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An approximation procedure is introduced for the evaluation of the parameters that determine the positions,
widths, and asymmetric shapes of resonance profiles associated with autoionizing states. The essential feature
of the method is the availability of a minimum principle to aid in the optimization of trial functions. Such
functions, suitably antisymmetrized, are used in the variational calculation of the nonresonant background
contribution to the continuum wave function describing a resonant electron-ion scattering process. The rigor of
the minimum principle can be maintained, even for atomic systems consisting of more than two electrons, if
sufficiently accurate trial bound-state wave functions are employed in the description of ionic target states and
those discrete states of the full system that are embedded in the continuum. The analysis of the general problem
is preceded, for illustrative purposes, by a study of a solvable model of a resonant two-channel scattering
system; the utility of the minimum principle is demonstrated by comparison of exact and variationally deter-
mineds-wave cross sections. The applicability of the formalism to the calculation of resonant photoionization
and bound-state Compton scattering amplitudes is discussed briefly.@S1050-2947~96!00906-7#

PACS number~s!: 32.80.Dz, 34.80.Kw, 11.80.Fv

I. INTRODUCTION

The accurate determination of resonant continuum
electron-atom and electron-ion wave functions poses a prob-
lem of long standing@1#, with steady progress being made as
computational techniques become increasingly more power-
ful. Results obtained are useful in the analysis of experimen-
tal multichannel scattering and photoionization cross sec-
tions. With resonances of the closed-channel type, the
Feshbach projection-operator formalism@2# provides a well-
defined procedure for decomposing of the wave function into
resonant and nonresonant parts; it has been used effectively
in numerical studies of autoionizing states of two-electron
atoms@3–5#. In addition to providing a prescription for the
calculation of resonance parameters, the Feshbach formalism
allows for the use of a minimum principle for determining
the nonresonant contribution to the wave function@6#. Con-
struction of the Feshbach projection operators for systems of
three or more electrons presents a difficult problem and a
practical extension of this approach to the treatment of
heavier atoms is~to my knowledge! presently unavailable
@7#. To fill this gap an alternative procedure@8# has been
described recently in which the modified Hamiltonian, that in
the Feshbach method is formed by projecting out low-lying
states of the target and that enters into the determination of
the effective~or optical! potential, is obtained rather by sub-
traction of certain separable interactions from the physical
Hamiltonian. These interactions can be generated from stan-
dard Rayleigh-Ritz calculations. Our purpose here is to dem-
onstrate explicitly that in this alternative procedure a clear
separation of resonant and nonresonant terms in the wave
function of an autoionizing state is achieved and that the
minimum principle is preserved if the Rayleigh-Ritz calcula-
tions are performed with sufficient accuracy.

In order to describe the essential features of the method in
the simplest terms a solvable two-channel model is intro-
duced in Sec. II, with parameters chosen such that a single
closed-channel resonance exists. This allows us to illustrate

the application of the minimum principle to a resonant scat-
tering process and to compare the variationally determined
s-wave cross section with that obtained from the exact nu-
merical solution. The general case is taken up in Sec. III
where the structure of an autoionizing state of an atomic
system is analyzed and a calculational procedure for deter-
mining resonance profiles for electron-ion and photon-ion
interactions, based on the use of a minimum principle, is
outlined.

II. A SIMPLE MODEL

We consider here a particle in a center of force described
by a two-channel short-range potential with diagonal ele-
mentsV1 and V2 and off-diagonal elementsV125V215U.
The dynamics are defined by the coupled equations

H1f 11Uf 25Ef1,
~2.1!

H2f 21Uf 15Ef2 ,

whereHi5K1Vi1e i , i51,2, K is the kinetic energy, and
theei represent the channel thresholds. We assume that chan-
nel 2 is closed, i.e.,E,e2, and that standing-wave boundary
conditions are imposed in channel 1. Following a standard
procedure we introduce the resolvent operators
Gi(E)5(E2Hi)

21 and express the formal solution to the
second of Eqs.~2.1! as

f 25G2Uf 1 . ~2.2a!

This leads to the integral equation

f 15F11G1V f 1 , ~2.2b!

with the effective potential defined as

V ~E!5UG2~E!U. ~2.3!
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The incident wave satisfies (H12E)F150 and has the as-
ymptotic form

F1~r !;S 2m

\2pkD
1/2

sin~kr1dbg!; ~2.4!

we consider only s-wave scattering and define
\2k2/2m5E2e1 . A formal solution of Eq.~2.2b! may be
written as

f 15F11G1T F1 , ~2.5!

where the scattering operator satisfies

T 5V 1V G1T . ~2.6!

We note that thes-wave phase shift is given by the relation
d5dbg1d8 where the contributiond8, the correction to the
background scattering phase shift, is obtained from an ex-
amination of the asymptotic form of the channel 1 wave
function. From Eq. ~2.2b!, along with the relation
V f 15T F1, we find that

tand852p^F1uT uF1&. ~2.7!

Suppose now that the closed channel supports a single
bound state, withH2uB&5EbuB&, e1,Eb,e2, and^BuB&51.
Separating off the pole contribution toG2 we have

G25uB&~E2Eb!
21^Bu1G2

Q . ~2.8!

The nonresonant remainder is represented as
G 2

Q5Q(E2H2)
21Q, with Q512uB&^Bu; this resolvent is

negative definite for energies below the channel 2 threshold.
This would provide the basis for the use of a minimum prin-
ciple if one could construct trial functions orthogonal to the
bound-state wave function, as required by the presence of the
projection operatorQ. The bound-state wave function is
known in the model studied here. Since it is imprecisely
known in general, and since we wish to illustrate the general
method, we adopt an alternative to the decomposition~2.8!
that allows for the preservation of the minimum principle
and, consequently, the avoidance of ‘‘variational collapse’’
in a Rayleigh-Ritz type of construction of the resolvent. Thus
we write

G25uB&@~E2Eb!
212E21#^Bu1G2

nr , ~2.9!

with G2
nr5~E2H2,mod!

21 and

H2,mod5H22
H2uB&^BuH2

^BuH2uB&
. ~2.10a!

The bound state has not been projected out of the spectrum
of the modified Hamiltonian but rather its energy is displaced
upward to zero, and this serves our purpose equally
well—we require only that it be aboveE. The practical ad-
vantage of this alternative lies in the fact that with only an
approximationBt to the bound-state wave function available
we may introduce the approximation

Ĥ25H22
H2uBt&^BtuH2

^BtuH2uBt&
~2.10b!

in place ofH2,mod in the definition ofG2
nr and this preserves

the minimum principle applicable to the calculation ofG2
nr

provided thatBt is sufficiently accurate to give binding.
More precisely, it has been shown@9# that with the trial-
bound-state energyEbt5^BtuH2uBt& lying below e2, and
with the energyē2 determined to satisfy

ē2<
Eb

Ebt
e2 , ~2.11!

the operator Ĥ22 ē2 is positive. Then the resolvent
(E2Ĥ2)

21, an approximation toG2
nr(E) that can be im-

proved systematically asBt is improved, will be negative
~and satisfy the minimum principle! for E, ē2 @10#. For the
sake of clarity the following discussion will be carried out in
terms of the exact stateB.

With the pole term separated off as shown in Eq.~2.9! the
effective potential is decomposed as

V 5V cc1V cb~E2Eb!
21V bc , ~2.12!

where we have definedV cc5UG2
nrU, V cb5(Eb/E)

1/2UuB&,
andV bc5(Eb/E)

1/2^BuU. The solution of Eq.~2.6! for the
scattering operator is readily shown to have the form

T 5T cc1T cb~E2Er !
21T bc . ~2.13!

The quantities appearing on the right-hand side are conve-
niently expressed in terms of the Green’s function satisfying
the integral equation

G185G11G1V ccG18 . ~2.14!

The resonance energy may then be written asEr5Eb1T bb
with the level shift defined as

T bb5V bcG18V cb . ~2.15a!

The remaining quantities are given by the relations

T cc5V cc1V ccG18V cc , ~2.15b!

T bc5V bc1V bcG18V cc , ~2.15c!

T cb5V cb1V ccG18V cb . ~2.15d!

~The relationT ccG15V ccG18 is useful in confirming these
results.! A similar analysis, in which Eq.~2.2b! for the chan-
nel 1 wave function is combined with the decomposition
~2.12! of the effective potential, leads to the separation
f 15 f 1

nr1f 1
r into nonresonant and resonant components with

f 1
nr5F11G18V ccF1 , ~2.16a!

f 1
r 5G18V cb~E2Er !

21V bcf 1
nr . ~2.16b!

An analogous decompositionf 25 f 2
nr1f 2

r of the channel 2
wave function is obtained by combining Eq.~2.2a! and~2.9!;
we find that

f 2
nr5G2

nrUf 1
nr , ~2.17a!
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f 2
r 5~11G2

nrUG18U !uB&SEb

E D 1/2~E2Er !
21V bcf 1

nr .

~2.17b!

A significant step in the calculational procedure is the
construction of the resolventG2

nr appearing in the expression
V cc5UG2

nrU. We remark that this operator, which describes
the nonresonant scattering in the closed channel~including
the effects of distant resonances! is neglected in some sim-
plified treatments@11#. Such an approximation will be ad-
equate in many cases but it is not generally valid.~A case in
which it is grossly inappropriate is described below.! Since
G2

nr is negative, a variational approximation introducing a
negative error may be taken to be of the separable form@8#

G2t
nr~E!5uj&

1

^ju~E2H2,mod!uj&
^ju, ~2.18!

where the modified Hamiltonian is that defined in Eq.
~2.10a!, and where the trial functionj is optimized by the
minimization of a diagonal expectation value ofG2t

nr . In the
numerical application of this simple model described below,
in which square-well potentials are assumed, the bound-state
function is known precisely. More generally, the modified
Hamiltonian shown in Eq.~2.10b! would be employed.

The variational approximation for the nonresonant com-
ponent of the effective potential is given by the separable
form V cc'UG2t

nrU, and in this approximation the integral
Eq. ~2.14! has the solution

G185G11G1Uuj&D21^juUG1 , ~2.19a!

with

D5^ju~E2H2,mod2UG1U !uj&. ~2.19b!

Then, with the definition

uB8&5uB&1uj&D21^juUG1UuB&, ~2.20!

and use of Eqs.~2.13!, ~2.15!, and~2.7!, we have

2
1

p
tan d85 z^F1uUuj& z2D21

1 z^F1uUuB8& z2SEb

E D ~E2Er !
21.

~2.21!

With the potential matrixV(r ) taken to be of the square-
well form the model is exactly solvable@12# and this allows
us to judge the accuracy of the approximation. The param-
eters were chosen as

2m

\2 V~r !52
1

a0
2 S 0.060.3

0.3
0.55D , r,6a0 ~2.22!

wherea0 is the Bohr radius, andV(r )50,r>6a0. The sepa-
ration between channel thresholds was taken to be
e22e150.5 a.u. With these parameters one finds a closed-
channel bound state atEb50.314 a.u. and an associated
‘‘Feshbach’’ resonance in thes-wave cross section; the exact

cross section is shown as the solid curve in Fig. 1.~The
energy scale was fixed by settinge150.! Note that the strong
interchannel coupling built into the model has led to rather
large values for the level shift and width. The trial function
was taken to be of the simple form

j~r !5exp~2c1r !2exp~2c2r !2c3r exp~2c4r !.
~2.23!

A search, by no means exhaustive, for the parameters giving
the minimum value of ^F1uUG2t

nrUuF1& led to the set
c1/a052.8,c2/a053.2,c4/a054.5, andc350.17. Use of the
minimum principle in this search is essential since the pa-
rameters appear nonlinearly. The dashed curve in Fig. 1
gives the result of the variational calculation of the cross
section. One sees that a more elaborate trial function would
be required to do more than reproduce the general shape of
the exact cross section. On the other hand, the improvement
over the approximation in which the potentialV cc is
ignored—values of the cross section so obtained are shown
as isolated points in Fig. 1—is dramatic. The extent of this
discrepancy is undoubtedly atypical but the example sug-
gests that the effects of the nonresonant interaction can be
substantial and should be carefully examined in general.

III. APPLICATION TO ATOMIC SYSTEMS

A. Summary of the scattering formalism

To keep the discussion reasonably self-contained we be-
gin by reviewing the essential features of the effective-
potential formalism derived earlier@8#. We consider the scat-
tering of an electron by anN-electron ion of nuclear charge
Zueu. The eigenvalue equation for the target bound states is
written as

h~n!uxg~ n̄!&5eguxg~ n̄!&, ~3.1!

with negative eigenvaluese1<e2<...<ep and withh(n) rep-
resenting the Hamiltonian of theN-electron system remain-
ing after thenth electron has been removed. We use the
abbreviated notation@13#

FIG. 1. Cross section fors-wave resonance scattering in a solv-
able two-channel model. The solid curve is the exact cross section
and the dashed curve was obtained variationally. Results obtained
with closed-channel, nonresonant scattering ignored appear as iso-
lated points; the resonance width so calculated is too small to be
resolved graphically.
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xg~ n̄!5xg~1,2,...,n21,n11,...,N11! ~3.2!

for the antisymmetric target state, with the space and spin
coordinates of thej th particle represented by the symbolj .
The full Hamiltonian is H5h(n)1K(n)1V(n), where
K(n) is the kinetic energy of thenth electron to which is
added its monopole Coulomb interaction with the residual
system.V(n) is the interaction of thenth electron with the
residual system, with the monopole Coulomb potential sub-
tracted off.@Effects of long-range Coulomb distortion appear
in the eigenstates ofK(n).# We introduce the modified
Hamiltonian

Ĥ5H2 (
n51

N11

(
g51

p
h~n!uxgt~ n̄!&^xgt~ n̄!uh~n!

^xgt~ n̄!uh~n!uxgt~ n̄!&
, ~3.3!

where thexgt(n̄) are trial target states to be obtained from a
standard~multilevel! Rayleigh-Ritz calculation@14,15#. In
the following, for notational simplicity, we assume that these
states are exact eigenstates, in which caseĤ will have ep11
as its lowest continuum threshold energy. If, as is usually the
case, the target states are imprecisely known an upper bound
ē p11 on this lowest threshold can be obtained provided the
trial target states are sufficiently accurate to give binding.
Then for E, ēp11 the construction of the resolvent
(E2Ĥ)21 can be approached using a minimum principle, as
shown below.~The similarity between this procedure and the
treatment of resonant states described in Sec. II should be
clear. Additional details can be found in Ref.@9#.!

We look for the continuum wave function of the full sys-
tem, corresponding to an incident channel with indexn, in
the form

Cn~1,2,...,N11!5A(
g

xg~ 1̄! f gn~1!1M n~1,2,...,N11!,

~3.4!

whereA is the antisymmetrizer defined by the relation

Ax~ 1̄! f ~1!5 (
n51

N11

~21!n11x~ n̄! f ~n!. ~3.5!

Incoming-wave boundary conditions are assumed since we
later apply the theory to a photoionization process.@The con-
ventional superscript~2! indicating such boundary condi-
tions is omitted to simplify notation. The details of the vector
coupling that gives the productxg f gn well-defined total or-
bital angular momentum and spin quantum numbers is like-
wise omitted here.# The completely antisymmetric function
M n , which contains the effects of virtual excitations, is given
in terms of the resolventĜ(E)5(E2Ĥ)21 as

M n5Ĝ~E!(
g
AV̂~1!xg~ 1̄! f gn~1!, ~3.6!

and is asymptotically decaying forE lying below the con-
tinuum threshold ofĤ. The modified potential appearing in
Eq. ~3.6! is defined by

V̂~n!5V~n!2 (
n8Þn

(
g

eguxg~ n̄8!&^xg~ n̄8!u, ~3.7!

and arises as a consequence of the subtraction procedure
based on Eq.~3.3!. This procedure leads to a prescription for
determining the functionsf gn that can be summarized as fol-
lows. LetFn be the regular solution, normalized on the en-
ergy scale, of the wave equation (K2En)uFn&50 for an
electron interacting with the monopole Coulomb field of the
target. The associated propagator is

G n~E!5~E2en2K2 ih!212~E2K !21, ~3.8!

whereh is a positive infinitesimal.@Recall that incoming-
wave boundary conditions are assumed. The second term on
the right in Eq.~3.8! is nonsingular forE lying below the
continuum threshold ofK, so that this term does not contrib-
ute to the asymptotic particle flux. Its presence is required by
the particular subtraction procedure used here. Compare with
the first term on the right in Eq.~2.9!.# The effective poten-
tial is given by the expression@8#

V ag~E!5^xa~ 1̄!u$@E2K~1!#~A21!1AV̂~1!

1V̂~1!Ĝ~E!AV̂~1!%uxg~ 1̄!&. ~3.9!

The scattering operator is obtained by solving a one-body
integral equation of the form

T an5V an1(
g
V agG gT gn , ~3.10!

and once this is accomplished the one-electron wave func-
tions appearing in Eqs.~3.4! and ~3.6! can be found by
evaluation of the expression

f an5Fndan1G aT anFn . ~3.11!

B. Resonance decomposition of wave functions
and Green’s functions

The equivalent one-body integral Eq.~3.10! for the scat-
tering operator can be solved by routine numerical methods
and this leaves as the chief dynamical problem the construc-
tion of the resolventĜ appearing in Eq.~3.9! for the effec-
tive potential. For a range of energies below the continuum
threshold of the modified HamiltonianĤ a minimum prin-
ciple is available as an aid in this calculation. Any discrete
states lying below threshold must be effectively ‘‘subtracted
out’’ for the minimum principle to be applicable. Such a
procedure, applied in Sec. II to a simple model, will now be
described in the context of the more general effective poten-
tial formalism. One is led in this way to a variational deter-
mination of the continuum wave functions and Green’s func-
tions, explicitly decomposed into resonant and nonresonant
components. Results obtained this way can be useful in stud-
ies of photon-atom interactions as well as in electron-ion
scattering.

Assuming for simplicity that a single isolated bound state
of Ĥ exists, satisfying (Ĥ2Eb)uB&50 and normalized to
unity, we introduce the nonresonant resolvent

Ĝnr~E!5S E2Ĥ1
ĤuB&^BuĤ

^BuĤuB&
D 21

, ~3.12!
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in which the bound-state pole singularity has been displaced
upward to zero energy. It will be convenient in the following
to assumeuB& to be precisely known, with the understanding
that the minimum principle will be preserved when a suffi-
ciently accurate trial function is inserted into Eq.~3.12!. We
now have the decomposition@analogous to that shown in Eq.
~2.9!#

Ĝ~E!5uB&
Eb

E

1

E2Eb
^Bu1Ĝnr, ~3.13!

which, when inserted into Eq.~3.9!, leads to the resonance
decomposition

V an5V an
nr 1V ab

1

E2Eb
V bn ~3.14!

with V an
nr obtained from Eq.~3.9! by the replacement ofĜ

with Ĝnr. A corresponding decomposition of the scattering
operator@compare with Eqs.~2.13!–~2.15!# is obtained by
combining Eqs.~3.14! and ~3.10!, yielding

T an5T an
nr 1T ab

1

E2Er
T bn . ~3.15!

The various quantities appearing here are defined in terms of
the solution of the integral equation

G an8 5G adan1(
g
G aV ag

nr
G gn8 . ~3.16!

Thus the resonance energy isEr5Eb1T bb , with

T bb5(
a,g

V baG ag8 V gb . ~3.17a!

We also have

T an
nr 5V an

nr 1(
g,s

V ag
nr
G gs8 V sn

nr , ~3.17b!

T ab5V ab1(
g,s

V ag
nr
G gs8 V sb , ~3.17c!

T bn5V bn1(
g,s

V bgG gs8 V sn
nr . ~3.17d!

One may identify the real part of the level shift, defined in
Eq. ~3.17a!, as~T bb

(2)1T bb
(1)!/2 with the imaginary part de-

termined from the remainder~T bb
(2)2T bb

(1))/2, where the su-
perscript indicates the sign of the imaginary part of the en-
ergy variable in the Green’s functionG ag8 @16#. Recalling
that the effective potential is Hermitian we see from Eq.
~3.17a! that the imaginary part is obtained from an evalua-
tion of the antihermitian part ofG ag8 . This is easily accom-
plished using Eq.~3.16! and the property (G a

(2)2G a
(1))/2

5 ipd(E2ea2K) which follows from Eq.~3.8!. The result
may be conveniently expressed in terms of the open-channel
propagator

g~E!5(
a,s

uxa&G as8 ^xsu, ~3.18a!

which may be decomposed as

g~n,n̄;n8,n̄8;E!5gP~n,n̄;n8,n̄8;E!

1 ip(
n

ucn~n,n̄!&^cn~n8,n̄8!u,

~3.18b!

wheregP(E)[[g(E2 ih)1g(E1 ih)]/2 and

ucn~n,n̄!&5(
g

uxg~ n̄!&u f gn
nr ~n!&. ~3.18c!

In accordance with notation established earlier the pair of
arguments (n,n̄) appearing in these equations serve to
specify the partition of the system into two subsystems, one
containing thenth electron and the other containing the re-
sidual N-electron system.~The interacting propagator is
specified by both initial and final partitions, accounting for
virtual rearrangement scattering.! The resonance energy may
be expressed in terms of these functions as
Er5Eb1D1 iG/2 with

D~E!5SEb

E D ^BuAV̂~1!gP~1,1̄;18,1̄8;E!V̂~18!uB&,

~3.19a!

G~E!52pSEb

E D(
n

^BuAV̂~1!ucn~1,1̄!&

3^cn~18,1̄8!uV̂~18!uB&. ~3.19b!

Having separated the scattering operator into resonant and
nonresonant parts we can now do the same for the wave
function. Thus we writef an5 f an

nr1f an
r , with the nonresonant

and resonant components determined by expanding the scat-
tering operator appearing in Eq.~3.11! into its nonresonant
and resonant components. We find, with the aid of Eqs.
~3.16! and ~3.17b!,

f an
nr 5Fadan1(

g
G ag8 V gn

nr Fn , ~3.20!

and

f an
r 5(

g,s
G ag8 V gb~E2Er !

21V bs f sn
nr . ~3.21!

In a similar way we writeM n5M n
nr1M n

r . Retaining only the
nonresonant contributions in Eq.~3.6! we have

uM n
nr&5ĜnrAV̂~1!ucn~1,1̄!&. ~3.22!

This leaves the resonant part which, after some algebra, and
with the omission of partition labels to simplify the writing,
can be put in the form
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uM n
nr&5@11ĜnrAV̂g~E!V̂#uB&

Eb

E

1

E2Er
^BuAV̂ucn&.

~3.23!

Using these results we can decompose the full wave function
asCn5Cn

nr1Cn
r with

uCn
nr&5Aucn&1ĜnrAV̂uCn&, ~3.24a!

uCn
r &5uB8~E!&

Eb

E

1

E2Er
^BuAV̂ucn&, ~3.24b!

where

uB8~E!&5@11Ag~E!V̂1Ĝnr~E!AV̂g~E!V̂#uB&.
~3.24c!

It has been shown previously how the structure of the
resonant continuum wave function, analyzed in terms of the
Feshbach projection operators, determines resonance profiles
for scattering and photoionization cross sections@3–5#. To
establish the correspondence between the present approach,
which does not involve projection operators, and that earlier
work we record the form taken by the matrix element for
photoionization when the continuum wave function is de-
composed as in Eqs.~3.24!. The cross section is proportional
to the absolute square of the matrix element^CguH8uCn&
where uCg& is the ground state of the atom andH8 is the
photon-atom interaction in the dipole approximation. To ex-
press the result in a form that parallels earlier work@5,17# as
closely as possible we introduce some notation. We define
the quantities

e52
~E2Eb2D!

G
, ~3.25!

an5
2p

G

1

^CguH8uCn
nr&

^BuAV̂ucn&(
m

^CguH8uCm
nr&

3^cmuV̂uB&SEb

E D , ~3.26!

and

q5
^CguH8uBP8 &

p(m^CguH8uCm
nr&^cmuV̂uB&

, ~3.27a!

with

uBP8 ~E!&5@11AgP~E!V̂1Ĝnr~E!AV̂gP~E!V̂#uB&.
~3.27b!

The matrix element may then be written as

^CguH8uCn&5^CguH8uCn
nr&F11

an~q1 i !

e2 i G . ~3.28!

This reproduces a standard representation@17#, and provides
a variational prescription for determining the weakly energy-
dependent matrix elements that enter into the expression for
the photoionization amplitude. The very close formal corre-

spondence between the present results and those obtained in
Ref. @5# using the Feshbach method should be noted.

The analysis of the resonance structure of the scattering
amplitude and wave function can be extended to the full
Green’s functionG(E)5(E2H)21, allowing for applica-
tions to higher-order processes. For example, in the bound-
state Compton scattering process, atom1g→ion1e21g8,
the electron can be ejected into a resonant state and the effect
of the interference between resonant and nonresonant com-
ponents of the final-state wave function can be studied as
described above for photoionization. One may also wish to
examine the effect of an intermediate-state resonance, as de-
termined by the structure of the Green’s function, in which
resonant and nonresonant contributions are isolated. We now
indicate very briefly how that structure can be derived using
the techniques introduced above.

The resolvent identity

G5Ĝ1Ĝ~H2Ĥ !G ~3.29!

provides an appropriate starting point since, by virtue of Eq.
~3.3!, the kernel is separable.~The target wave functions are
taken to be exact here.! Then, by straightforward algebra@9#,
one arrives at the representation

G5Ĝ1(
i , j

(
a,b

@11ĜV̂~ i !#uxa~ ī !&~G a~ i !d i , jdab

1G a~ i !T̃ ab~ i , j !G b~ j !!^xb~ j̄ !u@11V̂~ j !Ĝ#.

~3.30!

Here T̃ ab( i , j ) is the scattering operator for distinguishable
particles~particle j incident in channelb and particlei emer-
gent in channela!, generated by the effective potential

Ṽ ab~ i , j !5^xa~ ī !u~@E2K~ i !#~12d i j !1V̂~ j !

1V̂~ i !ĜV̂~ j !!uxb~ j̃ !&. ~3.31!

The antisymmetrized form given earlier in Eq.~3.9! is the
version into whichṼ ab is transformed when operating in the
space of antisymmetric states. As a consistency check one
verifies that the wave function in the form~3.4! is generated
from the Green’s function~3.30! by application of the ‘‘resi-
due rule’’

Cn5 lim
h→0

~2 ih!G~E2 ih!Axn~ 1̄!Fn~1!. ~3.32!

Proceeding now in analogy with the earlier treatment of the
wave function, we define the nonresonant componentGnr of
the Green’s functionG by replacingT̃ ab andĜ appearing in
Eqs.~3.30! and~3.31! by their nonresonant componentsT̃ ab

nr

and Ĝnr, respectively. Taking into account the fact that the
bound-state wave functionB is antisymmetric, the remainder
can be expressed, after some rearrangement, in the notation
established in connection with Eq.~3.24! for the wave func-
tion. The full Green’s function then takes on the form

G~E!5Gnr~E!1uB8~E!&SEb

E D 1

E2Er
^B8~E!u,

~3.33!
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with uB8(E)& given by Eq.~3.24c!. This representation can
be useful in the analysis of resonance profiles for a variety of
higher-order processes, in addition to the photon-atom scat-
tering example mentioned earlier.

IV. SUMMARY

A formulation of multichannel electron-ion scattering
theory, applicable for scattering energies lying below the
two-electron continuum threshold, has been presented. It al-
lows for a clear separation of nonresonant and resonant com-
ponents of the scattering amplitude and provides a calcula-
tional prescription that combines the use of minimum
principles and one-body integral equations. Antisymmetriza-
tion requirements are explicitly accounted for, as are the ef-
fects of long-range Coulomb forces between projectile and
target ion. The validity of the minimum principle is main-
tained provided that target wave functions are determined
with sufficient accuracy—the essential requirement is that
they should be accurate enough to give binding. Application
of the method to systems consisting of more than two elec-

trons is then feasible, this in contrast to resonance theories
based on the use of Feshbach projection operators which are
difficult to construct. As an illustration of the method, and in
particular of the use of the minimum principle, a solvable
two-channel scattering model was treated variationally with
results compared to the exact cross section. The resonance
analysis of the scattering amplitude has been extended here
to the continuum wave function and to the full Green’s func-
tion of the system, thereby allowing for applications to scat-
tering processes that take place in the presence of a radiation
field. In addition to the first-order and second-order reactions
discussed briefly above, the theory can be extended to the
treatment of multiphoton processes. This extension is fairly
straightforward if one adopts the approximation that two-
electron continuum states are excluded. A more elaborate
revision would be required to overcome this limitation.
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