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Scattering theory is extended to the description of processes during collision. Indeed, for large wave packets
we may consider situations where timet, while large with respect to characteristic frequencies, is still smaller
than the duration of the collisiontc . This leads to an asymptotic theory which is different from the usual
S-matrix approach. There appear intermediate states with scattering cross sections which result from secular
effects fort,tc , but differ from the values obtained fort.tc in theS-matrix theory. The consideration of such
intermediate time scales is the normal procedure in many-body situations as realized, for example, in chemical
reactions. Our method is closely connected to our work on the extension of quantum theory beyond the Hilbert
space for large Poincare´ systems. This theory applies to persistent scattering using delocalized density matrices
~an example is plane waves!. For this case, theS-matrix theory is not valid, while the results of our asymptotic
approach remain valid for all times. Our theoretical predictions have been validated by numerical simulations.
@S1050-2947~96!06405-0#

PACS number~s!: 03.80.1r, 03.65.Bz, 05.30.2d, 11.80.Jy

I. INTRODUCTION

In the standard theory of scattering~see, e.g.,@1–4#! one
considers asymptotically free in and out states interacting
during a finite timetc . This leads to anS-matrix description
of the collision process which is valid for times of observa-
tion t larger thantc . For large wave packets, we may con-
sider different situations wheret, while large with respect to
characteristic frequencies, is smaller thantc . This leads to an
asymptotic theory which is different from the usualS-matrix
approach. There may now appear ‘‘intermediate’’ states
which result fromsecular effectsfor t!tc but vanish for
t@tc . The consideration of such intermediate time scales is
the normal procedure in many-body situations, as realized,
for example, in chemical reactions.

We shall concentrate in this paper on three-body scatter-
ing. However, we first briefly consider two-body scattering
as it permits us to introduce the main concepts leading to our
asymptotic approach~Sec. III!. We calculate the transition
probability starting from large wave packets. As is well
known, the scattered wave packet has a sharp peak at reso-
nance, and a small tail effect coming from the off-resonance-
shell contribution. The value of the off-shell contribution dif-
fers in the two asymptotic situations corresponding tot@tc
~Smatrix! and t!tc ~obtained by our approach!.

For a typical momentumk ~with \51 and massm51!,
the duration of the collision is given bytc;(ukuh)21, where
1/h is the size of the wave packet in configuration space.
Then one can summarize the two different asymptotic limits
used in our paper in Table I, wheree;1/t. It is very inter-
esting that the extension of scattering theory to finite times,
corresponding to the statistical-mechanics approach, can
only be performed on the level of density matrices andnot
on the level of wave functions. The reason is that the transi-
tion probability can no more be factorized into a product of
wave functions. We shall come back to this important point
below ~Sec. IX!.

We then come to three-body scattering~Secs. IV–VIII!.
For simplicity, we consider scattering in one dimension, and
assume repulsived-function interactions. Extensions to more
general situations are easy. In this case even thesecular
terms are different in the two asymptotic situations.

We work in center-of-mass system, and use Jacobi’s co-
ordinates and momenta~see@5,6#!. We can then transform
the problem into the study of the evolution of a single par-
ticle in two-dimensionalspace interacting with three walls.
We obtain a simple pictorial description of the scattering
processes~see Sec. IV!. We concentrate our attention on the
process corresponding to an interaction between particles 1
and 2 followed by an interaction between 2 and 3. We study
this process in Liouville space, which permits a clear sepa-
ration of rescattering effects from genuine three-body effects.
In fact, this is the lowest order interaction, which involves
both successive two-body scattering, as well as genuine irre-
ducible three-body effects@6–8#.

We calculate the various contributions leading to secular
effects starting again from large wave packets. Now our
asymptotic theory leads to a dramatic effect as classes of
secular effects appear only fort!tc , and disappear in the
frame of theS-matrix theory fort@tc . Our results have been
confirmed by numerical simulations.

As a result of this effect, the scattering three-body cross
section is different in the two situations. This result is closely
connected to our work on the extension of quantum theory
beyond the Hilbert space for large Poincare´ systems~LPS’s!
@9,10#. This theory applies to persistent scattering using de-

TABLE I. Two different asymptotic limits:S-matrix approach
and statistical-mechanics approach.

S-matrix approach Stat. mech. approach

ukuh@e ukuh!e
first t→` thenh→0 first h→0 thent→`
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localized density matrices~for example, plane waves!. In the
frame of our asymptotic theory fort!tc , the system still
does not ‘‘know’’ if we started with a large but finite wave
packet, or if we started with a delocalized density matrix.
Persistent interactions require singular distribution functions
~i.e., thed-function singularity in momentum!, which lie out-
side the Hilbert space. TheS-matrix theory is no longer
valid. We have then obtained complex, irreducible spectral
representations of the evolution operators, here the Liouville
operatorLH , in generalized function spaces@9,10#. The re-
sults of our asymptotic approach then remain valid for all
times. Our theory also removes the rescattering anomaly,
which is due to successive two-body collision in three-body
scattering. As this problem has a long history, we shall
present it in a separate paper@11#, and only mention it briefly
in this paper.

In the two asymptotic theories, the results obtained for the
three-body scattering cross sections are different. As men-
tioned, in this paper we concentrate on a single process@a
~12! interaction followed by a~23! interaction#. It is easy to
extend our results to other three-body processes. In a subse-
quent paper, we shall consider all three-body scattering pro-
cesses, and give an explicit expression for the difference in
the cross sections.

II. LIOUVILLE SPACE FORMALISM

We consider nonrelativistic quantum systems ofN distin-
guishable particles withN52 and 3 ind-dimensional space.
Before going to a specific numberN, we first introduce no-
tations for arbitrary finiteN. For N→`, see @10#. In the
center-of-mass~CM! frame, the number of degrees of free-
dom reduces toM[(N21)d. In the CM frame the Hamil-
tonian is given by~we shall use a unit system with\51!

H5H01lV, ~2.1!

whereH0 is the unperturbed Hamiltonian associated with
free motion, andl is a dimensionless positive coupling con-
stant. In this paper we consider a short-range repulsive inter-
actionlV among the particles. There are no bound states. In
the CM frame we shall use vector notation, such as
x5(x1 ,...,xM).

We denote the eigenstates ofH0 by uk&, i.e.,

H0uk&5vkuk&. ~2.2!

They satisfy

E dMkuk&^ku51, ^puk&5d~p2k!5)
i51

M

d~pi2ki !,

~2.3!

wheredMk[dk1 ...dkM , andd(pi2ki) is the Diracd func-
tion. We assume

vk[(
i51

M

vki
. ~2.4!

For example, we have a Hamiltonian~3.1! for potential scat-
tering that corresponds to two-body scattering, and a Hamil-

tonian ~4.9! represented by Jacobi’s coordinates that corre-
sponds to three-body scattering.

The evolution of the system is governed by the Liouville–
von Neumann equation for the density matrixr @12#,

i
]

]t
r~ t !5LHr~ t !, ~2.5!

whereLH is the Liouville–von Neumann operator~the Liou-
villian in short! that is the commutator with the Hamiltonian
LHr5[H,r].

The formal solution of the Liouville–von Neumann equa-
tion is

r~ t !5U~ t !r~0!, ~2.6!

with

U~ t !5e2 iLHt. ~2.7!

U(t) is the evolution operator and obeys the integral equa-
tion

U~ t !5e2 iL0t2 ilE
0

t

dt8e2 iL0~ t2t8!LVU~ t8!, ~2.8!

whereL0 is the unperturbed LiouvillianL0[LH0
, andLV is

the interaction Liouvillian,

LH5L01lLV. ~2.9!

We can write the formal solution of~2.8! for t.0 in terms
of the Laplace transformation as@12#

U~ t !5
1

2p i ECdz e2 iztR~z!, ~2.10!

whereR(z) is the resolvent operator for the Liouvillian de-
fined by

R~z![
1

z2LH
, ~2.11!

andC is a contour which runs from1` to 2`, parallel to
and above the real axis. This satisfies the resolvent equation

R~z!5R0~z!1R0~z!lLVR~z!, ~2.12!

whereR0(z) is the unperturbed resolvent operator defined by

R0~z![
1

z2L0
. ~2.13!

We may introduce theT matrix for the Liouvillian in the
Liouville space in analogy to the usual scattering theory for-
mulated for the Hamiltonian. This satisfies the integral equa-
tion

T ~z!5lLV1lLVR0~z!T ~z!. ~2.14!

Assuming the convergence, the iterative solution of~2.14! is
given by
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T ~z!5 (
n50

`

lLV@R0~z!lLV#n. ~2.15!

This then leads to

U~ t !5
1

2p i ECdz e2 izt(
n50

`

@R0~z!lLV#nR0~z!.

~2.16!

For scattering of a wave packet, which the usualS-matrix
theory deals with, the interaction is transient. As the wave
functionC is localized in configuration space, it has a well-
defined norm,

uuCuu5S E dMxz^xuC& z2D 1/2,`. ~2.17!

In this situation, the Liouville–von Neumann equation does
not introduce any new features. If we can integrate Schro¨d-
inger’s equation, we can solve the Liouville–von Neumann
equation, and vice versa. Usually, one equips the Liouville
space with a Hilbert space structure. In this space a scalar
product of the linear operatorsA andB acting on wave func-
tions is defined as a Schmidt inner product

^^AuB&&[Tr~A†B!, ~2.18!

and its Hilbert norms by

uuAuu[A^^AuA&&. ~2.19!

We have also introduced Dirac’s ‘‘bra’’ and ‘‘ket’’ nota-
tions, i.e.,ŠŠAu and uB‹‹, analogous to the notations used for
wave functions. For example, the Hilbert norm for the den-
sity matrix associated with the wave packetr5CC* is given
by

uuruu5E dMxz^xuC& z2,`. ~2.20!

The LiouvillianLH is then a Hermitian operator, andU(t) is
unitary.

In the Liouville space we denote dyadic operatorsup&^p8u
generated by the eigenstatesup& andup8& of H0 by a ket state,

up;p8&&[up&^p8u. ~2.21!

They form a complete orthonormal set of the Liouville
space,

E dpE dp8up;p8&&^^p;p8u5E dpE dp8up&^pu

3up8&^p8u51,

^^p;p8uk;k8&&5d~p2k!d~k82p8!. ~2.22!

They are eigenstates ofL0,

L0up;p8&&5H0up&^p8u2up&^p8uH05wpp8up;p8&&,
~2.23!

where

wpp8[vp2vp8 . ~2.24!

In this representation we have a simple expression for
matrix elements of operatorA acting on wave functions@see
~2.18!#:

App85^puAup8&5^^p;p8uA&&. ~2.25!

The operators acting on density matrices are called super
operators. A factorizable super operatorA3B is defined by

~A3B!r5ArB, ~2.26!

whereA andB are linear operators in wave-function space.
The Liouvillian is then

LH5H31213H. ~2.27!

The matrix element of the perturbed Liouvillian is given by

^^p;p8uLVup9;p-&&5Vpp9d~p-2p8!2d~p2p9!Vp-p8 .

~2.28!

In this paper we shall consider the scattering problem for
two classes of density matrices; in one class the Hilbert
norms converge~this is the usual case forS-matrix theory!,
and in the other class the Hilbert norms diverge. The sim-
plest example of the second case is a plane wave, e.g.,ur~0!&&
5uk̄&^k̄u, which is normalized by the Diracd function as

^^p;p8ur~0!&&5d~p2p8!d~p2 k̄!. ~2.29!

With this initial condition, the interaction ispersistent. There
are no free-in and free-out states. In this situation one cannot
apply the S-matrix theory. The density matrix has a
d-function singularity at the diagonal components in momen-
tum representation. For this case the Hilbert norm is propor-
tional to an ill-defined expressiond~0! @see~2.20!#. In order
to avoid this meaningless expression, we can formulate the
problem in terms of the box normalization formalism with
the volumeLd, then take the limitL→` ~see also Sec. III!.
In this formalism, we can understand thatd~k! at k50 is a
diverging quantity of orderLM. The box normalization for-
malism is important in nonequilibrium statistical physics, as
this allows for the handling of the thermodynamic limit~i.e.,
N→`, L→` with c5N/Ld finite! @10#.

III. TWO-BODY SCATTERING

Let us first consider two-body scattering. For simplicity,
we consider ad-function interaction in one-dimensional con-
figuration space~i.e., d51!. Eliminating the center-of-mass
motion, the problem of two-body scattering is reduced to a
problem of potential scattering for a single particle with the
Hamiltonian

H5H01lV52
]2

]x2
1lv0d~x!, ~3.1!

wherev0.0 is a constant which characterizes the interaction,
andx is the distance between the two particles. We have@for
~2.2!#

vk5k2 ~3.2!
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and ~for everyk andp!

^puVuk&5v0 . ~3.3!

Let us assume that the initial density matrix is in a pure
state given by a wave functionC~0!,

ur~0!&&5uC~0!&^C~0!u. ~3.4!

We assume thatC~0! is a Gaussian wave packet in momen-
tum representation,

^kuC~0!&5dh~k2 k̄!, ~3.5!

where

dh~ l ![
1

A2ph
e2 l2/2h2 ~3.6!

and 1/h.0 is the size of the wave packet in configuration
space. We have

^C~0!uC~0!&5
1

2Aph
. ~3.7!

Moreover, we assume that the wave packet has a sharp peak
at the most probable momentumk̄, i.e.,

h!uk̄u. ~3.8!

For a small limit ofh, we can replace~3.6! by a plane wave

lim
h→0

dh~k2 k̄!5d~k2 k̄!, ~3.9!

and we have the density matrix

^^k; l ur~0!&&→d~k2 l !d~k2 k̄!, ~3.10!

which lies outside the Hilbert space@see~3.7!# for h→0.
The spreading time of the wave packet by the free motion

is given by ts;1/h2 @3#. We shall always consider time
scales where the spreading of the wave packet is negligible,
i.e.,

t!ts . ~3.11!

We shall calculate the transition probability fornonfor-
ward scattering given by the condition

up2 k̄u@h, ~3.12!

wherep is the final momentum.
For a finite size of the wave packet, there is another char-

acteristic time scale, the duration of collision@see~3.30! for
the precise definition#

tc;
1

k̄h
. ~3.13!

We are interested in a comparison between the transition
probability after the collision~i.e., the time scalet@tc! and
the one during the collision (t!tc).

By the resolvent formalism~2.10!, the transition probabil-
ity to the stateup;p&& is given by

^^p;pur~ t !&&5
1

2p i ECdz e2 izt
1

z

3^^p;pu@11T ~z!R0~z!#ur~0!&&.

~3.14!

For t.0 the pole atz50 is located in the first Riemann sheet,
as the contourC is located in the upper-half-plane@12#.
Hence the evolution for large time scales~i.e., t@v

k̄

21
! is

determined by the residue atz51 i e, with e→01. In order
to obtain the transition probability after the collision, we
have to take the limite→01, keepingh finite. Hence for
t@tc we have

huk̄u@e. ~3.15!

In contrast, if the wave packet is large enough, we can
also consider the long-time evolution, but for times shorter
than the duration of the collision~i.e., tc@t@v

k̄

21
!. For this

time scale we can approximate the wave packet by a plane
wave, taking the limith→0 @see~3.9!#. This implies that the
limit e→01 should be taken with the condition

huk̄u!e. ~3.16!

This shows that for large wave packets we can considertwo
different asymptotic limits: In the first limit ~3.15! one keeps
h finite, so that the initial state is in the Hilbert space. On the
other hand, if we take the second limit~3.16!, then the state
is outside the Hilbert space@see~3.9! and ~3.10!#. Here we
come to the interesting conclusion thatscattering for finite
time can be described by the evolution of states outside the
Hilbert space. In Sec. IX we shall discuss the validity of this
statement in more detail.

In order to simplify the calculations, we assume that the
interaction is weak, i.e.,l!1. For v0.0 ~i.e., a repulsive
interaction! we can use the perturbation expansion in powers
of l. We evaluate the transition probability by the lowest
order approximation in this series expansion. The extension
to a more general case is straightforward using thet-matrix
formulation ~see Appendix A!.

In the perturbation expansion, the dominant contribution
to the transition probability for nonforward scattering~3.12!
is given by the second-order terml2 @see~2.15!#

^^p;pur~ t !&&5
l2

2p i E2`

1`

dkE
2`

1`

dlE
C
dz e2 izt

1

z
^^p;puLVR0~z!LVuk; l &&

1

z2wkl
^^k; l ur~0!&&1O~l3!. ~3.17!

The matrix elements ofLV are given by

^^k8; l 8uLVuk; l &&5^^k8; l 8u~V31213V!uk; l &&5y0d~ l2 l 8!2d~k82k!v0 . ~3.18!

4078 53T. PETROSKY, G. ORDONEZ, AND T. MIYASAKA



This leads to

^^p;pur~ t !&&'2
l2

2p i E dkE dlE
C
dz e2 izt

1

z
v0S 1

z2wpl
1

1

z2wkp
D v0 1

z2wkl
^^k; l ur~0!&&. ~3.19!

Let us first consider the caset@tc . This corresponds to the usual situation with whichS-matrix theory deals. Taking the
residue atz51 i e of ~3.19! we obtain

^^p;pur~ t !&&'2l2v0
2E

2`

1`

dkE
2`

1`

dlS 1

i e2wpl
1

1

i e2wkp
D 1

i e2wkl
^^k; l ur~0!&&

52l2v0
2E dk dl

1

i e2wpl

1

i e2wkp
S 11

i e

i e2wkl
D ^^k; l ur~0!&&. ~3.20!

Let us define new variabless andu through the relations

k5 k̄1hs, l5 k̄1hu. ~3.21!

Then the initial wave packet~3.4! is written as

^^k; l ur~0!&&5
1

2ph2 e
2~s21u2!/2. ~3.22!

This shows that the significant contribution to the transition probability comes from the initial density matrix withusu of order
~or less than! 1 in the integration overs ~and similarly foru!. Using condition~3.8! we can approximatevk by

vk5 k̄2F112s
h

k̄
1s2S h

k̄
D 2G'v k̄12h k̄s. ~3.23!

Substituting this into~3.20!, we have

^^p;pur~ t !&&'l2v0
2E

2`

`

dsE
2`

`

du
1

1 i e1wk̄p12h k̄u

1

2 i e1wk̄p12h k̄s
F11

i e

i e22h k̄~s2u!
G 1

2p
e2~1/2!~s21u2!.

~3.24!

For t@tc , we can drop the second term inside the bracket
@see~3.15!#, to obtain

^^p;pur~ t !&&'
1

2p
U E

2`

`

ds
lv0

2 i e1wk̄p12h k̄s
e2s2/2U2.

~3.25!

The evaluation of the integral in~3.25! is presented in Ap-
pendix B. Here we display only the result@see~B7!#:

^^p;pur~ t !&&'
pl2v0

2

2~2h k̄!2
e2wkp

2 /~2h k̄ !2

3Usgn~ k̄!2
2i

Ap
erfiS wk̄p

2&h k̄
DU2,

~3.26!

where erfi(x) is the imaginary error function@see~B3!#. As
one could expect, the transition probability becomes time
independent after the collision.

We note that this result, valid for times after the collision,
is given by the square of the transition amplitude. This cor-

responds to the well-known result of theS-matrix theory,
which gives us the transition probability~for t→1`!

^^p;pur~ t !&&→ z^puVH~vp1 i e!uC~0!& z2, ~3.27!

whereVH is the Möller scattering operator associated with
the HamiltonianH @2–4#. Applying this to the second-order
contribution corresponding to the process which we are con-
sidering, we have

^^p;pur~ t !&&'U E dk
lv0

i e2wkp
^kuC~0!&U2. ~3.28!

Using condition~3.8!, we see that~3.28! reduces to~3.25!.
Equation~3.26! has a sharp peak with a width;huk̄u at

the resonance energyvp5v k̄ , and has small corrections in
the tail part far from the peak@see~B10! and ~B11!#. For
small enoughh, and for a smooth enough functionf (vp)
aroundv k̄ , we can approximate the integration of~3.26!
over the final state as~see Appendix C!
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E
v k̄2Dv

v k̄1Dv

dvpf ~vp!^^p;pur~ t !&&

' f ~v k̄ !E dvp^^p;pur~ t !&&'2pl2v0
2tcf ~v k̄ !,

~3.29!

wheretc is the duration of collision given by~see also Ap-
pendix D!

tc[
Ap

4huk̄u
, ~3.30!

and the domain of the integration involves the entire contri-
bution from the peak, i.e.,Dv@huk̄u. Hence we have

^^p;pur~ t !&&'2pl2v0
2tcd~wk̄p!. ~3.31!

@If we consider the caseDv!huk̄u, the asymptotic expansion
of the imaginary error function leads for~3.26! @see~B10!
and ~3.6!# to

^^p;pur~ t !&&'pl2v0
2tcd&h k̄~wk̄p!,

which is different from~3.31! by factor 2 forh→0. As this
formula does not involve a significant contribution around
the peak, this is not a consistent approximation. Instead, we
should use~3.31!.# The dominant contribution thus comes
from the process that preserves the unperturbed energy be-
tween the initial and the final states. Because the contribution
comes from the small denominator at the resonance point
wp k̄50 @see the discussion below~3.36!#, we may call the
energy-conserving process the on-resonance-shell process
~or the on-shell process, for short!. Conversely, we call the
case

uwk̄pu@huk̄u ~3.32!

the off-resonance-shell process~or the off-shell process, for
short!.

We now focus on the off-shell process. This process is
much smaller than the resonance contribution for two-body
scattering. However, as we shall now show, there is an in-
teresting discrepancy in the off-shell process between the
two asymptotic descriptions. With condition~3.32!, and us-
ing ~B11!, we can approximate~3.26! by

^^p;pur~ t !&&'
l2v0

2

w
k̄p

2 . ~3.33!

Next let us consider the caset!tc , i.e., the situation dur-
ing collision ~3.16!. For this case we can approximate the
initial wave packet by a plane wave withh→0. Then from
~3.19! we obtain

^^p;pur~ t !&&'2
l2v0

2

2p i E
C
dz

e2 izt

z2 S 1

z2wk̄p
1

1

z1wk̄p
D .

~3.34!

Again, the residue of~3.34! at z51 i e dominates for larget.
Neglecting the contributions other than the residue atz5
1 i e, we obtain

^^p;pur~ t !&&'l2v0
22ptd~wk̄p!1l2v0

2F 1

~wk̄p1 i e!2

1
1

~wk̄p2 i e!2G , ~3.35!

where we have used the relation

2p id~w!5 lim
e→01

S 1

w2 i e
2

1

w1 i e D5 lim
e→01

2i e

w21e2
.

~3.36!

Equation~3.35! is the expression we have to compare with
~3.26!. In this expression there appears a secular term pro-
portional tot. As indicated in~3.36!, the secular effect comes
from the zero in the denominator. This corresponds to
Poincare´’s resonance.

As a result of the secular effect, the on-resonance-shell
process dominates for larget. Then we obtain~during the
collision with large enough wave packets!

^^p;pur~ t !&&'2pl2v0
2td~wk̄p!. ~3.37!

Combining this result with~3.31!, we see that the transition
probability during the collision grows linearly in time, then
reaches a constant after the collision. The on-shell process is
smoothly connected during and after the collision.

We now show that this is not the case for the off-
resonance-shell process. With condition~3.32!, from ~3.35!
we obtain~for the off-shell part during the collision!

^^p;pur~ t !&&'2
l2v0

2

w
k̄p

2 . ~3.38!

Note the factor 2 in this expression, which is different from
~3.33!.

This shows that the tail contribution in the transition prob-
ability during the collision differs from the one after the col-
lision. As the tail contribution for two-body scattering does
not appear in the secular term, this contribution is negligible
for long-time scales, as compared with the on-resonance-
shell part. However, as we shall see in detail in Sec. VII, a
similar difference between the situations during and after the
collision appears even in the secular term for three-body
scattering. This then leads to a non-negligible effect in the
three-body scattering cross section. Therefore, it is worth-
while to have a closer look at the origin of this difference for
two-body scattering. To this end, let us again consider~3.24!.
With condition ~3.32!, we can approximate~3.24! by

^^p;pur~ t !&&'
l2v0

2

w
k̄p

2 E
2`

`

dsE
2`

`

duF11
i e

i e22h k̄~s2u!
G

3
1

2p
e2~1/2!~s21u2!. ~3.39!

In this expression, there appear two small quantitiese and
h. The value of this expression depends on the way the
asymptotic limits~3.15! or ~3.16! are taken. The first asymp-
totic is the limit e→01, keepingh finite. Then the second
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term inside the bracket of~3.39! vanishes. This corresponds
to the case after the collision. We then recover the result
~3.33! as

^^p;pur~ t !&&'
l2v0

2

w
k̄p

2

1

2p U E
2`

`

ds e2s2/2U25l2v0
2

w
k̄p

2 .

~3.40!

For the second asymptotic, we take the limith→0 first,
and take the limite→01 later. Then the term 2h k̄(s2u) in
the denominator in the second term in the bracket of~3.39! is
negligible as compared withe. This corresponds to the case
during the collision@see ~3.16!#. We then recover result
~3.38! as

^^p;pur~ t !&&'
l2v0

2

w
k̄p

2 2
1

2p U E
2`

`

ds e2s2/2U252
l2v0

2

w
k̄p

2 .

~3.41!

The first asymptotic corresponds to the case oftransient
processes. Ash is finite, the density matrix has a finite Hil-
bert norm defined by~2.19!. The evolution can be described
in the Hilbert space. On the other hand, the second asymp-
totic corresponds to the case ofpersistentprocesses.

In summary, we have seen that the off-shell part of the
transition probability after the collision differs from the one
during the collision~the former is two times larger than the
latter!. The line shapes are different between after and during
the collision. This difference is small as it appears only in the
tail contribution, and does not make any significant contribu-
tion to the two-body scattering cross section. However, for
three-body scattering this difference becomes significant, be-
cause it becomes of the same order of magnitude as the
genuine three-body transition probability. We shall show this
in the subsequent sections.

We have verified the above predictions by a numerical
calculation of the transition probability. In Fig. 1 we display
the result. We have generated this result by taking the square
of the numerical integration of

l^puC1~ t !&5E dk
lv0

vp2vk1 i e
~e2 ivpt2e2 ivkt!^kuC~0!&

522ilv0e
1 ivpt/2E dk

sin@~vp2vk!t/2#

vp2vk

3e1 ivkt/2^kuC~0!&. ~3.42!

Here uC1(t)& is the first-order contribution of the Dyson se-
ries, i.e.,

uC~ t !&5uC0~ t !&1luC1~ t !&1l2uC2~ t !&1••• ,
~3.43!

which is obtained by the iteration of the integral equation for
the Hamiltonian@cf. ~2.8!#

e2 iHt5e2 iHt2 ilE
0

t

dt8e2 iH0~ t2t8!Ve2 iHt 8. ~3.44!

To obtain the first equality in~3.42!, we have added the
infinitesimal i e in the denominator, as the contribution at
vp5vk is finite for e50 and the integrand has no disconti-
nuity at e50 as a function ofe.

In order to perform the numerical integration of~3.42!,
we have replaced the continuous spectrum ofk by the dis-
crete spectrum~with integersn andDk[2p/L!

k5nDk, ~3.45!

by putting the system in a box of sizeL with the usual
periodic boundary conditions. For large enoughL, we can
replace the integration overk by its summation as

E dk⇒Dk(
k
. ~3.46!

As a result of the discretization, there appears a charac-
teristic time scaletB;1/(uk̄uL) which is a crossing time from
one side of the box to the other side with a typical momen-
tum k̄. The time scalet of our observation should be chosen
with the condition

t!tB . ~3.47!

Moreover, in order to deal with distributions@such as~3.36!#
in summations, we have to choose the value ofe as ~see
Appendix E!

udwk /dkuDk
e

!1. ~3.48!

In the numerical integration for the time scale during the
collision, there appear contributions which oscillate rapidly
for large times as a function ofvp . They correspond to the
pole contributions in the integration of~3.34! over z other
than the pole atz51 i e. For large time scales the contribu-
tions approach zero in the sense of distribution~e.g., in the
integration over the final statep with a suitable test func-
tion!. Hence, to compare the numerical simulation to our
prediction, we have taken averages of the numerical results
over the final momentum with intervals involving a few pe-
riods of these rapid oscillations.

FIG. 1. The tail part~i.e., the off-resonance part! of the line
shape of the transition probability for two-body scattering as a func-
tion of the final energywp , for different times, showing the shift
from during~upper line! to after the collision~lower line; see text!.
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In Fig. 1, we display the numerical results for the tail part
~i.e., the off-shell part! of the transition probability as a func-
tion of vp for several time scales. The results are for the case
wk̄51.0,h54.031024, andlv051.0. For these parameters
we havetc51107.8 @see ~3.30!#. In this figure the upper
dashed line is the theoretical result~3.41! for t!tc , while
the lower dashed line is the theoretical result~3.40! for
t@tc . The wavy lines in between these two are generated by
numerical integration of~3.42!. From upper to lower they
correspond tot50.1tc , 0.3tc ,... up to 2.1tc . In agreement
with the theoretical prediction, the numerical results shift
from the theoretical result fort!tc to the theoretical result
derived from theS-matrix approach fort@tc .

IV. THREE-BODY SCATTERING

We now consider our main problem: three-body scatter-
ing. For simplicity, we consider ad-function interaction in a
one-dimensional configuration space. For theS-matrix re-
gime, with the wave function in Hilbert space, this system is
exactly solvable@13–15#. However, for the asymptotic situ-
ation in the statistical mechanics approach, the system be-
comes nonintegrable. We shall discuss this in detail in a
separate paper@16#. We assume the three particles have the
same massm51

2, and that the Hamiltonian is given by

H52 (
a51

3
]2

]Ra
2 1&l (

a,b

3

vabd~Ra2Rb!, ~4.1!

whereRa is the position of particlea, andvab is a constant
which characterizes the interaction between particlesa and
b. We shall also use the standard notationvc[vab , where
(a,b,c) are chosen cyclically from~1,2,3! such asv35v12.
We introduce the factor& in order to have a more compact
expression for the matrix elements of the interaction, written
in the Jacobi coordinate representation. We assumevc.0, so
that there are no bound states. Moreover, we assume the
interaction is weak. Hence we can evaluate the transition
probability of scattering in the lowest order approximation in
the perturbation expansion inl. For the repulsive interaction,
which we consider in this paper, the extension to arbitrary
order inl is straightforward using thet-matrix formulation
~see Appendix A!.

In the center-of-mass system, we have

K11K21K350, ~4.2!

whereKi are the unperturbed momenta. Because the three
particles have the same mass, the sumR11R21R3 is pro-
portional to the position of the center of mass. We put

R11R21R350. ~4.3!

We now introduce Jacobi’s coordinates@5# defined by

kxa5
Kb2Kc

&
, r xa5

Rb2Rc

&
,

~4.4!

kya5A 3
2Ka , r ya5A 3

2Ra ,

where (a,b,c) are chosen cyclically from~1,2,3!, as before.
The unperturbed energy can be written, for anya51, 2, or 3,
as ~see Appendix F!

vk[(
i51

3

Ki
25kxa

2 1kya
2 . ~4.5!

In Appendix F we show that the three sets of Jacobi variables
are related by a rotation with the anglef0[2p/3 ~see Fig. 2!

S r xar ya
D5S cosf0

2sinf0

sinf0

cosf0
D S r xbr yb

D , ~4.6!

as well as

S kxakya
D5S cosf0

2sinf0
sinf0

cosf0
D S kxbkyb

D , ~4.7!

wherea andb are chosen cyclically from~1,2,3!, as before.
Therefore, the variables (r xa ,r ya) and (kxa ,kya) are compo-
nents of vectorsr andk in theath coordinate system, respec-
tively:

r[~r xa ,r ya!, k[~kxa ,kya!. ~4.8!

The magnitude of these vectors is invariant under the change
of coordinate systems. For example, the magnitude ofk is
equal to the square root of the kinetic energy@see~4.5!#.

After eliminating the total momentum, the Hamiltonian
~4.1! can be written in terms of Jacobi’s coordinates as

H5H01lV52
]2

]r xa
2 2

]2

]r ya
2 1l(

c51

3

vcd~r xc!. ~4.9!

We can interpret~4.9! as the Hamiltonian that represents
the evolution of a single particle in two-dimensional space,
interacting with three walls@17#. The three walls are located
at r xc50 ~i.e., ther yc axis!, for c51, 2, and 3, respectively.
We indicate the walls by the solid lines in Fig. 2.

The eigenstates ofH0 are plane waves with momentak
given by

H0uk&5vkuk& ~4.10!

FIG. 2. The three Jacobi coordinate systems. The solid lines
correspond to the walls.
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They satisfy

E d2kuk&^ku51,

^puk&5d~p2k!5d~pxa2kxa!d~pya2kya!. ~4.11!

The momentum representation of the interaction
Va[vad(r xa) is given by

^puVauk&5vad~pya2kya!. ~4.12!

Equation~4.12! corresponds to a collision between particles
b andc, while particlea is moving freely@see~4.4!#.

Similar to two-body scattering, let us assume that the ini-
tial density matrix is given by

ur~0!&&5uC~0!&^C~0!u, ~4.13!

with a Gaussian packet in the momentum representation@see
~3.6!#

^kuC~0!&5dh~k2 k̄![dh~kx12 k̄x1!dh~ky12 k̄y1!.
~4.14!

Again, we assume that the wave packet has a sharp peak
at the most probable momentumk̄, i.e.,

h!uk̄u. ~4.15!

Similar to Sec. III, we shall calculate the transition probabil-
ity for nonforward scattering given by the condition

up2 k̄u@h, ~4.16!

wherep is the final momentum.

V. DISTRIBUTION OF FINAL MOMENTA

We focus our attention on the lowest order term inl that
involves all three particles. We consider a collision between
particles 1 and 2 followed by a collision between particles 2
and 3. This process is of orderl2 in wave-function space,
and can be schematically written by a diagram as shown in
Fig. 3. Following Faddeev, we can resum the processes in
three-body scattering in terms of the two-bodyt matrix. @18#
Considering all connected diagrams we can easily extend our
result to an arbitrary order in the coupling constantl. See
Appendix A.

Diagram~a! in Fig. 3 represents the transition in the origi-
nal coordinate system. This corresponds to a transition from
the initial state (K1 ,K2 ,K3) to the final state (P1 ,P2 ,P3),
going through the intermediate state (K18 ,K28 ,K38) in wave-
function space. Diagram~b! shows the same process as in
diagram~a! but in Jacobi’s coordinate system. This repre-
sents the transition from the initial statek[(kxa,kya) to the

final statep[(pxa,pya), through the intermediate statek8

[(kxa8 ,kya8 ).

In Sec. III we classified the transition probability for two-
body scattering according to on-resonance processes, as well
as off-resonance processes. On-resonance processes make
dominant contributions, as they lead to secular effects which
grow in time during the collision. This classification is also
essential to understanding three-body collisions. Without go-
ing into any complicated calculations, we may already pre-
dict the results for the transition probability using this clas-
sification. In order to show this, let us discuss the
geometrical meaning of on- and off-resonance processes.

As mentioned in Sec. IV,~4.9! can be interpreted as the
Hamiltonian of a single particle in a two-dimensional space,
interacting with three walls. Let us consider the interaction
of the particle with the wall located atr x150. Equation
~4.12! with a51 describes this interaction. Since it corre-
sponds to a collision between particles 2 and 3, while particle
1 moves without any disturbance, they1 component of the
momentum does not change after the particle hits the wall,
i.e., py15ky1. Hence, if there is no other restriction, the mo-
menta after the collision with this wall will line up parallel to
the r x1 axis @see Fig. 4~a!#.

In addition, if the unperturbed energy is conserved as
vk5vp , i.e., if the process is on-resonance-shell, we have

kx1
2 1ky1

2 5px1
2 1py1

2 , ~5.1!

which leads to

px156kx1 . ~5.2!

Thus there is a reflected particle, as well as a transmitted
particle. The horizontal component of the momentumpx1
~which is proportional to the relative momentum of particles
2 and 3! can only take the same or the opposite sign of its
initial value @see Fig. 4~b!#.

Now we can draw the final momentum distribution of the

FIG. 3. ~12!–~23! collision process:~a! original representation,
~b! representation with Jacobi momenta.

FIG. 4. ~a! Off-shell and~b! on-shell collisions of the particle
with a wall.
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transition probability corresponding to the process in Fig.
3~b!. In Fig. 5, we show the processes which contain at least
one on-resonance-shell scattering.

Diagram~a! in Fig. 5 corresponds to the process in which
the unperturbed energy is preserved between the initial and
final states, as well as between the intermediate and final
states. We call this process the on-on shell process. This is
the process corresponding to rescattering, i.e., to two succes-
sive two-body collisions on the resonance shell@6,19#. The
first collision splits the incoming beam into two~transmitted
and reflected! beams. Then the second collision again splits
each beam into two. Hence there are four possible peaks in
the distribution of the final momenta. Note that the lower left
position of the arrow in this diagram has the same direction
as the incoming beam. This corresponds to forward scatter-
ing.

Diagram~b! corresponds to the process in which the un-
perturbed energy is preserved between the initial and final
states, but not in the intermediate state. Therefore, there must
be a very short-time interval between the two collisions. In
other words, the three particles interact nearly at the same
point in space. We may call this process the genuine triple
collision ~or the triple collision, in short!. The collision with
each wall is an off-shell process. But, since the final unper-
turbed energy is equal to the initial unperturbed energy, the
final momentum distribution is a circumference@see~4.5!#
that has a radiuspr equal to the square root of the conserved
energy, i.e.,pr5Av k̄ .

Diagram~c! corresponds to the process in which the un-
perturbed energy is preserved between the final and interme-
diate states, but not between the intermediate and initial
states. We may call this process the on-off shell process. The
beam scattered by the first off-shell interaction is lined up on
the left tilted dashed line@which is perpendicular to the~12!
wall as shown in Fig. 5~c!#. The second interaction is on-
resonance-shell. Then this produces two dashed lines. One
corresponds to the transmitted beams, and the other to their
reflections.

Finally, diagram~d! is the off-on shell process. This cor-
responds to the process in which the unperturbed energy is
not preserved between the final and intermediate states, but
is preserved between the intermediate and initial states. The
first on-shell interaction splits the incoming beam into two
beams; one is a transmitted beam and the other a reflected
beam. Then, after the second off-shell interaction, these
beams are both lined up on the two horizontal dashed lines
shown in Fig. 5~d!.

In Fig. 6 we sketch the total results of the momentum
distribution in Jacobi’s coordinate plane during the collision.
As has been shown in Sec. III, there is a process appearing
only at intermediate times in two-body scattering. A similar
phenomenon also exists in three-body scattering. We shall
show in Sec. VI that the off-on shell process is transient, and
can be observed only during the collision. In Fig. 7 we
sketch the momentum distribution after all interaction pro-
cesses are terminated in accordance with theS-matrix ap-
proach. The difference between this momentum distribution
and the previous one is quite significant.

VI. DIAGRAMMATIC REPRESENTATION
IN LIOUVILLE SPACE

In this section and Sec. VII we shall verify the existence
of the transient phenomenon mentioned in Sec. V in terms of
the resolvent formalism. The calculations are quite parallel to
the ones performed in Sec. III for two-body scattering. To
perform the calculation systematically, we shall introduce a
diagrammatic representation of the perturbation series of the
resolvent for~2.16! in the Liouville space.

The interactionLV consists of two terms,V31 and
213V @see~2.27!#. In order to describe a collision process

FIG. 5. Interaction processes with the~12! and~23! walls, con-
taining at least one on-shell collision:~a! on-on shell~rescattering!,
~b! triple collision, ~c! on-off shell, and~d! off-on shell ~see text!.

FIG. 6. Final distribution of the momentum for a succession of
a ~12! interaction followed by a~23! interaction, for time scales
shorter than the duration of the collision. The initial momentum is
at the lower left dot on the circle. The contributions are~a! rescat-
tering ~four dots!, ~b! triple collision ~circle!, ~c! on-off shell pro-
cess~tilted lines!, and~d! off-on shell process~horizontal lines!.
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in the Liouville space schematically, we associate Fig. 8~a!
with Va31 and Fig. 8~b! with 213Va ~we use the Jacobi
coordinate representation!.

Figure 8~a! corresponds to the matrix elements

^^k8; l8u~Va31!uk; l&&5^k8uVauk&d~ l2 l8!, ~6.1!

while Fig. 8~b! corresponds to

^^k8; l8u~213Va!uk; l&&52d~k82k!^ luVau l8&. ~6.2!

Note the relation of the order of the indexesl8 and l of
diagram ~b! to the order of these in the matrix element
^luVaul8&.

Moreover, we can associate the propagator (z2L0)
21 to

the two horizontal lines in the diagram, e.g., the lines with
indicesk and l in the diagrams in Fig. 8 correspond to

^^k; lu
1

z2L0
uk; l&&5

1

z2wkl
, ~6.3!

where the subscriptk in wkl is associated with the upper line
in the diagram, andl with the lower line. The diagrams in
Fig. 8 correspond to the first-order contribution ofl in the
perturbation series~2.16!. In Figs. 9–11, we display the first
few diagrams of the lowest orders. Figure 9 corresponds to
the second order, Fig. 10 to the third order, and Fig. 11 the

first few diagrams of the fourth order. These diagrams con-
sist of many different types of processes: For example, if the
indices of the interactions are the same, i.e.,a5b5••• , the
processes correspond to the so-called disconnected two-body
processes that describe two-body scattering among the three
particles in which one of the particles does not participate in
the scattering@18#. Three-body scattering is associated with
interacting processes with more than one index. Moreover,
for a given initial stateuk;k&&, these diagrams consist of for-
ward scattering~i.e., the final momenta of all three particles
are the same as their initial values!, partially forward scatter-
ing ~i.e., in the final state one of the particles keeps the same
momentum as its initial value!, and true three-body nonfor-
ward scattering~i.e., the final momenta of all three particles
change their values of the initial momenta!. In the following
discussion, we shall restrict ourselves to the true three-body
nonforward scattering process. This restricts the number of
the diagrams, and simplifies the calculation. The following
calculation can be easily extended to the processes including
forward and partially forward scattering.

Through the diagrammatic representation, one can easily
recognize that the lowest order contributions to the true
three-body nonforward scattering process start withl4 and
are represented by the diagrams in the last line in Fig. 11. Let
us consider the casea5c and b5d with aÞb in the dia-
grams. These are the simplest processes that lead to the res-
cattering anomaly for the transition probability in the usual
approach by theS-matrix theory. We shall come back this
problem below.

In Fig. 12 we show all possible processes fora51 and
b53. They correspond to the process in Fig. 3~b! in wave-
function space. Each diagram corresponds to different order-
ings of the interactionsV131, 213V1, V331, and213V3.
ReplacingVa by the two-bodyt matrix ta(z) with a suitable
argumentz, one can obtain the corresponding diagram in the
Faddeev expansion~see Appendix A!. These processes~and
the processes obtained by permutation of particles! are the
only true three-body nonforward scattering processes that

FIG. 7. Final distribution of the momentum for a succession of
a ~12! interaction followed by a~23! interaction, for time scales
larger than the duration of the collision~the S-matrix regime!.
There are no horizontal lines, which correspond to the off-on shell
process.

FIG. 8. Diagramatic representation of the interactions in Liou-
ville space:~a! Va31, ~b! 213Va .

FIG. 9. Second-order diagrams in Liouville space.

FIG. 10. Third-order diagrams in Liouville space.
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lead to the rescattering anomaly in the usualS-matrix theory
approach@6–8#. The momentak and l in the diagrams cor-
respond to the density matrixrkl~0!.

Diagram~f! represents the term

l4
1

z2wpp
^puV1uk8&

1

z2wk8p
^k8uV3uk&

1

z2wkp

3^ l8u~2V1!up&
1

z2wkl8
^ lu~2V3!u l8&

1

z2wkl
. ~6.4!

We havewpp50 in the leftmost propagator. Using~4.12!,
~6.4! can be written as

1

z
v1d~ky18 2py1!

1

z2wk8p
v3d~ky38 2ky3!

1

z2wkp

3~2v1!d~ l y18 2py1!
1

z2wkl8
~2v3!d~ l y38 2 l y3!

1

z2wkl
.

~6.5!

Similarly we can write corresponding expressions to dia-
grams~a!–~e! in Fig. 12. Let us denote the sum of the con-
tributions corresponding to all diagrams of Fig. 12 by
F~k8,l8,k,l,z!. Then we obtain

F~p,k8,l8,k,l,z!5l4v1
2v3

2D~p,k8,l8,k,l!F1z S 1

z2wpl8
1

1

z2wk8p
D 1

z2wk8 l 8
S 1

z2wk8 l
1

1

z2wkl8
D 1

z2wkl

1
1

z S 1

z2wpl8

1

z2wpl

1

z2wk8 l
1

1

z2wk8p

1

z2wkp

1

z2wkl8
D 1

z2wkl
G , ~6.6!

where

D~p,k8,l8,k,l![d~ky18 2py1!d~ky38 2ky3!d~ l y18 2py1!

3d~ l y38 2 l y3!. ~6.7!

The first term inside the brackets@i.e., the term with the
propagator (z2wk8l 8)

21# is the sum of diagrams~a!–~d!,
and the second term is the sum of diagrams~e! and~f!. Then
the probability density of finding the momentum atp is
given by @see~2.16!#

^^p;pur̄~ t !&&5E d2k8E d2l 8E d2kE d2l
1

2p i

3E
C
dz e2 iztF~p,k8,l8,k,l,z!

3^^k; lur̄~0!&&, ~6.8!

where the bar denotes the process we are looking at. The
asymptotic transition probability is given by the residue of
~6.8! at the polez51 i e, i.e.,

^^p;pur̄~ t !&&'E d2k8E d2l 8E d2kE d2l

3 Resz51 i e@e
2 iztF~p,k8,l8,k,l,z!

3^^k; lur~0!&&#, ~6.9!

where Res[ residue. Corresponding to~3.21!, let us define
the variabless andu through the relations

k5 k̄1hs, l5 k̄1hu. ~6.10!

Then the initial wave packet~4.13! is written as

^^k; lur~0!&&5
1

2ph2 e
2~ usu21uuu2!/2. ~6.11!

Corresponding to~3.23!, we have~for large wave packet!

FIG. 11. Some of the fourth-order diagrams in Liouville space. FIG. 12. Fourth-order diagrams in Liouville space correspond-
ing to the process in Fig. 3~b! in wave-function space.
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vk[uku25v k̄12h~ k̄•s!1h2usu2'v k̄12h~ k̄•s!,
~6.12!

where we used~4.15!. For the energyvk8 of the intermediate
state we have

vk85kx18
21ky18

2. ~6.13!

The d function in the leftmost interaction̂puV1uk8& in the
upper line of the diagrams in Fig. 12 leads to@see~4.12!#

ky18 5py1 . ~6.14!

From ~4.2! and ~4.4!, and by thed function in the right-
most interaction̂k8uV3uk& we have

kx18 52
K1812K38

&
52

ky18 12ky38

)
52

py112ky3

)
,

~6.15!

which leads to@see~6.10!#

kx18 52
py112k̄y312hsy3

)
. ~6.16!

With ~6.14! this shows that the intermediate momentumk8
has a fixed value for given initial and final momenta. We
have

vk85kx18
21ky18

25 4
3 ~py1

2 1py1ky31ky3
2 !. ~6.17!

Similar to these expressions, let us introduce a momen-
tum k̄85( k̄x18 ,k̄y18 ) by @cf. ~6.14! and ~6.15!#

k̄x18 [2
py112k̄y3

)
,

k̄y18 [py1 . ~6.18!

Then one can writekx18 as

kx18 5 k̄x18 2h8sy3 , ~6.19!

where

h8[
2

)
h. ~6.20!

In analogy to~6.10!, k̄x18 corresponds to the most probable
value of kx18 , which is proportional to the relative momen-
tum of particles 2 and 3 in the intermediate state@see~4.4!#.
Similar to ~6.17!, we have

v k̄ 85~ k̄x18 !21~ k̄y18 !25 4
3 ~py1

2 1py1k̄y31 k̄y3
2 !. ~6.21!

Then intermediate energyvk8 can be written as

vk85~ k̄x18 2h8sy3!
21py1

2 5v k̄ 822h8k̄x18 sy31h82sy3
2 .

~6.22!

We have condition~4.15!. This simplifies the following
calculations. If we can impose a similar condition on the
intermediate states, the calculations are even more simpli-
fied. This is possible, because the value ofk̄x18 in the inter-
mediate momentum depends onpy1 of the final momentum,
as well ask̄y3 in the initial wave packet@see~6.18!#. Hence
let us choose the initial and final momenta such that

h!uk̄x18 u. ~6.23!

Then we can neglect the last term in~6.22!, becauseusu is of
order 1@see~6.11!#. We then have

vk8'v k̄ 822h8k̄x18 sy35v k̄ 812hk32sy3 , ~6.24!

where

k32[2
2

)
k̄x18 5 2

3 ~py112k̄y3!. ~6.25!

Here we have introduced the index 32 to emphasize thatk32
is proportional to the average relative momentum of particles
3 and 2, in the intermediate state@see~4.4!#.

With similar approximations, for the energiesvl andv l8
@see~6.10!# we obtain

v l'v k̄12h~ k̄•u!, v l 8'v k̄ 812hk32uy3 . ~6.26!

Equations~6.12!, ~6.24!, and ~6.26! show that the deviation
of the initial and intermediate energiesvk , vl , vk8, andvl 8
from their averages is small for a sufficiently large wave
packet.

VII. OFF-ON SHELL PROCESS

Now we are ready to evaluate contribution~6.9!. We first
consider the off-on shell process with the conditions

uvp2v k̄ 8u@huk32u and uvp2v k̄ 8u@huk̄u, ~7.1!

while

O~ uv k̄ 82v k̄ u!5huk̄u;huk32u. ~7.2!

This is the process corresponding to diagram~d! in Fig. 5. As
we shall show, this is a transient process, i.e., this exists only
during the collision, and disappears after all interaction pro-
cesses are finished.

From ~6.26! we have

wpl8'wp k̄822hk32uy3 . ~7.3!

Equation~7.1! gives us

wpl8'wp k̄8 . ~7.4!

Similarly we have
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2wk8p'wpl'2wkp'wp k̄8 . ~7.5!

Then from~6.6! we obtain~for uzu;e!

F1~p,k8,l8,k,l,z!'l4v1
2v3

2D~p,k8,l8,k,l!
1

w
p k̄8

2

1

z

1

z2wkl
S 1

z2wk8 l
1

1

z2wkl8
D F2S 11

z

z2wk8 l 8
D11G . ~7.6!

The subscript 1 inF1 denotes that~7.6! is evaluated with conditions~7.1! and~7.2!. The first term~with the parentheses! inside
the last bracket in~7.6! corresponds to the sum of diagrams~a!–~d! in Fig. 12, while the last term~i.e., 1!, to the sum of
diagrams~e! and ~f!. Then we obtain from~6.9! that

^^p;pur̄1~ t !&&'2l4
v1
2v3

2

w
p k̄8

2 E d2k d2l E d2k8d2l 8D~p,k8,l8,k,l!Resz51 i eFe2 izt

z

1

z2wk8 l

1

z2wkl8
S z

z2wkl
1

z

z2wk8 l 8
D G

3^^k; lur~0!&&, ~7.7!

where 1 in r̄1 denotes that this is evaluated for the off-on
shell process withF1.

Applying Eqs.~6.12!, ~6.24!, and~6.26!, we have

wk8 l 8'2hk23~sy32uy3!,
~7.8!

wkl'2h k̄•~s2u!52huk̄u~sk̄2uk̄!,

wheresk̄[(s• k̄)/uk̄u is the component ofs in the direction
of k̄, and similarlyuk̄[(u• k̄)/uk̄u. Then the two terms inside
the parentheses in~7.7! are written as

i e

i e22hk23~sy32uy3!
1

i e

i e22huk̄u~sk̄2uk̄!
. ~7.9!

Similar to two-body scattering, we may define the follow-
ing two time scales of the duration of the collision@see
~3.30!#:

tc5
Ap

4huk̄u
, tc85

Ap

4huk32u
. ~7.10!

The processes during and after the collision are distinguished
by the limiting procedures ofe andh. After the collision we
have t@tc and t@tc8 , which correspond toe!huk̄u and
e!huk32u, respectively. In this case~7.9! vanishes, and we
have

^^p;pur̄1~ t !&&→0. ~7.11!

In contrast, during the collision we havet!tc and t
!tc8 , which correspond toe@huk̄u and e@huk32u. For this
case we can approximate the initial condition by a plane
wave, i.e.,

^^k; lur~0!&&→d~k2 l!d~k2 k̄!. ~7.12!

We havevk'v l'v k̄ andvk8'v l 8'v k̄ 8 @see Eqs.~6.12!,
~6.24!, and~6.26!#. In this case the value of~7.9! becomes 2.

Moreover, the integrations overk8 and l8 can be per-
formed using thed functions. For example, we have@see
~F8!#

E dkx18 d~ky38 2ky3!5
2

)
E dkx18 dS kx18 1

1

)
ky18 1

2

)
ky3D .
~7.13!

This leads to a factor 2/). Similarly we have the same factor
by the integration overl x18 . Then,~7.7! leads to

^^p;pur̄1~ t !&&'2l4
4v1

2v3
2

3w
p k̄8

2 Resz51 i eFe2 izt

z2 S 1

z2wk̄ 8 k̄

1
1

z1wk̄ 8 k̄
D G . ~7.14!

Because of the double pole atz51 i e, this expression gives
the asymptotic transition probability as

r̄1~p,p,t !'2pl4
4v1

2v3
2

3w
k̄p

2 td~v k̄ 82v k̄ !. ~7.15!

During the collision, the term we are considering here
grows linearly in time, and then vanishes after the collision.
This is the transient process.

There are three more processes: the rescattering process,
the genuine triple collision process, and the on-off shell pro-
cess, corresponding to diagrams~a!, ~b!, and ~c! in Fig. 5,
respectively. We present detailed calculations in Appendices
G–I, and here give only the results.

For the genuine triple collision and the on-off shell pro-
cesses, the transition probabilities grow linearly in time dur-
ing the collisions, and reach constants after the collisions.

The rescattering process corresponds to two successive
two-body collisions. The time interval between the two-body
collision may be long. Assuming, for example, thattc!tc8
@see~7.10!#, for the rescattering process one may consider
three time scales:~1! t!tc , ~2! tc!t!tc8 , and~3! tc8!t. As
shown in Appendix I, the contribution from the rescattering
process grows asymptotically ast2/2 in time during time
scale~1!, and linearly astc8t during time scale~2!, and then
reaches a constant proportional totctc8 after all collisions are
finished in time scale~3!.

As a result of thet2 secular contribution in the rescatter-
ing process, the transition rate per unit time diverges for a
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large time scale during the collision. This corresponds to the
well-known rescattering anomalyfor three-body scattering
@6#. This anomaly appears only in the channel between the
‘‘free three particles in’’ and ‘‘free three particles out,’’ as
this is associated to the successive two-body collisions. The
origin of this difficulty in the usualS-matrix approach is that
the Möller scattering states for the Hamiltonian do not be-
long to the Hilbert space, as the three-bodyt matrix in the
wave-function space is a distribution in the momentum rep-
resentation. Hence, when we take the square of thet matrix
in evaluating the transition rate, the on-shell processes in the
intermediate states lead to the divergence associated to this
anomaly. Through the optical theorem of thet matrix, this
divergence is related to the divergence of the on-shell three-
body t matrix itself.

In contrast, the complex spectral representation for the
Liouvillian introduced in our work@9,10# deals consistently
with the scattering outside the Hilbert space. After explicitly
separating the secular effect oft2, the true three-body pro-
cesses associated witht linear secular terms give a finite
transition rate for the three-body scattering~this transition
rate leads to a finite contribution, even when we integrate it
over the domain of the final momentum including the points
satisfying the on-on shell condition!. Hence our theory re-
moves the difficulty of the rescattering anomaly. The rescat-
tering anomaly itself has been a longstanding problem
@19,20#. We shall prove that our theory indeed leads to a
divergence-free transition rate for the true three-body scatter-
ing in a separate paper@11#.

In summary we have obtained the results which are dis-
played in Table II ~abbreviating the common factor
4
3l

4v 1
2v 3

2!: Each process~a!–~d! in Table II corresponds to
each diagram~a!–~d! in Fig. 5. In ~a! the parameterg is a
constant which depends on the direction of the final momen-
tum ~see Appendix I!. The last process~d! is an effect that
can be observed only for finite time during the collision for
large wave packets, or for persistent interaction with delocal-
ized density matrices outside Hilbert space.

We note that the difference of the transition probability
between the collision and after the collision appears in the
secular term proportional tot. This is a striking difference
from the two-body scattering discussed in Sec. III. After
separating the rescattering contribution, the true three-body
scattering cross section is defined by the transition rate per
unit time. Our results show that the correction of the true
three-body scattering cross section to the one obtained by the
S-matrix theory during the collision is of thesameorder as
the rest of contributions. In Sec. VIII we shall present some
results of numerical simulations to verify our predictions.

VIII. NUMERICAL SIMULATIONS

From the results obtained in Sec. VII, we can predict that
the two horizontal lines corresponding to the off-on shell
process~d! in Fig. 6 are transient; i.e., they exist only during
the collision, and then disappear after the collision. On the
other hand, all other lines in Fig. 6 as well as the rescattering
peaks remain after the collision~see Table II!.

We have verified this prediction by numerical simulations
for three-body scattering. We display the numerical results in
Figs. 13~a!–13~c! for different times. We have generated
them by taking the square of the second-order contribution in
the Dyson series obtained by the iteration of the integral
equation~3.44!, similar to what we did for two-body scatter-
ing in Sec. III. In Fig. 13, the results correspond to the initial
conditions k̄x15 k̄y1521, h50.006 25, andl5va51 for
a51, 2, and 3. For these parameters we havetc550.1 @see
~7.10!#. As in the case of two-body scattering, there appear
contributions which oscillate rapidly for large time scales as
a function ofvp . They approach zero in the sense of distri-
bution. To compare the numerical simulations to our predic-
tion, we have taken averages of the numerical results over
the final momentum with intervalsDv510h, which involve
a few periods of these rapid oscillations.

Figure 13~a! is the result att50.1tc : the particles have
not yet reached an asymptotic state. Figure 13~b! is the result
at t5tc , which corresponds to the processduring the colli-
sion. All contributions shown in Fig. 6 can be seen. Figure
13~b! is the result att510tc : the particles are in the asymp-
totic stateafter the collision. This is the final state given by
S-matrix theory, shown schematically in Fig. 7. The numeri-
cal results confirm our prediction.

IX. DESTRUCTION OF THE FACTORIZABILITY
OF DENSITY MATRICES—COLLAPSE OF THE

WAVE FUNCTION

In previous sections, for scattering during the collision,
we approximated large wave packets by plane waves that lie
outside the Hilbert space. In this section we shall more
closely investigate this approximation in terms of the evolu-
tion of the wave function. We shall show that the density
matrix becomes nonfactorizable into a product of wave func-
tions during the collision, for time scales when one can iden-
tify the rapid oscillations with distributions making a vanish-
ing contribution. The wave function then collapses due to
Poincare’s resonance for this time scale.

Let us first consider the two-body scattering discussed in
Sec. III. Using the solution of the wave function in~3.42!,
we can write the density matrix in a factorizable form. Then,
for nonforward scattering~3.12! ~to second order ofl2!, we
have

TABLE II. Terms of the transition probability for the~12!–~23! collision process.

t!tc8 , tc t@tc8 , tc

~a! rescattering (2pt)2d(wp k̄8)d(wp k̄)/2 (2p)2tctc8d(wp k̄8)d(wp k̄)g
~b! triple collision (2/w

p k̄8

2
)ptd(wk̄p) (2/w

p k̄8

2
)ptcd(wk̄p)

~c! on-off shell (2/w
k̄ 8 k̄
2

)ptd(wp k̄8) (2/w
k̄ 8 k̄
2

)ptc8d(wp k̄8)
~d! off-on shell (2/w

k̄p

2
)ptd(wk̄ 8 k̄)

;0
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^^p;pur~ t !&&'l2z^puC1~ t !& z254l2v0
2E dkE dl

sin@~vp2vk!t/2#

vp2vk
e1 ivkt/2

sin@~vp2v l !t/2#

vp2v l
e2 iv l t/2^^k; l ur~0!&&.

~9.1!

Using ~3.23!, we have@with tc8[(h k̄)21;tc#

sin@~vp2vk!t/2#

vp2vk

e1 ivkt/25w
k̄p

21F11
s

wk̄ptc8
1

s2

2wk̄ptc8

h

k̄
G21

sinFwk̄pt

2
1s

t

tc8
1s2

t

2tc8

h

k̄
G

3expF1 i S v k̄ t

2
1s

t

tc8
1s2

t

2tc8

h

k̄ D G . ~9.2!

Let us then consider the case during the collision. Assuming
t/tc8 and (uwk̄putc8)

21 are much smaller than unity, we can
expand~9.2! in the Taylor series fors;1. Then we have@see
~3.8!#

sin@~vp2vk!t/2#

vp2vk
e1 ivkt/25

sin~wp k̄t/2!

wp k̄
e1 iv k̄ t/21OS sttc8

D
1OS s

uwp k̄utc8
D . ~9.3!

Substituting this and~3.22! into ~9.1!, we obtain

^^p;pur~ t !&&54l2v0
2Fsin~wp k̄t/2!

wp k̄
G2 1

2p U E
2`

1`

ds e2s2/2U2

1O~l3!1OS l2t

tc8
D 1OS l2

uwp k̄utc8
D . ~9.4!

The value of the integral with the factor 1/2p in the first term
is one@see~3.40!#. Then the first term is precisely the con-
tribution from the plane wave with the momentumk̄. This
verifies the approximation we have used in~3.34!.

Moreover, one can verify the following relation under the
integration overw with suitable test functions and fore→01
@see Appendix J#

4Fsin~wt/2!

w G252pd~w!t1F 1

~w2 i e!2
~12e2 iwt!1c.c.G .

~9.5!

This is valid for all time scales.
Let us then consider the caset.0. With a suitable test

function f (w) let us consider an oscillating contribution in
~9.5!, e.g.,

I ~ t !5E dw
f ~w!

~w2 i e!2
e2 iwt. ~9.6!

Sincew5wp k̄ in ~9.4!, the integration overw ~or over the
final momentump! is bounded from below for a givenk̄. A
double pole is located atw51 i e in the upper-half complex
plane ofw. Because of the factor exp@2iwt# we can change
the contour ofw into the lower-half-plane fort.0 without
crossing the double pole. This implies that there is no secular
contribution associated to the resonance pole atw51 i e in
~9.6!. For a large time scale the factor exp@2iwt# makes a
rapidly oscillating contribution as a function ofw, and one
can neglect this term as compared with the secular term and
also with the time-independent terms in~9.5!. Similarly the
complex conjugate of~9.6! is negligible. Dropping these os-
cillating terms, we obtain~3.35!.

We note that whenever we drop the oscillating terms in
~9.5!, the density matrix cannot be factorized as a product of
wave functions. The secular effect proportional tot in ~9.5!
corresponds to Poincare´’s resonance effect. The separation of
the resonance effect from the rapidly oscillating contribu-
tions leads to a dynamical mechanism of the collapse of
wave functions.

Strictly speaking, the time scale to identify the contribu-
tion ~9.6! as zero is infinity. In order to achieve the collapse
of the wave function in a finite time scale, we need a repeti-
tion of the collisions with many scatterers@9#. The effect of
the repeated collisions can already be seen in the three-body
scattering considered in this paper. Let us demonstrate this
for the lowest order contribution inl of the transition prob-
ability for the true three-body nonforward scattering consid-
ered in previous sections. We assume the initial wave func-
tion is given by a plane waveuC~0!&5uk̄&. Integrating~3.42!
twice, we obtain

^puC̄~ t !&5 (
aÞb

Cab~ t !, ~9.7!

where the bar onC denotes the processes we are looking at,
and
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Cab~ t !5l2vavbE
0

t

dt2E
0

t2
dt1e

2 ivp~ t2t2!e2 ivkab~ t22t1!e2 iv k̄ t1

522il2vavb
e2 ivpt/2

wkabk̄
S sin@wk̄pt/2#

wk̄p
exp@2 iw k̄ pt/2#2

sin@wkabpt/2#

wkabp
exp@2 iwkabpt/2# D , ~9.8!

with @see~6.21!#

vkab[
4
3 ~pya

2 1pyak̄yb1 k̄yb
2 !. ~9.9!

Summationsa andb in ~9.7! are taken over particles 1, 2, and 3. This leads to

^^p;pur̄~ t !&&5U(
aÞb

^puC1~ t !&U25 (
aÞb

(
cÞd

Cab~ t !@Ccd~ t !#c.c.

54l4(
aÞb

(
cÞd

vavbvcvb
wkabk̄wkcdk̄

H S sin~wp k̄t/2!

wp k̄
2
sin~wkabpt/2!

wkabp
D S sin~wp k̄t/2!

wp k̄
2
sin~wkcdpt/2!

wkcdp
D

12
sin~wp k̄t/2!

wp k̄
Fsin~wkabpt/2!

wkabp
sin2Swkabpt

4 D1
sin~wkcdpt/2!

wkcdp
sin2Swkcdpt

4 D G
22

sin~wkabpt/2!sin~wkcdpt/2!

wkabpwkcdp
sin2Swkabkcdt

4 D J . ~9.10!

As a function of the energyvp , this expression oscillates
in a much more complicated way than~9.4! for two-body
scattering. We present thevp dependence of~9.4! for two-
body scattering in Fig. 14, as well as that of~9.10! for three-
body scattering in Fig. 15 for the same given timet5102. In
the figure we putl51, v051, andva51 for a51, 2, and 3.
In Fig. 14 we plot the casev k̄52. In Fig. 15 we plot the
casek̄x15 k̄y1521. In order to observe the rescattering ef-
fect, we have plotted thevp dependence of~9.10! in the
same direction of the incident momentumk. For three-body
scattering there appear several peaks with complex back-
ground oscillation. The highest peaks of order 109 corre-
spond to the highest secular effect witht2 that comes from
the rescattering terms~i.e., repetition of two-body scattering!
for a5c andb5d in ~9.10!. The peaks of order 105–107 in
the vicinity of the highest peak are small corrections of the
rescattering effect. The peaks of order 104–105 far from the
rescattering peak corresponds to the linear secular effect with
t that comes from all possible combinations ofa, b, c, andd
in ~9.10!. The complex background oscillation leads to non-
secular effects of order 103.

The appearance of higher secular effect makes less sig-
nificant the background oscillation, and one can then neglect
this oscillating contribution in the sense of distribution in a
shorter time scale than for two-body scattering. Arbitrary
higher secular effects oftn by repetition of the collisions for
many-body system in the thermodynamic limit then lead to a
finite time scale to approach equilibrium, even when we start
with a pure state~e.g., a plane wave! @9#. As the equilibrium
state is a mixed state, the wave function collapses in a finite
time scale because of the repetition of the collisions for mac-
roscopic systems.

X. CONCLUDING REMARKS

The main result of this paper is the extension of scattering
theory for finite time scales during the interaction. For large

wave packets we obtain an asymptotic description which is
different from the usualS-matrix approach~Table I!. We
have illustrated our approach for two- and three-body scat-
tering. During the collision there appear effects in scattering
cross sections which result from secular effects, but differ
from the ones predicted by theS-matrix theory for asymp-
totic times after the collision. We have verified our predic-
tions by numerical simulations.

The consideration of the process during the interaction is
the normal procedure in many-body situations as realized for
example in chemical reactions. Let us quote the standard text
by Goldberger and Watson@3#.

‘‘The analysis of the first and third intervals~i.e., before
and after the collision! involves only a kinematic study and
can be done in a general and straightforward manner. The
description of the interaction of the system~i.e., during the
collision! involves the most fundamental and difficult prob-
lems in physics.’’

Indeed, the description during the collision is closely con-
nected to our work on the extension of quantum theory~or of
classical theory as well! beyond the Hilbert space for large
Poincare´ systems~LPS’s!. Here LPS’s mean nonintegrable
systems with continuous spectrum of unperturbed momenta
or energy@9,10,21#. This theory applies to persistent scatter-
ing using delocalized density matrices~an example is plane
waves, discussed in this paper!. Persistent interactions re-
quire singular distribution functions~i.e. thed-function sin-
gularity in momentum! which lie outside the Hilbert space.
The S-matrix theory is no longer valid. We have then ob-
tained complex, irreducible spectral representations of the
evolution operators, here the Liouville operatorLH in gener-
alized function space@9,10#. Here ‘‘complex’’ means that the
eigenvalues of the Liouvillian are complex numbers, whose
imaginary part refers to the various irreversible processes,
such as decay or diffusion. ‘‘Irreducible’’ means that these
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representations cannot be implemented by a wave function
that is a solution of the Schro¨dinger equation. As a result, the
dynamical group of evolution splits into two semigroups, one
oriented to our future, and the other to the past. In the con-
text of scattering theory discussed, irreversibility is mani-
fested as the fact that the scattering cross section ispositive.
As a result of irreducibility, density matrices are no longer
factorizable as a product of wave functions for LPS’s. This
leads to the collapse of wave functions discussed in Sec. IX.
Therefore, the equivalence between theindividual descrip-
tion in terms of wave functions, and thestatisticaldescrip-
tion in terms of density matrices, is destroyed. The laws of
quantum mechanics take another form as they have to be

formulated on the statistical level. They express possibilities
and no more certitudes. We shall discuss the relation of the
results obtained in this paper and the complex spectral rep-
resentation elsewhere@21#.

In this paper, we have concentrated only on a single pro-
cess in three-body scattering@i.e., a~12! interaction followed
by a ~23! interaction#. It is easy to extend our results to other
three-body processes. In a subsequent paper, we shall con-
sider all three-body scattering processes and give an explicit
expression for the difference in the cross sections obtained
by the two asymptotic theories. This may be the starting
point for a real world experiment to test the limits of the
traditional Hilbert space formulation of quantum theory.

FIG. 13. Numerical results of the final momentum distribution for a succession of a~12! interaction followed by a~23! interaction, in the
Jacobi coordinate plane for~a! t50.1tc , ~b! t5tc , and~c! t510tc ~see text!.
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APPENDIX A: T MATRICES

Let us introduce the two-bodyt matrices in wave-function
space. They are defined as the solutions of the integral equa-
tion ~in the Jacobi coordinate system!

ta~z!5lVa1lVa

1

z2H0
ta~z!, ~A1!

wherea51, 2, or 3, as usual. For thed-function interaction
considered in this paper, the exact solutions ofta(z) are
given by

tpk
a ~z!5^puta~z!uk&

5lvad~pya2kya!F11E d2l
lvad~ l ya2kya!

v l2z G21

.

~A2!

Applying the Faddeev expansion with these solutions for
the two-body collision, one can construct the three-bodyt

FIG. 14. Transition probability
for two-body scattering in loga-
rithmic ~log10! scale~see text!.

FIG. 15. Transition probability
for three-body scattering in loga-
rithmic ~log10! scale~see text!.
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matrix. The characteristic of the Faddeev expansion is that in
each term in the expansion there is no successive repetition
of the two-bodyt matrices with the same indexa for the
process involving all three particles. This rearrangement of
the series expansion leads to a well-defined three-bodyt ma-
trix in wave-function space@18#.

Corresponding to the two-bodyt matrices in wave-
function space, we can introduceT a

.(z) andT a
,(z) in Liou-

ville space. They satisfy, respectively,

Ta
.~z!5~lVa31!1~lVa31!

1

z2L0
Ta

.~z!, ~A3!

2Ta
,~z!52~13lVa!2~13lVa!

1

z2L0
@2Ta

,~z!#.

~A4!

They are related tota by

^^p;p8uTa
.~z!uk;k8&&5tpk

a ~z1vk8!d~k82p8!, ~A5!

^^p;p8uTa
,~z!uk;k8&&5d~p2k!tk8p8

a
~2z1vk!. ~A6!

ReplacingVa31 and 13Va , the diagrams in Fig. 12, by
T a

. andT a
,, respectively, we obtain the simplest true three-

body nonforward scattering in all order ofl. For example,
corresponding to~6.4!, we have

1

z2wpp
tpk8
1

~z1vp!
1

z2wk8p
tk8k
3

~z1vp!

3
1

z2wkp
@2t l8p

1
~2z1vk!#

1

z2wkl8
@2t ll8

3
~2z1vk!#

3
1

z2wkl
. ~A7!

Performing a similar replacement in the results obtained in
the text, we obtain the exact form of the transition probabil-
ity of true three-body nonforward scattering that involves the
rescattering process.

APPENDIX B: EVALUATION OF INTEGRATION „3.25…

In this appendix we shall prove that

I ~b,m![E
2`

`

ds
1

s1b
e2m2s2

52p ie2m2b2Fsgn~ Im b!1
2i

Ap
erfi~mb!G ,

~B1!

which holds for

Im bÞ0 uarg~m!u,p/4. ~B2!

Here, erfi(x) is the imaginary error function defined by

erfi~x![2 i erf~ ix !, erf~x![E
0

x

e2t2dt. ~B3!

For

b5
1

2h k̄
~wk̄p2 i e!, m5

1

&
, ~B4!

we have the integration in~3.25!, i.e.,

U E
2`

`

ds e2~1/2!s2
1

2 i e1wk̄p12h k̄sU
2

5S 1

2h k̄D
2

uI ~b,m!u2,

~B5!

that leads to~3.26!.
Let us start with a well-known integral@22#

I 0~g,m![E
2`

`

ds
1

s21g2 e
2m2s2

5
pem2g2

g F12
2

Ap
erf~mg!G , ~B6!

which holds for Reg.0 and uarg~m!u,p/4. As
I 0(g,m)5I 0(2g,m), we can extend this formula for
RegÞ0, by replacing the 1 inside the brackets by sgn~Reg!.

Puttingg[ib, we have RegÞ0 for ~B4! ~recall thate.0!.
Hence we can apply~B6! to the integral

I 1~b,m![E
2`

`

ds
1

s22b2 e
2m2s25I 0~ ib,m!

52
pe2m2b2

ib Fsgn~ Imb!1
2i

Ap
erfi~mb!G .

~B7!

On the other hand, we have

I ~b,m!2I ~2b,m!522bI 1~b,m!, ~B8!

as well as

I ~b,m!5 1
2 @ I ~b,m!2I ~2b,m!#. ~B9!

Combining these results, we obtain the desired result~B1!.
Using the asymptotic expansions of the error function

~erfi! for small and large arguments, we obtain the following
approximations for Imb,0.

For ubu!1,

I S b,
1

&
D .p ie2b2/2, ~B10!

and, for ubu@1,

I S b,
1

&
D .

A2p

b
. ~B11!

APPENDIX C: ON SHELL TWO-BODY TRANSITION
PROBABILITY

In this appendix we shall prove~3.29!. We shall start with
~3.25!, i.e.,
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^^p;pur~ t !&&'l2v0
2E

2`

`

dsE
2`

`

du
1

2 i e2wk̄p12h k̄u

1

i e2wk̄p22h k̄s

1

2p
e2~1/2!~s21u2!. ~C1!

We are interested in the integration of this expression over a
set of final statesv k̄2Dv<vp<v k̄1Dv, that includes the
resonance peak atvp5v k̄ @with a suitable test function
f (vp)#

I[E
v k̄2Dv

v k̄1Dv

dvpf ~vp!^^p;pur~ t !&&5I 11I 21I 3 ,

~C2!

where

I 1[E
2`

1`

dvpf ~vp!^^p;pur~ t !&& ~C3!

and

I 2[2E
v k̄1Dv

1`

dvpf ~vp!^^p;pur~ t !&&,

I 3[2E
2`

v k̄2Dv

dvpf ~vp!^^p;pur~ t !&&. ~C4!

We assume that the test functionf (vp) is bounded from
above in the vicinity of the real axis ofvp , i.e., u f (vp)u,M ,
and does not vanish at the resonance pointvp5v k̄ , and that
it varies smoothly enough around the resonance peak for
small enoughh. Moreover, we assume that the domain of the
integration is taken as

u f ~v k̄ !u
M

@
huk̄u
Dv

. ~C5!

We note that residues at zeros of the denominator in the
integration overvp in ~C2! are of order (h k̄)21, which make
large contributions for smallh. Hence we also assume that
any contributions from the singularities off (vp) in the com-
plex plane are negligible in the integration~C2! as compared
with these residues for small enoughh.

Under these conditions we shall show thatI 1 makes the
dominant contribution toI . Closing the contour of integra-
tion in the upper infinite semicircle inI 1, we obtain

I 1'2p il2v0
2E

2`

`

dsE
2`

`

du
1

2h k̄~u2s!1 i e

1

2p

3e2~1/2!~s21u2! f ~v k̄12h k̄u!. ~C6!

Because of~3.8!, we havev k̄@huk̄u. Then we approximate
f (v k̄12h k̄u)' f (v k̄) in ~C6!. One can evaluate the inte-
gral by changing the variablev[u2s and using formula
~B10!. The result is

E
2`

`

dsE
2`

`

du
1

a~u2s!1 i e
e2~1/2!~s21u2!52

1

uau
ip3/2.

~C7!

Hence we obtain@with tc[Ap/(4huk̄u)#

I 15l2v0
2p3/2

1

2huk̄u
f ~v k̄ !52pl2v0

2tcf ~v k̄ !. ~C8!

For I 2, the denominator of the integrand is outside the
resonance peak atwp k̄50. Then we have

uI 2u<E
v k̄1Dv

1`

dvp

u f ~vp!u

w
p k̄

2 <l2v0
2 M

Dv
. ~C9!

Hence we have

UI 2I 1U< M

u f ~v k̄ !u
2h k̄

p3/2Dv
!1. ~C10!

Similarly we have

UI 3I 1U!1. ~C11!

Therefore, the dominant contribution of the transition
probability comes around the resonance peak, and we obtain

^^p;pur~ t !&&'2pl2v0
2tcd~vp2v k̄ !,

which is the desired result~3.31!.

APPENDIX D: DURATION OF COLLISION tc

The exact value of the duration of collision is not obvious
for the Gaussian wave packet. Instead we can consider a
wave packet with rectangular shape of sizeAp/h defined in
configuration space,

^xuC~0!&5FuS x1
Ap

2h D 2uS x2
Ap

2h D G 1

A2p
e2 i k̄ x,

~D1!

whereu(x) is a step function,u(x)50, for x,0, while u(x)
51, for x>0. We have

^kuC~0!&5
sin@Ap~k2 k̄!/2h#

p~k2 k̄!
→d~k2 k̄! for h→0.

~D2!

Moreover, we have@see~3.7!#

^C~0!uC~0!&5
Ap

h
. ~D3!

Because the interaction starts in the middle of the wave
packet atx50, and moves with a momentum aroundk̄ with
a massm51

2 @see~3.1!#, the duration of collisiontc is given
by
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tc5
Ap

2h

1

2uk̄u
5

Ap

4huk̄u
. ~D4!

This is the same as~3.30!.

APPENDIX E: ON e

In the limit L→`, the propagators become the distribution
~for e→01!

1

wn6 i e
→P

1

wn
7 ipd~wn!, ~E1!

whereP stands for the principal part. The use of thed func-
tion d~wn! is possible only because we consider the momen-
tum k as a continuous variable. For finitee the d function
pd~wn! is approximated by the Lorentzian distribution
e/~wn

21e2!. To obtain a consistent evaluation for thed func-
tion in terms of the box normalization formalism, there
should be enough discrete states around the peak of the
Lorentzian. Therefore, our expressions have to be understood
in the continuous limitDk[2p/L→0 ande→01, with the
condition

udwn /dkuDk
e

→0. ~E2!

In the text, we always consider the limit in this sense.

APPENDIX F: ON THE JACOBI COORDINATES

Generating function

For the Jacobi momenta

kya5A 3
2Ka ,

kxa5
Kb2Kc

&
, ~F1!

K5Ka1Kb1Kc ,

the generating function is

F5A 2
3kyaRa1

1
2 ~&kxa1K2A 2

3kya!Rb

1 1
2 ~2&kxa1K2A 2

3kya!Rc , ~F2!

where (a,b,c) is a cyclic permutation of~1,2,3!. The canoni-
cal conjugates of the Jacobi momenta arer xa , r ya , and r a .
They are given by

r a5
]F

]K
5 1

2 ~Rb1Rc!,

r ya5
]F

]kya
5A 2

3 ~Ra2r a!, ~F3!

r xa5
]F

]kxa
5

1

&
~Rb2Rc!.

The unperturbed Hamiltonian can be written as

H0[Ka
21Kb

21Kc
25kxa

2 1kya
2 1 1

2K
22A 2

3Kkya . ~F4!

The equations of motion lead to~for R[Ra1Rb1Rc!

dR

dt
52K. ~F5!

In the center-of-mass system we haveK50. ThenR is a
constant of motion. We chooseR50. Moreover,~F4! gives
us

H05kxa
2 1kya

2 . ~F6!

Relation among Jacobi’s coordinates

Writing ~F2! for the (a,b,c) and (b,c,a) permutations we
find, for K50,

Ka5
]F

]Ra
5A 2

3kya52
kxb

&
2
kyb

A6
,

~F7!

Kb5
]F

]Rb
5A 2

3kyb5
kxa

&
2
kya

A6
.

Hence

kya52
)

2
kxb2

1
2kyb ,

~F8!

kxa5
1

)
kya1

2

)
kyb52 1

2kxb1
)

2
kyb ,

or

S kxakya
D5S cos~2p/3!

2sin~2p/3!

sin~2p/3!

cos~2p/3! D S kxbkyb
D . ~F9!

Similarly, transformations for (r xa ,r ya) are given by the
same expression as~F9!, but with the replacement ofk by r
@see~4.6!#.

APPENDIX G: ON-OFF SHELL PROCESS

In this appendix we shall evaluate the on-off shell process
which corresponds to process~c! in Fig. 6, as well as in
Table II. We consider a process with the conditions

O~ uvp2v k̄ 8u!5huk̄u;huk32u, ~G1!

while

uv k̄ 82v k̄ u@huk32u and uv k̄ 82v k̄ u@huk̄u. ~G2!

From ~6.24! and ~6.26!, we have

wk8 l5vk82v l'wk̄ 8 k̄12h~k32sy32 k̄•u!. ~G3!

Hence,~for usu;uuu;1! we have

wk8 l'wk̄ 8 k̄ . ~G4!
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By the same condition~G2! we also have

2wkl8'wpl'2wkp'wk̄ 8 k̄ . ~G5!

Substituting these approximations into~6.6!, we obtain~for
uzu;e!

F2~p,k8,l8,k,l,z!'l4
v1
2v3

2

w
k̄ 8 k̄
2 D~p,k8,l8,k,l!

1

z S 1

z2wpl8
1

1

z2wk8p
D F2S 1

z2wkl
1

1

z2wk8 l 8
D1

1

z2wkl
G , ~G6!

where we have considered the caseuwk̄ 8 k̄ u@e @see~G2!#, and used the relations

1

z2a

1

z2b
5S 1

z2a
1

1

z2bD 1

2z2a2b
, ~G7!

and also

wk8 l1wkl85wkl1wk8 l 8 . ~G8!

The subscript 2 inF2 denotes that~G6! is evaluated for the on-off shell process with the conditions~G1! and ~G2!.
The first term~with the parentheses! inside the last bracket in~G6! corresponds to the sum of diagrams~a!–~d! in Fig. 12,

while the last term corresponds to the sum of diagrams~e! and~f!. A part of the contribution of diagrams~a!–~d! cancels with
the contribution of~e! and ~f!. Then from~6.9! we have

^^p;pur̄2~ t !&&'2l4
v1
2v3

2

w
k̄ 8 k̄
2 E d2k d2l E d2k8d2l 8D~p,k8,l8,k,l!Resz51 i eFe2 izt

z S 1

z2wpl8
1

1

z2wk8p
D 1

z2wk8 l 8
G

3^^k; lur~0!&&, ~G9!

where 2 inr̄2 donotes that this is evaluated for the on-off shell process withF2.
The integrations overk8 and l8 can be performed using thed functions@see~7.13!#. Moreover, using the variabless andu

in ~6.10!, and also using Eqs.~6.24! and ~6.26!, we obtain

Š^p;pur̄2~ t !&‹'2l4
4v1

2v3
2

3w
k̄ 8 k̄
2 F E

2`

`

dsx3E
2`

`

dux3
1

2p
e2~1/2!~sx3

2
1ux3

2
!GResz51 ieFe2 izt

z E
2`

`

dsy3E
2`

`

duy3
1

2p
e2~1/2!~sy3

2
1uy3

2
!

3S 1

z2wp k̄822hk32uy3
2

1

2z2wp k̄822hk32sy3
D 1

z22hk32~sy32uy3!
G . ~G10!

The integrations oversx3 andux3 inside the first bracket give 1. Then with a simple manipulation we obtain@see~3.24!#

^^p;pur̄2~ t !&&'l4
4v1

2v3
2

3w
k̄ 8 k̄
2 Resz51 i eFe2 izt

z E
2`

`

dsy3E
2`

`

duy3
1

2p
e2~1/2!~sy3

2
1uy3

2
!

1

z2wp k̄822hk32uy3

3
1

2z2wp k̄812hk32sy3
S 11

z

z22hk32~sy32uy3!
D G . ~G11!

Let us first consider the case after the collision. The usual scattering theory deals with this situation. For this case we can
drop the second term inside the bracket~we havehuk32u@e!. In this time scale, all interaction processes have already finished.
Hence the transition probability should reach a constant value. Indeed,~G11! contains only the first-order pole atz51 i e, and
its residue gives us a constant~for t@tc8!

r̄2~p,p,t !'l4
4v1

2v3
2

3w
k̄ 8 k̄
2

1

2p U E
2`

`

ds e2~1/2!s2
1

i e2wp k̄822hk32s
U2. ~G12!

Similar to ~3.25!, we obtain@see~B5!#

^^p;pur̄2~ t !&&'l4
4v1

2v3
2

3w
k̄ 8 k̄
2

2

p

1

2hk32
e2w

p k̄8

2
/~2hk32!

2Usgn~k32!2
2i

Ap
erfiS wp k̄8

2&hk32
D U2. ~G13!

The condition of the on-shell transition between the intermediate and the final states is given by
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O~ uwp k̄8u!5huk32u. ~G14!

With this condition, we obtain from~G12! that @see~3.31!#

^^p;pur̄2~ t !&&'2pl4
4v1

2v3
2

3~v k̄ 82v k̄ !2
tc8d~vp2v k̄ 8!, ~G15!

wheretc8 is given in ~7.10!.
Next let us consider the case during the collision (t!tc8). For this case we can approximate the initial wave packet by a

plane wave withh→0, as mentioned in~3.16!. Then from~G11! we obtain

^^p;pur̄2~ t !&&'2l4
4v1

2v3
2

3w
k̄ 8 k̄
2 Resz51 i eFe2 izt

z

1

z2wp k̄8

1

2z2wp k̄8
G 1

2p F E
2`

`

ds e2~1/2!s2G2

5l4
4v1

2v3
2

3w
k̄ 8 k̄
2 Resz51 i eFe2 izt

z2 S 1

wp k̄82z
2

1

wp k̄81zD G , ~G16!

where we have performed the integration overs.
In contrast to the case after the collision, the transition

probability during the collision should change in time, as the
interaction processes are not yet finished. Indeed,~G16! now
contains the second-order pole atz51 i e, and its residue
gives us a linear dependence in time~for t!tc8!,

^^p;pur̄2~ t !&&'2pl4
4v1

2v3
2

3~v k̄ 82v k̄ !2
td~vp2v k̄ 8!,

~G17!

where we have used relation~3.36!. The contribution in
~G17! comes from the energies which satisfy the resonance
conditionvp2v k̄ 850

Comparing~G17! with ~G15!, we see the continuation of
the transition probability for the on-off shell process during
and after the collision. During the collision, it grows linearly
in time, and after the collision it becomes a constant.

It is worthwhile to note that the transition probability
~G12! after the collision is given by a square of the transition
amplitude, just the same as~3.27!, i.e. ~for t→1`!,

^^p;pur~ t !&&→u^puVH~vp1 i e!uC~0!&u2. ~G18!

Applying this to the fourth-order contribution corresponding
to the process which we are considering, we have

^^p;pur̄2~ t !&&5Ul2v1v3E d2kE d2k8d~ky18 2py1!

3d~ky38 2ky3!
1

i e2wk8p

1

i e2wkp

3^kuC~0!&U2. ~G19!

With conditions ~G1! and ~G2! one can easily show that
~G19! reduces to the same expression~G12!. However, this
derivation with theS-matrix theory is applicable only for the
case after the collision. Indeed, if we apply~3.16! to ~G19!,
we obtain a diverging contribution of ordere21, as one can
easily verify by a straightforward calculation. In contrast, our

complex spectral representation leads to a consistent result
with the time-dependent analysis for the process during the
collision for a large wave packet@21#.

APPENDIX H: GENUINE TRIPLE COLLISION

For the triple collision, we have

O~ uwk̄pu!5huk̄u;huk32u, ~H1!

while

uwk̄ 8 k̄ u@huk̄u, uwk̄ 8 k̄ u@huk32u. ~H2!

We have

wk8 l'wk̄ 8 k̄12h~k32sy32 k̄•u!'wk̄ 8 k̄ . ~H3!

Similarly,

2wkl8'2wpl8'wk8p'wk̄ 8 k̄ . ~H4!

Hence the first term inside the brackets in~6.6! is negligible,
as ~for uzu;e!

1

z2wpl8
1

1

z2wk8p
'

1

2wpl8
1

1

2wk8p
'0. ~H5!

Then from its second term, we have

F3~p,k8,l8,k,l,z!'2l4v1
2v3

2D~p,k8,l8,k,l!
1

w
k̄ k̄ 8

2

3S 1

z2wpl
1

1

z2wkp
D 1

z2wkl
,

~H6!

where the subindex 3 inF3 denotes that this is evaluated for
the triple-collision process with conditions~H1! and ~H2!.
The transition probability associated with this process is then
given by @see~6.9!#
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^^p,pur̄3~ t !&&'2l4
v1
2v3

2

w
k̄ 8 k̄
2 E d2k d2l E d2k8d2l 8D~p,k8,l8,k,l!Resz51 i eFe2 izt

z S 1

z2wpl
1

1

z2wkp
D 1

z2wkl
G

3^^k,lur~0!&&. ~H7!

This has a similar form to~G9!. Therefore we have the fol-
lowing.

For t!tc8 ~during the collision!,

^^p,pur̄3~ t !&&'
4l4v1

2v3
2

3w
k̄ k̄ 8

2 2ptd~v k̄2vp!. ~H8!

For t@tc ~after the collision!,

^^p,pur̄3~ t !&&'
4l4v1

2v3
2

3w
k̄ k̄ 8

2 2ptcd~v k̄2vp!, ~H9!

wheretc is given in ~7.10!.

APPENDIX I: RESCATTERING TERM

We shall calculate the rescattering term for the time scales
~a! t!tc8 and t!tc , and ~b! tc!t and tc8!t, where tc and
tc8 are defined in~7.10!. Because at the rescattering point the
first collision~between particles 1 and 2! is on-shell, we have

thatpy1 is eitherky1 or ky2. Hencek32 is given by@see~6.25!
and ~F9!#

k32
6 5

2

)
sin~f6p/6!uk̄u, ~I1!

wheref the incident angle of the incoming particle, with
respect to thex3 axis, and the plus or minus sign corresponds
to the cases where the incoming particle is transmitted or
reflected by the~12! wall, respectively.

From~7.10! and~I1! we havetc,tc8 . In order to show the
transition from the time scales~a! to ~b! we shall consider a
third time scale~c!, tc!t!tc8 . In this special case the dura-
tion of the second collision,tc8 , is large because the particle
goes nearly parallel to the~23! wall, after colliding with the
~12! wall.

~a! For t!tc8 and t!tc , this time scale is equivalent to

huk32
6 u!e, huk̄u!e, ~I2!

For this time scale we can approximate the initial condition~4.14! by the plane wave~3.9!. This leads to@see~6.9! and~6.6!#

^^p;pur̄~ t !&&'l4v1
2v3

2E d2k8E d2l 8E d2kE d2lD~p,k8,l8,k,l!Resz51 i eF1z S 1

z2wp k̄8
1

1

z2wk̄ 8p
D 1

z S 1

z2wk̄ 8 k̄

1
1

z2wk̄ k̄ 8
D 1

z
1
1

z S 1

z2wp k̄8

1

z2wp k̄

1

z2wk̄ 8 k̄
1

1

z2wk̄ 8p

1

z2wk̄p

1

z2wk̄ k̄ 8
D 1

zGd~k2 k̄!d~ l2 k̄!. ~I3!

For a large time scale the first term in the brackets makes the dominant contribution, growing ast2 as the result of the
third-order pole atz51 i e, while the second term gives its correction of ordert. Performing the integration over intermediate
momenta in~I3!, for the dominant contribution, we obtain

r̄~p,p,t !' 4
3l4v1

2v3
2 1
2 ~2pt !2d~wp k̄8!d~wp k̄!. ~I4!

~b! For tc!t and tc8!t, we now consider the time scale where all interaction processes are finished. The transition
probability approaches a constant in time. As was shown in~G18!, this is the situation in which the usualS-matrix theory is
applicable.

Substituting~6.24! into ~G19!, we have

^^p;pur̄~ t !&&5
4l4v1

2v3
2

3
S 1

2p
D 2U E

2`

1`

dsy3E
2`

1`

dsx3
1

wk̄ 8p12hk32sy32 i e

1

wk̄p12h~ k̄•s!2 i e
e2~sx3

2
1sy3

2
!/2U2. ~I5!

This expression may be rewritten as

^^p;pur̄~ t !&&5
4

3 S l2v1v3
2p D 2E d2sE d2u

1

wp k̄822hk32sy31 i e

1

wp k̄822hk32uy32 i e

1

wp k̄22h~ k̄•s!1 i e
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1

wp k̄22h~ k̄•u!2 i e
e2~ usu21uuu2!/2. ~I6!

We are interested in the transition probability taken as a distribution. As shown in~I4!, the rescattering term contains twod
functions. Therefore we need two integration variables to make sense of this term. Usually the integration is taken over a set
of final momenta~i.e., over the variablespxa andpya , for a51, 2, or 3!. However it is possible to make a change of variables,
and integrate overvp andv k̄ 8 instead. This simplifies the calculations below. We consider the expression

I5E dvpE dv k̄ 8^^p;pur̄~ t !&& f ~vp ,v k̄ 8!,

where f (vp ,v k̄ 8) is a test function. The integration region should include the rescattering points, given byvp5v k̄ 85v k̄ .
Then these integrals can be extended from2` to 1`, because the contributions from the tail~away from the rescattering
peaks! of the transition probability are negligible. The integrals can be performed by contour integration. The result is

I6'~2p i !2
4

3 S l2v1v3
2p D 2f ~v k̄ ,v k̄ !E d2sE d2ue2~ usu21uuu2!/2

1

2hk32
6 ~uy32sy3!1 i e

1

2h k̄•~u2s!1 i e
. ~I7!

Putting

k̄x35uk̄ucosf, k̄y35uk̄usin f,

we have

I65~2p i !2
4

3
S l2v1v3

2p
D 2f ~v k̄ ,v k̄ !

1

2huk̄u

1

2hk32
6
I 1

6 , ~I8!

where

I 1
65E

2`

`

dsx3E
2`

`

dsy3E
2`

`

dux3E
2`

`

duy3e
2~ usu21uuu2!/2

1

~uy32sy3!1 i es6~f!

1

~ux32sx3!cosf1~uy32sy3!sinf1 i e
,

~I9!

and @see~I1!#

s6~f!5sgn@sin~f6p/6!#. ~I10!

Introducing the variablesvx[ux32sx3 and vy[uy32sy3,
we obtain

I 1
65pE

2`

`

dvxE
2`

`

dvye
2~vx

2
1vy

2
!/4

1

vy1 i es6~f!

3
1

vxcosf1vysinf1 i e
. ~I11!

The integral overvx can be performed using formula~B1!.
We then have

I 1
65

2 ip2

cosf E
2`

`

dvye
2~vysecf!2/4

1

vy1 i es6~f!

3Fsgn~cosf!1
2i

Ap
erfiS vy tanf2 D G . ~I12!

The first term can be evaluated using~B10!, to obtain

2
p3

ucosfu
s6~f!. ~I13!

The second term can be written as

I 25
2p3/2

ucosfu
I 3 , ~I14!

where~with y[vyusecfu/2!

I 35E
2`

`

dy e2y2
1

y
erfi~y sinf!. ~I15!

Taking the derivative ofI 3 with respect to sinf, and chang-
ing the integration variable tox[y sinf, we obtain

4100 53T. PETROSKY, G. ORDONEZ, AND T. MIYASAKA



dI3
d~sin f!

5E
2`

`

dy e2y2erfi8~y sinf!

5
1

usin fu E2`

`

dx e2x2/sin2ferfi8~x!.

As erfi8(x)5ex
2
, we have

dI3
d~sinf!

5
Ap

ucosfu
,

which leads to

I 35ApE
0

f

df8 sgn~cosf8!. ~I16!

Hence

I 1
65

2p3

ucosfu Fs6~f!2
2

p
j~f!G , ~I17!

where

j~f!5f
p2f

2p2f

for 2p/2,f,p/2,
for p/2,f,p,
for 2p,f,2p/2.

~I18!

With tc5Ap/~4huk̄u! andtc8
65Ap/(4huk32

6 u) we have, from
~I8!,

I65 4
3l4v1

2v3
2f ~v k̄ ,v k̄ !

2ptc
ucosfu

2ptc8
6F6~f!, ~I19!

where

F6~f!512
2

p
s6~f!j~f!. ~I20!

Hence we have

^^p;pur̄~ t !&&6' 4
3l4v1

2v3
22pd~wp k̄8!2pd~wp k̄!

tc
ucosfu

3tc8
6F6~f!. ~I21!

tc/ucosfu is the duration of the first collision@the cosine
gives the component of the momentum of the wave packet
perpendicular to the~12! wall#, while tc8 is the duration of the
second collision. The factorF6~f! accounts for the fact that,
depending on the incident anglef, a fraction of the wave
packet will not collide with the~23! wall after colliding with
the ~12! wall. In Fig. 16 we show how only a fractiona of
the wave packet~indicated by a circle! can have a~12! col-
lision followed by a~23! collision. We are taking the plus
branch of~I21!; that is, the transmitted beams originated by
the ~12! collision.

~c! For tc!t!tc8 , the time scale is equivalent to

huk32
6 u!e!huk̄u, ~I22!

where bothh ande are small quantities. The conditions for
the shape of the initial wave packet~4.15!, as well as~6.23!,
lead to@see~6.24! and ~6.26!#

O~ uwklu!5huk̄u, O~ uwk8 l 8u!5huk32u. ~I23!

Let us first consider the contribution for the first term
inside the brackets~6.6! that corresponds to diagrams~a!–~d!
in Fig. 12. We can rewrite this as

Fad~p,k8,l8,k,l,z!5l4v1
2v3

2D~p,k8,l8,k,l!
1

z

1

z2wpl8

1

z2wk8p
S 11

z

z2wk8 l 8
D 1

z2wk8 l

1

z2wkl8
S 11

z2wk8 l 8
z2wkl

D .
~I24!

With conditions~I22! and ~I23! the above expression is~for uzu;e!

FIG. 16. In this rescattering process the~12! wall transmits in-
coming beams~represented by the arrows!, which then collide with
the ~23! wall. The wave packet is represented by the circle. Only
regiona of the wave packet can go through this collision sequence.
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Fad~p,k8,l8,k,l,z!'2l4v1
2v3

2D~p,k8,l8,k,l!
1

z

1

z2wp k̄8

1

z2wk̄ 8p

1

z2wk8 l

1

z2wkl8

'l4v1
2v3

2D~p,k8,l8,k,l!
1

z2
F 1

z2wp k̄8

1
1

z2wk̄ 8p
GF 1

z2wk̄ 8 k̄12h k̄•u

1

2z2wk̄ 8 k̄12h k̄•s
G . ~I25!

Because of the second-order pole atz51 i e, its residue
makes the linearly growing contribution oft for the transi-
tion probability ~G16! for large time scales.

With conditions ~I22! and ~I23!, the reader can easily
verify by a similar manipulation that the second term inside
the brackets in~6.6! @corresponding to diagrams~e! and~f! in
Fig. 12# has only a simple pole atz51 i e. Hence this con-
tribution does not grow in time, and is negligible for large
time scales.

The first term inside the brackets in~I25! gives a factor
22ptd(wp k̄8) @see~G16! and ~G17!#. On the other hand,
the integrations oversandu of the second term inside brack-
ets can be written, forz5 i e, as

U E d2s
1

2 i e2wk̄ 8 k̄12h k̄•s

1

2p
e2usu2/2U2. ~I26!

The integration has a structure similar to the integration in
~G12!. Hence, by a similar evaluation,~I26! gives a factor
22ptcd(wk̄ k̄ 8). Finally, the integrations overk8 andl8 give
a 4

3 factor @see~7.13!#. Hence we have

r̄4~p,p,t !'
4
3l4v1

2v3
22ptd~wp k̄8!2ptcd~wk̄ k̄ 8!,

~I27!

where the suffix 4 inr̄4 denotes that this is evaluated for
~I22! with the condition~I23!. Therefore, the dominant con-
tribution of the transition probability comes from the rescat-
tering process~i.e., the on-on shell process! and it grows
linearly in time in the intermediate time scaletc!t!tc8 .

APPENDIX J: PROOF OF „9.5…

By a straightforward calculation, one can verify the rela-
tion ~for any reale!

F 1

~w1 i e!2
2c.c.G~eiwt2e2 iwt!1F 1

~w2 i e!2
~12e2 iwt!

1c.c.G1
1

2 US 1

w2 i e
2c.c.D ~12eiwt!U25U12eiwt

w1 i e U2.
~J1!

In the limit e→01, the last term on the left-hand side van-
ishes in the sense of distributions with suitable test functions.
Moreover, we have~for e→01!

2p id8~w!5
1

~w1 i e!2
2c.c. ~J2!

and

4Fsin~wt/2!

w G25U12eiwt

w1 i e U2. ~J3!

Under the integration overw, we perform the integration by
parts ford8(w). Then we have~for e→01!

4Fsin~wt/2!

w G25p id8~w!~eiwt2e2 iwt!

1F 1

~w2 i e!2
~12eiwt!1c.c.G

52pd~w!t1F 1

~w2 i e!2
~12eiwt!1c.c.G ,

~J4!

which is the desired result~9.5!.
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