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The bistable response of linear molecular aggregates modeled as linear chains of two-level systems is
shown. We carry out analytical and numerical calculations of the aggregate population by means of the system
of coupled nonlinear equations for the density matrices of individual molecules. Our conclusion is that bistable
behavior of the population results from the dependence of resonance frequency of the aggregate on the number
of excited molecules.

PACS number~s!: 42.65.Pc, 36.40.Vz

I. INTRODUCTION

During the last decade, nonlinear optical properties of the
so-called nanostructures—for instance, linear molecular ag-
gregates~see@1#, and references therein!—have been widely
observed. Among the most attractive features of optical re-
sponse of these objects we have theN-fold enhancement of
the spontaneous emission rate and theN2 scaling of the cubic
hyperpolarizability, whereN is the number of molecules in
the aggregate. The reason is the collective~excitonic! char-
acter of aggregate eigenfunctions.

The aim of our work is to show that mirrorless bistable
response happens for a linear molecular aggregate modeled
as a linear chain of two-level molecules. In order to achieve
the task, we will assume the one-molecule density-matrix
formalism formerly used in@2–4# to treat Dicke superradi-
ance and in@5# to look at bistability of an ensemble of two-
level atoms inside al3 volume. In this formalism~Sec. II!,
we have a set of coupled equations for the density matrices
of individual molecules, where the field acting on each mol-
ecule consists of the external field plus the field generated by
the rest of molecules in the chain. This last field is respon-
sible for the bistability phenomenon~Secs. III and IV! be-
cause the resonance frequency of the aggregate depends lin-
early on the number of excited molecules in the aggregate.

Bistable behavior of the aggregate population is restrained
by some critical parameters. We will find these parameters
~Sec. III! and discuss the validity of the one-molecule
density-matrix formalism in our physical problem~Sec. V!.

II. FORMALISM

We shall consider the molecular aggregate as an assembly
of N identical two-level molecules equally spaced along a
straight line. In the one-molecule density-matrix formalism
@2,3#, the set of differential equations for the density-matrix
elements (r i j

(k) ; i , j51,2) of kth molecule may be written as
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wheremW is the transition matrix element of dipole operator
for any molecule~we assume all dipoles are parallel and the
angle betweenmW and the axis of the chain isu), v21 is the
resonance frequency of a single molecule,EW k is the electric
field acting on thekth molecule, and includes the external
field EW k

ext and the field induced by the rest of the molecules in
the location of thekth molecule

EW k5EW k
ext1(

l51
lÞk

N

EW lk . ~2!

We assume the incident field to be a plane wave
(v0 ,k0) traveling perpendicular to the linear-chain axis and
polarized parallel to the dipole vector of molecules in the
chain, soEW k

ext(t)5EW ext(t) for any k.
The field emitted by thel th molecule is regarded as the

field radiated by a classical dipole with momentum equal to
the mean value of quantum dipole momentum
dW l(t)5mW @r12

( l )(t)1r21
( l )(t)#. Therefore, at the position of the

kth molecule, it is~see, for instance,@6#!
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wheret85t2r lk /c, nW 5mW /m, andrW lk5( l2k)aW .
We apply the rotating wave approximation, assuming the

optical period 2p/v0 to be the shortest characteristic time of
the problem, and then splitting the fast and slow time depen-
dent variables in the following way:
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Substituting these expressions in Eqs.~2! and~3!, one can
get the amplitudes«W lk(t) and«W k(t)
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Furthermore, we shall neglect the retardation effect in the
amplitudes (t85t2r lk /c→t), because the customary chains
are not very large.

Replacing the magnitudes in Eqs.~1! by those of Eqs.~4!
and skipping the rapidly oscillating terms, the system of
equations for the slowly varying~in time! amplitudes arises,
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whereD5v212v0 is the detuning,V5m«ext/\ is the Rabi
frequency of external field,Zk5r22

(k)2r11
(k) is the population

difference, and matricesD lk andg lk are given by the formu-
las
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The sum of matricesD lk2 ig lk may be identified with the
matrix of intermolecular retarded interaction. Its imaginary
part g lk results from the molecular interaction through the
transverse field@3,7#. In the particular case of an aggregate
with a length as small as that compared with the wavelength
of the incident field (L5Na!l), these matrices have the
following forms:

D lk5
m2

\r lk
3 ~123 cos2u!, ~9!

g lk5
2m2k0

3

3\
5 1

2 g0 . ~10!

Thus, D lk in Eq. ~9! is the usual dipole-dipole molecular
interaction, andg lk in Eq. ~10! equals the half of the radia-
tive constantg0 of an isolated molecule.

From ~7!, it is straightforward to getN integrals of mo-
tion,

uRku21Zk
25const ~11!

which means the Bloch vector length conservation law of the
kth molecule with componentsXk5Re@Rk#, Yk5Im@Rk#
and Zk . If every molecule in the chain is initially in the
ground-state (Rk50, Zk521), then the right-hand side of
~11! equals unity.

III. HOMOGENEOUS APPROXIMATION

The simplest model that includes the dipole-dipole inter-
action assumes that density matrices of all molecules are
identical @3#. Such approximation simplifies drastically the
system of differential Eqs.~6! and sheds light on the physical
origin of bistability in linear aggregates. We should note that
this model is exact for an infinite linear chain as well as for
cyclic aggregates.

Let Rk5R and Zk5Z in Eqs. ~6!. Then, the system of
equations changes into
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In the limit of high density (k0a!1) and large number of
molecules (N@1), the summation of the series in Eqs.~13!
and ~14! gives

DL5
3g0

2~k0a!3
z~3!~123 cos2u!, ~15!

gR5
3pg0

8~k0a!
sin2u if k0L@1, ~16!

gR5
g0

2
N if k0L!1, ~17!

with accuracy ofk0a. Here,z(3)51.202 is the third-order
Riemannz function.

It is remarkable that in the limitk0a!1, the inequality
uDLu@gR is valid independently of the value ofk0L except
the narrow range of values ofu that makes the factor
(123 cos2u) very close to zero. In our analysis, we shall
assumeDL to be negative as corresponds toJ aggregates@1#.

The system of Eqs.~12! is similar to that describing the
nonlinear response of a thin film to a short resonant pulse
@8,9#. The quantityDL has the same meaning as the Lorenz
correction 4pP/3 for bulk media~whereP is the electric
polarization! andgR is the collective radiative constant~su-
perradiance constant@3#!.

According to Eqs.~12!, DL determines the magnitude of
resonance frequency shift, which depends also on the popu-
lation differenceZ. The Lorenz correction turns the reso-
nance frequencyv21 into v218 5v212uDLu and the condition
for resonance intoD85D2uDLu50 for the aggregate in the
ground state.

As it was shown in@8,9#, the dependence of resonance
frequency on the population difference leads to bistable be-
havior of the stationary solution of Eqs.~12!. In the limit
uDLu@gR , the driving parameter of bistability is the new
resonance detuningD85D2uDLu. It follows from the analy-
sis of @8,9# that bistability occurs whenD8,2A3gR .

Let us remember the main statements of that analysis.
Applying the steady-state conditions to Eq.~12!, we have a
fourth-order equation for the population difference

~12Z2!$@D81uDLu~11Z!#21gR
2Z2%5V2Z2. ~18!

Under the conditionuDLu@gR , the bistable behavior may
take place foruD8u!uDLu and thereforeZ'21. In this case,
we may reduce the order of Eq.~18! by making the follow-
ing substitutions: 12Z→2, 11Z→2r22, andZ

2→1. Then,
we have

4r22$~D812uDLur22!21gR
2%5V2. ~19!

The interesting solution is that assigning three values of
r22 to each value ofV. As it follows from examining the
zeros of derivatived@V2#/dr22, this kind of solution re-
quiresD8,2A3gR . In this case, each value of the external
field Rabi frequency within the interval (V1 ,V2) produce
three different solutions of Eq.~19! ~see Fig. 1!, but only
lower and upper branches are stable@10#. The values of
populationr22 and Rabi frequencyV that correspond to the
threshold value of detuningD852A3gR are

r225
1

A3
gR

uDLu
!1,

~20!

S V

gR
D 25 16

3A3
gR

uDLu
!1.

The conclusion arising from these results is that bistability
may appear even for a low degree of excitation of our sys-
tem, and consequently for small ratios of the Rabi frequency
of an external field over the collective radiative constant
gR . For higher values of the detuninguD8u'uDLu, we need
Rabi frequencies comparable touDLu to get bistability, but in
this case our approach does not work~see Sec. V!. Rather,
we shall consider detuning close to the threshold value.

It is easy to check from Eq.~18! that forDL50 there is no
bistability effect. Thus, the physical origin of bistability is
the dependence of resonance frequency on population differ-
ence.

We have performed some numerical calculations of Eq.
~12! in order to study the evolution of population difference
Z(t). It is evident from Fig. 2 the sudden change of kinetics
as we choose values of the Rabi frequency in the vicinity of
the critical valueV2 ~see Fig. 1!. The relaxation time to the
stationary value ofZ(t) is some units ofgR

21 .
In Fig. 3 we present the solution of Eq.~12! as we slowly

scan the Rabi frequency up and down in time, in order to
show the possibility of optical hysteresis for molecular ag-
gregates. The scanning rate of Rabi frequency was
1023gR

2 . Obviously, the intermediate branch of the popula-
tion difference does not appear as it is unstable.

IV. NUMERICAL SOLUTION OF EXACT EQUATIONS

We have solved the exact system of Eqs.~6! to show the
presence of bistable behavior for the general case~Sec. II!

FIG. 1. Dependence of population difference on Rabi frequency
of the external fieldV5m«ext/\ for different values of the detuning
D8 calculated for the homogeneous model under steady-state con-
ditions. The ratiouDLu/gR equals 100.
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when the variablesZ andR depend on the molecule location.
The results for averaged population difference over the linear
chain Z̄(t)5(1/N)(kZk(t) are presented in Figs. 4–7.

Figure 4 shows the same sudden change in the kinetics of
the averaged population difference as in the homogeneous
model by increasing slightly the Rabi frequency near the
critical value. The number of molecules in the linear chain
was 50 andk0a50.1. The initial detuning in these calcula-
tions was24gR @Fig. 4~a!# and210gR @Fig. 4~b!#, respec-
tively.

Please, pay attention to the fact that all values of the
physical magnitudes of our interest~critical Rabi frequencies

and population differences! fit quite well in the analogous
ones of the homogeneous model~see Sec. II!. The most ob-
vious discrepancy is that the population difference does not
reach its stationary value and oscillates slightly in time. The
spatial distributions of population along the same chain are
depicted in Fig. 5 for two different points in time evolution.
These two figures clarify the origin of such instability. The
inhomogeneous distributions of population and consequently
its redistribution in time among the different sites of the
chain are responsible for the oscillations of the averaged
population difference.

Surprisingly, we have not found such a sudden change in
the kinetics of the averaged population for linear chains with
small lengths, much less than the emission wavelength. In
Fig. 6 we present analogous calculations of the solution of

FIG. 2. Kinetics of the population differenceZ(t) for Rabi fre-
quencies of the external field around the critical valueV2 ~see Fig.
1! in the frame of the homogeneous model. From bottom to top,
V/gR ranges from 0.403 with constant step 0.027. The detuning
D8 is 24gR . The ratiouDLu/gR equals 100.

FIG. 3. The optical hysteresis loop calculated in the frame of the
homogeneous model by scanning up and down the Rabi frequency
in time. The scanning rate is 1023gR

2 . The detuningD8 equals
24gR .

FIG. 4. Kinetics of the average population differenceZ̄(t) cal-
culated with the exact Eqs.~6! for different Rabi frequencies.~a!
D8524gR and from bottom to top,V/gR ranges from 0.403 with
constant step 0.027.~b! D85210gR and from bottom to top,
V/gR ranges from 0.645 with constant step 0.054. The ratio
uDLu/gR equals 100. The linear chain consists of 50 molecules with
k0a50.1.
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Eqs. ~6! for a linear chain withN510 andk0a50.1, and
initial detunings24gR @Fig. 6~a!# and210gR @Fig. 6~b!#.
Observe the monotonical increase of excited population as
we increase the Rabi frequency of the external field. Figure 7
shows the spatial distribution of population along the chain.
Probably, the spatial inhomogeneity of the population differ-
ence in the case of the short aggregates masks the steplike
dependence ofZ̄(t) on V due to the small jump ofZ̄(t) in
the vicinity of the threshold value of detuning
D852A3gR .

V. JUSTIFICATION OF THE ONE-MOLECULE
DENSITY-MATRIX APPROACH

The aim of this section is to discuss the validity of the
one-molecule density-matrix approximation in our study. It is
possible to derive Eqs.~6! by means of the Heisenberg equa-
tion of motion for molecular operators@5#. The key approxi-

mation in this method leading to Eqs.~6! is the factorization
of the expectation values of the product of two molecular
operators into the product of the individual ones. For in-

stance,̂ dŴ kdŴ &5^dŴ k&^dŴ l&, wheredŴ k anddŴ l are the dipole op-
erators for thekth and l th molecule, respectively. This fac-
torization is rigorously true whenever the density matrix of
the whole system is represented as the direct product of den-
sity matrices of individual molecules rather than those for
collective excitations of the whole system, i.e., one-
dimensional~1D! Frenkel excitons.

Therefore, the one-molecule density-matrix approach
does not allow for spatial quantum correlations of dipoles
belonging to different sites of the linear aggregate. This
statement is the reference to study the validity of the one-
molecule density-matrix approach when considering nonlin-
ear optical properties of linear molecular aggregates.

Turning to the collective basis means the renormalization
of the energy spectrum of the aggregate. In the case of linear

FIG. 5. Spatial distribution of population difference for two points in time evolution and the minimum~a! and maximum~b! values of
Rabi frequency of the external field used in Figs. 4~a! and 4~b!. The detunings are~left! D8524gR and ~right! D85210gR .
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aggregates, we have 1D exciton bands whose energy scale is
determined by the aggregate length. This quantization is ab-
sent if we use the one-molecule density-matrix approxima-
tion. This approach traces adequately the resonance fre-
quency shift fromv21 to v218 5v212uDLu for the nonexcited
aggregate, which corresponds exactly to the band bottom en-
ergy of the 1D Frenkel exciton~see@1#!. It also depicts the
dependence of resonance frequency on the population differ-
ence. In fact, while the excited state population grows from
zero to unity the resonance frequency changes from
v212uDLu to v211uDLu. The reason is that 1D Frenkel ex-
citons are weakly interacting fermions~they are rigorously
fermions only if nearest-neighbor interaction is considered,
@1,4,11–13#!. Assuming nearest-neighbor approximation the
energy of 1D exciton gas may take the values

W5(k51
N Wknk , whereWk is the energy spectrum of 1D

exciton andnk50,1 denotes the occupation of thek-th state.
Wk is given by the formula

Wk5\v2112V cos
pk

N11
with k51,2, . . . ,N, ~21!

where V5(m2/a3)(123 cos2u). To simplify we assume
123 cos2u521. For negative values ofV the states in the
bottom of multiexciton bands are the most active in optical
transitions @4#. The bottom energy of then-exciton band
equals (k51

n Wk , where n is the number of excitons
(1<n<N). Therefore, the transition energy between
(n21)-th andn-th exciton bands isWn , i.e., exactly the
energy ofn-th exciton state. This quantity ranges fromW1
for the transition into one-exciton band, toWN for the tran-
sition into the band withN excitons ~all molecules in the
excited state!. These energies exactly correspond to the limits
of resonance frequency change in the one-molecule picture.

Nevertheless, the transition energies does not change con-
tinuously as predicted by the one-molecule theory. They are
quantized and the minimal energy mismatch isW22W1 .
According to Eq. ~21!, in the limit of large N it is
3p2uVu/(N11)2.

So far, we may conclude that our matter of interest is
precisely those conditions when quantization of the 1D exci-
ton energy spectrum is not important. Otherwise, if the col-
lective radiative constantgR can exceed the energy intervals
of the 1D exciton spectrum. If so, the spectrum looks like an
inhomogeneously broadened band.

First, we should compare\gR with the minimal energy
interval of the 1D exciton spectrumW22W1 . In the particu-
lar case of aggregate length less than the emission wave-
lengthl(k0L!1), we get

~W22W1!

\gR
5

9p2

2~k0L !3
@1, ~22!

using Eq.~17! and uVu53\g0/4(k0a)
3, i.e., the energy in-

tervals of 1D exciton spectrum are always larger than radia-
tive broadening.

On the contrary, whenL@l or k0L@1, by means of Eq.
~16!, we get the following expression:

~W22W1!

\gR
5

18p

~k0L !2
. ~23!

Therefore, there is a characteristic lengthL*5l(9/2p)1/2 for
which W22W15\gR . For larger L the inequality
W22W1,\gR we are seeking is always satisfied.

On the other hand, if we compare the maximal value of
Wk2Wk2152puVu/(N11)—which is reached in the
middle of 1D exciton band (k>N/2)—with the collective
radiative width\gR in the limit of large aggregates, we will
get

~Wk2Wk21!

\gR
5

12

N~k0a!2
. ~24!

FIG. 6. Kinetics of the average population differenceZ̄(t) cal-
culated with the exact Eqs.~6! for different Rabi frequencies.~a!
D8524gR and from bottom to top,V/gR ranges from 0.135 with
constant step 0.022.~b! D85210gR and from bottom to top,
V/gR ranges from 0.506 with constant step 0.112. The ratio
uDLu/gR equals 425. The linear chain consists of ten molecules with
k0a50.1.
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It follows from Eq. ~24! that satisfying the inequality
(Wk2Wk21)/\gR,1 for actual values ofk0a ('0.01) re-
quires too many molecules making up the aggregate.

In short, the one-molecule density-matrix approach is ap-
propriate for the problem under consideration in the case of
large aggregates (k0L@1) whenever we work in the low-
energy region of the 1D exciton spectrum.

One could associate the approach we use with the local-
field approximation~LFA! in the theory of nonlinear re-
sponse of linear molecular aggregates@14,15# ~see also@1#
and references therein!. Our study differs in the sense that we
take into account the whole field~near and far zones! while
the mentioned previous works included only the near zone
part. The validity of LFA was widely discussed in connection
with the perturbativeproblem of the two-photon absorption
spectrum of 1D excitons. It was shown both for infinite@14#
and short@15# aggregates that LFA breaks down for an inter-
val of resonance detunings of the order of the 1D exciton

band. It seems that this observation is in contradiction with
ours, at least when considering the large aggregates. The
question only is if the restrictions found in Refs.@14# and
@15# affect ournonperturbativeanalysis of bistable response
of linear aggregates. We are not able to assert that these
conclusions arise also from our work. We are only sure of the
fact that the condition of breaking down the 1D exciton en-
ergy quantization is absolutely necessary for applying the
one-molecule density-matrix approach to the problem con-
sidered above.

VI. CONCLUSION

We have shown mirrorless bistable response of large lin-
ear molecular aggregates (L>l) and found that this behav-
ior results from the dependence of resonance frequency on
the number of excited molecules in the aggregate.

The formalism for describing this phenomenon should be

FIG. 7. Spatial distribution of population difference for two points in time evolution and the minimum~a! and maximum~b! values of
Rabi frequency of the external field used in Figs. 6~a! and 6~b!. The detunings are~left! D8524gR and ~right! D85210gR .
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based on the equation for the density matrix of collective
excitations, i.e., 1D Frenkel excitons. However, this formal-
ism is not helpful as we consider effects of many excitons
~see@1#, where difficulties of applying this method are dis-
cussed!.

A simpler and more useful formalism is that making use
of the one-molecule density matrices. Our analysis shows
that this approach is satisfactory if aggregate lengths are
more than the emission wavelength. The resulting system of
coupled nonlinear equations includes exactly the intermo-
lecular retarded interaction. The real part of this interaction is
responsible for the dynamical shift of resonance frequency of
the aggregate while the imaginary one describes the collec-
tive radiative relaxation. It is remarkable that this last one is
much faster~approximately 100 times! than the spontaneous
relaxation of an isolated molecule. Therefore we may have
the optical switching of a linear molecular aggregate with a
characteristic time of the order of 100 ps.

About the possibilities of an experimental probe of the

linear aggregates bistable response, we suggest measuring
the field dependence of transmittivity for the linear aggregate
thin layer in the spectral domain just above the absorption
line. According to our predictions, the transmittivity should
change sharply for a given value of the incident light inten-
sity.
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