shows rapid convergence even at
small angles. We illustrate the importance and accuracy of this procedure for low-energy~less than 10 eV!
collisions of electrons with H2 and N2. @S1050-2947~96!08906-8#

PACS number~s!: 34.80.Bm, 34.80.Gs

I. INTRODUCTION

One of the standard methods for calculating the differen-
tial cross section~DCS! is expansion of the scattering ampli-
tude in partial waves@1#. For spherical potentials, the orbital
angular momentum of the projectile is conserved and the
partial-wave scattering amplitudes~or phase shifts! are la-
beled by the quantum numberl . For a nonspherical potential,
as in electron-molecule scattering, the projectile orbital an-
gular momenta are coupled in both the entrance and exit
channels, so the amplitudes—and elements of the transition
(T) matrix—are labeled by bothl and l 0. The partial-wave
expression for the DCS involves infinite sums over these
angular momenta, which, unless evaluated analytically, must
obviously be truncated. Convergence of the DCS in these
sums can be slow, especially at small angles~e.g.,u<30°!,
and the effort required increases as the square of the number
of terms included in the original partial-wave expansion.

Recent advances in crossed-beam experiments@2# have
significantly improved the accuracy of measurements of
small-angle electron-molecule DCS’s. For example, the mea-
surements reported by Sunet al. @2# of thee-N2 DCS at and
above 4.0 eV show clear small-angle structures which had
not been previously resolved. Such measurements highlight
the need for accurate theoreticale-N2 DCS’s. At angles be-
low about 30°, many partial waves are required to converge
these DCS’s@2#. One could easily generate the large number
of T-matrix elements necessary for convergence in the first
Born approximation~FBA! @3,4#, but such a brute-force ap-
proach to this problem is certainly inefficient and potentially
inaccurate, especially for strongly nonspherical systems.

The partial-wave convergence problem also arises in cal-
culating small-angle electron-atom DCS’s. For electron-rare-
gas scattering, Thompson@5# has provided an alternative to
brute-force numerical convergence: ananalytic expression
that includes contributions from all partial wavesl greater
than somelmax. These contributions are approximated in the
FBA using only the long-range part of the potential
V(r );2a0/2r

4, wherea0 is the spherical polarizability of
the atom.~Wadehra and Nahar@6# give expressions for the
long-range contribution to the scattering amplitude for
spherical potentials that fall off asr2n for n ranging from 3

to 8.! We will refer to such a procedure as analytic Born
completion.

The electron-molecule problem is complicated by the
nonspherical interaction potential and the need to account for
rotation and vibration. Use of the FBA to approximate high-
order elements of the electron-moleculeT matrix dates back
to studies of electron–polar-molecule scattering by Crawford
and Dalgarno@7,8#. Most such implementations of this idea
focus on the expansion of the DCS in Legendre polynomials
with respect to the lab-frame scattering angleu,

ds

dV
~u,k0!5

1

k0
2 (
L50

`

AL~k0!PL~cosu!, ~1!

where the coefficientsAL(k 0
2) contain all the dynamical in-

formation, embedded inT-matrix elements. Thus, for ex-
ample, Norcross and Padial, in a study of electron–polar-
molecule scattering@3#, introduced a procedure that includes
high-order partial-wave contributions to the DCS by exploit-
ing the simple closed form of the lab-frame DCS in the FBA
@9#. To correct this form, they add a finite sum of terms that
in effect replaces low-orderBorn Legendre contributions by
their close-coupling counterparts. In addition to its first ap-
plication toe-CO and vibrationally elastice-HCl scattering
@3#, their method was subsequently applied to vibrationally
inelastice-HCl collisions @10,11#, and toe-HCN collisions
@12#. Numerical Born completion of the DCS is applicable to
any long-range potential and has been used extensively in
electron-molecule scattering@13–16#.

The approach we adopt is to apply Born completion ana-
lytically not to the DCS, but to the electron-molecule scat-
tering amplitude. Rescignoet al. @17# have summarized re-
cently the advantages of completing the scattering amplitude
for electron–polar-molecule scattering; and Fliflet and
McKoy @18# have successfully implemented an analytic
amplitude-based Born completion for electronic excitation in
the distorted-wave approximation, presenting closed forms
for the Born terms.

In Sec. II we derive an analytic correction to the scatter-
ing amplitude for elastic electron scattering from a nonpolar
molecule in the ground state. Using this correction, we ob-
tain an expression for the FBA-corrected elastic DCS in
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which low-order partial-waveT-matrix elements are in-
cluded from body-frame scattering calculations in the fixed-
nuclear-orientation approximation. In Sec. III we use this
result to generate DCS’s fore-H2 and e-N2 scattering. By
comparing these cross sections with those obtained by brute-
force numerical convergence, we illustrate the advantages of
the analytic Born completion. We use atomic units through-
out.

II. THEORY

The idea of Born completion is simple. Since we expect
the Born approximation to accurately represent contributions
to the scattering amplitude from elements of theT matrix
corresponding to high-order partial waves~large l ! @4,19#,
we can evaluate the amplitude by computing the Born am-
plitude, then replacing the Born partial-wave amplitudes for
low partial waves with amplitudes from a more accurate
treatment.

The implementation of this idea is complicated in the case
of electron-molecule scattering because of the nonsphericity
of the interaction potential. If we consider scattering energies
that are large compared to the molecule’s rotational constant,
we can treat the directionR̂ of the internuclear axis as fixed
for the duration of the collision, as illustrated in Fig. 1; here
kW0 and kW are the incoming and outgoing wave vectors, re-
spectively, in a space-fixed~laboratory! reference frame@20#.
This is the fixed-nuclear-orientation~FNO! approximation
@21#. The FNO scattering amplitude therefore depends onR̂,
and the measured elastic DCS is the average over orienta-
tions of the squared modulus of this amplitude@22#,

ds

dV
~kW ,kW0!5

1

4p E u f ~kW ,kW0 ;R̂!u2dR̂. ~2!

Using Born completion, we can write the elastic FNO am-
plitude as

f ~kW ,kW0 ;R̂!5 f B~kW ,kW0 ;R̂!2 (
l ,l050

lmax

(
m,m0

^kW uklm&

3@ f lm,l0m0

B ~k0 ;R̂!2 f lm,l0m0
~k0 ;R̂!#

3^k0l 0m0ukW0&, ~3!

where f B(kW ,kW0 ;R̂) is the first Born approximate to
f (kW ,kW0 ;R̂), and f lm,l0m0

B (k0 ;R̂) are Born partial-wave ampli-

tudes~see below!. The coefficient

^kW uklm&5
~2p!3/2

k
i2 lYlm~ k̂! ~4!

effects the transformation from the plane-wave representa-
tion of the asymptotic free states to the partial-wave repre-
sentation. The expression~3! is structurally similar to that
used by Thompson@5# for electron-atom scattering.

For the electron-molecule interaction potentialV(rW;R̂),
the Born amplitude is@23#

f B~kW ,kW0 ;R̂!52
1

2p E eiqW •rWV~rW;R̂!dW r , ~5!

whereqW 5kW02kW is the momentum transfer. For elastic scat-
tering, the magnitude ofq is related to the scattering angle
by q52k sinu. Since we will use the Born approximation
for high-order partial waves, we also need the partial-wave
amplitudes

f lm,l0m0

B ~k0 ;R̂!52
k0
2

p2 E j l~k0r !Ylm* ~ r̂ !V~rW;R̂! j l0~k0r !

3Yl0m0
~ r̂ !dW r , ~6!

where thej l(x) are spherical Bessel functions. For largel ,
the centrifugal barrier term in the coupled radial scattering
equations will dominate the potential in the small-r region,
so scattering in those partial waves is due to the long-range
form of the electron-molecule potential,

VLR~rW;R̂!52
a0

2r 4
2S a2

2r 4
1
Q

r 3DP2~ r̂ •R̂!. ~7!

ReplacingV(rW;R̂) by this potential allows us to evaluate
Eqs. ~5! and ~6! analytically. In particular, from Eq.~5! we
obtain

f B~kW ,kW0 ;R̂!5a0M0
4~q!2P2~ q̂•R̂!S a2pq

16
1
2

3
QD , ~8!

and from Eq.~6!,

f lm,l0m0

B ~k0 ;R̂!5k0
2H a0

2p2 Mll
4 ~k0!d l l 0dmm0

1p23/2All 02
mm0Y2,m2m0

* ~R̂!@a2Mll 0
4 ~k0!

12QMll 0
3 ~k0!#J . ~9!

The coefficientsMll 0
n are integrals over Bessel functions

@24#,

Ml
n~q!5E

0

`

dr r 22n j l~qr !, ~10!

Mll 0
n ~k0!5E

0

`

dr r 22n j l~k0r ! j l0~k0r !. ~11!

The coefficientsAll 0l
mm0 arise from the angular momentum

coupling and are given by

FIG. 1. Geometry for fixed-nuclear-orientation scattering in a
space-fixed~laboratory! reference frame.
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All 0l
mm05~21!m~2l11!1/2~2l 011!1/2~2l11!21/2

3S l0 l 0
0

l
0D S l

2m
l 0
m0

l
m2m0

D . ~12!

The remaining step in obtaining the analytic Born
completion expression for the amplitude~3! is to evaluate the
partial-wave amplitudesf lm,l0m0

(k0 ;R̂) for low-order partial
waves. In the FNO approximation, the projection of the elec-
tron’s orbital angular momentum on the internuclear axis,
denoted by the quantum numberL, is a constant of the mo-
tion. So additional simplifications obtain if we transform into
the body-fixed~BF! reference frame, where thez axis is
coincident with the internuclear axisR̂. The amplitudes
f lm,l0m0

(k0 ;R̂) are then related to elements of the BF FNO
T-matrix elements by a simple rotation@25#, effected by the
Wigner rotation matrices@26#

f lm,l0m0
~k0 ;R̂!5

ik0
4p2 (

L
DLm
l
* ~R̂!Tll 0

L DLm0

l0 ~R̂!. ~13!

Using the amplitudes~8! and ~9! along with the rotation
~13! in ~3! and performing the average over orientations~2!,
we obtain the DCS

ds

dV
~u,k0!5

1

4k0
2 (
l l 050

lmax

(
l 8 l0850

lmax

(
LL8

(
L

dL~ l l 0L,l 8l 08L8!

3Tll 0
L T

l 8 l08

L8*PL~cosu!1@F0~u!#2

1 1
5 (
m522

2

@F2
m~u!#21

1

k0
(
l l 050

lmax

(
L

@F0~u!d l l 0

1F2
0~u!c~ l l 0L!#Im~Tll 0

L !Pl~cosu!. ~14!

The sums overl , l 0, l 8, andl 08 in Eq. ~14! include all partial
waves from 0 tolmax; the sums overL, L8, andL include all
values allowed by projection and triangle rules implied in the
three-j symbols indL( l l 0L,l 8l 08L8) ~see below!. The factor
F0~u! reflects the spherical long-range potential and depends
on a0, while F 2

m~u! is due toa2 andQ:

F0~u!5
a0pq

4
1a0pk0(

l50

lmax 1

~2l11!~2l13!
Pl~cosu!,

~15a!

F2
m~u!5

1

A5
S a2pq

16
1
2Q

3 DY2m~ q̂!1 (
l l 050

lmax

i l02 l~21!m

3~2l11!1/2~2l 011!S l0 l 0
0

2
0D S lm l 0

0
2

2mD
3@a2Mll 0

4 ~k0!12QMll 0
3 ~k0!#Ylm~ k̂!. ~15b!

The coefficientsdL( l l 0L,l 8l 08L8) andc( l l 0L) contain angu-
lar momentum coupling information resulting from the frame
transformation and the average over orientations and are
given by

dL~ l l 0L,l 8l 08L8!5 i l02 l1 l 82 l08@~2l 011!~2l11!~2l 811!

3~2l 0811!#1/2~2L11!S l0 l 8
0

L
0D

3S l 00 l 08
0

L
0D S lL l 8

2L8
L

L82L D
3S l 0L l 08

2L8

L
L82L D , ~16!

c~ l l 0L!5~21!Li l02 l@~2l 011!~2l11!#1/2S l0 l 0
0

2
0D

3S lL l 0
2L

2
0D . ~17!

The first term in Eq.~14! is the usual expression for the
DCS in terms of BFT-matrix elements; Malegat@27# has
published a code for computation of numerically converged
DCS’s for electronic excitation of diatomic molecules. The
other terms are the analytic Born completion corrections. In
the limit lmax→`, these correction terms should tend to zero;
we have verified numerically that they do so. Note that these
terms involve only the imaginary parts of theT-matrix ele-
ments; this is consistent with the fact that in the FBA theT
matrix is purely imaginary. When we setQ50 anda250 in
Eqs. ~14!–~17!, returning the potential to a purely spherical
form, we regain Thompson’s expression for the electron–
rare-gas DCS.

Although we have written the equations for analytic Born
completion of the DCS without reference to vibrational
states, their extension to vibrational excitation is straightfor-
ward. To obtain this extension, we would include in Eq.~2!
a factorkv/k0 , use the proper relation between the momen-
tum transferq and the incoming and outgoing wave numbers
kv and k0, replace the moments in Eq.~7! by vibrational
matrix elements~e.g.,Q is replaced bŷv0uQuv&!, and insert
T-matrix elements from the proper vibrational block
Tv l ,v0l0

L .

III. RESULTS

In this section we compare two methods for obtaining
DCS’s from BF FNOT-matrix elements: the usual method
of truncating sums over angular momentum quantum num-
bers and the analytic Born completion method described in
the previous section. We will show that analytic Born
completion generates more accurate results more efficiently
than the truncated sum expression.

As noted above, by settinglmax5` in the first term in Eq.
~14!, we regain the familiar expression for the DCS in terms
of BF FNO T-matrix elements@22,27#. In the absence of
some sort of completion procedure, these sums must be trun-
cated. Since the BF FNOT matrix is block diagonal in the
projection quantum numberL, we choose to truncate the
sums at someLmax,
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ds

dV
~u,k0!5

1

4k0
2 (

LL852Lmax

Lmax

(
l l 0l 8 l08

(
L

dL~ l l 0L,l 8l 08L8!

3Tll 0
L Tl 8 l08

L8*PL~cosu!. ~18!

For eachL andL8, we truncate the sums onl , l 0, l 8, and
l 08 , including enough partial waves to numerically converge
the DCS~typically, from 3 to 8!, and include all Legendre
termsL allowed by the triangle and projection rules implied
by ~16!. We will show that the computationally efficient
choice of a smallLmax introduces significant error in the
DCS, especially at small angles. One purpose of the analytic
Born completion procedure is to eliminate this error without
incurring significant additional computational demands.

It is important to note that in contrast to Eq.~18!, the Born
completion expression~14! involves only one parameter
lmax, which in this equation representsthe maximum-order
partial wave of the included BF FNO T-matrix elements. The
infinity of additional elements withl or l 0. lmax is included
analytically.

A. e-H2 scattering

Electron-H2 scattering provides a good verification of the
analytic Born completion method because the truncated ex-
pression~18! is relatively easy to converge. Thee-H2 inter-
action potential is very nearly spherical, with a weak short-
range potential; contributions from higher-order partial
waves are small because the centrifugal barrier dominates the
short-range interaction. We base our comparisons here onS
~L50! and P ~uLu51! T matrices from the body-frame-
vibrational close-coupling~BFVCC! calculations of Trail
and Morrison @28#. These authors solved the integro-
differential e-H2 scattering equations using the linear alge-
braic method@29#, including exchange effects exactly and
approximating the correlation-polarization potential with a
local, parameter-free model potential@30#.

Figures 2 and 3 show elastic DCS’s at two representative
energies, 1 and 10 eV, respectively, calculated with and
without Born completion. For these DCS’s, the truncated
sum expression~18! converges byLmax51 with six partial
waves for each symmetry. Results from the analytic Born
completion calculations are labeled bylmax, the maximum
order partial wave of the included body-frame-vibrational
close-coupling ~BFVCC! T matrices. At both energies,
lmax51 is sufficient to converge the analytically Born com-
pleted DCS’s; contributions froml>2 are easily and accu-
rately represented by the correction terms in~14!. We have
verified these conclusions fore-H2 at several other energies
below 10 eV~not shown!.

B. e-N2 scattering

The e-N2 interaction potential is stronger and more non-
spherical than thee-H2 potential, so we expect thee-N2 DCS
to requireT-matrix elements from higher-order symmetries
and partial waves~i.e., to converge more slowly!, and the
effect and value of the analytic Born completion to be
greater for this system. These expectations are borne out by
the DCS’s in Figs. 4–6.

FIG. 2. DCS fore-H2 scattering at 1.0 eV, calculated by the
truncated sum~18! with Lmax51 ~open circles!, and by analytic
Born completion~14! with lmax50 ~dot-dash line!, lmax51 ~dashed
line!, and lmax52 ~solid line!.

FIG. 3. DCS fore-H2 scattering at 10.0 eV. Symbols and lines
as in Fig. 2.
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We have usedT matrices with uLu50,1,2 from the
BFVCC calculations of Sunet al. @2#, in which exchange
effects were approximated by a tuned free-electron-gas
model and correlation-polarization effects by the extension
to e-N2 of the parameter-free model used by Trail and Mor-
rison @28# for e-H2 scattering. In the truncated DCS calcula-
tions, T-matrix elements from symmetries withL>3 re-
quired for convergence of the DCS~18! were calculated in
the FBA @4#.

As shown in Fig. 4, the DCS’s at 0.1 eV calculated from
the truncated expression withLmax51 are not converged. To
converge Eq.~18! requiresLmax57. At this low energy much
of the scattering is due to the long-range potential~7!, so
these higher-order partial waves and symmetries are impor-
tant to the DCS’s. By contrast, with the analytic Born
completion we obtain convergence bylmax52. That is, we
must include only BFVCCT-matrix elementsTll 0

L with both

partial-wave labelsl and l 0 less than or equal to 2; analytic
Born completion correctly includes all higher-order contribu-
tions.

One point of theoretical interest is that the truncated sum
~18! cannot produce the proper behavior of the DCS atu50°.
In general, the slope of the DCS at zero degrees is nonzero
@31#. But because Eq.~18! is the sum of a finite number of
Legendre polynomials this truncated sum always produces a
DCS whose slope at zero degrees is zero. This distinction
explains the remaining discrepancy between the analytic
Born completed DCS’s and the truncated DCS’s at small
angles in Fig. 4.

FIG. 4. DCS fore-N2 scattering at 0.1 eV, calculated by the
truncated sum~18! with Lmax51 ~open circles! andLmax57 ~open
squares!, and by analytic Born completion~14! with lmax50 ~dot-
dash line!, lmax51 ~dashed line!, and lmax52 ~solid line!.

FIG. 5. DCS fore-N2 scattering at 4.0 eV, calculated by the
truncated sum~18! with Lmax51 ~open circles! andLmax57 ~open
squares!, and by analytic Born completion~14! with lmax51 ~dot-
dash line!, lmax52 ~dashed line!, and lmax53 ~solid line!.

FIG. 6. DCS fore-N2 scattering at 10.0 eV. Symbols and lines
as in Fig. 5.
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The shape of the elastic DCS’s at energies above the 2.4
eV resonance differs strikingly from that of low-energy
DCS’s such as the one in Fig. 4. Measurements by Buckman
and collaborators@2# show a characteristic structural feature
at u<30° that persists from 4 to 10 eV. Because small-angle
e-N2 DCS’s at these energies vary rapidly with angle and
involve contributions from a large number of partial waves,
they offer a stringent test of analytic Born completion.

This feature is evident in the elastic DCS at 4.0 eV in Fig.
5. The convergence behavior of this DCS is similar that of
the 0.1 eV case. Even withLmax57, the truncated sum DCS
is not converged at small angles~u<20°!; the analytic Born
completion expression, however, converges bylmax52. This
behavior indicates that scattering by the long-range potential
makes a significant contribution to the DCS at all angles and
is especially important at small angles.

The small-angle feature in the 4 eV DCS persists at ener-
gies up to 10 eV, though as illustrated in Fig. 6 it changes
character somewhat. The truncated sum~18! is poorly con-
verged foru<45° even byLmax57. Convergence of the ana-
lytic Born completed DCS, however, is both rapid and
smooth, requiring onlylmax53 in Eq. ~14!. This figure also
vividly illustrates that a DCS calculated from the truncated
sum, no matter how large a value ofLmax is used, will not
have a nonzero slope at zero degrees, while the analytic Born
completed DCS, which includes all partial waves, behaves
properly in this limit.

The convergence behavior of thesee-N2 DCS’s demon-
strates the computational advantages of the analytic Born
completion equation~14!. Using this equation withlmax52
requires only nine BFVCCT-matrix elements; the truncated
expression ~18! with Lmax57 requires several hundred
T-matrix elements. Although the completion procedure in-
curs a small overhead in calculating the correction terms, it is
uniformly faster than converging the truncated sum. Most
importantly, the analytic Born completion shows clear con-
vergence at all angles.

IV. CONCLUSIONS

We have presented an analytic correction to the widely
used truncated sums expression for calculating the elastic
DCS from BF FNOT-matrix elements. For scattering from a

linear nonpolar target, this term efficiently includes contribu-
tions from all high-order partial waves. This method, which
is implemented in Eqs.~14!–~17!, is much more efficient
than converging the truncated sum expression~18! for the
DCS. The sums in~14! involve only one parameterlmax, so
determining convergence is straightforward. Moreover, this
method ensures the correct behavior of the slope of the DCS
asu approaches 0°.

The importance of correctly evaluating small-angle
DCS’s is emphasized by recente-N2 DCS measurements of
Buckman and collaborators@2#. These authors have reported
similar distinctive small-angle features in DCS’s for electron
scattering from NO@32#, O2 @33#, and CO@34#. The present
analysis ofe-N2 DCS’s, along with the theoretical results of
Sunet al. @2#, show the central role of the long-range poten-
tial in determining such structures. The similarity of the most
important permanent and induced moments for other systems
where this small-angle structure appears further suggests that
it may be a generic feature arising from long-range scatter-
ing.

The extension of this method to vibrational excitation was
noted in Sec. II. Its general extension to other molecules
should also be straightforward. One could include the effects
of higher-multipole terms in the long-range potential by a
procedure analogous to that of Sec. II. The case of a
permanent-dipole term, which causes the BF FNO DCS to
diverge in the forward direction, can be treated with proce-
dures developed by Norcross and Padial@3#.
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