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Extension of scattering theory for finite times: Three-body scattering
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Scattering theory is extended to the description of processes during collision. Indeed, for large wave packets
we may consider situations where tirnewhile large with respect to characteristic frequencies, is still smaller
than the duration of the collisioty,. This leads to an asymptotic theory which is different from the usual
S-matrix approach. There appear intermediate states with scattering cross sections which result from secular
effects fort<t., but differ from the values obtained for-t. in the S-matrix theory. The consideration of such
intermediate time scales is the normal procedure in many-body situations as realized, for example, in chemical
reactions. Our method is closely connected to our work on the extension of quantum theory beyond the Hilbert
space for large Poincasystems. This theory applies to persistent scattering using delocalized density matrices
(an example is plane waves$-or this case, th&-matrix theory is not valid, while the results of our asymptotic
approach remain valid for all times. Our theoretical predictions have been validated by numerical simulations.
[S1050-294{@6)06405-0

PACS numbs(s): 03.80:+r, 03.65.Bz, 05.30-d, 11.80.Jy

I. INTRODUCTION We then come to three-body scatteri(®ecs. IV-VII).
For simplicity, we consider scattering in one dimension, and
In the standard theory of scatteritgee, e.g.[]1-4]) one  assume repulsivé-function interactions. Extensions to more
considers asymptotically free in and out states interactingeneral situations are easy. In this case evenstmilar
during a finite timet... This leads to ars-matrix description terms are different in the two asymptotic situations.
of the collision process which is valid for times of observa- We work in center-of-mass system, and use Jacobi’s co-
tion t larger thant.. For large wave packets, we may con- ordinates and momentaee(5,6]). We can then transform
sider different situations whete while large with respect to the problem into the study of the evolution of a single par-
characteristic frequencies, is smaller thanThis leads to an ticle in two-dimensionakpace interacting with three walls.
asymptotic theory which is different from the us@matrix ~ We obtain a simple pictorial description of the scattering
approach. There may now appear ‘“intermediate” statedrocessesgsee Sec. IY. We concentrate our attention on the
which result fromsecular effectdor t<t, but vanish for ~Process corresponding to an interaction between particles 1
t>t,. The consideration of such intermediate time scales i§nd 2 followed by an interaction between 2 and 3. We study
the normal procedure in many-body situations, as realizedhis process in Liouville space, which permits a clear sepa-
for example, in chemical reactions. ration of rescattering effects from genuine three-body effects.
We shall concentrate in this paper on three-body scattef fact, this is the lowest order interaction, which involves
ing. However, we first briefly consider two-body scattering Poth successive two-body scattering, as well as genuine irre-
as it permits us to introduce the main concepts leading to oufucible three-body effec{$-8|.
asymptotic approackSec. Ill). We calculate the transition We calcul_ate the _various contributions leading to secular
probability starting from large wave packets. As is well effects starting again from large wave packets. Now our
known, the scattered wave packet has a sharp peak at re@symptotic theory leads to a dramatic effect as classes of
nance, and a small tail effect coming from the off-resonancesecular effects appear only for<t., and disappear in the
shell contribution. The value of the off-shell contribution dif- frame of theS-matrix theory fort>t. . Our results have been
fers in the two asymptotic situations correspondingsta,  confirmed by numerical simulations.
(S matrix) andt<t, (obtained by our approagh As a result of this effect, the scattering three-body cross
For a typical momentunk (with =1 and massn=1), Section is different in the two situations. This result is closely
the duration of the collision is given by~ (|k| ) ~*, where connected to our work on the extension of quantum theory
1/7 is the size of the wave packet in configuration spacePeyond the Hilbert space for large PoincaystemsLPS's)
Then one can summarize the two different asymptotic limitd 9,10l. This theory applies to persistent scattering using de-
used in our paper in Table |, wheee-14. It is very inter- _ o _
esting that the extension of scattering theory to finite times, |~BLE |. Two different asymptotic limitsS-matrix approach
corresponding to the statistical-mechanics approach, caf'd Statistical-mechanics approach.
only be performed on the level of density matrices aod

on the level of wave functions. The reason is that the transi-sfmamx approach Stat. mech. approach
tion probability can no more be factorized into a product of|k| z>¢ |k| 7<e

wave functions. We shall come back to this important pointirst t—c then »—0 first 7—0 thent—oo
below (Sec. IX).
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localized density matricedor example, plane wavgsin the  tonian (4.9) represented by Jacobi's coordinates that corre-

frame of our asymptotic theory far<t., the system still sponds to three-body scattering.

does not “know” if we started with a large but finite wave  The evolution of the system is governed by the Liouville—

packet, or if we started with a delocalized density matrix.von Neumann equation for the density matpix12],

Persistent interactions require singular distribution functions

(i.e., thesfunction singularity in momentuinwhich lie out- .

side the Hilbert space. Th&-matrix theory is no longer Pt (O =Lup(V), (2.9

valid. We have then obtained complex, irreducible spectral

representations of the evolution operators, here the LiouvillevhereL  is the Liouville—von Neumann operatthe Liou-

operatorL,;, in generalized function spacg8,10]. The re- villian in shor that is the commutator with the Hamiltonian

sults of our asymptotic approach then remain valid for allLyp=[H,p].

times. Our theory also removes the rescattering anomaly, The formal solution of the Liouville—von Neumann equa-

which is due to successive two-body collision in three-bodytion is

scattering. As this problem has a long history, we shall

present it in a separate pagpéd], and only mention it briefly p(t)=7(t)p(0), (2.6)

in this paper. i
In the two asymptotic theories, the results obtained for thavith

three-body scattering cross sections are different. As men-

tioned, in this paper we concentrate on a single profass

(12) interaction followed by &23) interaction. It is easy to

extend our results to other three-body processes. In a sub

guent paper, we shall consider all three-body scattering pro-

2/(t)=e Lht, (2.7

7/(t) is the evolution operator and obeys the integral equa-

cesses, and give an explicit expression for the difference in _ t _ .
the cross sections. 7é(t)=e*'L0t—i>\f dt’e ot a/t"), (2.8
0
ll. LIOUVILLE SPACE FORMALISM whereL is the unperturbed Liouvilliat o=Ly , andL is

We consider nonrelativistic quantum systemsNodlistin-  the interaction Liouvillian,
guishable particles withN=2 and 3 ind-dimensional space.
Before going to a specific numbat, we first introduce no- Lu=Lo+ALy. (2.9
tations for arbitrary finiteN. For N—oo, see[10]. In the . ) ,
center-of-mas$CM) frame, the number of degrees of free- We can write the formal _squtlon @R2.8) for t>0 in terms
dom reduces t=(N—1)d. In the CM frame the Hamil- ©°f the Laplace transformation §%2]
tonian is given by(we shall use a unit system with=1)

1 :
()= s— f dz e '*'R(z), 2.1
H=Hy+\V, (2.2) 0= 27 c @ 19

where H,, is the unperturbed Hamiltonian associated withwhereR(z) is the resolvent operator for the Liouvillian de-
free motion, and\ is a dimensionless positive coupling con- fined by
stant. In this paper we consider a short-range repulsive inter-

action\V among the particles. There are no bound states. In R(7)= 1 2.1
the CM frame we shall use vector notation, such as (2)= z—Ly’ 13
X=(Xq .- Xpm)- _ _

We denote the eigenstatestéf by |k), i.e., and C is a contour which runs from-« to —, parallel to

and above the real axis. This satisfies the resolvent equation
R(2)=Ro(2) +Ro(2)AL\R(2), (2.12
They satisfy
whereR(z) is the unperturbed resolvent operator defined by

M
| k=1, (plk=a(p-t0=IT atpi=ko.

Ro(2)= ) (2.13
2.3 z=Lo

wheredMk=dk; ...dk,,, and (p;—k;) is the Diracé func- We may introduce theZ matrix for the Liouvillian in the
tion. We assume b Liouville space in analogy to the usual scattering theory for-
mulated for the Hamiltonian. This satisfies the integral equa-

M tion
W= wy . 2.4
k .21 i @4 7(2)=ALy+\LyRy(2).71(2). (2.14

For example, we have a Hamiltoni&B.1) for potential scat- Assuming the convergence, the iterative solutiori2o14) is
tering that corresponds to two-body scattering, and a Hamilgiven by
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* Wpp =EwWp— Wy . (224)
_ PP P @p
72)= 2 NL[Ro(2ALy]" (219 _ _ _ _
n=0 In this representation we have a simple expression for
. matrix elements of operatéx acting on wave functionsee
This then leads to (2.18]:

App =(PlAIp")=((p;p'|A)). (2.25

The operators acting on density matrices are called super
operators. A factorizable super operatox B is defined by
For scattering of a wave packet, which the usbahatrix

theory deals with, the interaction is transient. As the wave (AXB)p=ApB, (2.29

function ¥ is localized in configuration space, it has a well- \whereA andB are linear operators in wave-function space.
defined norm, The Liouvillian is then

1 -
)= 5 fcdz &3 [Ry(2ALLI'Ry(2).
(2.19

Ly=HX1-1xH. (2.27)

1/2
il [ anxioqwe| <= @1
The matrix element of the perturbed Liouvillian is given by
In this situation, the Liouville—von Neumann equation does o e o .
not introduce any new features. If we can integrate Sthro ((Pip’|LvIP";p")) = Vppr(p" = p") = 8(p—P")Vpyrp: .
inger’s equation, we can solve the Liouville—von Neumann (2.29

equation, and vice versa. Usually, one equips the Liouville

space with a Hilbert space structure. In this space a scalar |n this paper we shall consider the scattering problem for
product of the linear operatofsandB acting on wave func-  two classes of density matrices; in one class the Hilbert
tions is defined as a Schmidt inner product norms convergéthis is the usual case f@-matrix theory,
_ + and in the other class the Hilbert norms diverge. The sim-
((A[B))=Tr(A'B), (2.18 plest example of the second case is a plane wave|&®,)
=|k)(k|, which is normalized by the Diraé function as

P [p(0))=8(p—p’')d(p—kK). 2.2
1Al = (TATAY. (2.19 ((P:p’[p(0)))=8(p—p") 8(p—k) (2.29
) ) With this initial condition, the interaction igersistentThere
We have also introduced Dirac’s “bra” and “ket” nota- gre no free-in and free-out states. In this situation one cannot
tionS, |e,<<A| and|B>>, analogous tO. the notations Used fOI’ app|y the S_matrix theory_ The density matrix has a
wave functions. For example, the Hilbert norm for the den-s function singularity at the diagonal components in momen-
sity matrix associated with the wave packetWV'V™ is given  tym representation. For this case the Hilbert norm is propor-
by tional to an ill-defined expressiof(0) [see(2.20]. In order
to avoid this meaningless expression, we can formulate the
||p||:J dMx|(x| W) [2< 0. (2.20  Problem in tgzrms of the box normalization formalism with
the volumeL®, then take the limil. — (see also Sec. Ijl
In this formalism, we can understand thik) at k=0 is a
) diverging quantity of ordet.™. The box normalization for-
unitary. malism is important in nonequilibrium statistical physics, as

In the Liouville space we denote’ dyadic operatipip’ this allows for the handling of the thermodynamic liriie.,
generated by the eigenstatpsand|p’) of H, by a ket state, N—, L—oe with c=N/L¢ finite) [10].

and its Hilbert norms by

The Liouvillian L, is then a Hermitian operator, ant(t) is

|p;p >>E|p><p | (2.2 lll. TWO-BODY SCATTERING
They form a complete orthonormal set of the Liouville

space, Let us first consider two-body scattering. For simplicity,
we consider a-function interaction in one-dimensional con-

o . ) figuration spacdi.e., d=1). Eliminating the center-of-mass
dp [ dp’[p;p")){(p;p’[= | dp | dp’[p){pl motion, the problem of two-body scattering is reduced to a
problem of potential scattering for a single particle with the

X[p"Xp'|=1, Hamiltonian
e e\ — _ ' &
(p;p'[k;k"))y=8(p—k) 8(k"—p’). (2.22 H=Ho tAV=— 5 4 hogdi(x), (3.0

They are eigenstates &f,,
wherev >0 is a constant which characterizes the interaction,
Lolpip"))=Holp){p'| = [p){p'[Ho=wWpp|p;p’)), andx is the distance between the two particles. We Héwe
(223 (2.2]

where w=k? (3.2
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and (for everyk andp) 1
To—=—. (3.13
(pIVIK)=vo. (33 ° ky
Let us assume that the initial density matrix is in a pureWe are interested in a comparison between the transition
state given by a wave functioir(0), probability after the collisior{i.e., the time scalé>7.) and
the one during the collisiont& 7).
|p(0)))=|¥(0))(¥(0)]. (3.9 By the resolvent formalisnt2.10), the transition probabil-

We assume tha¥’(0) is a Gaussian wave packet in momen- ity to the statelp:p)) is given by

tum representation,

1 —izt 1
<<p;P|P(t)>>:2—7ﬂdez et

(KW (0))=8,(k—k), (3.5
(3.149
1
8, ()=—— g 1727 (3.6)  Fort>0the pole az=0 is located in the first Riemann sheet,
V2mny as the contourC is located in the upper-half-pland2].

. . . -1, .
and 1>0 is the size of the wave packet in configuration €Nce the evolution for large time scalg., t>w, ") is
space. We have determined by the residue at +ie, with e—0+. In order

to obtain the transition probability after the collision, we

1 have to take the limite—0+, keeping % finite. Hence for
v(0)|V(0)=———. 3. t> 1. we have
<()|()>2J%7 (3.7 Te B
nlk|>e. (3.15
Moreover, we assume that the wave packet has a sharp peak
at the most probable momentuwmi.e., In contrast, if the wave packet is large enough, we can

— also consider the long-time evolution, but for times shorter
7<|k|. (3.8 than the duration of the collisiofi.e., Tc>t>wil). For this

For a small limit of », we can replacé3.6) by a plane wave time scale we can approximate the wave packet by a plane
o L wave, taking the limity—0 [see(3.9)]. This implies that the
lim &,(k—k)=&(k—k), (3.9 limit e—~0+ should be taken with the condition
n—0 R
nlk|<e. (3.1
and we have the density matrix . .
This shows that for large wave packets we can congisler

((k;l|p(0)))—>5(k—|)5(k—k_), (3.10 different asymptotic limitsin the first limit (3.15 one keeps
o . . 7 finite, so that the initial state is in the Hilbert space. On the
which lies outside the Hilbert spa¢eee(3.7)] for »—0. other hand, if we take the second ling&.16), then the state

The spreading time of the wave packet by the free motions outside the Hilbert spadsee(3.9) and(3.10]. Here we
is given byt,~1/7" [3]. We shall always consider time come to the interesting conclusion trettattering for finite
scales where the spreading of the wave packet is negligiblgime can be described by the evolution of states outside the
le., Hilbert space In Sec. IX we shall discuss the validity of this

statement in more detail.
t<ts. (3.19 In order to simplify the calculations, we assume that the

interaction is weak, i.e.\<<1. Forvy>0 (i.e., a repulsive
interaction we can use the perturbation expansion in powers
of A. We evaluate the transition probability by the lowest

We shall calculate the transition probability fapnfor-
ward scattering given by the condition

|p—k_|> 7 (3.12 order approximation in this series expansion. The extension
to a more general case is straightforward usingttheatrix
wherep is the final momentum. formulation (see Appendix A

For a finite size of the wave packet, there is another char- In the perturbation expansion, the dominant contribution
acteristic time scale, the duration of collisifgee(3.30 for  to the transition probability for nonforward scatterit®y12
the precise definitioh is given by the second-order termi [see(2.15]

. )\2 e e 7izt1 . . g . 3
(PPl =5 | dk[ al | dz e piplLuRo2IL) 5= (Kille(0) + 00, (317

The matrix elements df,, are given by
(K1 Lk )Yy = (K (VX L= 12X V) K D)) = ve8(1 = 1) = (k' =K)vg. (3.18
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This leads to

1 1
+
Z—Wp  Z— Wy,

(PPl ~— 5o [ o[ ol [ az e%( ) o {(Kllocon). (3.19

Let us first consider the case- .. This corresponds to the usual situation with wh&imatrix theory deals. Taking the
residue az=+ie of (3.19 we obtain

1

Cpplp())~ 703 [k fdl(ie_wpl v ie_wkp) - (ko)
:—xzvgf dk dl —— (1+. € )((k;||p(0)>>. (3.20
i€—Wp ie—Wy, e~ Wy
Let us define new variablesandu through the relations
k=k+ 7S, | =k+ nu. (3.21
Then the initial wave packedB.4) is written as
((Killp(0)))= %72 e (R (3.22

This shows that the significant contribution to the transition probability comes from the initial density matripsjfrorder
(or less than 1 in the integration oves (and similarly foru). Using condition(3.8) we can approximate, by

2
wk=F{1+ZS E_+SZ % ]~wk+ 2 7ks. (3.23

Substituting this intd3.20), we have
((piplon =13 [~ as|” du - -
) ~ v
P:pIP 0) =) ietw

1
—e
2

ie

+ —
ie—27nk(s—u)

—(1/2)(52+u2)_

ot 27KU —ie+wi+27ks

(3.29

For t> 7., we can drop the second term inside the bracketesponds to the well-known result of ttf&matrix theory,
[see(3.15)], to obtain which gives us the transition probabiliffor t— +o)

2
7\1)0

. mi ” -s22 . . 2
((piplp(1))) 277des Cierwor2gke S | ((Piplp(D)) = KpIQu(wp+ie)| T (0) (3.2
(3.29

The evaluation of the integral i8.25 is presented in Ap-
pendix B. Here we display only the resiistee(B7)]:

where (), is the Mdler scattering operator associated with
the HamiltonianH [2—4]. Applying this to the second-order
contribution corresponding to the process which we are con-

- sidering, we have

U 2 T2
0 oW /(27k)

2(27k)?

r(k_) 2i f‘( Wk_p%
S —— el
IO M 2va gk

((p:plp(t)))~

)\UO 2
e (K¥O)] 329

z (o)~ [ a

X

(3.26 Using condition(3.8), we see that3.28 reduces tq3.25.
Equation(3.26) has a sharp peak with a width7|k| at
where erfi§) is the imaginary error functiofsee(B3)]. As  the resonance energy,= o), and has small corrections in
one could expect, the transition probability becomes timehe tail part far from the peaksee(B10) and (B11)]. For
independent after the collision. small enough, and for a smooth enough functidifw,)
We note that this result, valid for times after the collision, around ), we can approximate the integration (§.26
is given by the square of the transition amplitude. This cor-over the final state asee Appendix €
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owrt+Ao
" dopf () ((Piplp(D))
w—Aw

=100 [ dogd(piplp(t) ~2modrf (0,
(3.29

where 7, is the duration of collision given bysee also Ap-
pendix D

V

Te=——

, (3.30
47/K|

and the domain of the integration involves the entire contri

bution from the peak, i.eAw> 7/k|. Hence we have

{(piplp(1))y~27N 2057 S(Wip). (3.3)
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{«p; p|P(t)>>~)\2v32wté(kap) +AZ2

(Wiptie)?
+ ! 3.3
(Wi ie?) 1339
where we have used the relation
o i s(w) = | 1) 2ie
WI(Wy_&ﬂL w—ie W+ie__jykwl+2
(3.36

Equation(3.35 is the expression we have to compare with

(3.26. In this expression there appears a secular term pro-

portional tot. As indicated in(3.36), the secular effect comes
from the zero in the denominator. This corresponds to
Poincarés resonance.

As a result of the secular effect, the on-resonance-shell

[If we consider the casAw<n|k_|, the asymptotic expansion process dominates for large Then we obtain(during the

of the imaginary error function leads f¢8.26) [see(B10)
and(3.6)] to

{piplp()))=~ N2 7685k (Wicp),

which is different from(3.31) by factor 2 for—0. As this

collision with large enough wave packgts
{(Piplp(1)) =27\ 205t S(Wicp). (3.3

Combining this result with(3.31), we see that the transition
probability during the collision grows linearly in time, then

formula does not involve a significant contribution aroundreaches a constant after the collision. The on-shell process is
the peak, this is not a consistent approximation. Instead, wemoothly connected during and after the collision.

should use(3.31).] The dominant contribution thus comes  We now show that this is not the case for the off-
from the process that preserves the unperturbed energy bgssonance-shell process. With conditih32, from (3.35
tween the initial and the final states. Because the contributioge obtain(for the off-shell part during the collision

comes from the small denominator at the resonance point

wp =0 [see the discussion belo8.36)], we may call the A2

Uo

energy-conserving process the on-resonance-shell process ((p;plp(t)))~2 we (3.39
(or the on-shell process, for shprConversely, we call the kp
case

Note the factor 2 in this expression, which is different from

(3.32

|Wip|> 7lK|

the off-resonance-shell procegs the off-shell process, for

shord.

(3.33.

This shows that the tail contribution in the transition prob-
ability during the collision differs from the one after the col-
lision. As the tail contribution for two-body scattering does

We now focus on the off-shell process. This process isot appear in the secular term, this contribution is negligible
much smaller than the resonance contribution for two-bodyor long-time scales, as compared with the on-resonance-
scattering. However, as we shall now show, there is an inshell part. However, as we shall see in detail in Sec. VII, a
teresting discrepancy in the off-shell process between theimilar difference between the situations during and after the

two asymptotic descriptions. With conditid8.32, and us-
ing (B11), we can approximaté€3.26) by
szg

((p;plp()))~ e

kp

(3.33

Next let us consider the cas& 7., i.e., the situation dur-

ing collision (3.16. For this case we can approximate the

initial wave packet by a plane wave with—0. Then from
(3.19 we obtain

_ A3 ] e 't 1 1
(iRl ~~ 5t | 825 [ e+ )

(3.39
Again, the residue of3.34) atz= +ie dominates for largé.

Neglecting the contributions other than the residuez=at
+ie, we obtain

collision appears even in the secular term for three-body
scattering. This then leads to a non-negligible effect in the
three-body scattering cross section. Therefore, it is worth-
while to have a closer look at the origin of this difference for
two-body scattering. To this end, let us again cons{@e24).
With condition(3.32, we can approximat€3.24) by

1+

N3 (= o 3
piplon =7 [ ds[ au1r ——
Wip 7% — ie—27nk(s—u)
1 2 2
X — g~ (HA(sTHuT), (3.39
2
In this expression, there appear two small quantiiaad
7. The value of this expression depends on the way the
asymptotic limits(3.15 or (3.16) are taken. The first asymp-
totic is the limit e~0+, keepingy finite. Then the second
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A . .
MPIY(0)= [ dk 2o (o) (k1 (0)
sin (wp— w)t/2]
wp—wk

x etled’2(k| W (0)). (3.42

= —2i>\uoe+‘wpt’2J dk

Here |¥,(t)) is the first-order contribution of the Dyson se-
ries, i.e.,

[V ()= [Wo(t)) + NP1 ())+ N W)+,
(3.43

0 0.08 oy, O 02 which is obtained by the iteration of the integral equation for

the Hamiltoniancf. (2.9)]

FIG. 1. The tail part(i.e., the off-resonance parof the line ¢
shape of the transition probability for two-body scattering as a func- e Ht— g—iHt _j )\f dt’ e~ Hot=tye 1H (344
tion of the final energyw,, for different times, showing the shift 0
from during (upper ling to after the collision(lower line; see text
To obtain the first equality in3.42, we have added the
to the case after the collision. We then recover the resul’p= @ IS finite for e=0 and the integrand has no disconti-

(3.33 as nuity at e=0 as a function ok. o .
In order to perform the numerical integration (.42,
A2 1 " 2 )\2,2 we have replaced the continuous spectrunk diy the dis-
{{p;plp(t)))= WLO > f_ ds e 572 :W_Zj' crete spectruntwith integersn and Ak=2=/L)
kP “® 3.40 k=nAk, (3.45

by putting the system in a box of siZe with the usual
periodic boundary conditions. For large enoughwe can
replace the integration ovér by its summation as

For the second asymptotic, we take the limit>0 first,
and take the limitt—0+ later. Then the term gk(s—u) in
the denominator in the second term in the brackéB®9 is
negligible as compared wite This corresponds to the case
during the collision[see (3.16]. We then recover result f dk=AkY, . (3.46
(3.38 as K

As a result of the discretization, there appears a charac-

_ _ N 1| (= ds &2 2 N teristic time scalég~ 1/(|k|L) which is a crossing time from
{(p:plp(t)))~ W 25| dse =2 W one side of the box to the other side with a typical momen-
kp kp tum k. The time scalé of our observation should be chosen
3.4 W 1€
with the condition
The first asymptotic corresponds to the caseraffisient t<tg. (3.4

processes. Ag is finite, the density matrix has a finite Hil-
bert norm defined by2.19. The evolution can be described Moreover, in order to deal with distributiofisuch ag3.36)]
in the Hilbert space. On the other hand, the second asympn summations, we have to choose the valueedds (see

totic corresponds to the case pédrsistentprocesses. Appendix B
In summary, we have seen that the off-shell part of the
transition probability after the collision differs from the one |dw /dk|Ak
during the collision(the former is two times larger than the € =k (3.48

latter). The line shapes are different between after and during
the collision. This difference is small as it appears only in the In the numerical integration for the time scale during the
tail contribution, and does not make any significant contribu-collision, there appear contributions which oscillate rapidly
tion to the two-body scattering cross section. However, foffor large times as a function ab, . They correspond to the
three-body scattering this difference becomes significant, bgsole contributions in the integration ©8.34) over z other
cause it becomes of the same order of magnitude as thban the pole azr= +ie. For large time scales the contribu-
genuine three-body transition probability. We shall show thigions approach zero in the sense of distribut{erg., in the
in the subsequent sections. integration over the final state with a suitable test func-
We have verified the above predictions by a numerication). Hence, to compare the numerical simulation to our
calculation of the transition probability. In Fig. 1 we display prediction, we have taken averages of the numerical results
the result. We have generated this result by taking the squaver the final momentum with intervals involving a few pe-
of the numerical integration of riods of these rapid oscillations.
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In Fig. 1, we display the numerical results for the tail part
(i.e., the off-shell pajtof the transition probability as a func-
tion of w, for several time scales. The results are for the case
wy=1.0, 7=4.0x10 % and\v,=1.0. For these parameters
we have 7.=1107.8[see(3.30]. In this figure the upper
dashed line is the theoretical resy®&41) for t<r., while
the lower dashed line is the theoretical res(8t40 for
t>7.. The wavy lines in between these two are generated by
numerical integration 0f3.42. From upper to lower they
correspond td=0.1r., 0.37,... up to 2.k,. In agreement
with the theoretical prediction, the numerical results shift
from the theoretical result for< 7. to the theoretical result
derived from theS-matrix approach fot> ..

rxz

IV. THREE-BODY SCATTERING

We now consider our main problem: three-body scatter- FIG. 2. The three Jacobi coordinate systems. The solid lines
ing. For simplicity, we consider &function interaction in a correspond to the walls.
one-dimensional configuration space. For ®enatrix re-
gime, with the wave function in Hilbert space, this system iswhere @,b,c) are chosen cyclically fronil,2,3, as before.
exactly solvablg13—-15. However, for the asymptotic situ- The unperturbed energy can be written, for aryl, 2, or 3,
ation in the statistical mechanics approach, the system bes(see Appendix F
comes nonintegrable. We shall discuss this in detail in a

separate papdi6]. We assume the three particles have the _i K2 k2 + K2 4
same mass=3, and that the Hamiltonian is given by “’k=i:1 i = KxaT Kya: (4.5
n Appendix F we show that the three sets of Jacobi variables
3 2 3 In A dix F how that the th f Jacobi variabl
H=— aZl R +‘/77\a2<:b vapd(Ra—Rp), (4.1  are related by a rotation with the anglg=2#/3 (see Fig. 2
- a
] N ] ) r Ccosp SinNgg \ [ Iy
whereR, is the position of particla, andv,;, is a constant (rxa) = —sin¢(>) cos¢0 (rx ) (4.6)
. X . . . ya 0 0 yb
which characterizes the interaction between partielend
b. We shall also use the standard notatiqi=v,;,, where a5 well as
(a,b,c) are chosen cyclically fronil,2,3 such asv;=v .
We introduce the factov2 in order to have a more compact Kea| [ COSpo  Singo ) [ Kyp
expression for the matrix elements of the interaction, written Kya) | —sing0 cospy/ | kyp/’ S

in the Jacobi coordinate representation. We assuyn®, so

that there are no bound states. Moreover, we assume thvherea andb are chosen cyclically fronil,2,3, as before.
interaction is weak. Hence we can evaluate the transitiodherefore, the variables (,,r,,) and (ky,,k,,) are compo-
probability of scattering in the lowest order approximation innents of vectors andk in theath coordinate system, respec-
the perturbation expansion & For the repulsive interaction, tively:

which we consider in this paper, the extension to arbitrary

order in\ is straightforward using the-matrix formulation r=(rya,fya), K=(Kya,Kya)- (4.9
(see Appendix A ) o .
In the center-of-mass system, we have The mag_nltude of these vectors is invariant unde_r the (_:hange
of coordinate systems. For example, the magnitud&
K,+K,+Ks=0, 4.2) equal to the square root of the kinetic enefgge(4.5)].

After eliminating the total momentum, the Hamiltonian

whereK; are the unperturbed momenta. Because the threg"l) can be written in terms of Jacobi's coordinates as

particles have the same mass, the R R,+ R is pro- 2 2 3
portional to the position of the center of mass. We put H=Ho+AV=— —5— —5 +A >, v:8(ry). (4.9
<9l’xa 0I’ya c=1

We can interpret4.9) as the Hamiltonian that represents
the evolution of a single particle in two-dimensional space,
interacting with three wall§17]. The three walls are located
atr,.=0 (i.e., ther,¢ axis), for c=1, 2, and 3, respectively.

" _Kp—Ke . Rp—Rc We indicate the walls by the solid lines in Fig. 2.
Y A Y, S The eigenstates dfl; are plane waves with momenka

(4.4) given by
kya= \/gKaa lya= \/gRav H0|k> = wk|k> (4.10

We now introduce Jacobi’s coordinates defined by
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Y1 Y1

p k' k \ r \ r

| X1 | X1

(a) (b)

(b)
FIG. 4. (a) Off-shell and(b) on-shell collisions of the particle
FIG. 3. (12—(23) collision process(a) original representation, with a wall.
(b) representation with Jacobi momenta.

Diagram(a) in Fig. 3 represents the transition in the origi-
nal coordinate system. This corresponds to a transition from
the initial state K;,K,,K3) to the final state P,,P,,P3),

J d2k|k)(k|=1, going through the intermediate stat€;(,K5,K3) in wave-
function space. Diagrarntb) shows the same process as in
diagram(a) but in Jacobi's coordinate system. This repre-

(plk)=6(p—~ k)= 8(Pxa=Kxa) 8(Pya=kya). (41D gents the transition from the initial state= (K, .k, ) to the

final statepz(pxa,pya), through the intermediate stai€

They satisfy

The momentum representation of the interaction

V,=v,6(r,,) is given by E(k)’(a,k)’,a).
In Sec. Il we classified the transition probability for two-
(PIValk)=va8(pya—Kya). (4.12 body scattering according to on-resonance processes, as well

_ . ~ as off-resonance processes. On-resonance processes make
Equation(4.12 corresponds to a collision between particlesgominant contributions, as they lead to secular effects which

b andc, while particlea is moving freely[see(4.4)]. __grow in time during the collision. This classification is also
~ Similar to two-body scattering, let us assume that the iniessential to understanding three-body collisions. Without go-
tial density matrix is given by ing into any complicated calculations, we may already pre-
dict the results for the transition probability using this clas-

p(0)))=[W(0))(¥(0)], (413 sification. In order to show this, let us discuss the

geometrical meaning of on- and off-resonance processes.
As mentioned in Sec. 1V(4.9) can be interpreted as the
Hamiltonian of a single particle in a two-dimensional space,
— — — interacting with three walls. Let us consider the interaction
(KW (0))=8,(k=K)= 8, (ke — k1) 8, (Ky1 = Ky1). of the particle with the wall located at,;=0. Equation
(4.14 (4.12 with a=1 describes this interaction. Since it corre-
onds to a collision between particles 2 and 3, while patrticle
moves without any disturbance, tlgg component of the
momentum does not change after the particle hits the wall,
i.e., py1=Ky;. Hence, if there is no other restriction, the mo-
menta after the collision with this wall will line up parallel to
ther,, axis[see Fig. 4a)].
In addition, if the unperturbed energy is conserved as
o= w,, i.e., if the process is on-resonance-shell, we have

with a Gaussian packet in the momentum representgsiea
(3.6]

Again, we assume that the wave packet has a sharp pe
at the most probable momentuwmi.e.,

n<|kl. 4.15

Similar to Sec. lll, we shall calculate the transition probabil-
ity for nonforward scattering given by the condition

Ip—k[>7, (4.16

. _ 2 2 2 2 .
wherep is the final momentum. Katky1=PatPyn, ©.3

V. DISTRIBUTION OF FINAL MOMENTA which leads to

We focus our attention on the lowest order term\ithat
involves all three particles. We consider a collision between Py = * Ky - (5.2
particles 1 and 2 followed by a collision between particles 2
and 3. This process is of ordaf in wave-function space,
and can be schematically written by a diagram as shown iThus there is a reflected particle, as well as a transmitted
Fig. 3. Following Faddeev, we can resum the processes iparticle. The horizontal component of the momentpy
three-body scattering in terms of the two-bddyatrix.[18]  (which is proportional to the relative momentum of particles
Considering all connected diagrams we can easily extend ol and 3 can only take the same or the opposite sign of its
result to an arbitrary order in the coupling constantSee initial value [see Fig. 4b)].
Appendix A. Now we can draw the final momentum distribution of the
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a2) A

(b)
| N\ a
®) _—

(d)

(@

FIG. 5. Interaction processes with tfi?) and(23) walls, con-
taining at least one on-shell collisio(@ on-on shell(rescatterinyg
(b) triple collision, (c) on-off shell, and(d) off-on shell(see texkt

FIG. 6. Final distribution of the momentum for a succession of
a (12 interaction followed by a23) interaction, for time scales
shorter than the duration of the collision. The initial momentum is
o - ) ) _at the lower left dot on the circle. The contributions éaerescat-
transition probability corresponding to the process in Fig.iering (four dots, (b) triple collision (circle), (c) on-off shell pro-
3(b). In Fig. 5, we show the processes which contain at leasgess(tilted lines, and(d) off-on shell procesghorizontal lines.
one on-resonance-shell scattering.

Diagram(a) in Fig. 5 corresponds to the process in which , , . ,
the unperturbed energy is preserved between the initial and Finally, diagram(d) is the off-on shell process. This cor- -
final states, as well as between the intermediate and findFSPONds to the process in which the unperturbed energy is
states. We call this process the on-on shell process. This ROt preserved between the final and intermediate states, but
the process corresponding to rescattering, i.e., to two succe: preserved between the intermediate and initial states. The
sive two-body collisions on the resonance sti6|tL9). The first on-shell interaction splits the incoming beam into two
first collision splits the incoming beam into twransmitted ~ beams; one is a transmitted beam and the other a reflected
and reflectefibeams. Then the second collision again splitsbeam. Then, after the second off-shell interaction, these
each beam into two. Hence there are four possible peaks ipeams are both lined up on the two horizontal dashed lines
the distribution of the final momenta. Note that the lower leftshown in Fig. %d).
position of the arrow in this diagram has the same direction In Fig. 6 we sketch the total results of the momentum
as the incoming beam. This corresponds to forward scattedistribution in Jacobi's coordinate plane during the collision.
ing. As has been shown in Sec. lll, there is a process appearing

Diagram(b) corresponds to the process in which the un-only at intermediate times in two-body scattering. A similar
perturbed energy is preserved between the initial and fingdhenomenon also exists in three-body scattering. We shall
states, but not in the intermediate state. Therefore, there mushow in Sec. VI that the off-on shell process is transient, and
be a very short-time interval between the two collisions. Incan pe observed only during the collision. In Fig. 7 we

other words, the three particles interact nearly at the samggetch the momentum distribution after all interaction pro-
point in space. We may call this process the genuine triplgesses are terminated in accordance with Sreatrix ap-

collision (or the triple collision, in shojt The collision with  hoach. The difference between this momentum distribution
each wall is an off-shell process. But, since the final unperanq the previous one is quite significant.

turbed energy is equal to the initial unperturbed energy, the
final momentum distribution is a circumferenfsee (4.5)]

that has a radiup, equal to the square root of the conserved VI. DIAGRAMMATIC REPRESENTATION

energy, I.e.p, = yoi. o IN LIOUVILLE SPACE
Diagram(c) corresponds to the process in which the un-

perturbed energy is preserved between the final and interme- In this section and Sec. VII we shall verify the existence
diate states, but not between the intermediate and initiabf the transient phenomenon mentioned in Sec. V in terms of
states. We may call this process the on-off shell process. Théie resolvent formalism. The calculations are quite parallel to
beam scattered by the first off-shell interaction is lined up orthe ones performed in Sec. Ill for two-body scattering. To
the left tilted dashed linfwhich is perpendicular to thel2) perform the calculation systematically, we shall introduce a
wall as shown in Fig. &)]. The second interaction is on- diagrammatic representation of the perturbation series of the
resonance-shell. Then this produces two dashed lines. Omesolvent for(2.16) in the Liouville space.

corresponds to the transmitted beams, and the other to their The interactionL,, consists of two termsVx1 and
reflections. —1xV [see(2.27)]. In order to describe a collision process
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py Iva Ivb Ivb Va
! ] 1 I —+— B
A | 1 | i
| | [
(b) Va Vp Va V
\ /(C) FIG. 9. Second-order diagrams in Liouville space.
= Py
first few diagrams of the fourth order. These diagrams con-
sist of many different types of processes: For example, if the
indices of the interactions are the same, ieesb=---, the
(a) processes correspond to the so-called disconnected two-body
processes that describe two-body scattering among the three
particles in which one of the particles does not participate in
the scattering18]. Three-body scattering is associated with
interacting processes with more than one index. Moreover,

for a given initial statdk;k)), these diagrams consist of for-
ward scatterindi.e., the final momenta of all three particles

FIG. 7. Final distribution of the momentum for a succession of@re the same as their initial valyepartially forward scatter-
a (12) interaction followed by a23) interaction, for time scales ing (i.e., in the final state one of the particles keeps the same
larger than the duration of the collisiofthe S-matrix regime. momentum as its initial valyeand true three-body nonfor-
There are no horizontal lines, which correspond to the off-on shellvard scatterindi.e., the final momenta of all three particles
process. change their values of the initial momehtén the following
discussion, we shall restrict ourselves to the true three-body
nonforward scattering process. This restricts the number of
the diagrams, and simplifies the calculation. The following
calculation can be easily extended to the processes including
forward and partially forward scattering.
Through the diagrammatic representation, one can easily
e N — (L _ recognize that the lowest order contributions to the true
(KT IVax DG D) = (K Vel k) o =1, (6.1 three-body nonforward scattering process start witrand
while Fig. 8b) corresponds to are represented by the diagrams in the last line in Fig. 11. Let
us consider the case=c andb=d with a#b in the dia-
(K" [(=1x V) lk;Iyy=—8(k" —k)(I|V4|l"). (6.2  grams. These are the simplest processes that lead to the res-
. , cattering anomaly for the transition probability in the usual
Note the relation of the order of the indexésand| of  5hnrgach by thes-matrix theory. We shall come back this
d|agra}m (b) to the order of these in the matrix element roplem beiow.
(IVa[l"). ) 1 In Fig. 12 we show all possible processes &1 and
Moreover, we can associate t_he propagaimr l‘o)_ 0 p=3. They correspond to the process in Figh)3n wave-
the two horizontal lines in the diagram, e.g., the lines withsnction space. Each diagram corresponds to different order-
indicesk andl in the diagrams in Fig. 8 correspond to ings of the interaction¥; X1, —1xV,, VX1, and—1x V.
ReplacingV, by the two-bodyt matrix t,(z) with a suitable
, (6.3 argumentz, one can obtain the corresponding diagram in the
Z= Wi Faddeev expansiofsee Appendix A These processdand
the processes obtained by permutation of partictes the
only true three-body nonforward scattering processes that

in the Liouville space schematically, we associate Fig) 8
with VX1 and Fig. 8b) with —1xV, (we use the Jacobi
coordinate representatipn

Figure 8a) corresponds to the matrix elements

(ks k;1))y=

z—L,
where the subscrigt in w,, is associated with the upper line
in the diagram, and with the lower line. The diagrams in
Fig. 8 correspond to the first-order contribution)ofn the

perturbation serie€.16). In Figs. 9—11, we display the first

few diagrams of the lowest orders. Figure 9 corresponds to IVa Ivb ,VC IVa Ivb IVa Ivb ,va lvb
the second order, Fig. 10 to the third order, and Fig. 11 the T T1 I 1 1
| | |
Va Ve Ve Ve
—_— T — e Y Ve
k' k k' k | | |
(a) (b) Va I T I
- _— [ || [ ||
I | r I 11 1 — I
Y Yy Ve Va Yy VooV Y Vb

FIG. 8. Diagramatic representation of the interactions in Liou-
ville space:(a) V,X1, (b) —1XV,. FIG. 10. Third-order diagrams in Liouville space.
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Va Yy Vo Vg Y, Yy Ve VaVy V% v v v v v v
1 1
HHE A pp g Al
P K k p k' k p k 'k
|
l v, V., Vv Vv \") V. Vv
Vy d I1 I3 l1 I3 13
Vd Vd 1 I 1 —l—I—
1 | p r ! P ol ey |
(a) (©) (e)
HH A
V., V A \ V., Vv
v v Ve Yy Vo Vp Vo %Yy, Y% =1 i3 =1 I3 I1 i3
vV, V v, v, v, P K k P ko k P k' k
a Vp a Y a b v v
[ I | | 1 Vs Y 3 v, Vg
[ | [ | I
|| | I | ] pl r iI p i I ! ! P I|' il
v, Loy v, v (b) (d) f
Ve Vy Ve Vy c V4 ()

FIG. 11. Some of the fourth-order diagrams in Liouville space.

lead to the rescattering anomaly in the usBahatrix theory
approacH 6-8]. The moment&k andl in the diagrams cor-
respond to the density matrix(0).

Diagram(f) represents the term

)\4

FIG. 12. Fourth-order diagrams in Liouville space correspond-
ing to the process in Fig.(B) in wave-function space.

1 1
— v18(ky1 = Pya) =W v3d(

[ Kyg) ———
y3 y3) Z_Wkp

X (—v1) 81y = Py1)

(_U3)5(|;/3_|y3)

(pIValk') (k'[Valk) Z= Wy z—wy
z—wp, T =Wy ¥ z—wy, 65
1
X{I=Va)le) Z— Wy (vl Z— Wy €4 Similarly we can write corresponding expressions to dia-

We havewpp=Q in the leftmost propagator. Using@.12),
(6.4) can be written as

grams(a)—(e) in Fig. 12. Let us denote the sum of the con-
tributions corresponding to all diagrams of Fig. 12 by
ok’ k,l,2). Then we obtain

2 1 1 1 1 1 1
®(p,k’ 1" k,1,z)=N"viv3sA(p.kK" 1" K1) = +
1 1 1 1 1 1 1 1
— + , (6.6
z Z_Wp|r Z_Wp| Z— Wy Z_Wkrp Z_Wkp Z— Wy r ) Z— Wy

where

where the bar denotes the process we are looking at. The
asymptotic transition probability is given by the residue of
(6.9 at the polez= +ie, i.e.,

<<p;plﬁt)>>~fd2k’fd2|’fdzkf d2l
X Res_.iJe '?®(p,k’,l" k,I1,2)
X((k;1]p(0))], (6.9

where Res= residue. Corresponding {8.21), let us define
the variabless andu through the relations

A(p,K", 1"k, 1) = 8(ky; — py1) 8(kyz—kys) 8(1 1 — py1)
X 8(ly3—lya). (6.7)

The first term inside the brackefse., the term with the
propagator £—w,|’) 1] is the sum of diagramsa)—(d),

and the second term is the sum of diagramsand(f). Then

the probability density of finding the momentum patis

given by[see(2.16)]

— 1 =k+ =K+ nu. :
<<p;plp(t)>>=fd2k'fd2l'f dzkf ¢ 5~ k=ktms 1=kt (610
ml Then the initial wave packed#.13) is written as
i 1
X | dz € '#d(p,k’,I' k,l,z . = —(82+|u?)2
JC (p ) (killp(0)=5 e . (6.12)

X ((k;1[p(0))), (6.8  Corresponding t@3.23, we have(for large wave packet
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o =|k[?= ot 27(k-9)+ 82~ wi+ 27(k-9),
(6.12

where we use@.15. For the energyy, of the intermediate
state we have
W =Ky +kyf.

(6.13

The & function in the leftmost interactiogp|V,|k’) in the
upper line of the diagrams in Fig. 12 leads[tee(4.12)]

(6.19

From (4.2) and(4.4), and by theé function in the right-
most interactionk’|V3k) we have

k3,/1: Py1.

, K1+2K§:_ k;1+2k§3:_ Py1+ 2Ky3

x1— )

V2 V3 V3
(6.15
which leads tdsee(6.10]
, py1+ 2k_y3+ 2 7]Sy3
Kyq=— . 6.1
x1 A (6.16

With (6.14) this shows that the intermediate momentin

4087

We have condition(4.15. This simplifies the following
calculations. If we can impose a similar condition on the
intermediate states, the calculations are _even more simpli-
fied. This is possible, because the valuekff in the inter-
mediate momentum depends pyy, of the final momentum,
as well asky3 in the initial wave packefsee(6.18]. Hence
let us choose the initial and final momenta such that

7<Ksql- (6.23
Then we can neglect the last term(#122), becauses is of
order 1[see(6.11)]. We then have

W~} —2 77,k_>,<13y3: wir T 27Kssy3,  (6.29

where

2 __ _
kgp=—— kg3 =35(py1+2Kys3). (6.29

V3

Here we have introduced the index 32 to emphasizekfat
is proportional to the average relative momentum of particles
3 and 2, in the intermediate stdteee(4.4)].

With similar approximations, for the energies and o/

has a fixed value for given initial and final momenta. We[see(6.10] we obtain

have

W2 1242 2
wr =Keg T KyT=3(Py1+ Pyikys+Kis).

(6.17

Similar to these expressions, let us introduce a mome

tumk’ = (ky; ,ky;) by [cf. (6.14 and (6.15]
T - _ py1+ 2k—y3
x1 3 )
k_§15 Py1- (6.18
Then one can writd,, as
k>,<1=k_>’<1_ 7'Sy3, (6.19
where
=2 (6.20
Y —‘/3 7. .

n_

o~ o+ 2p(k-U), op=~o}+29kalys. (6.26

Equations(6.12), (6.24), and(6.26) show that the deviation
of the initial and intermediate energieg, w;, w,/, anday-
from their averages is small for a sufficiently large wave
packet.

VII. OFF-ON SHELL PROCESS

Now we are ready to evaluate contributi@9). We first
consider the off-on shell process with the conditions

lop—0io[>7lks] and |op,—wi[>7lk|, (7.0
while
O(|wyr — wil) = nlk|~ n|ks] . (7.2

This is the process corresponding to diagi@arin Fig. 5. As
we shall show, this is a transient process, i.e., this exists only

In analogy to(6.10, ky, corresponds to the most probable gyyring the collision, and disappears after all interaction pro-
value ofk;,, which is proportional to the relative momen- cesses are finished.

tum of particles 2 and 3 in the intermediate staee(4.4)].
Similar to (6.17), we have

Wi = (ki) ?+ (kyp)?=3(PJ1+ Pyikya+kjg). (6.2
Then intermediate energy,' can be written as
v 2 — L 122
Wyr = (k)’(l_ 7]’Sy3)2+ py]_: Wygr— Zﬂ’k;lsyg‘i‘ n 28)’3'

(6.22

From (6.26 we have
Wi ~Wp o —27KgoUys. (7.3
Equation(7.1) gives us
W =Wy - (7.9

Similarly we have
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- WkrpWWm%

Then from(6.6) we obtain(for |z|~¢)

@, (p,k" 1"k, |L,2)=N*2v3A(p,k 1" K, 1)

—Wkp~wpﬁ .
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(7.5

+1].

1 ( 1 1 )
+
Z— Wy \ Z— Wy Z— Wy

(7.6

V4
—|1+
Z_Wkr|r

The subscript 1 inb, denotes that7.6) is evaluated with condition&.1) and(7.2). The first term(with the parenthesg¢mside
the last bracket ir(7.6) corresponds to the sum of diagrai@@—(d) in Fig. 12, while the last ternti.e., 1), to the sum of

diagrams(e) and (f). Then we obtain fron{6.9) that
2.2

{(piplpa(t)))~—2\* Ulzlf
pk’

X((k:1[p(0))),

where 1 inp, denotes that this is evaluated for the off-on

shell process withb; .
Applying Eqgs.(6.12), (6.24), and(6.26), we have

Wicrr =~ 21Ka3(Syz— Uya),
(7.8
Wi~ 27K (s—u) = 27| K| (Sc=uj),

Whgresk_z(sk_)/lﬂ is the component o$ in the direction

of k, and similarlyu,=(u-k)/|k|. Then the two terms inside

the parentheses ifY.7) are written as

ie ie

+
e—27Ko3(Sy3—Uys) i€~ 277|k| —u)

(7.9

Similar to two-body scattering, we may define the follow-

ing two time scales of the duration of the collisi¢ree

(3.30];
R

4k’

Va

477|k32| .

(7.10

fdzk d2|f d%k’'d2l’ A(p,k',I",k,)Res,_ ..

e’ 1 1 z z
_|._
z Z_Wk/| Z_Wk|/ Z_Wk| Z_Wkr|r

(7.7

2
J dk, 5(k —kya) Jd ( +—k ijy3>'
(7.13

This leads to a factor 2. Similarly we have the same factor
by the integration over)’(l. Then,(7.7) leads to

. , A viv3 e izt 1
{p;plpr(D)))=—\ W Resz:+ie? Wi
pk’
! 7.1
+z+wpk ’ (7.14

Because of the double pole &t +i ¢, this expression gives
the asymptotic transition probability as

22
13

_ 4y
p1(p,p,t)~2m\*4 té(w—wy). (7.19

kp
During the collision, the term we are considering here

grows linearly in time, and then vanishes after the collision.
This is the transient process.

The processes during and after the collision are distinguished There are three more processes: the rescattering process,

by the limiting procedures of and 7. After the collision we

have t>t. and t>t., which correspond toe<7nlk| and

e<nlks,|, respectively. In this cas€r.9) vanishes, and we
have

((p;plp1(t)))—0. (7.11)

In contrast, during the collision we have<t, and t
<t., which correspond tae>nlk| and e>nlksj. For this

the genuine triple collision process, and the on-off shell pro-
cess, corresponding to diagrarg@, (b), and(c) in Fig. 5,
respectively. We present detailed calculations in Appendices
G-I, and here give only the results.

For the genuine triple collision and the on-off shell pro-
cesses, the transition probabilities grow linearly in time dur-
ing the collisions, and reach constants after the collisions.

The rescattering process corresponds to two successive
two-body collisions. The time interval between the two-body

case we can approximate the initial condition by a planecollision may be long. Assuming, for example, that<t,

wave, i.e.,

((killp(0)))— 8(k—1) 3(k—k). (7.12
We haveo,~w,~w, andw, ~ o, ~ o\ [see Eqs(6.12),
(6.24), and(6.26)]. In this case the value ¢¥.9) becomes 2.
Moreover, the integrations ovek’ and |’ can be per-
formed using thes functions. For example, we hajsee

(F8)]

[see(7.10], for the rescattering process one may consider
three time scaleq1) t<t., (2) t.<t<t., and(3) t_<t. As
shown in Appendix I, the contribution from the rescattering
process grows asymptotically a42 in time during time
scale(1), and linearly ag.t during time scalg2), and then
reaches a constant proportionalttt after all collisions are
finished in time scalé3).

As a result of thet? secular contribution in the rescatter-
ing process, the transition rate per unit time diverges for a
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TABLE Il. Terms of the transition probability for th€12)—(23) collision process.

t<tl, t¢ t>t, t¢
(a) rescattering (@) 8(Wpir) (W) /2 (2m)2tcte S (Wpir) S(Wpi) ¥
. fal 2 _ 2 _
(b) triple collision (2/ V\;p;)wta(wkp) (2/v\/2pp)7rtc5(wkp)
(c) on-off shell (2w ) mtS(Wpir) (2w ) Tt d(Wpir)
2 i ~
(d) off-on shell (2Mie) Tt S(Wicri) 0
large time scale during the collision. This corresponds to the VIIl. NUMERICAL SIMULATIONS

well-known rescattering anomalyor three-body scattering
[6]. This anomaly appears only in the channel between th?he two horizontal lines corresponding to the off-on shell

“freg three p_artcheS in” and “fre_e three partlcles_o_ut,” as procesgd) in Fig. 6 are transient; i.e., they exist only during
this is associated to the successive two-body collisions. Thg,e clision, and then disappear after the collision. On the
origin of this difficulty in the usuab-matrix approach is that  gther hand, all other lines in Fig. 6 as well as the rescattering
the Mdler scattering states for the Hamiltonian do not be-peaks remain after the collisidsee Table .
long to the Hilbert space, as the three-bddgatrix in the We have verified this prediction by numerical simulations
wave-function space is a distribution in the momentum repfor three-body scattering. We display the numerical results in
resentation. Hence, when we take the square of tiatrix Figs. 13a)—13(c) for different times. We have generated
in evaluating the transition rate, the on-shell processes in thghem by taking the square of the second-order contribution in
intermediate states lead to the divergence associated to thise Dyson series obtained by the iteration of the integral
anomaly. Through the optical theorem of thenatrix, this  equation(3.44), similar to what we did for two-body scatter-
divergence is related to the divergence of the on-shell thregng in Sec. lll. In Fig. 13, the results correspond to the initial
bodyt matrix itself. conditions k,; =k, =—1, #=0.006 25, and\=v,=1 for

In contrast, the complex spectral representation for thé@=1, 2, and 3. For these parameters we have50.1[see
Liouvillian introduced in our work9,10] deals consistently (7.10]. As in the case of two-body scattering, there appear
with the scattering outside the Hilbert space. After explicitly contributions which oscillate rapidly for large time scales as
separating the secular effect 6 the true three-body pro- @ function ofew, . They approach zero in the sense of distri-
cesses associated withlinear secular terms give a finite Pution. To compare the numerical simulations to our predic-
transition rate for the three-body scatteriftgis transition toN, we have taken averages of the numerical results over

rate leads to a finite contribution, even when we integrate ifh‘fa final modmer;tijhm with méerval%wt_:lon, which involve

over the domain of the final momentum including the pointsa E\IN L?rerl(l)QZ)c} tr?esereralﬁ)llt (l)tsfloa;llo'ntsﬁ ticles hav

satisfying the on-on shell conditipnHence our theory re- gure S sult at="0.1. - the particies have
not yet reached an asymptotic state. FiguréhL the result

moves the difficulty of the rescattering anomaly. The rescatétt: ., which corresponds to the processring the colli-

tering anomarlly ”'tself ha; been s Iongsganddmlg gmble”%ion All contributions shown in Fig. 6 can be seen. Figure
[19,2(]. We shall prove that our theory indeed leads to 3(b) is the result at=10t, : the particles are in the asymp-
divergence-free transition rate for the true three-body scattefyic stateafter the collision This is the final state given by

ing in a separate pap¢tl]. . _ S-matrix theory, shown schematically in Fig. 7. The numeri-
In summary we have obtained the results which are disgy) results confirm our prediction.

played in Table Il (abbreviating the common factor

From the results obtained in Sec. VII, we can predict that

2% 2v %): Each proces$a)—(d) in Table Il corresponds to IX. DESTRUCTION OF THE FACTORIZABILITY
each diagram@—(d) in Fig. 5. In (a) the parameter is a OF DENSITY MATRICES—COLLAPSE OF THE
constant which depends on the direction of the final momen- WAVE FUNCTION

tum (see Appendix)L The last procesg&d) is an effect that

oo . . In previous sections, for scattering during the collision,
can be observed only for finite time during the collision for b g 9

. ) ) . we approximated large wave packets by plane waves that lie
!arge wave packe.ts, or for perS|s_tent|nteract|on with delocalbutside the Hilbert space. In this section we shall more
ized density matrices outside Hilbert space. . closely investigate this approximation in terms of the evolu-
We note that the difference of the transition probability o of the wave function. We shall show that the density
between the collision and after the collision appears in thenatrix becomes nonfactorizable into a product of wave func-
secular term proportional tb This is a striking difference  tions during the collision, for time scales when one can iden-
from the two-body scattering discussed in Sec. lll. Aftertify the rapid oscillations with distributions making a vanish-
separating the rescattering contribution, the true three-boding contribution. The wave function then collapses due to
scattering cross section is defined by the transition rate p&®Poincare’s resonance for this time scale.
unit time. Our results show that the correction of the true Let us first consider the two-body scattering discussed in
three-body scattering cross section to the one obtained by thgec. Ill. Using the solution of the wave function (8.42),
S-matrix theory during the collision is of theameorder as  we can write the density matrix in a factorizable form. Then,
the rest of contributions. In Sec. VIII we shall present somefor nonforward scattering3.12 (to second order ok?), we
results of numerical simulations to verify our predictions. have
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(PPl =N p| W4 (t)P= 4N f dk f dl

Using (3.23), we have[with T(':E(nk_)’l~ el

Sin (wp— w)t/2] .

wp—wk

1+

xexp{ﬂ

+iwt/2_ Wi; +

—
WkpTe

Wil
2
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Sin (wp— w)t/2] R Sin (wp— w))t/2] .

t t
+S—,+SZ—,%}
¢ 27 k

~12((k;11p(0))).

wp—wk wp—w|
9.1
s 9| Wit t t 7y
={ sin—+s—+s —=
2Wip7e K 2 T, 27, k
(9.2

Let us then consider the case during the collision. Assumingincew=w, in (9.4), the integration ovew (or over the

t/7; and (wip|7¢) " are much smaller than unity, we can
expand(9.2) in the Taylor series fos~1. Then we havésee
(3.9]

sin(wp— wy)t/2] etiot2_ Sin(WDEt/Z) e+iwkt/2+o<s_})
W~ Wk ka Te
S
+0 —) 9.3
|Wpﬁ7c

Substituting this and3.22 into (9.1), we obtain

sinw, /)12 1 | [+ 25| >
] _ 2 2| >N\ Wpkte/ o+ —S°/12
((p:plp())) =4\ vg Wy | 2m f_x ds e
3 “t N
+O(\)+0| —-|+0 —) 4
c |Wpﬂ7’c

The value of the integral with the factor &an the first term

is one[see(3.40]. Then the first term is precisely the con-
tribution from the plane wave with the momentum This
verifies the approximation we have used(&34).

Moreover, one can verify the following relation under the

integration ovemw with suitable test functions and fer~0+
[see Appendix ]

: 2
4 —Sm(Wt/Z)} =2m8(W)t+

1 —iwt
T(l—e )+c.c..

(w—
(9.9

This is valid for all time scales.
Let us then consider the case0. With a suitable test
function f(w) let us consider an oscillating contribution in

(9.5, e.g.,

f(w)

w=ieZ®

|(t)=f dw (9.6

final momentunp) is bounded from below for a givek A
double pole is located at= +i e in the upper-half complex
plane ofw. Because of the factor ekpiwt] we can change
the contour ofw into the lower-half-plane fot>0 without
crossing the double pole. This implies that there is no secular
contribution associated to the resonance poleat+ie in
(9.6). For a large time scale the factor éxpwt] makes a
rapidly oscillating contribution as a function @f, and one
can neglect this term as compared with the secular term and
also with the time-independent terms (@.5). Similarly the
complex conjugate of9.6) is negligible. Dropping these os-
cillating terms, we obtairi3.35).

We note that whenever we drop the oscillating terms in
(9.5), the density matrix cannot be factorized as a product of
wave functions. The secular effect proportionalk tm (9.5
corresponds to Poincasaresonance effect. The separation of
the resonance effect from the rapidly oscillating contribu-
tions leads to a dynamical mechanism of the collapse of
wave functions.

Strictly speaking, the time scale to identify the contribu-
tion (9.6) as zero is infinity. In order to achieve the collapse
of the wave function in a finite time scale, we need a repeti-
tion of the collisions with many scatterd@]. The effect of
the repeated collisions can already be seen in the three-body
scattering considered in this paper. Let us demonstrate this
for the lowest order contribution iR of the transition prob-
ability for the true three-body nonforward scattering consid-
ered in previous sections. We assume the initial wave func-
tion is given by a plane waviF(0))=|k). Integrating(3.42
twice, we obtain

<p|‘?(t)>=a§b wab(t), 9.7)

where the bar o denotes the processes we are looking at,
and
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t t _
\Pab(t) — szavbf dtzJ’ Zdtlefiwp('[*'[z)e*iwkab(tzf'[l)e*iwk'[l
0 0

e 192 [ sifwit/2] sin Wyanpt/2]
— _9iy2 P i — _ k3% s
=—2i\v Uy e ( Wip exd —iw,t/2] —Wkabp exd —iwanpt/2] |, (9.9
with [see(6.21)]
wab=3(P5a+ Pyakyb Ky ). (9.9

Summationsa andb in (9.7) are taken over particles 1, 2, and 3. This leads to

2
=2 2 wAR[vedt]ee
a#b c#d

<<p;p|m>>>=]a§b (PIW(0)

=4\t >

Valplclp {(sin(w,gt/Z) sin(wkabpt/Z))<sin(wpft/2) sin(wkcdpt/2)>
azb ¢zd WyabWcdy

ka_ Wkabp ka_ chdp

Sin(Wy  1/2) | sin(Wyab,t/2 Wiabpt|  Sin(Wycd,t/2 Wycdpt
+2n(p£) Wity )sinz(kp)+ Wiy )sin2<kp”
ka Wkabp 4 chdp 4
SiN(Wyab,t/2) Sin(Wca,t/2 Wyabycdt
o S Wietl/2) ST Wicey )sin2< s )] (9.10
Wkaprkcdp 4

As a function of the energy, , this expression oscillates wave packets we obtain an asymptotic description which is
in a much more complicated way th&@.4) for two-body different from the usualS-matrix approach(Table ). We
scattering. We present the, dependence 0f9.4) for two-  have illustrated our approach for two- and three-body scat-
body scattering in Fig. 14, as well as that(8f10 for three-  tering. During the collision there appear effects in scattering
body scattering in Fig. 15 for the same given titnel0”. N ¢ross sections which result from secular effects, but differ
the figure we puh=1, vo=1, andv,=1fora=1, 2,and 3. f,m the ones predicted by tH&matrix theory for asymp-

In Fig. 14 we plot the casey=2. In Fig. 15 we plot the q4ic times after the collision. We have verified our predic-
casek,; =k,;=—1. In order to observe the rescattering ef- tions by numerical simulations.

fect, we have plotted they, dependence 09.10 in the . . . : S
same direction of the incident momentkmFor three-body The consideration of the process during the interaction is
IEhe normal procedure in many-body situations as realized for

scattering there appear several peaks with colgmplex bac example in chemical reactions. Let us quote the standard text
round oscillation. The highest peaks of order borre- '
g J b by Goldberger and Watsdi3].

spond to the highest secular effect withthat comes from
P g “The analysis of the first and third intervalge., before

the rescattering termse., repetition of two-body scattering e . X
for a=c andb=d in (9.10. The peaks of order $610 in and after the collisioninvolves only a kinematic study and

the vicinity of the highest peak are small corrections of thecan be done in a general and straightforward manner. The
rescattering effect. The peaks of ordef200 far from the ~ description of the interaction of the systeire., during the
rescattering peak corresponds to the linear secular effect witgpllision) involves the most fundamental and difficult prob-
t that comes from all possible combinationsagt, ¢, andd ~ lems in physics.”
in (9.10. The complex background oscillation leads to non- Indeed, the description during the collision is closely con-
secular effects of order $0 nected to our work on the extension of quantum the€onof

The appearance of higher secular effect makes less siglassical theory as welbeyond the Hilbert space for large
nificant the background oscillation, and one can then negledoincaresystems(LPS’s).. Here LPS’s mean nonintegrable
this oscillating contribution in the sense of distribution in asystems with continuous spectrum of unperturbed momenta
shorter time scale than for two-body scattering. Arbitraryor energy{9,10,21. This theory applies to persistent scatter-
higher secular effects af by repetition of the collisions for  jng using delocalized density matricéan example is plane
many-body system in the thermodynamic limit then lead to ayaves, discussed in this papePersistent interactions re-
finite time scale to approach equilibrium, even when we stargire singular distribution functioné.e. the &-function sin-
with a pure statée.g., a plane waye9]. As the equilibrium o jarity in momentur which lie outside the Hilbert space.
state is a mixed state, the wave function collapses in a finitgy,o 5 matrix theory is no longer valid. We have then ob-
time sc_ale because of the repetition of the collisions for MaCtained complex, irreducible spectral representations of the
roscopic systems. evolution operators, here the Liouville operalqr in gener-
alized function spac9,10]. Here “complex” means that the
eigenvalues of the Liouvillian are complex numbers, whose

The main result of this paper is the extension of scatteringmaginary part refers to the various irreversible processes,
theory for finite time scales during the interaction. For largesuch as decay or diffusion. “Irreducible” means that these

X. CONCLUDING REMARKS
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FIG. 13. Numerical results of the final momentum distribution for a successioil® anteraction followed by 423) interaction, in the
Jacobi coordinate plane f¢a) t=0.1t., (b) t=t., and(c) t=10t; (see text

representations cannot be implemented by a wave functioformulated on the statistical level. They express possibilities
that is a solution of the Schdinger equation. As a result, the and no more certitudes. We shall discuss the relation of the
dynamical group of evolution splits into two semigroups, oneresults obtained in this paper and the complex spectral rep-
oriented to our future, and the other to the past. In the conresentation elsewhef@1].

text of scattering theory discussed, irreversibility is mani- In this paper, we have concentrated only on a single pro-
fested as the fact that the scattering cross sectipositive  cess in three-body scatterifige., a(12) interaction followed

As a result of irreducibility, density matrices are no longerby a(23) interactior]. It is easy to extend our results to other
factorizable as a product of wave functions for LPS’s. Thisthree-body processes. In a subsequent paper, we shall con-
leads to the collapse of wave functions discussed in Sec. IXsider all three-body scattering processes and give an explicit
Therefore, the equivalence between thdividual descrip-  expression for the difference in the cross sections obtained
tion in terms of wave functions, and thsatistical descrip- by the two asymptotic theories. This may be the starting
tion in terms of density matrices, is destroyed. The laws ofoint for a real world experiment to test the limits of the
guantum mechanics take another form as they have to beaditional Hilbert space formulation of quantum theory.
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APPENDIX A: T MATRICES

(A2)
Let us introduce the two-bodymatrices in wave-function

space. They are defined as the solutions of the integral equa- Applying the Faddeev expansion with these solutions for
tion (in the Jacobi coordinate systém the two-body collision, one can construct the three-body

logy Ppp(t)

FIG. 15. Transition probability
for three-body scattering in loga-
rithmic (log,o) scale(see text
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matrix. The characteristic of the Faddeev expansion is that in 1 1

each term in the expansion there is no successive repetition B=—=(W,—i€), =—, (B4)
; : ; kp m

of the two-bodyt matrices with the same index for the 27k V2

process involving all three particles. This rearrangement of . o )

the series expansion leads to a well-defined three-bodg- W have the integration i(8.29, i.e.,

trix in wave-function spacg18].

® 2 2
Corresponding to the two-body matrices in wave- ‘ f ds e (125" _ ! ‘ :( ! \ [1(B,m)|?
function space, we can introdu@e (z) and T 5 (2) in Liou- o —ie+wip+27ks| | 27k]
ville space. They satisfy, respectively, (BS)
- 1 - that leads tq3.26.
T2 (2)=(NVax1)+(AVaX1) Lo T.(2), (A3) Let us start with a well-known integréP2]
< 1 < lo(y ,LL)EJOO ds ! e_’LzSz
—Ta(Z)Z—(].X)\Va)—(lX)\Va)Z_—LO[—Ta(Z)]. oL/ e 52-}-72
(A4)

7Tel‘272

: (B6)

2
They are related to, by 1- In erf(uy)

(PP ITZ (2K K" )) = to(z+ i) 8(k' —p'), (A5)

Y

which holds for Re>0 and |argu)|<w/4. As
o , A lo(v,u)=1o(—v,;u), we can extend this formula for
{(p:p'[TZ (D) |k;k")) = 8(p— Kty (—Z+ w). (AB)  Rey+0, by replacing the 1 inside the brackets by &)
Putting y=i B, we have Re+0 for (B4) (recall thate>0).

ReplacingV,Xx1 and IXV,, the diagrams in Fig. 12, by Hence we can applyB6) to the integral
T, andT;, respectively, we obtain the simplest true three-

body nonforward scattering in all order af For example,

corresponding td6.4), we have (B M)EJM ds 1 e_“zsz:lo(i,@ )
: Iy ,

1 3
tpk,(Z+ wp) to (Z+ wp)

Z—Wpp Z— Wyrp 1787'“2’82 2i .
=—— sgnimpB)+ —erfi(uB) |.
1 T 1 . I8 N
g e 2 0] o [t (-2 ey &
! ) (A7)  On the other hand, we have
Z— Wy
1(B,pu)—1(—=B,u)=—2B11(B,u), B8
Performing a similar replacement in the results obtained in (Bop)=1(=Bt) Al(B.p) (B8)
the text, we obtain the exact form of the transition probabil-z5 well as
ity of true three-body nonforward scattering that involves the
rescattering process. 1(Bw)=3[1(B.p) =1 (= B.w)]. (B9)
APPENDIX B: EVALUATION OF INTEGRATION  (3.29 Combining these results, we obtain the desired re&il.

Using the asymptotic expansions of the error function

In this appendix we shall prove that (erfi) for small and large arguments, we obtain the following

o 1 - approximations for In8<<0.
[(Bw)=| ds@ e s For |8|<1,
2,2 2i | i i — g2 (810
=—mie A7 sgn(Im ﬂ)+\/—_ erfi(up) |, B, 1
a

(B1)  and, for|g>1,

which holds for

V2w

1
Im B£0 |arg w)|< /4. (B2) '(ﬁ' 5) =5 (81D
Here, erfik) is the imaginary error function defined by
« APPENDIX C: ON SHELL TWO-BODY TRANSITION
erfi(x)=—i erf(ix), erf(x)zf e Pdt. (B3 PROBABILITY
0

In this appendix we shall prov@.29. We shall start with
For (3.29, i.e.,
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1 i e~ (U2(s*+u?)

<<p;plp(t)>>~7\203f7wdsf,xd“ —ie—w

kpt27Ku ie—wy,—2nks 27

(CY)

We are interested in the integration of this expression over lence we obtaifiwith .= \/wr/(4 77|k_|)]

set of final states, — Aw<w,<wy+ Aw, that includes the
resonance peak ab,=w) [with a suitable test function

f(wp)]

o+Ao
1= [ ot (iplp() =12+
w—Aw

(C2
where
= ﬁ:dwpf(wp)«p;plp(t)» €3
and
|25—L;Awdwpf(wp)«p;plp(t)>>,
o—Aw
|35_J7w dwpf(wp)<<p;p|9(t)>>- (C4

We assume that the test functidifw,) is bounded from
above in the vicinity of the real axis @iy, i.e.,|f(wp)| <M,
and does not vanish at the resonance peint wi, and that

1
I =N2p3m3? ﬁf(wﬂ =2m\2v3r.f(wy). (C8)
Y

For I,, the denominator of the integrand is outside the
resonance peak at,,,=0. Then we have

+oo f(wy) M
|I2|sJ7 dwp| (zi|sxzng—. (C9)
wrt+Aw k w
Hence we have
g M ﬁ—z’?k_ <1 C10
< <].
L [f(o)] 7™Aw (€10
Similarly we have
|
|—3 <1. (C11)
1

Therefore, the dominant contribution of the transition
probability comes around the resonance peak, and we obtain

{(p;plp()))~2mN20E 7.8 wp— w),

it varies smoothly enough around the resonance peak for
small enoughy. Moreover, we assume that the domain of thewhich is the desired resu{8.31).

integration is taken as

[f (@)l
M

7lk|
>E.

(CH

APPENDIX D: DURATION OF COLLISION

Tc

The exact value of the duration of collision is not obvious
for the Gaussian wave packet. Instead we can consider a

We note that residues at zeros of the denominator in theave packet with rectangular shape of size/ 5 defined in

integration ovem, in (C2) are of order k) ~, which make

large contributions for smalh. Hence we also assume that

any contributions from the singularities tfw,) in the com-
plex plane are negligible in the integrati¢@2) as compared
with these residues for small enough

Under these conditions we shall show thatmakes the

configuration space,

N

27

1 i

\/T_’]T ;

(D1)

(x| ¥ (0))=| 6| x+

o

_Z

o

dominant contribution td. Closing the contour of integra- where §(x) is a step functiong(x) =0, for x<0, while 6(x)

tion in the upper infinite semicircle ih;, we obtain

l,~2 ‘x“rdrd ! !
memt e ] 98] L S k(u=—s)+ie 27

X e~ (WU (=t 2 pku). (C6)
Because 0f3.8), we havew, > 7l|k_|- Then we approximate
f(wi+2nku)~f(wy) in (C6). One can evaluate the inte-
gral by changing the variable=u—s and using formula
(B10). The result is

er dsfw du 1 e—(1/2)(32+u2): 1 /2
—w —» a(u—s)+ie

—|—i773 .

al
(C7)

=1, for x=0. We have

sin /7 (k—K)/27]

(k|w(0))= 3k for 7—0.
(D2)
Moreover, we havgsee(3.7)]
<‘I’(0)I‘P(0))=g- (D3)

Because the interaction starts in the middle of the wave
packet atx=0, and moves with a momentum aroukdvith
a massn=3 [see(3.1)], the duration of collisiorr, is given

by
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Ve 1«
S S . (D4)
29 2k|  4nlk|

This is the same a.30.

APPENDIX E: ON €

In the limit L —oo, the propagators become the distribution

(for e—0+)

1

1
— P —F
W, *ie

v

v (E)

where?’ stands for the principal part. The use of #hé&unc-
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The unperturbed Hamiltonian can be written as
Ho=K2+ K2+ K2= K2, k2, K2 = \2Kkya.  (F4)
The equations of motion lead {for R=R,+R,+R,)

dR

EZZK'

(F5

In the center-of-mass system we hake=0. ThenR is a
constant of motion. We choo$e®=0. Moreover,(F4) gives
us

Ho= kit K2, (F6)

tion &w,) is possible only because we consider the momen-

tum k as a continuous variable. For finitethe § function

w8w,) is approximated by the Lorentzian distribution

e(w2+¢€). To obtain a consistent evaluation for thdunc-

tion in terms of the box normalization formalism, there
should be enough discrete states around the peak of the
Lorentzian. Therefore, our expressions have to be understood

in the continuous limiAk=2#x/L—0 ande—0+, with the
condition

|dw, /dk| Ak
k.

c (E2

In the text, we always consider the limit in this sense.

APPENDIX F: ON THE JACOBI COORDINATES

Generating function

For the Jacobi momenta
kya: \/;Ka,

Kb_ Kc
Kya= , (F1)
xa v

K=K, +Kp+Ke,
the generating function is
F=VEkyaRa+ 1(VZKeat K= V3kya) Ry
+3(~VZkyat K= EKyaR:,

where @,b,c) is a cyclic permutation of1,2,3. The canoni-

(F2)

cal conjugates of the Jacobi momenta gyg, r,, andr,.
They are given by
ra &K (Rb+ RC)
F
fya=z— = V3(Ra=ra) (F3
ya
JF 1 (Ri—R.)
Ma= =— (R,—Ry).
xa ‘9kxa VI b c

Relation among Jacobi’'s coordinates

Writing (F2) for the (a,b,c) and (b,c,a) permutations we
find, for K=0,

xb yb
a_&R = \/g

\/_
(F7)
JF k k
2 _xa_vya
Ko=2p, Vakyp e
Hence
‘/g 1
kya: By Kyp— Ekybv
(F8)
1 2 ) 3
kxa:‘/_3 kya+ \/_§ kyb: — 7Kgt 7 I(yby
or
Kea| [ cog27/3)  sin(27/3)
kya) | —sin(27/3) cog2a/3) (F9)

Similarly, transformations for r(,,ry,) are given by the
same expression &69), but with the replacement & by r
[see(4.6)].

APPENDIX G: ON-OFF SHELL PROCESS

In this appendix we shall evaluate the on-off shell process
which corresponds to process) in Fig. 6, as well as in
Table Il. We consider a process with the conditions

O wp— i) = nlk|~ nlkad, (GY)
while
|wio— o> 7kl and wio—wf>7lkl. (G2
From (6.24) and(6.26), we have
W= wyr — wl“WF?+2ﬂ(k323y3—FU)- (G3
Hence,(for |g~|u|~1) we have
Wi =Wk (G4
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By the same conditioiG2) we also have Substituting these approximations ini®.6), we obtain(for
_ 2| ~e)
_Wk|r~Wp|~ _Wkpmwk’k . (GS)
|
d,(p k', 1"k, 4U%U§A k’I’kI1 ! ! ! ! ! G6
2(p. k71K L2y~ AT == A(p, k"I, ’)E z—wp|,+z—wk,p B z—wk|+z—wk,|, Jrz—wk| ' (6
k'k

where we have considered the cqsg, [> € [see(G2)], and used the relations

1 1 B
z—az—b

1 1 1 G
z—a+z—b 2z—a—b’ (G7)

and also
Wi+ Wi =Wy +Werr . (GS)

The subscript 2 inb, denotes thatG6) is evaluated for the on-off shell process with the conditig®%) and (G2).

The first term(with the parenthesg¢dnside the last bracket ifG6) corresponds to the sum of diagrafag—(d) in Fig. 12,
while the last term corresponds to the sum of diagréepand(f). A part of the contribution of diagram®—(d) cancels with
the contribution of(e) and (f). Then from(6.9) we have

2.2

(Piplpa() ~ —\* 52

k'k
x((kil[p(0))), (G9)
where 2 inp, donotes that this is evaluated for the on-off shell process ®ith

The integrations ovek’ andl’ can be performed using th&functions[see(7.13]. Moreover, using the variablesandu
in (6.10, and also using Eq$6.24} and(6.26), we obtain

—izt
2 2 2 2 1 1 1
fd kd |f d2k’d?’A(p,k’, 1" k,DRes,_ ;. +
z \Z-Wpr  Z—Wyrp Z= Wiy

«p; plpz(t>>>~—x4 [ J dss f dux3 (U2 S5+ ugy)

—izt
1
Resz_ﬂe{ f dsygf duy32—e (U2)(s]5+uZy)

1 ) 1
—27K3Sy3) 2= 27K3x(Sy3—Uya) |’

(G10

X
(Z_kar_27]k3zuy3 _Z_kar
The integrations oves,; andu,; inside the first bracket give 1. Then with a simple manipulation we oljs#En(3.24)]

1
z— pr -2 77k32Uy3

1 Z
(1+ ” (G1)

—Z—= Wy +27K3Sy3 Z— 27Kz Sy3— Uy3)

. 40202
(P:pa(t))) =N Svf :

2
k’k

I * 1 —(U2)(s2,+ U2
ResZ:+ieT _wdsﬁ _wduy3ﬁe y3 ™ Yys

Let us first consider the case after the collision. The usual scattering theory deals with this situation. For this case we can
drop the second term inside the brackee havez|ks,>e€). In this time scale, all interaction processes have already finished.
Hence the transition probability should reach a constant value. Ing@éd), contains only the first-order pole a& +ie, and
its residue gives us a constaifior t>t/)

(=it 3 L F ds & (12 = i (612
pt)= s € - — .
p2(P.P 3w, 27 | )= i€~Wpio —27KgS|
Similar to (3.25, we obtain[see(B5)]
_ 4va§ 2 1 2 2 2i Wy 2
: t)))~\* — e Vo 27k3d%| sgr(Kkay) — — erfi P (G13

The condition of the on-shell transition between the intermediate and the final states is given by
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O(|wpi )= 7lksgl. (G149
With this condition, we obtain froniG12) that[see(3.31)]
_ 4 4v§v§
((p;plpa(t)))~2m\ o —wp)? ted(wp— wir), (G1H

wheret/ is given in(7.10.
Next let us consider the case during the collisiore(;). For this case we can approximate the initial wave packet by a
plane wave withp—0, as mentioned i163.16). Then from(G11) we obtain

4v2v3 e"izt 1 1 1 2
t)))~2\* Res,_ ds g (125°
(prplpa ) ~2N S Res, i e | [

2.2 —izt

viv3 e ( 1 1

4
= Res,_ — —— (G196
2 z=+i 2
o 27 \Wpp—2z2 Wtz
|
where we have performed the integration oser complex spectral representation leads to a consistent result

In contrast to the case after the collision, the transitionwith the time-dependent analysis for the process during the
probability during the collision should change in time, as thecollision for a large wave pack¢l].
interaction processes are not yet finished. Indéedp) now
contains the second-order pole &t +ie, and its residue APPENDIX H: GENUINE TRIPLE COLLISION

gives us a linear dependence in tittfer t<t;), ) o
For the triple collision, we have

- 4v§v2 —
<<p;p|pz(t)>>*2ﬂ4mt5(wp W), O(|wicpl) = nlk|~ 7k, (H1)
G17) \hile
where we have used relatiof8.36. The contribution in B — .
(G17) comes from the energies which satisfy the resonance (Wi il=mlkl,  [wio > nlksg. (H2)

condition wp,— wy =0
Comparing(G17) with (G15), we see the continuation o
the transition probability for the on-off shell process during

f We have

and after the collision. During the collision, it grows linearly Wier = Wi+ 277(KaaSy, — K- u) = Wi (H3)
in time, and after the collision it becomes a constant.
It is worthwhile to note that the transition probability Similarly,
(G12) after the collision is given by a square of the transition o
amplitude, just the same 43.27), i.e. (for t—+), Wi = = Wi = Wie p=Wier - (H4)

<<p'p|p(t))>ﬂ|<p|QH(wp+i6)|‘I’(0)>|2. (G189 Hence the first term inside the bracketg&6) is negligible,
' as(for |z|~e)
Applying this to the fourth-order contribution corresponding

to the process which we are considering, we have 1 N 1 1 N 1 ~0. (H5)
Z_Wp|/ Z_Wk/p _Wp|r _Wk’p
N N 2 2L S
{(Piplp2(t)))=| Ulv3f d kf k" oky, ~py,) Then from its second term, we have
N k’ —k 1 1 royr 4 2 ’ 1
( ys) e Wierp e~ Wiep Da(pk' 1 k,1,2)~ =N u3A(pk' I K, 1) m
2
x(k|¥(0)) (G19 . 1
Z=Wp  Z—Wyp) Z= W'
With conditions (G1) and (G2) one can easily show that (H6)

(G19 reduces to the same expressi@il2). However, this

derivation with theS-matrix theory is applicable only for the where the subindex 3 i®; denotes that this is evaluated for
case after the collision. Indeed, if we apiB.16) to (G19), the triple-collision process with conditior#1) and (H2).

we obtain a diverging contribution of order?, as one can The transition probability associated with this process is then
easily verify by a straightforward calculation. In contrast, ourgiven by[see(6.9)]



53 EXTENSION OF SCATTERING THEORY FOR FINIE . . . 4099

2.2 it
(P, Plpa())~—\* 5= Jde d2|f 42K G2 APk K DRes, 1) e | !
o Wine o =z \zmwy z- W) Z-wy

k'K
X{(k.I[p(0))). (H7)

This has a similar form t¢G9). Therefore we have the fol- thatp,, is eitherk,, ork,. Henceks, is given by[see(6.25
lowing. and (F9)]
For t<t/ (during the collision,

2 _
_ 4)\4 2,2 ki:—Si + /6 k, |]_)
(PPlpIO) = 2mta(wi—wp).  (HE) 2= sin(¢ = /) K] (
k k'

where ¢ the incident angle of the incoming particle, with
respect to thex; axis, and the plus or minus sign corresponds
o 4)\40505 to the cases where the incoming particle is transmitted or
{{p,p[ps(t)))= S_E 2t S wy— wp), (H9) reflected by the12) wall, respectlvelly.
K K/ From(7.10 and(l1) we havet <t/ . In order to show the
transition from the time scalgg) to (b) we shall consider a
third time scale(c), tc<t<t.. In this special case the dura-
tion of the second collisiort,, is large because the particle
goes nearly parallel to th@3) wall, after colliding with the

We shall calculate the rescattering term for the time scalel2) wall.

For t>t. (after the collision,

wheret, is given in(7.10.

APPENDIX I: RESCATTERING TERM

(a) t<t, andt<t,, and (b) t,<t andt/<t, wheret, and (a) Fort<t, andt<t, this time scale is equivalent to
t; are defined in(7.10. Because at the rescattering point the . —
first collision (between particles 1 and & on-shell, we have nlksl<e, 7lk|<e, (12)

For this time scale we can approximate the initial conditiri4) by the plane wavé€3.9). This leads tdsee(6.9) and(6.6)]

(S S O
=Wy Z—Wirp) Z |\ 2= Wi

_ 1
<<p;plp(t)>>~7\4v§v§f dzk’fdzl’fdzkf d?lA(p,k’ I, k,HRes,_ ., .

1 11 1 1 1 1 1
W) Z z

1 _ _
— — — + — — )—}5(k—k)5(l—k). (13)
Z—Wpr Z=Wp Z= Wik Z—Wyrp Z=Wyp Z— Wy /) Z
For a large time scale the first term in the brackets makes the dominant contribution, growth@sashe result of the

third-order pole az= +i e, while the second term gives its correction of ortldPerforming the integration over intermediate
momenta in(I3), for the dominant contribution, we obtain

(PP, )~ 3N 035 (2m) 28 (Wpir) S(Wp ). (14)

(b) For t.<t andt,<t, we now consider the time scale where all interaction processes are finished. The transition
probability approaches a constant in time. As was showiGitd), this is the situation in which the usugmatrix theory is
applicable.

Substituting(6.24) into (G19), we have

2

+oo +oo 1 1 (i
dss | dsg . ——— e SaetSP | (I5)
—o — Wirpt27KaSy3—i€ Wi, +27n(k-s)—ie

— _4)\4v§v§< 1 )2
((pplp(t)))= 3 o

This expression may be rewritten as

ol _4(>\20103)2J & fdz 1 1 1
(PiplptN) =3 —_ ) T W —27kesS,a e Wy — 27Kz — i€ o —27(K-S) +ie
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1

e (182 +1u?/2 16
Wp—27n(k-u)—ie (16)

We are interested in the transition probability taken as a distribution. As sho@#)jrthe rescattering term contains tvso
functions. Therefore we need two integration variables to make sense of this term. Usually the integration is taken over a set
of final momentgi.e., over the variableg,, andp,,, fora=1, 2, or 3. However it is possible to make a change of variables,

and integrate ovew, and ) instead. This simplifies the calculations below. We consider the expression

1= [ da, [ do((piploto) (0,070,

wheref(w,,w’) is a test function. The integration region should include the rescattering points, givep=by . = w) .
Then these integrals can be extended frem to +o, because the contributions from the t@way from the rescattering
peaks of the transition probability are negligible. The integrals can be performed by contour integration. The result is

4 )\zvlv3) 2 1 1
|~ (27i)% f fdz fd2ue (197 +ul?) - _ . 17
(2mi) 3( 2 (0,010 277k§2(uy3—5y3)+|e277k-(u—s)+ie 7)
Putting
k_x3: |k_|COS b, k_y3: |Hsin b,
we have
2
P ESE L] IO S S (18)
3 T Kk 27|k| 27k3, v
where
© o 1 1
|f=fd fd fdufdue(|s|2+|“| — .
1 >3 53 x3 s (Uy3—Sy3) +i€a™ () (Uxg—Sx3)COS -+ (Uyz—Sy3)Sing+ie
(19)
|
and[see(1)] The first term can be evaluated usi(fL0), to obtain
o= (p)=sgrisin(¢+ m/6)]. (110)
3
Introducing the variable®,=u,3—S,3 and v,=U,3—Sy3, " Tcosg] o (). (113)
we obtain
0 o0 1 .
+_ ~w2+v2)ia The second term can be written as
l1 Wf dvxf_mdvye e )
1 277.3/2
lo=7——1 114
vaco&ﬁ+vysin¢>+ie' (112) 2" Jcosp| % (124)
The integral ovew, can be performed using formul®1).  \here (with y=uv,|seap|/2)
We then have Y
—im? 1 - Ly
5= f dvye —(vyseap)?/4 il 3= dy e¥ —erfi(y sing). (115)
1 " cos¢ vytieo™ () o Y

X

sgr(cosp) + 2 erfil y tang _ (112)  Taking the derivative of; with respect to sinp, and chang-
Jr 2 ing the integration variable t=y sing, we obtain
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With t,= \a/(45lk|) andt.* = /(4 7]k)]) we have, from
(18),

|+ =4\%2 zf(a)_w—)ﬂZ tLFE (), (119)
U1U3 k@ [cosp| e )

where

2
Fo(¢)=1-— o7 ($)&(9). (120)

FIG. 16. In this rescattering process @) wall transmits in-  €nce we have

coming beamsrepresented by the arroyysvhich then collide with

the (23) wall. The wave packet is represented by the circle. Only

region«a of the wave packet can go through this collision sequence. «p; p|Ht)>>i% 442 ng(w )27 8w
! 3 V3 pk’

tC
P Tcosp]

dl XtLTFE (). 121
d(sm3¢ j dy e Yerfi' (y sing) o P& (121)
tc/|cos¢| is the duration of the first collisiofithe cosine
f dx e X*Isifderfir (X). gives the component of the momentum of the wave packet

perpendicular to thé€l2) wall], while t; is the duration of the
second collision. The factd“(¢) accounts for the fact that,
As erfi/(x):exz, we have depending on the incident angig a fraction of the wave
packet will not collide with thg23) wall after colliding with
the (12) wall. In Fig. 16 we show how only a fractioa of
dis _ \/; the wave packetindicated by a circlecan have &12) col-
d(sing) |cosp|’ lision followed by a(23) collision. We are taking the plus
branch of(121); that is, the transmitted beams originated by
which leads to the (12) collision.
(c) Fort.<t<t., the time scale is equivalent to

|Sln 9|

[
l3= JEJ d¢’ sgn(coss’). (116) ) _
0 nlksl] <e<nlk|, (122)

Hence

where both» and e are small quantities. The conditions for
_“ the shape of the initial wave pack@t15), as well ag6.23),
o (¢) §(¢)} (17) lead to[see(6.24) and(6.26)]

3

u
[cos]

*_
I 1

where —
O(lw)=mlk|, O(|wyr:|)= 7]ksq. (123

&(p)=¢ for —mR2<Pp<ml2, Let us first consider the contribution for the first term
T—¢ for wl2<¢p<m, (118) inside the bracket.6) that corresponds to diagrart@—(d)
—m—¢ for —w<odp<—m/2. in Fig. 12. We can rewrite this as

b pk, ", k,l,z —)\41} l)zA pk, |’ kl - 1+ 1 W
ad( ! o ) 3 ( ) Z Z— Wp|r Z— Wk’ Z—Wyryr) Z—Wygr| Z— Wyyr Z— Wy '

With conditions(122) and(123) the above expression {for |z|~¢)
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1 1 1 1 1
D q(p. k"1 k1, 2) =2\ 203A(p,k" 1" k1) = — —
V4 Z—kar Z—Wkrp Z—Wkr| Z—Wk|r

1 1 1 1 1
~N0iv3A(p.k Ik, = —+ — — ——— 1. (125
Z°Z2=Wp Z=Wiorp || Z= Wi+ 27K -U —Z2— Wi +27k-s
|
Because of the second-order pole zat +ie, its residue 1 ) ) ,
makes the linearly growing contribution offor the transi- wiie? ©C (eW—e ™+ w=ie? (1-e™™H
tion probability (G16) for large time scales.
With conditions (122) and (123), the reader can easily 1 iwt 2 [1—e™y?
verify by a similar manipulation that the second term inside teCit o || e 6c | (1-eM)) =
the brackets ii6.6) [corresponding to diagrants) and(f) in
Fig. 12] has only a simple pole a&= +ie. Hence this con- (3D
tribution does not grow in time, and is negligible for large
time scales. In the limit e—0+, the last term on the left-hand side van-

The first term inside the brackets (i25) gives a factor jshes in the sense of distributions with suitable test functions.
—2mtd(wyy) [see(G16) and (G17)]. On the other hand, Moreover, we havéfor e—0+)
the integrations oves andu of the second term inside brack-

ets can be written, for=ie¢, as o 1
276 (w)= m— C.C. (J2)
2
U d2s SRR BPFCT (126)  and
—ile—Wy  t+29k-s2m
sin(wt/2) ]2 1—e“""’2
The integration has a structure similar to the integration in 4 w } :‘ W+i6| ' V3

(G12. Hence, by a similar evaluatioi(l26) gives a factor
— 27t 5(W ). Finally, the integrations ovee’ andl’ give  Under the integration over, we perform the integration by

a 3 factor[see(7.13]. Hence we have parts for&' (w). Then we havdfor e—~0+)
04(p, ,t)%i)\4v2v22ﬂ't6 Wy )27t (Wi k), sin(wt/2)]? ) .
pa(p,p,t)~3\"vivs (Wpk cO(Wick 127 n(W ) i & (w) (€ — e )

where the suffix 4 inp, denotes that this is evaluated for 1

(122) with the condition(123). Therefore, the dominant con- | ——— (1—-e"Y+c.c.

<L) D - ——a ( )

tribution of the transition probability comes from the rescat- (w—ie)

tering procesdi.e., the on-on shell procgssand it grows 1

linearly in time in the intermediate time scale<t<t/. =2m8(W)t+ woTe? (1-e"Y+c.cl,

APPENDIX J: PROOF OF (9.5 34
By a straightforward calculation, one can verify the rela-
tion (for any reale) which is the desired resu{®.5).
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