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Mirrorless optical bistability of linear molecular aggregates

Victor Malyshe\7 and Pablo Moreno
Departamento de Bica Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain
(Received 11 April 1995

The bistable response of linear molecular aggregates modeled as linear chains of two-level systems is
shown. We carry out analytical and numerical calculations of the aggregate population by means of the system
of coupled nonlinear equations for the density matrices of individual molecules. Our conclusion is that bistable
behavior of the population results from the dependence of resonance frequency of the aggregate on the number
of excited molecules.

PACS numbds): 42.65.Pc, 36.40.Vz

I. INTRODUCTION /2 Ek
| o | P =),
During the last decade, nonlinear optical properties of the
so-called nanostructures—for instance, linear molecular ag- 1)
gregategsee[ 1], and references thergirhave been widely
observed. Among the most attractive features of optical re- S G
sponse of these objects we have Nidold enhancement of par = ~lwzpy +
the spontaneous emission rate andNRescaling of the cubic
hyperpolarizability, wheréN is the number of molecules in p<k>_
. o 12~ P2 1

the aggregate. The reason is the collectieecitonig char-
acter of aggregate eigenfunctions.

The aim of our work is to show that mirrorless bistable
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Where,& is the transition matrix element of dipole operator

dr any moleculg\we assume all dipoles are parallel and the
response happens for a linear molecular aggregate modele

as a linear chain of two-level molecules. In order to achlevé"lngle between: and the axis of the chain i8), w,, is the
the task, we will assume the one-molecule density-matriXesonance frequency of a single molectigis the electric
formalism formerly used if2—4] to treat Dicke superradi- field acting on thekth molecule, and includes the external
ance and i5] to look at bistability of an ensemble of two- field Eﬁ’“ and the field induced by the rest of the molecules in
level atoms inside a2 volume. In this formalisn(Sec. 1), the location of thekth molecule

we have a set of coupled equations for the density matrices

of individual molecules, where the field acting on each mol- - e N
ecule consists of the external field plus the field generated by Ex=E +|21 Ei- ()
the rest of molecules in the chain. This last field is respon- I £k

sible for the bistability phenomenaosecs. Il and 1 be-

cause the resonance frequency of the aggregate depends lin-We assume the incident field to be a plane wave

early on the number of excited molecules in the aggregate.(wq,Kq) traveling perpendicular to the linear-chain axis and
Bistable behavior of the aggregate population is restrainegiolarized parallel to the dipole vector of molecules in the

by some critical parameters. We will find these parameterghain, soEeXt(t) Eext(t) for anyk.

(Sec. ll) and discuss the validity of the one-molecule  The field emitted by théth molecule is regarded as the

density-matrix formalism in our physical problef8ec. ). field radiated by a classical dipole with momentum equal to
the mean value of quantum dipole momentum
Il. FORMALISM di(t) = p(t) + pY)(t)]. Therefore, at the position of the

kth molecule, it is(see, for instancd6])
We shall consider the molecular aggregate as an assembly

of N identical two-level molecules equally spaced along a ) [Sd'(t’) 3d|(tr) |(t )
straight line. In the one-molecule density-matrix formalism E(t)= —+ 77—+ (NI
[2,3], the set of differential equations for the density-matrix Fik Clik c? rlk
elements 4{[;i,j=1,2) ofkth molecule may be written as dty Ay dn].
- = { ik criy CZHJ ' @
SO “'_Ek 7, .. - -
P11 h ~ha wheret’ =t—r, /c, n=pul/u, andr,=(l—k)a.

We apply the rotating wave approximation, assuming the
optical period 2/ wg to be the shortest characteristic time of
“Permanent address: Research Center “Vavilov State Optical Inthe problem, and then splitting the fast and slow time depen-
stitute,” 199034 St. Petersburg, Russia. dent variables in the following way:
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Py (=3 Ry(t)e o,

ES{(t)= 3e™(t)e "'+ c.c.,
(4)
En(t)= 2e(Hhe“t+c.c.,
Ex(t)= e (e “ot+c.c.

Substituting these expressions in E@.and(3), one can
get the amplitudes,(t) ande(t)

. 3 3ik, K] .. _
en=V |5~ —7— 3| (L il
Mk Mk Tk
1 kg Kkj|- .
= _ Y Y R tl e'ko"lk’
Ll?’k e r [ Rt)
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N
e () =e(0)+ |21 en(t).
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417

The sum of matriced | —i y,, may be identified with the
matrix of intermolecular retarded interaction. Its imaginary
part y results from the molecular interaction through the
transverse field3,7]. In the particular case of an aggregate
with a length as small as that compared with the wavelength
of the incident field L=Na<\), these matrices have the
following forms:

2

o
A'k:F(l_S cos ), 9
Ik
2,U,2k8
YKT 35 3 Yo- (10)

Thus, A in Eq. (9) is the usual dipole-dipole molecular
interaction, andy,, in Eq. (10) equals the half of the radia-
tive constanty, of an isolated molecule.

From (7), it is straightforward to geN integrals of mo-
tion,

|Ry|2+Z2=const (11)

which means the Bloch vector length conservation law of the

Furthermore, we shall neglect the retardation effect in thdth molecule with componentX,=Re[Ry], Y =Im[R]
amplitudes {' =t—r, /c—t), because the customary chains and Z. If every molecule in the chain is initially in the

are not very large.
Replacing the magnitudes in Eq4) by those of Eqs(4)

ground-state R,=0, Z,=—1), then the right-hand side of
(11) equals unity.

and skipping the rapidly oscillating terms, the system of

equations for the slowly varyingn time) amplitudes arises,

N
.Rk: _|ARk+|2 (A|k_i’)/|k)R|Zk_iQZk,
I=1

1Kk
(6)
i N
L=5 ;1 A (RRF—RER)
1Kk
1 o * * Q *
) Yi(ReRT +RERy) +i i(Rk —Ry,
1k

whereA = w,;— wq is the detuningQ = ue®Y% is the Rabi
frequency of external fieldZ,= p%3 — p{¥ is the population
difference, and matrice&,, and vy, are given by the formu-
las

cogkoall —k|) sin(kqa|l —k|)
[1—Kk[* TR

cogkoall —k|)
1=K

2
X (1—3 cog8)— (koa)? sinze],

(@)

_cogkoall —k[) sin(kea|l —k[)

% I-k? EE

sin(koa|l —k|)
1=k

u?
7’|k:mr
X (1—3c0g0)+ (koa)? sinZG].

)

[ll. HOMOGENEOUS APPROXIMATION

The simplest model that includes the dipole-dipole inter-
action assumes that density matrices of all molecules are
identical [3]. Such approximation simplifies drastically the
system of differential EqQg6) and sheds light on the physical
origin of bistability in linear aggregates. We should note that
this model is exact for an infinite linear chain as well as for
cyclic aggregates.

Let Rg=R and Z,=Z in Egs. (6). Then, the system of
equations changes into

R=[—i(A—A_Z)+ yrZ]R—iQZ,

(12
. _Q
Z=—yIRI*+i 5 (R* =R),
where
A 3% NZ 1 cogkoal) sin(koal)
L_Z(koa)3|:1 |3 o |2
cogkpal
X(1-3 co§0)—(koa)2¥ sinza],
(13
3y w cogkeal)  sin(keal)
YR_Z(k—oa)3|=1 o 12 - E

in(koal)

X (1—3 co26)+ (kya)? > | sinza]. (14
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In the limit of high density kpa<1) and large number of

) ol -0.85
molecules N>1), the summation of the series in E¢§3) ' ' ' '
and (14) gives A'=-10v,
A'=-8y
370 :
A ==———={(3)(1-3 cog), 15 -
L Z(koa)3 g( )( ) ( ) -0.90 A_-6»YR
= A'=-dy
_ 3TN0 Gy it kols1 16 R,
YR 8(koa) 0 ’ O‘.\l = YR
A'=0
Yo . -0.95
yR=?N if koL<<1, (17)
with accuracy ofkpa. Here, {(3)=1.202 is the third-order
Riemann{ function. 100
It is remarkable that in the limikja<1, the inequality ’ 0.0 0. Lo s 20
|A|> g is valid independently of the value &fL except ’ ) ‘ ) :
the narrow range of values of that makes the factor Q (units of v, )
(1—3 cog6) very close to zero. In our analysis, we shall
assumed to be negative as correspondsitaggregatefd]. FIG. 1. Dependence of population difference on Rabi frequency

The system of Eq12) is similar to that describing the o the external field) = e ®V# for different values of the detuning

nonlinear response of a thin film to a short resonant puls@ ' calculated for the homogeneous model under steady-state con-
[8,9]. The quantityA, has the same meaning as the Lorenzgitions. The ratigA, |/ yg equals 100.

correction 47P/3 for bulk media(where P is the electric
polarization and g is the collective radiative constafgu-

perradiance constafB]). pzzzi R < 1,
According to Eqs(12), A, determines the magnitude of V3 A
resonance frequency shift, which depends also on the popu- (20
lation differenceZ. The Lorenz correction turns the reso- 5
nance frequencw,; into w5,= w,;—|A| | and the condition 2) =1_6 MR 1
for resonance intd’ =A —|A,|=0 for the aggregate in the Yl 33 1AL T

ground state.

As it was shown in[8,9], the dependence of resonance The conclusion arising from these results is that bistability
frequency on the population difference leads to bistable bemay appear even for a low degree of excitation of our sys-
havior of the stationary solution of Eq&l2). In the limit ~ tem, and consequently for small ratios of the Rabi frequency
|A_|>vg, the driving parameter of bistability is the new of an external field over the collective radiative constant
resonance detuning’ =A—|A_|. It follows from the analy-  ¥r- For higher values of the detuning’|~[A[, we need
sis 0f[8,9] that bistability occurs whed’ < —3yg. Rabi frequencies comparable|ty, | to get bistability, but in

Let us remember the main statements of that analysighis case our approach does not weskee Sec. Y. Rather,
Applying the steady-state conditions to E@2), we have a We shall consider detuning close to the threshold value.

fourth-order equation for the population difference _Itis easy to check from Eq18) that forA =0 there is no
bistability effect. Thus, the physical origin of bistability is

(1-Z){[A"+|A|(1+2)1?+ y3Z?}=0%Z?. (18)  the dependence of resonance frequency on population differ-
ence.

Under the conditionA  |> yg, the bistable behavior may We have performed some numerical calculations of Eq.
take place fotA’|<|A | and therefor&~ —1. In this case, (12) in order to study the evolution of population difference
we may reduce the order of EQL8) by making the follow-  Z(t). It is evident from Fig. 2 the sudden change of kinetics
ing substitutions: +Z—2, 1+ Z—2p,,, andZ>—1. Then, as we choose values of the Rabi frequency in the vicinity of
we have the critical value(), (see Fig. L The relaxation time to the

, PN stationary value oZ(t) is some units ofy;*.
4poA (A" +2|A [p2)*+ yr}= Q% (19) In Fig. 3 we present the solution of EL2) as we slowly
The interesting solution is that assigning three values o can the Rabi _fr_e_quency up and down_ in time, in order to
how the possibility of optical hysteresis for molecular ag-

P22 to each value of). As it follows from examining the .o "The scanning rate of Rabi frequency was
zeros of derivatived[ Q?]/dp,,, this kind of solution re- g 793 2 g g Y

. , ' vg- Obviously, the intermediate branch of the popula-
quwesA <~ V3yr. In t.h's. Case,_each value of the externalyg, gifference does not appear as it is unstable.
field Rabi frequency within the interval(Y;,Q,) produce
three different solutions of Eq19) (see Fig. 1, but only
lower and upper branches are stabl®]. The values of
populationp,, and Rabi frequency) that correspond to the We have solved the exact system of E@.to show the
threshold value of detuning’= — \/§yR are presence of bistable behavior for the general d&=e. 1)

IV. NUMERICAL SOLUTION OF EXACT EQUATIONS
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FIG. 2. Kinetics of the population differenct) for Rabi fre-
quencies of the external field around the critical valug(see Fig.
1) in the frame of the homogeneous model. From bottom to top, -0.80 T ' ! !
Q/yg ranges from 0.403 with constant step 0.027. The detuning (b)
A’ is —4yg. The ratio|A |/ yg equals 100.
-0.85 .
when the variableZ andR depend on the molecule location.
The results for averaged population difference over the Iinearo_:
chainZ(t)=(1/N)XZ,Z(t) are presented in Figs. 4-7. 'y 090
Figure 4 shows the same sudden change in the kinetics o
the averaged population difference as in the homogeneous
model by increasing slightly the Rabi frequency near the -0.95
critical value. The number of molecules in the linear chain
was 50 andkya=0.1. The initial detuning in these calcula-
tions was—4vyg [Fig. 4a)] and —10vyg [Fig. 4(b)], respec- -1.00

tively.

0 4 8 12 16 20

Please, pay attention to the fact that all values of the

physical magnitudes of our interdstitical Rabi frequencies

-0.90 T T T

-0.92

-0.94 -

Py Py

-0.96 -

-0.98

1 1 1

-1.00
0.0 0.5 1.0 1.5 20

Q (units of yR)

Time (units of yR'l)

FIG. 4. Kinetics of the average population differerifg) cal-
culated with the exact Eq$6) for different Rabi frequenciega)
A’"=—4vyg and from bottom to topf)/yg ranges from 0.403 with
constant step 0.027b) A’'=-10yg and from bottom to top,
Q/yg ranges from 0.645 with constant step 0.054. The ratio
|A, |/ vy equals 100. The linear chain consists of 50 molecules with
koa=0.1.

and population differencedit quite well in the analogous
ones of the homogeneous modste Sec. )l The most ob-
vious discrepancy is that the population difference does not
reach its stationary value and oscillates slightly in time. The
spatial distributions of population along the same chain are
depicted in Fig. 5 for two different points in time evolution.
These two figures clarify the origin of such instability. The
inhomogeneous distributions of population and consequently
its redistribution in time among the different sites of the
chain are responsible for the oscillations of the averaged
population difference.

FIG. 3. The optical hysteresis loop calculated in the frame of the ~ Surprisingly, we have not found such a sudden change in
homogeneous model by scanning up and down the Rabi frequendii€e kinetics of the averaged population for linear chains with

in time. The scanning rate is Iéyé. The detuningA’ equals
74'}/R

small lengths, much less than the emission wavelength. In
Fig. 6 we present analogous calculations of the solution of
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FIG. 5. Spatial distribution of population difference for two points in time evolution and the minitauand maximum(b) values of

Rabi frequency of the external field used in Fig&)4and 4b). The detunings aréeft) A’=—4yg and(right) A’ =—10yg.
mation in this method leading to Eq®) is the factorization

Egs. (6) for a linear chain withN=10 andky,a=0.1, and

of the expectation values of the product of two molecular

initial detunings—4vyg [Fig. 6@] and — 10y [Fig. 6(b)].
Observe the monotonical increase of excited population asperators into the product of the individual ones. For in-
gtance,{dkd>:(dk><d,>, whered, andd, are the dipole op-

we increase the Rabi frequency of the external field. Figure
shows the spatial distribution of population along the chain

S . X ... erators for thekth andlth molecule, respectively. This fac-
Probably, the spatial inhomogeneity of the population differ-i, ation is rigorously true whenever the density matrix of
whole system is represented as the direct product of den-
sity matrices of individual molecules rather than those for

ence in the case of the short aggregates masks the stepli
the threshold value of detuning cojiective excitations of the whole system, i.e., one-

dependence aZ(t) on Q) due to the small jump OZ(t) in
dimensional(1D) Frenkel excitons.
Therefore, the one-molecule density-matrix approach
does not allow for spatial quantum correlations of dipoles
belonging to different sites of the linear aggregate. This

the vicinity of
statement is the reference to study the validity of the one-

A':_\/5%?-

V. JUSTIFICATION OF THE ONE-MOLECULE

DENSITY-MATRIX APPROACH
The aim of this section is to discuss the validity of the molecule density-matrix approach when considering nonlin-
Turning to the collective basis means the renormalization

one-molecule density-matrix approximation in our study. It isear optical properties of linear molecular aggregates.
of the energy spectrum of the aggregate. In the case of linear

possible to derive Eq$6) by means of the Heisenberg equa-
tion of motion for molecular operatof§]. The key approxi-
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WzEl’z':kank, where W, is the energy spectrum of 1D
exciton andn,=0,1 denotes the occupation of tkeh state.
(a) W, is given by the formula

-0.9997 T T T T T

wk

N+1

-0.9998 1 T W, =% wy+2V cos with k=1,2,...,N, (21

Py P

where V=(u?/a%)(1—3 cog6). To simplify we assume
1—3 cog6=—1. For negative values of the states in the
bottom of multiexciton bands are the most active in optical
transitions[4]. The bottom energy of th@&-exciton band
equals ;_;W,, where n is the number of excitons
(1=n=<N). Therefore, the transition energy between
(n—1)-th andn-th exciton bands i8V,, i.e., exactly the
10 12 energy ofn-th exciton state. This quantity ranges fram,
for the transition into one-exciton band, W, for the tran-
sition into the band withN excitons(all molecules in the
excited state These energies exactly correspond to the limits
of resonance frequency change in the one-molecule picture.
-0.995 - - - - - Nevertheless, the transition energies does not change con-
i b tinuously as predicted by the one-molecule theory. They are
-0.996 ;ﬁ : (b) i guantized and the minimal energy mismatchVis—W;.
According to Eq. (21), in the limit of large N it is
372 V|/(N+1)2.
1 So far, we may conclude that our matter of interest is
precisely those conditions when quantization of the 1D exci-
ton energy spectrum is not important. Otherwise, if the col-
lective radiative constangg can exceed the energy intervals
of the 1D exciton spectrum. If so, the spectrum looks like an
- inhomogeneously broadened band.
First, we should comparg yg with the minimal energy
interval of the 1D exciton spectrultV,—W, . In the particu-
lar case of aggregate length less than the emission wave-
0 2 4 6 8 10 12 length\ (koL <1), we get

-0.9999

-1.0000

-0.997

Py Py

-0.998

-0.999

-1.000

Time (units of YR'I) (W= Wy) 92
2= Wi)

v 2k T 22

FIG. 6. Kinetics of the average population differerit@) cal-
culated with the exact Eq$6) for different Rabi frequenciega)
A’ = —4yg and from bottom to top(}/ yx ranges from 0.135 with  using Eq.(17) and |V|= 3% y/4(kea)?, i.e., the energy in-
constant step 0.022(b) A’=—10ys and from bottom to top, tervals of 1D exciton spectrum are always larger than radia-
Q/yg ranges from 0.506 with constant step 0.112. The ratiotive broadening.
|A |/ yg equals 425. The linear chain consists of ten molecules with  On the contrary, wheh >\ or koL>1, by means of Eq.

koa=0.1. (16), we get the following expression:
aggregates, we have 1D exciton bands whose energy scale is (Wp—W,;) 187w
determined by the aggregate length. This quantization is ab- iyr  (koL)?" (23

sent if we use the one-molecule density-matrix approxima-
tion. This approach traces adequately the resonance fr
quency shift fromw,, to wy;= w,—|A | for the nonexcited

aggregate, which corresponds exactly to the band bottom eV —W. <% vo we are seeking is alwavs satisfied
ergy of the 1D Frenkel excitotsee[1]). It also depicts the = 2~ 1 "7R g y '

; . On the other hand, if we compare the maximal value of
dependence of resonance frequency on the population d'ﬁeWk—Wk =2m|V|/(N+1)—which is reached in the

ence. In fact, while the excited state population grows fromﬂiddle of 1D exciton bandkK=N/2)—with the collective

zero to unity the resonance frequency changes fronp L : : __ :
: iative width7 yg in the limit of lar regates, we will
w—|AL| 10 wy+|AL|. The reason is that 1D Frenkel ex- gae(: ative widthvi yg € otlarge aggregates, we

citons are weakly interacting fermiorighey are rigorously
fermions only if nearest-neighbor interaction is considered,

[1,4,11-13). Assuming nearest-neighbor approximation the (We=Wy—y) 12
energy of 1D exciton gas may take the values hyr N(koa)?

Therefore, there is a characteristic length=\ (9/2r) Y2 for
which W,—W;=#Ayg. For larger L the inequality

(24)
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FIG. 7. Spatial distribution of population difference for two points in time evolution and the minitauand maximum(b) values of
Rabi frequency of the external field used in Fig)@nd Gb). The detunings arfeft) A’'=—4yg and(right) A’ =—10yg.

It follows from Eg. (24) that satisfying the inequality band. It seems that this observation is in contradiction with
(W—W,_)/hvg<l for actual values okga (=~0.01) re- ours, at least when considering the large aggregates. The
quires too many molecules making up the aggregate. question only is if the restrictions found in Refd4] and

In short, the one-molecule density-matrix approach is apf15] affect ournonperturbativeanalysis of bistable response
propriate for the problem under consideration in the case obf linear aggregates. We are not able to assert that these
large aggregateskgL>1) whenever we work in the low- conclusions arise also from our work. We are only sure of the
energy region of the 1D exciton spectrum. fact that the condition of breaking down the 1D exciton en-

One could associate the approach we use with the locakrgy quantization is absolutely necessary for applying the
field approximation(LFA) in the theory of nonlinear re- one-molecule density-matrix approach to the problem con-
sponse of linear molecular aggregaféd,15 (see alsd1]  sidered above.
and references thergirOur study differs in the sense that we
take into _account thg whole fie(qhear and far zongswvhile VI. CONCLUSION
the mentioned previous works included only the near zone
part. The validity of LFA was widely discussed in connection ~ We have shown mirrorless bistable response of large lin-
with the perturbativeproblem of the two-photon absorption ear molecular aggregates £\) and found that this behav-
spectrum of 1D excitons. It was shown both for infiffifef]  ior results from the dependence of resonance frequency on
and shor{15] aggregates that LFA breaks down for an inter-the number of excited molecules in the aggregate.
val of resonance detunings of the order of the 1D exciton The formalism for describing this phenomenon should be
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based on the equation for the density matrix of collectivelinear aggregates bistable response, we suggest measuring
excitations, i.e., 1D Frenkel excitons. However, this formal-the field dependence of transmittivity for the linear aggregate
ism is not helpful as we consider effects of many excitonsthin layer in the spectral domain just above the absorption
(see[1], where difficulties of applying this method are dis- line. According to our predictions, the transmittivity should

CUSSG?i o . change sharply for a given value of the incident light inten-
A simpler and more useful formalism is that making usegijty,

of the one-molecule density matrices. Our analysis shows
that this approach is satisfactory if aggregate lengths are
more than the emission wavelength. The resulting system of
coupled nonlinear equations includes exactly the intermo-
lecular retarded interaction. The real part of this interaction is  This work is partially supported by the Spanish Diréccio
responsible for the dynamical shift of resonance frequency oGeneral de Investigaaio Cientfica y Tecnolgica (under
the aggregate while the imaginary one describes the colle&srant No. PB93-0632 V.M. acknowledges support from the
tive radiative relaxation. It is remarkable that this last one isRussian Foundation for Fundamental Scie(@ent No. 93-
much fasterapproximately 100 timgghan the spontaneous 02-1483). Both authors acknowledge support from the Uni-
relaxation of an isolated molecule. Therefore we may haverersidad de Salamanca. This work was also financially sup-
the optical switching of a linear molecular aggregate with aported by The Human Capital and Mobility Program of the
characteristic time of the order of 100 ps. European Community(Contract Nos. CHRX-CT93-0346
About the possibilities of an experimental probe of theand CHRX-CT94-0470
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