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Analytic Born completion in the calculation of electron-molecule differential cross sections
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In calculating the elastic differential cross section for electron scattering from linear nonpolar molecules, one
must include elements of the transition matrix corresponding to a large number of partial waves in order to
obtain convergence at small angles. We present an analytic correction to the widely used expression for the
differential cross section in terms of body-framiematrix elements calculated in the fixed-nuclear-orientation
approximation. This correction incorporates contributions from all high-order partial waves via the Born
approximation. It efficiently produces accurate differential cross sections and shows rapid convergence even at
small angles. We illustrate the importance and accuracy of this procedure for low-dlesgyhan 10 ey
collisions of electrons with Hand N,. [S1050-294®6)08906-§

PACS numbd(s): 34.80.Bm, 34.80.Gs

[. INTRODUCTION to 8) We will refer to such a procedure as analytic Born
completion.

One of the standard methods for calculating the differen- The electron-molecule problem is complicated by the
tial cross sectioiDCS) is expansion of the scattering ampli- nonspherical interaction potential and the need to account for
tude in partial wavegl]. For spherical potentials, the orbital rotation and vibration. Use of the FBA to approximate high-
angular momentum of the projectile is conserved and th@rder elements of the electron-moleciilenatrix dates back
partial-wave scattering amplitudésr phase shiffsare la- 0 studies of electron—polar-molecule scattering by Crawford
beled by the quantum numbkerFor a nonspherical potential, and Dalgarnd7.,8]. Most such implementations of this idea
as in electron-molecule scattering, the projectile orbital anfocus on the expansion of the DCS in Legendre polynomials
gular momenta are coupled in both the entrance and exWith respect to the lab-frame scattering angle
channels, so the amplitudes—and elements of the transition d 1
(T) matrix—are labeled by bothandl,. The partial-wave o _ -
expression for the DCS involves infinite sums over these aq (Oko)= k3 LZO AL(ko) P (cosd), @
angular momenta, which, unless evaluated analytically, must
obviously be truncated. Convergence of the DCS in theswhere the coefficient®, (k3) contain all the dynamical in-
sums can be slow, especially at small andlesg., <30°, formation, embedded if-matrix elements. Thus, for ex-
and the effort required increases as the square of the numbample, Norcross and Padial, in a study of electron—polar-
of terms included in the original partial-wave expansion. molecule scatterinf3], introduced a procedure that includes

Recent advances in crossed-beam experimgithave high-order partial-wave contributions to the DCS by exploit-
significantly improved the accuracy of measurements ofng the simple closed form of the lab-frame DCS in the FBA
small-angle electron-molecule DCS’s. For example, the med9]. To correct this form, they add a finite sum of terms that
surements reported by Set al. [2] of thee-N, DCS at and in effect replaces low-orddBorn Legendre contributions by
above 4.0 eV show clear small-angle structures which hatheir close-coupling counterparts. In addition to its first ap-
not been previously resolved. Such measurements highlighlication toe-CO and vibrationally elastie-HCI| scattering
the need for accurate theoreti@N, DCS'’s. At angles be- [3], their method was subsequently applied to vibrationally
low about 30°, many partial waves are required to convergénelastice-HCI collisions[10,11], and toe-HCN collisions
these DCS’$2]. One could easily generate the large numbef12]. Numerical Born completion of the DCS is applicable to
of T-matrix elements necessary for convergence in the firstny long-range potential and has been used extensively in
Born approximation(FBA) [3,4], but such a brute-force ap- electron-molecule scatterifjd3—-16.
proach to this problem is certainly inefficient and potentially The approach we adopt is to apply Born completion ana-
inaccurate, especially for strongly nonspherical systems. Iytically not to the DCS, but to the electron-molecule scat-

The partial-wave convergence problem also arises in catering amplitude. Rescignet al. [17] have summarized re-
culating small-angle electron-atom DCS's. For electron-rarecently the advantages of completing the scattering amplitude
gas scattering, Thompsdb] has provided an alternative to for electron—polar-molecule scattering; and Fliflet and
brute-force numerical convergence: analytic expression McKoy [18] have successfully implemented an analytic
that includes contributions from all partial wavegreater amplitude-based Born completion for electronic excitation in
than somd ... These contributions are approximated in thethe distorted-wave approximation, presenting closed forms
FBA using only the long-range part of the potential for the Born terms.

V(r)~—ay/2r*, whereq, is the spherical polarizability of In Sec. Il we derive an analytic correction to the scatter-
the atom.(Wadehra and Nahd®] give expressions for the ing amplitude for elastic electron scattering from a nonpolar
long-range contribution to the scattering amplitude formolecule in the ground state. Using this correction, we ob-
spherical potentials that fall off as " for n ranging from 3  tain an expression for the FBA-corrected elastic DCS in
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= effects the transformation from the plane-wave representa-
/ tion of the asymptotic free states to the partial-wave repre-
» X 0 sentation. The expressidid) is structurally similar to that

----------- used by Thompsoft] for electron-atom scattering.
For the electron-molecule interaction potentia(r’; R)
the Born amplitude i$23]

S j

FIG. 1. Geometry for fixed-nuclear-orientation scattering in a
space-fixedlaboratory reference frame. fB(IZ,IZo;IEZ)=— % f eid'FV(F; IA?)ar, (5)
which low-order partial-waveT-matrix elements are in- L
cluded from body-frame scattering calculations in the fixedwhereq=k,—k is the momentum transfer. For elastic scat-
nuclear-orientation approximation. In Sec. I we use thistering, the magnitude aof is related to the scattering angle
result to generate DCS’s fae-H, and e-N, scattering. By by q=2k sin 4. Since we will use the Born approximation

comparing these cross sections with those obtained by brut¢er high-order partial waves, we also need the partial-wave
force numerical convergence, we illustrate the advantages efmplitudes

the analytic Born completion. We use atomic units through-
out.

i 1gme(KoiR) =~ — f Ji(kon) Yin(FIV(F;R)ji (Kor)
Il. THEORY

. o . XY (P, (6)
The idea of Born completion is simple. Since we expect oo

the Born approximation to accurately represent contributions
to the scattering amplitude from elements of fhematrix
corresponding to high-order partial wavédargel) [4,19],

where thej (x) are spherical Bessel functions. For ladge
the centrifugal barrier term in the coupled radial scattering

we can evaluate the amplitude by computing the Born amequatlons will dominate the potential in the snmaltegion,
SO scattering in those partial waves is due to the long-range

plitude, then replacing the Born partial-wave amplitudes for, form of the electron-molecule potential,
low partial waves with amplitudes from a more accurate P

treatment.
The implementation of this idea is complicated in the case V R(F:R) = — a_(z_ a_24 + % P,(7-R). (7)
of electron-molecule scattering because of the nonsphericity 2r 2r® r

of the interaction potential. If we consider scattering energies

that are large compared to the molecule’s rotational constanReplacing V(r; R) by this potential allows us to evaluate
we can treat the directioR of the internuclear axis as fixed Egs.(5) and(6) analytically. In particular, from Ec(5) we
for the duration of the collision, as illustrated in Fig. 1; here obtain

ko andk are the incoming and outgoing wave vectors, re-

spectively, in a space-fixgthboratory reference framg20]. - > A ~ o~ a2

This is the fixed-nuclear-orientatioFNO) approximation fB(k'kO’R):aoMé(q)_PZ(q'R)( 16 ) ®
[21]. The FNO scattering amplitude therefore depend®pn

and the measured elastic DCS is the average over orientand from Eq.(6),

tions of the squared modulus of this amplity@2],

do

~ ao
do meJOmO(ko?R):kd 52 Mii(Ko) 811 Smm,
dQ

- - 1 S . A
(k,ko)=Ef|f(k,ko;R)|2dR- )

1 AT S (R aMif (ko)
Using Born completion, we can write the elastic FNO am-

litude as
P +2Qmﬁo<ko>]}. ©
Im X
fk, k° R)=1° ( ko R)_|,|02:0 m,Emo (k[kiIm) The coefficientsM,‘iO are integrals over Bessel functions
B = -~ [24]1
X[ Fim 1 gmo(Ko:R) = fim,1 mo(Ko: R)]
X (Kol oMol KoY., 3 W(q)=f0 dr r2="j(ar), (10

where fB(k k0 R) is the first Born approximate to
f(k ko,R) andfImI oMo (Ko; R) are Born partial-wave ampli- M/ (ko):f dr 127, (ker)j (Ko ). (11)
tudes(see below. The coefficient 0 0 0

(2 )3’2 A The coefficientsA,, ";0 arise from the angular momentum
i 'Y im(k) (4)

(k|kIm)= coupling and are given by
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A= (=1)M21+ 1)YA 210+ 1) YA 20+1) T du (A TEA ) =i~V o[ (21 g+ 1) (21 +1)(21" + 1)
I 1o N lo N ><(2|’+1)]1’2(2L+1)<| K L)
“lo 0 o/l-m my m—mp/” 12 0 0 0 O
The remaining step in obtaining the analytic Born 5 lo 1o Lj[l I’ L
completion expression for the amplitu® is to evaluate the 0 0 0/\A —A" A'—A
partial-wave amplitudei;|m,|0m0(k0;R) for low-order partial | Y L
waves. In the FNO approximation, the projection of the elec- X X _X, A —A)’ (16)

tron’s orbital angular momentum on the internuclear axis,
denoted by the quantum numbér is a constant of the mo-
tion. So additional simplifications obtain if we transform into
the body-fixed(BF) reference frame, where the axis is
coincident with the internuclear axiR. The amplitudes
f|m,|0m0(k0;R) are then related to elements of the BF FNO

I | 2
T-matrix elements by a simple rotati¢@5], effected by the X(A _3\ 0). 17
Wigner rotation matricef26]

(lloA) ( 1)A lo— |[(2|0+l)(2|+1 ]1/2(0 l(;) g)

fim, |Om0(ko,R) 2 D (R)T,,O Am (R). (13 The first term in Eq(14) is the usual expression for the
DCS in terms of BFT-matrix elements; Malegd27] has

Using the amplitude$8) and (9) along with the rotation published a code for computation of numerically converged

(13) in (3) and performing the average over orientatioggs ~ PCS'S for electronic excitation of diatomic molecules. The
we obtain the DCS other terms are the analytic Born completion corrections. In

the limit | ,,,,—%, these correction terms should tend to zero;
do Imax  !max we have verified numerically that they do so. Note that these
aq (0K =72 “2 Z 2 2 di (oA, I"TGA") terms involve only the imaginary parts of tHematrix ele-
0 o™ =0 AA ments; this is consistent with the fact that in the FBA The
matrix is purely imaginary. When we s&=0 anda,=0 in
><T |'|' PL(cos9) +[Fo(6)] Egs.(14)—(17), returning the potential to a purely spherical
form, we regain Thompson’s expression for the electron—
2 'max rare-gas DCS.
+3 :E_ [F2(0)1°+ k_o ||E:o ; [Fo(6) S, Although we have written the equations for analytic Born
0 completion of the DCS without reference to vibrational
(0)c(|| 0A)]Im(T )P (co9). (14 states, their extension to vibrational excitation is straightfor-
ward. To obtain this extension, we would include in E2).
The sums ovel, |y, I’, andl} in Eq. (14) include all partial @ factork,/kqy, use the proper relation between the momen-
waves from 0 td ,,.; the sums ovenA, A’, andL include all ~ tum transfeig and the incoming and outgoing wave numbers
values allowed by projection and triangle rules implied in thek, and ko, replace the moments in E¢7) by vibrational
threej symbols ind, (11 oA,1'IA") (see below The factor ~Matrix elementse.g.,Q is replaced byvo|Q|v)), and insert
Fo(0) reflects the spherical long-range potential and depend-g -matrix elements from the proper vibrational block

on ag, while F(6) is due toa, andQ: o) wolo”
[
7Tq max 1
Fo(0)=—7— +ao7Tk02 2+ )2+3) Nco), Ill. RESULTS
(159 In this section we compare two methods for obtaining
. DCS’s from BF FNOT-matrix elements: the usual method

Fm(a):i( 27(q ZQ)Y @+ E ilo=l(—1)m of truncating sums over angular momentum quantum num-
2 J5 | 16 3 ) 2m bers and the analytic Born completion method described in

the previous section. We will show that analytic Born
completion generates more accurate results more efficiently
O 0 0 than the truncated sum expression.
As noted above, by setting,,,= in the first term in Eq.
X[aMij (ko) +2QMjj (ko)]Y|m (15D (14), we regain the familiar expression for the DCS in terms
of BF FNO T-matrix elementq22,27. In the absence of
The coefficientd, (I1oA,I'1{A") andc(lljA) contain angu- some sort of completion procedure, these sums must be trun-
lar momentum coupling information resulting from the frame cated. Since the BF FN®@ matrix is block diagonal in the
transformation and the average over orientations and arnerojection quantum numbehk, we choose to truncate the
given by sums at Some\ ..

X (21+1)Y2(215+1)
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Amax

a2 2 3 S ddlioAlIpn) > | | |

0 AN =—Amaxllghty b

do )=
m(ﬂ, 0=

A 7.0
X TﬁOTI ,I(:: P_(cosd). (18

o
=]

For eachA and A’, we truncate the sums dnl,, |, and

lg, including enough partial waves to numerically converge
the DCS(typically, from 3 to 8, and include all Legendre
termsL allowed by the triangle and projection rules implied
by (16). We will show that the computationally efficient
choice of a smallA,,,, introduces significant error in the
DCS, especially at small angles. One purpose of the analytic
Born completion procedure is to eliminate this error without
incurring significant additional computational demands.

It is important to note that in contrast to E48), the Born
completion expressio{14) involves only one parameter
Imax: Which in this equation representise maximum-order
partial wave of the included BF FNO-inatrix elementsThe
infinity of additional elements with or 1,>1 .« is included
analytically.

2

Differential Cross Section (bohr’/sr)

» o
) =)

@
[=)

2.0

1.0

A. e-H; scattering %% 25.0 90.0 135.0 180.0
Electron-H scattering provides a good verification of the Scattering angle 6 (deg)
analytic Born completion method because the truncated ex-
pression(18) is relatively easy to converge. ThkeH, inter- FIG. 2. DCS fore-H, scattering at 1.0 eV, calculated by the

action potential is very nearly spherical, with a weak short-truncated sunm(18) with Ap,=1 (open circley and by analytic
range potential; contributions from higher-order partialBorn completion(14) with | ,4,=0 (dot-dash ling, | o=1 (dashed
waves are small because the centrifugal barrier dominates ttige), andl ;=2 (solid line).

short-range interaction. We base our comparisons hetg on

(A=0) and IT (|A|=1) T matrices from the body-frame-

vibrational close-couplingBFVCC) calculations of Trail

and Morrison [28]. These authors solved the integro- 20.0 [ . .
differential e-H, scattering equations using the linear alge- '\,
braic method[29], including exchange effects exactly and 180} ! i

approximating the correlation-polarization potential with a
local, parameter-free model potentjd0].

Figures 2 and 3 show elastic DCS'’s at two representative
energies, 1 and 10 eV, respectively, calculated with and
without Born completion. For these DCS'’s, the truncated
sum expressionil8) converges byA,,,=1 with six partial
waves for each symmetry. Results from the analytic Born
completion calculations are labeled by,,, the maximum
order partial wave of the included body-frame-vibrational
close-coupling (BFVCC) T matrices. At both energies,
la=1 is sufficient to converge the analytically Born com-
pleted DCS'’s; contributions frorh=2 are easily and accu-
rately represented by the correction termg1d). We have
verified these conclusions ferH, at several other energies
below 10 eV(not shown.

16.0 |

14.0

12.0

10.0

8.0

6.0

Differential Cross Section (bohrz/sr)

4.0

B. e-N, scattering

The e-N, interaction potential is stronger and more non- 20

spherical than the-H, potential, so we expect treeN, DCS
to requng—matnx_eIements from higher-order symmetries 0-00_0 5.0 90.0 135.0 180.0
and partial wavedi.e., to converge more slowlyand the Scattering angle 8 (deg)

effect and value of the analytic Born completion to be

greater for this system. These expectations are borne out by FIG. 3. DCS fore-H, scattering at 10.0 eV. Symbols and lines
the DCS’s in Figs. 4-6. as in Fig. 2.
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FIG. 5. DCS fore-N, scattering at 4.0 eV, calculated by the

FIG. 4. DCS fore-N, scattering at 0.1 eV, calculated by the ) :
truncated sung18) with A, =1 (open circleg and A,,,,=7 (open

truncated sung18) with A,,,=1 (open circleg and A,=7 (open

squarel and by analytic Born completiofil4) with I,,,,=0 (dot-
dash ling, | ,,,=1 (dashed ling andl,,=2 (solid line).

We have usedT matrices with |A|=0,1,2 from the
BFVCC calculations of Suret al. [2], in which exchange

12.0 1 . :

effects were approximated by a tuned free-electron-gas

model and correlation-polarization effects by the extension

to e-N, of the parameter-free model used by Trail and Mor- © .

rison[28] for e-H, scattering. In the truncated DCS calcula- 100 + e - Nz -
tions, T-matrix elements from symmetries with=3 re- | 10 eV

quired for convergence of the DO38) were calculated in
the FBA[4].

As shown in Fig. 4, the DCS’s at 0.1 eV calculated from
the truncated expression withy,,,=1 are not converged. To
converge Eq(18) requiresA,,,=7. At this low energy much
of the scattering is due to the long-range potent@| so
these higher-order partial waves and symmetries are impor-
tant to the DCS’s. By contrast, with the analytic Born
completion we obtain convergence by,=2. That is, we
must include only BFVCCT-matrix elements'l'ﬁ0 with both

partial-wave label$ andl, less than or equal to 2; analytic
Born completion correctly includes all higher-order contribu-
tions.

One point of theoretical interest is that the truncated sum
(18) cannot produce the proper behavior of the DC8-af°.
In general, the slope of the DCS at zero degrees is nonzero
[31]. But because Eq18) is the sum of a finite number of
Legendre polynomials this truncated sum always produces a
DCS whose slope at zero degrees is zero. This distinction
explains the remaining discrepancy between the analytic
Born completed DCS’s and the truncated DCS’s at small
angles in Fig. 4.

s Section (bohrz/sr)

Differential Cros

squares and by analytic Born completiofl4) with | ,,,=1 (dot-
dash ling, | ,,,=2 (dashed ling andl ,,,=3 (solid line).

0.0

0.0

45.0

90.0

135.0

Scattering angle 9 (deg)

180.0

FIG. 6. DCS fore-N, scattering at 10.0 eV. Symbols and lines
as in Fig. 5.
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The shape of the elastic DCS’s at energies above the 2lhear nonpolar target, this term efficiently includes contribu-
eV resonance differs strikingly from that of low-energy tions from all high-order partial waves. This method, which
DCS'’s such as the one in Fig. 4. Measurements by Buckmais implemented in Eqs(14)—(17), is much more efficient
and collaborator$2] show a characteristic structural feature than converging the truncated sum expresgib® for the
at #<30° that persists from 4 to 10 eV. Because small-angléDCS. The sums irf14) involve only one parametéy, .y, SO
e-N, DCS’s at these energies vary rapidly with angle anddetermining convergence is straightforward. Moreover, this
involve contributions from a large number of partial waves,method ensures the correct behavior of the slope of the DCS
they offer a stringent test of analytic Born completion. as 6 approaches 0°.

This feature is evident in the elastic DCS at 4.0 eV in Fig. The importance of correctly evaluating small-angle
5. The convergence behavior of this DCS is similar that ofDCS’s is emphasized by receetN, DCS measurements of
the 0.1 eV case. Even with,,,,=7, the truncated sum DCS Buckman and collaboratof2]. These authors have reported
is not converged at small anglég<20°); the analytic Born  similar distinctive small-angle features in DCS’s for electron
completion expression, however, converged hy=2. This  scattering from NQ32], O, [33], and CO[34]. The present
behavior indicates that scattering by the long-range potentianalysis ofe-N, DCS'’s, along with the theoretical results of
makes a significant contribution to the DCS at all angles an&unet al.[2], show the central role of the long-range poten-
is especially important at small angles. tial in determining such structures. The similarity of the most

The small-angle feature in the 4 eV DCS persists at enerimportant permanent and induced moments for other systems
gies up to 10 eV, though as illustrated in Fig. 6 it changeavhere this small-angle structure appears further suggests that
character somewhat. The truncated s{ii®) is poorly con- it may be a generic feature arising from long-range scatter-
verged for6<45° even byA,,,,=7. Convergence of the ana- ing.
lytic Born completed DCS, however, is both rapid and The extension of this method to vibrational excitation was
smooth, requiring only,.,=3 in Eq. (14). This figure also noted in Sec. Il. Its general extension to other molecules
vividly illustrates that a DCS calculated from the truncatedshould also be straightforward. One could include the effects
sum, no matter how large a value af,. is used, will not  of higher-multipole terms in the long-range potential by a

have a nonzero slope at zero degrees, while the analytic Boprocedure analogous to that of Sec. Il. The case of a
completed DCS, which includes all partial waves, behavepermanent-dipole term, which causes the BF FNO DCS to
properly in this limit. diverge in the forward direction, can be treated with proce-

The convergence behavior of theséN, DCS’s demon- dures developed by Norcross and Pa{i&l
strates the computational advantages of the analytic Born
completion equatior{14). Using this equation with,,=2
requires only nine BFVCO -matrix elements; the truncated ACKNOWLEDGMENTS
expression (18) with A,,=7 requires several hundred .
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