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Multichannel density-functional calculations for atoms and atomic chains
in magnetic fields of compact stars
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Ground-state energies of atoms and atomic chains in strong to superstrong magneti@fieig 10° —
8.5x 10° T) are calculated within the single-particle scheme of a heuristic density-functional method. From
these we find condensation energies and binding lengths. Using the local Dirac exchange functional, the
corresponding equations are solved iteratively, expanding the wave functions with respect to Landau functions
in the transverse directions and directly integrating along the longitudinal direction. Dropping the adiabatic
approximation, we extrapolate our results with respect to the number of Landau channels taken into account.
The values found by this extrapolation correspond to calculations without any restriction on the allowed wave
functions.[S1050-294{06)11106-9

PACS numbgs): 31.15.Ew, 36.90+f, 95.30.Ky, 97.10.Ld

I. INTRODUCTION pand our equations in terms of Landau functions in the axi-
ally symmetric gaugeA(r) =3B Xr, for the vector potential,
Since the discovery of huge magnetic fields in the vicinity
of compact cosmic objects, i.e., white dwarB~10°—1¢° 1
T; Ref.[1]) and neutron starsB~10"-1C T; Ref.[2]), the D, (0, 0)=——=€ml, (0?a?), (20)
study of properties of matter in such fields has — despite - aL\/; -
many impressive successg® — not yet yielded reliable

results as to deciding on its actual state. The question ovlyh'Ch are characterized by the Landau quantum nurmper

condensation of matter in these fields plays an important rol nd thez componentm of the orbital angular momentum.
in interpreting observed spectra of compact cosmic object ere _we have s=n —m=0, the Larmor radius
and in modeling their magnetospheres. Due to the extrem@L = V2hieB,

anisotropy caused by the magnetic field, there is evidence ¢

that the condensation of matter, which has to happen in some Ins(€)=(—1)S(ns!l) Y2~ 2£N=92Q07s(¢) (2.2
three-dimensional lattice, can already be assessed by looking

at (weakly interacting linear atomic chains oriented along and Qg™ °, the generalized Laguerre polynomial of degree
the field lines. The wealquadrupole-quadrupolénteraction  s. We arive at a system of one-dimensional integro-
does not need to be included in a fully self-consistent soludifferential equations for the longitudinal functiofig, m.

tion of the problem but can be treated as a small perturbation

afterwards. 72 Mmax ,

In this work, we present results of self-consistent calcula-— 5, n mi(2)+ > VIL(2) fr m(2)
tions for many-particle systems in strong and superstrong € n =0
magnetic fields that take into account more than the lowest
Landau level and go beyond Thomas-Fermi calculat|dhs
Extrapolating from our results for finite numbers of Landau
levels, we find for a wide range of magnetic field strengths
condensation energies and binding lengths for atomic chain§posing cyclic boundary conditions, its solutions give
without any restriction on the allowed wave functions. single-particle wave functions of the Bloch type,

The physical theory applied is a simple heuristic density-
functional method. We obtained the corresponding single-
particle equations from the Kohn-Sham equations of spin- ¢mk(9’¢’z):n§0 fr m2) P m(€, ),
density-functional theory(SDFT) by adding the term
representing the coupling between the electrons and the vegharacterized by some wave numiietWe omit an index at
tor potential to the operator of the canonical momentum irthe functionsy andf, which refers to the zone number, the
the kinetic energy term. In the exchange-correlation func-analog to the number of nodes in thelirection in the case
tional, we make use of the local-density approximationof wave functions of single atoms. This number can take on
(LDA). non-negative integer values but is fixed to 0 in our calcula-

tions. This is a restriction neither for hydrogen at any mag-
II. METHOD netic flux density nor for light elements at the magnetic flux
densities considered here. The corresponding energy bands

Using cylindrical coordinatesd,¢,z) and choosing the cannot be populated for hydrogen where we need to fill up
z axis parallel to the homogeneous magnetic field, we exenly a k-space “volume” of 2r/a. For the light elements

+

1
n_+ E)ﬁwc—snl_mk fo md2)=0. (2.3

Nmax

(2.9
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and magnetic flux densities considered here, the states in_ —
these bands have too high energies to be populated. In Eqg ™[ A
(2.3, w.=eB/m, is the cyclotron frequency; the one-
dimensional effective potentials are given by

T4 =

-7.6 |

-8

, © 2 B
vina)= [ [Za 0.0 Va2 ’

-82
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internuclear distance a (units of apop)

consists of the external potentid| the direct pariy of the
electron-electron potential, and its exchange-correlation part £, 1. Ground-state ene@}gmaﬂ(a) of a hydrogenic chain at

B=>50. Curves fom,,,=0,1,2 andn,,,— are shown. The larger
OExd n] the ny,, the lower the corresponding curve. The horizontal lines

\% Z)= . 2.
x(€.2) on(e,z) 2.7 mark the ground-state energ&&"’“ﬁx] of a hydrogen atom at
o B=50 for n,=0,1,2 andn,,,— >, each within the same range of
Within the LDA where values ofa as the corresponding curve for the chain.

LDA In the case of helium, we limited our calculations to
Exc [”]Zzﬂf n(e.2)ex(n(e,z))ededz, (28 g —59 (B~9.4x10' T) andB,~265.9 B=5x10° T): for
carbon, to3,=50 (B~8.5x10° T) and, in addition, to

we use the simple Dirac exchange functional Nmax=0. For B,=50 andB,~265.9, ground-state energies
per atomEg were obtained in a wide range of internuclear
spacingsa leading to binding lengths, and binding ener-
giesEy=Eg(ag). For other values of3,, we restricted our
calculations to the regions aroursdy. This was possible,
for the fully polarized electron gas, neglecting correlationsince our program for atomic chains allows during one run
effects. For the numerical treatment of the integrals appeathe variation of3, with automatic search for the minimum
ing in (2.5), see Prechelet al.[5]. The differential equation of Eg as a function of for each value of3,. Condensation
solver applied to the systeni2.3) of equations, which energies were found, subtracting binding energies from the
couples different Landau channels, is based on the one dground-state energids, of the corresponding single atoms
veloped by Wintgen 6] for the hydrogen atom in strong obtained within the same heuristic scheme. These had been

2 [6n

1/3
IR

v

e

3
edn=- 2 87eg

magnetic fields. already partly calculated by Bier [7] and were calculated
The equations are solved iteratively using up to three Lanhere for hydrogen at several additional valuesof
dau channel§n,,=0,1, or 2 in(2.3) and(2.4)] and simu- We examined the convergence of the ground-state ener-

lating continuous occupation of the energy bands up to somgies with the numben, of single-particle states taken into
common(quasiparticl¢ Fermi energy g by selecting in each account in each energy baii]. These energies are con-
(partly) occupied band, one-particle states corresponding verged with a tolerance of less than 1% when usipg 4

to equidistank-values within the intervdlo kf']. Here k®is  for the hydrogenic and helium chains and, due to the much
the Fermi wave number of the band characterized by a spdarger number of populated energy bamiss 3 for carbonic

cific value ofm. Iterations are repeated until self-consistencychains. For example, in the case of the hydrogenic chain at
is achieved, i.e., the Euclidean norm of the difference of8=50 (B~2.35x 10’ T), increasingn, from 4 to 5 and 10
wave functions obtained in subsequent iterations falls belovincreases the binding energy by 0.1% and 0.25%, respec-

a given limit. tively.
Figure 1 shows for a hydrogenic chain @50 the re-
. RESULTS sulting ground-state energi[gma"](a) for nha=0,1, and 2.

.. . n —> 00 .

We performed such iterative calculations for infinitely ex- ' addition, it showf_[G "")(a), where the extrapolation
tended linear chains of hydrogen, helium, and carbon atomaVith respect to the highest allowed Landau quantum number
In the case of hydrogen, we considered magnetic fieldimaxWas done assuming a dependenc&@Mon .y, which
strengths corresponding to 81 different values for the magcan be expressed as a broken rational function,
netic field parameteg= B/B, with Bo~4.70108< 10° T. At
the magnetic flux densit,, we havea, =agy,,. Within a
range from 5 to 1000, the values Bfwere chosen approxi-
mately equidistant on a logarithmic scale. As we also con-
sidered elements with nuclear charggs 1, it is useful to Binding energie, and binding lengths, were found
introduce theZ-scaled magnetic field parametgy= B/Z2. for each B; from the three deepest fully self-consistently

g atb(Npat1)

1+c(Npaxt 1)’ @D

[n
EG ma;
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FIG. 2. Binding energ)Eg”max](,B) of a hydro-
genic chain(solid lineg and ground-state energy
EE\”max](ﬁ) of a hydrogen atontdotted line$ for
values of 8 between 5 and 50. Curves for
Nmax=0,1,2 andn,,— are shown for both
cases. The larger the,, the lower the corre-
sponding curve.

energies Fy and E, (units of Ry)

calculated valuesEg(a;)) and their correspondinga; formed for chains apB=5, 10, 20, 50, 100, 200, 500, and
(i=1,2,3, assuming a harmonic functional dependence ofl000 only. Within this ranges, Ec, anda, at arbitrary
Eg ona in the region around its minimur,. For hydrogen values were then found by interpolation applying a natural
at 5= 8=<1000,E.™>! andEL"™! are plotted in Figs. 2 and cubic spline.

3 for npa=0,1,2 and fom,,,— 0. The binding lengths de- E[G”max](a) for a helium chain at3,=50 is plotted to-
crease when dropping the adiabatic approximation, i.e., Wheﬁether with E[Anmax] for the helium atom usinga=0,1,2

allowing for Ny, 0. - _
. . .and forn o in Fig. 6. ForZ>1, we useZ-scaled atomic
The ground-state energies of single atoms and of atomic max— g

. . Nay=0
chains also decrease whep,, is increased. As a net effect, units, i.e.,az=agon/Z and E;=Z?Ry. E[G max ](a) fof a
the condensation enerd§.=E,— E, increases in all cases carbonic chain aB,=50 is plotted together witf, ™!
examined here. For hydrogen a&B<1000, this is shown for the carbon atom in Fig. 7. Both of these two atomic
in Fig. 4. Figure 5 shows the corresponding binding lengthschains exhibit a relative minimum dEg(a); in the case of
The self-consistent calculations with,,,>0 were per- carbon, at an internuclear distance very closatoBetween

FIG. 3. Same as Fig. 2, but for values gf
between 50 and 1000.

energies Ey and E, (units of Ry)

50 100 200 500 1000
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FIG. 6. Same as Fig. 1, but for helium 8= 50.

FIG. 4. Condensation energsic”max](ﬁ) of a hydrogenic chain
for Npmay=0,1,2 andnya— . IV. COMPARISON WITH REPORTED RESULTS

Our results for the ground-state energigs of single at-

such a minimum and the corresponding relative maximum oPMS. binding energieg, of atomic chains, condensation en-
Ec(a), a new energy band starts to be populateda ifs ergiesE¢, binding Iengt_hsao, and the value,,,, of th(_a
decreased. z componentn of the orbital angular momentum of the high-

For large internuclear distances, the overlap of the elecgSt occupied quasi-single-particle stateagare compiled in
tronic charge densities of the individual atoms within anTable Il for hydrogen and in Table Il for helium as well as
atomic chain is negligible, and the atoms interact only vigcarbon, together W|th those of other authors for some values
their quadrupole moments. For an atomic chain, the energ9f 8z that they considered.

shift caused by this quadrupole-quadrupole interaction is 1he ground-state energies obtained by Rueteal.[3] are
given by the most accurate ones available today for single atoms.

Table Il gives, separated by a slash, upper and lower limits to
the true values for these energies. These results can be used
1 to assess the accuracy of the different approximating
8meg @ (<4 i° (32 schemes when applied to single atoms. As these are obtained
without any restriction on the allowed wave functions, we
o R . also list our corresponding results fog,,— .
where the deviation of the fact@_ i ~°~1.037 from 1 is All other values listed in Tables Il and Il were calculated
due to the contributions of interactions between atoms thaR”th"] the adiabatic approximation_ Abrahams and Shapiro
are not next neighbors. For our calculationsBat=50, the  [9] employed a Thomas-Fermi-Dirac-Weizkar statistical
values we find in the repulsive region fd®,,=2(z%)  model in which the magnetic Thomas-Fermi-Dirac kinetic,
—2(x?) are listed in Table . potential, and exchange energy functionals are supplemented

-194 b

-19.6 - b

-197 B

-19.8 - 1

binding length ag (units of apgnr)

-199 1

ground state energies Eg and E4 (units of Ez)
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8
FIG. 7. Ground-state energﬁé"max:o](a) of a carbonic chain at

FIG. 5. Binding Iengthag'max](ﬁ) of a hydrogenic chain for B;=50. The horizontal line marks the ground-state energy
Nmax=0,1,2 andny,,,— . E[A”maxzo] of a carbon atom g8,="50.
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TABLE I. Quadrupole moment componet®,, in units of
aZ=ad, /2> for atoms with nuclear charg& within atomic chains
at large internuclear distances (repulsive regioh in magnetic

53

present computer resources only to single atoms or — as in
Refs.[12,13 — to finite chains. The results of Demeur,
Heenen, and Godefro[d 3] given in Table Il are actually for

f!elds corresponding to the valyg, =50 for theZ-scaled magnetic the H, molecule, but appear to be already stabilized when
field parameter. compared with the results for;Hi=2,3,4) also presented

z Qz2
1 0.255
2 1.1
6 6.7

peter, and Shapirpl2], simply to plane waves.
Despite the fact that the Hartree-Fock approximation

by a gradient correction to the kinetic energy. IMu [10]

in their paper. Because of the numerical complexity of this
unrestricted Hartree-Fock method when applied to many-
electron systems, Reffl1,12 also had to retreat on varia-
tional calculations for infinite chains. Neuhauser, Koonin,
and Langanké11] restricted the longitudinal single-particle
wave functions to products,(z)e

of plane waves and
k-independent periodic functions with periadand Lai, Sal-

applied a variational method within the Hartree-Fock ap-gives, in general, better results for single atoms than density-
proximation and divided, for the modeling of atomic chains,functional methods applying the LDA, this superiority is eas-

electrons into “core” and “sheath” electrons. The interac- ily destroyed by the further approximations that are necces-
tion between these two kinds of electrons was approximatedary for extended systems. The order of magnitude of the
by effective charges of the nuclei. Neuhauser, Koonin, aneffect of restrictions imposed on the wave functions on the

Langanke[11], Lai, Salpeter, and Shapifd2], as well as

ground-state energy can be seen from the two values for

Demeur, Heenen, and Godefrdifi3] used the unrestricted E, of a helium atom a8,~53.18 B=10° T) calculated by
Hartree-Fock method directly, which can be applied withMiller [10] and by Neuhauser, Koonin, and Langanké],

TABLE Il. Ground-state energ¥, of hydrogen atoms, binding enerdsg of hydrogenic chains, condensation eneky, binding
lengtha,, and the valuen,,,, of the z component of the angular momentum of the highest occupied single-particle state in magnetic fields
corresponding to the magnetic field paramegefirom calculations allowing the maximum Landau quantum nummbgr. We use atomic
units, rydbergs, andg,,,, and compare our results with those of other auth@kshes separate upper and lower limit of the true values.

18 I'1max EA EO EC a0 mmax
20 0 —5.308 —5.946 0.637 0.614 -3
20 o —5.516 —6.241 0.725 0.563 -3
RWHG? 20 —oo —5.602058/60
21.2717 0 —5.429 —6.100 0.671 0.599 -3
LSsP 21.2717 0 —5.613 —5.809 0.196 0.58
100 0 -9.431 —11.58 2.14 0.320 -5
100 —00 —9.554 —11.75 2.19 0.313 -5
RWHG? 100 —oo —9.4531/50
106.359 0 —9.635 —11.87 2.24 0.313 -5
LSSP 106.359 0 —9.570 —-10.77 1.20 0.31
200 0 —11.98 —15.40 3.42 0.241 -5
200 o —12.08 —15.54 3.46 0.237 -5
RWHG? 200 —oo —11.7023/39
212.717 0 —12.24 —15.80 3.56 0.235 -6
AS® 212.717 0 2.94 0.206
LsSsP 212.717 0 —11.87 —13.99 2.12 0.23
425.434 0 —15.48 —21.00 5.52 0.177 -7
LSSP 425.434 0 —14.59 —18.15 3.56 0.17
500 0 —16.34 —22.43 6.10 0.166 -7
500 o —16.41 —22.54 6.13 0.165 -7
RWHG? 500 —oo —15.3241/53
DHG ¢ 500 0 —15.2 —-18.8 3.6 0.17 -3
1000 0 —20.56 —29.80 9.23 0.126 -8
1000 — 00 —20.62 —29.88 9.26 0.125 -8
RWHG?2 1000 — 00 —18.60896986
LSsP 1063.59 0 —18.90 —25.56 6.66 0.12

8Ruderet al. [3].

bai, Salpeter, and Shapifd.2].
‘Abrahams and Shapif®].
dDemeur, Heenen, and Godefrdith].
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TABLE lIl. Same as Table II, but for helium and carbon. We @secaled atomic units, i.eE,=Z?Ry anda,= aggp,/Z.

z IBZ Nmax EA E0 EC =) Mmax
2 50 0 —10.56 —11.59 1.03 0.583 -8
2 50 — ™ —-10.71 —-11.75 1.04 0.572 -8
RWHG?2 2 50 — 0 —10.36
ASP 2 53.1793 0 —9.00 —10.29 1.29 0.51
M € 2 53.1793 0 —10.01 —10.93 0.92 0.550 -6
NKL ¢ 2 53.1793 0 —10.57 —11.03 0.46 0.58
2 265.896 0 —18.77 —22.81 4.04 0.293 —-12
JE 2 265.896 0 —-19.11 —23.16 4.05 0.29
NN 6 29.5440 0 —-16.4 —16.6 0.2 1.35
6 50 0 —19.44 —19.93 0.49 1.014 —-22
8Ruderet al. [3].
®Abrahams and Shapif@].
‘Mdiller [10].
dNeuhauser, Koonin, and LanganKe].
€Joned14].

respectively, listed in Table 1ll. Mier [10] allowed only for  fields using a set of Landau functions. In weak neutron star
in the z direction exponentially decaying wave functions magnetic fields, the effect of higher Landau levels on
with no or one node. The unrestricted result of Neuhauserground-state energies, condensation energies, and binding
Koonin, and Langank¢ll] is lower by 5.5%. As in both |engths is not negligible. Within the heuristic density-
papers similar variational Hartree-Fock-like approaches ar@unctional method applied here, the local exchange-
chosen for atomic chains, the values feg differ only by  correlation functional actually used has little effect on con-
0.9%. But the condensation energies differ by 50%. For thejensation energies, as differences in ground-state energies
chains, such Hartree-Fock-like calculations give weakefargely cancel. Comparision of the condensation energies we
binding, i.e., condensation energies that are smaller than thyg with the ones obtained within other heuristic theories
ones we found. The differenceskiy for hydrogen increase, (Thomas-Fermi-like or Hartree-Fock-likeshows much

for example, if compared with ghe results of Lai, Salpeter, ;3 rger differences. These are not only due to the use of dif-
and Shapird12] from about 30% for the largest magnetic ferent physical theories; they are, in the case of Hartree-

. : 0
fields considered here to 71./°'at¥21'2.7' . Fock-like calculations for chains, also due to restrictions on
Our condensation energies and binding lengths can bﬁ]e allowed single-particle wave functions

compared quite di_rectly with the results of simi_lar de_nsity- Our calculational scheme is such that it can be easily gen-
functional calculations by Jond44—16 for atomic chains . . . ; 4
eralized to an implementation of current-density-functional

ar_1d Iattlces. The local exchange-correlation functional aptheory(CDFT) (Vignale and Rasoli17,18: Vignale. Rasol.
plied in those papers reads : )
and Geldar{19]), the only theory available today which —
apart from a Monte Carlo treatment of the many-particle
£30"¢N) =[(13.7- 37In(287) + 27InN) 85 N Schralinger equation — in principle can lead to true ground-
5202 state energies for many-particle systems in strong magnetic
_9-45\/§ﬁz N“+{0.0288In237) —0.244 fields. In such a modified scheme, calculations for these sys-
E, tems are only restricted by the quality of the exchange-
—0.0192IrN}\/2_BZ]7, (4.2 correlation functional. As additional terms containing gradi-
ents enter the Kohn-Sham equations when going from the
with N=na3. Using this functional, we were able to repro- Neuristic density-functional method applied here to CDFT,
duce the results of Jongs4] for helium atB8,~265.9 in the thg condensation energies obtame_d may be conadergbly
adiabatic approximation with an accuracy of about 0.25% foiShifted. Therefore, we plan to substitute the method applied
E, andE,, 0.4% forEc, and 1.5% fora,. Using the Dirac N this work by CDFT, which correctly takes into account
exchange functional, we get a very similar value Eorthat ~ diamagnetic  effects, together with the corresponding
differs only by 0.25%, althougl, and E, differ by about —€xchange-correlation functionalg.g., Skudlarsk{20] and
2% (see Table Ill. This shows that the condensation ener-Skudlarski and Vignal¢21]).
gies are rather insensitive to the actual local exchange-
correlation functional used.
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