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Ground-state energies of atoms and atomic chains in strong to superstrong magnetic fields (B'2.43106 –
8.53108 T! are calculated within the single-particle scheme of a heuristic density-functional method. From
these we find condensation energies and binding lengths. Using the local Dirac exchange functional, the
corresponding equations are solved iteratively, expanding the wave functions with respect to Landau functions
in the transverse directions and directly integrating along the longitudinal direction. Dropping the adiabatic
approximation, we extrapolate our results with respect to the number of Landau channels taken into account.
The values found by this extrapolation correspond to calculations without any restriction on the allowed wave
functions.@S1050-2947~96!11106-9#

PACS number~s!: 31.15.Ew, 36.90.1f, 95.30.Ky, 97.10.Ld

I. INTRODUCTION

Since the discovery of huge magnetic fields in the vicinity
of compact cosmic objects, i.e., white dwarfs (B'102–105

T; Ref. @1#! and neutron stars (B'107–109 T; Ref. @2#!, the
study of properties of matter in such fields has — despite
many impressive successes@3# — not yet yielded reliable
results as to deciding on its actual state. The question of
condensation of matter in these fields plays an important role
in interpreting observed spectra of compact cosmic objects
and in modeling their magnetospheres. Due to the extreme
anisotropy caused by the magnetic field, there is evidence
that the condensation of matter, which has to happen in some
three-dimensional lattice, can already be assessed by looking
at ~weakly interacting! linear atomic chains oriented along
the field lines. The weak~quadrupole-quadrupole! interaction
does not need to be included in a fully self-consistent solu-
tion of the problem but can be treated as a small perturbation
afterwards.

In this work, we present results of self-consistent calcula-
tions for many-particle systems in strong and superstrong
magnetic fields that take into account more than the lowest
Landau level and go beyond Thomas-Fermi calculations@4#.
Extrapolating from our results for finite numbers of Landau
levels, we find for a wide range of magnetic field strengths
condensation energies and binding lengths for atomic chains
without any restriction on the allowed wave functions.

The physical theory applied is a simple heuristic density-
functional method. We obtained the corresponding single-
particle equations from the Kohn-Sham equations of spin-
density-functional theory~SDFT! by adding the term
representing the coupling between the electrons and the vec-
tor potential to the operator of the canonical momentum in
the kinetic energy term. In the exchange-correlation func-
tional, we make use of the local-density approximation
~LDA !.

II. METHOD

Using cylindrical coordinates (%,w,z) and choosing the
z axis parallel to the homogeneous magnetic field, we ex-

pand our equations in terms of Landau functions in the axi-

ally symmetric gauge,A(r )5 1
2B3r , for the vector potential,
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which are characterized by the Landau quantum numbernL
and thez componentm of the orbital angular momentum.
Here we have s5nL2m>0, the Larmor radius
aL5A2\/eB,
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andQs
n2s , the generalized Laguerre polynomial of degree

s. We arrive at a system of one-dimensional integro-
differential equations for the longitudinal functionsf nLmk ,
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Imposing cyclic boundary conditions, its solutions give
single-particle wave functions of the Bloch type,

cmk~%,w,z!5 (
nL50

nmax

f nLmk~z!FnLm
~%,w!, ~2.4!

characterized by some wave numberk. We omit an index at
the functionsc and f , which refers to the zone number, the
analog to the number of nodes in thez direction in the case
of wave functions of single atoms. This number can take on
non-negative integer values but is fixed to 0 in our calcula-
tions. This is a restriction neither for hydrogen at any mag-
netic flux density nor for light elements at the magnetic flux
densities considered here. The corresponding energy bands
cannot be populated for hydrogen where we need to fill up
only a k-space ‘‘volume’’ of 2p/a. For the light elements
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and magnetic flux densities considered here, the states in
these bands have too high energies to be populated. In Eq.
~2.3!, vc5eB/me is the cyclotron frequency; the one-
dimensional effective potentials are given by

VnLnL8m~z!5E
0

`E
0

2p

FnLm
* ~%,w!Veff~%,z!

3Fn
L8m

~%,w!dw% d%, ~2.5!

while

Veff~%,z!5V~%,z!1VH~%,z!1Vxc~%,z! ~2.6!

consists of the external potentialV, the direct partVH of the
electron-electron potential, and its exchange-correlation part

Vxc~%,z!5
dExc@n#

dn~%,z!
. ~2.7!

Within the LDA where

Exc
LDA@n#52pE n~%,z!«xc„n~%,z!…%d%dz, ~2.8!

we use the simple Dirac exchange functional

«x~n!52
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for the fully polarized electron gas, neglecting correlation
effects. For the numerical treatment of the integrals appear-
ing in ~2.5!, see Pro¨schelet al. @5#. The differential equation
solver applied to the system~2.3! of equations, which
couples different Landau channels, is based on the one de-
veloped by Wintgen@6# for the hydrogen atom in strong
magnetic fields.

The equations are solved iteratively using up to three Lan-
dau channels@nmax50,1, or 2 in~2.3! and ~2.4!# and simu-
lating continuous occupation of the energy bands up to some
common~quasiparticle! Fermi energy«F by selecting in each
~partly! occupied bandnk one-particle states corresponding
to equidistantk-values within the interval@0,kF

m#. Here,kF
m is

the Fermi wave number of the band characterized by a spe-
cific value ofm. Iterations are repeated until self-consistency
is achieved, i.e., the Euclidean norm of the difference of
wave functions obtained in subsequent iterations falls below
a given limit.

III. RESULTS

We performed such iterative calculations for infinitely ex-
tended linear chains of hydrogen, helium, and carbon atoms.
In the case of hydrogen, we considered magnetic field
strengths corresponding to 81 different values for the mag-
netic field parameterb5B/B0 with B0'4.701083105 T. At
the magnetic flux densityB0 , we haveaL5aBohr. Within a
range from 5 to 1000, the values ofb were chosen approxi-
mately equidistant on a logarithmic scale. As we also con-
sidered elements with nuclear chargesZ.1, it is useful to
introduce theZ-scaled magnetic field parameterbZ5b/Z2.

In the case of helium, we limited our calculations to
bZ550 (B'9.43107 T! andbZ'265.9 (B553108 T!; for
carbon, tobZ550 (B'8.53108 T! and, in addition, to
nmax50. For bZ550 andbZ'265.9, ground-state energies
per atomEG were obtained in a wide range of internuclear
spacingsa leading to binding lengthsa0 and binding ener-
giesE05EG(a0). For other values ofbZ , we restricted our
calculations to the regions arounda0 . This was possible,
since our program for atomic chains allows during one run
the variation ofbZ with automatic search for the minimum
of EG as a function ofa for each value ofbZ . Condensation
energies were found, subtracting binding energies from the
ground-state energiesEA of the corresponding single atoms
obtained within the same heuristic scheme. These had been
already partly calculated by Bu¨hler @7# and were calculated
here for hydrogen at several additional values ofb.

We examined the convergence of the ground-state ener-
gies with the numbernk of single-particle states taken into
account in each energy band@8#. These energies are con-
verged with a tolerance of less than 1% when usingnk54
for the hydrogenic and helium chains and, due to the much
larger number of populated energy bands,nk53 for carbonic
chains. For example, in the case of the hydrogenic chain at
b550 (B'2.353107 T!, increasingnk from 4 to 5 and 10
increases the binding energy by 0.1% and 0.25%, respec-
tively.

Figure 1 shows for a hydrogenic chain atb550 the re-
sulting ground-state energyEG

@nmax#(a) for nmax50,1, and 2.

In addition, it showsEG
@nmax→`#(a), where the extrapolation

with respect to the highest allowed Landau quantum number
nmaxwas done assuming a dependence ofEG onnmax, which
can be expressed as a broken rational function,

EG
@nmax#5

a1b~nmax11!

11c~nmax11!
. ~3.1!

Binding energiesE0 and binding lengthsa0 were found
for eachbZ from the three deepest fully self-consistently

FIG. 1. Ground-state energyEG
@nmax#(a) of a hydrogenic chain at

b550. Curves fornmax50,1,2 andnmax→` are shown. The larger
the nmax the lower the corresponding curve. The horizontal lines
mark the ground-state energyEA

@nmax# of a hydrogen atom at
b550 fornmax50,1,2 andnmax→`, each within the same range of
values ofa as the corresponding curve for the chain.
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calculated valuesEG(ai) and their correspondingai
( i51,2,3!, assuming a harmonic functional dependence of
EG ona in the region around its minimumE0 . For hydrogen
at 5<b<1000,E0

@nmax# andEA
@nmax# are plotted in Figs. 2 and

3 for nmax50,1,2 and fornmax→`. The binding lengths de-
crease when dropping the adiabatic approximation, i.e., when
allowing for nmax.0.

The ground-state energies of single atoms and of atomic
chains also decrease whennmax is increased. As a net effect,
the condensation energyEC5EA2E0 increases in all cases
examined here. For hydrogen at 5<b<1000, this is shown
in Fig. 4. Figure 5 shows the corresponding binding lengths.
The self-consistent calculations withnmax.0 were per-

formed for chains atb55, 10, 20, 50, 100, 200, 500, and
1000 only. Within this range,EG , EC , anda0 at arbitrary
values were then found by interpolation applying a natural
cubic spline.

EG
@nmax#(a) for a helium chain atbZ550 is plotted to-

gether withEA
@nmax# for the helium atom usingnmax50,1,2

and fornmax→` in Fig. 6. ForZ.1, we useZ-scaled atomic
units, i.e.,aZ5aBohr/Z and EZ5Z2Ry. EG

@nmax50#(a) for a

carbonic chain atbZ550 is plotted together withEA
@nmax50#

for the carbon atom in Fig. 7. Both of these two atomic
chains exhibit a relative minimum ofEG(a); in the case of
carbon, at an internuclear distance very close toa0 . Between

FIG. 2. Binding energyE0
@nmax#(b) of a hydro-

genic chain~solid lines! and ground-state energy
EA

@nmax#(b) of a hydrogen atom~dotted lines! for
values of b between 5 and 50. Curves for
nmax50,1,2 andnmax→` are shown for both
cases. The larger thenmax the lower the corre-
sponding curve.

FIG. 3. Same as Fig. 2, but for values ofb
between 50 and 1000.
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such a minimum and the corresponding relative maximum of
EG(a), a new energy band starts to be populated, ifa is
decreased.

For large internuclear distances, the overlap of the elec-
tronic charge densities of the individual atoms within an
atomic chain is negligible, and the atoms interact only via
their quadrupole moments. For an atomic chain, the energy
shift caused by this quadrupole-quadrupole interaction is
given by

DEQ5
3e2

8p«0

Qzz
2

a5 (
i51

`
1

i 5
, ~3.2!

where the deviation of the factor( i51
` i25'1.037 from 1 is

due to the contributions of interactions between atoms that
are not next neighbors. For our calculations atbZ550, the
values we find in the repulsive region forQzz52^z2&
22^x2& are listed in Table I.

IV. COMPARISON WITH REPORTED RESULTS

Our results for the ground-state energiesEA of single at-
oms, binding energiesE0 of atomic chains, condensation en-
ergiesEC , binding lengthsa0 , and the valuesmmax of the
z componentm of the orbital angular momentum of the high-
est occupied quasi-single-particle states ata0 are compiled in
Table II for hydrogen and in Table III for helium as well as
carbon, together with those of other authors for some values
of bZ that they considered.

The ground-state energies obtained by Ruderet al. @3# are
the most accurate ones available today for single atoms.
Table II gives, separated by a slash, upper and lower limits to
the true values for these energies. These results can be used
to assess the accuracy of the different approximating
schemes when applied to single atoms. As these are obtained
without any restriction on the allowed wave functions, we
also list our corresponding results fornmax→`.

All other values listed in Tables II and III were calculated
within the adiabatic approximation. Abrahams and Shapiro
@9# employed a Thomas-Fermi-Dirac-Weizsa¨cker statistical
model in which the magnetic Thomas-Fermi-Dirac kinetic,
potential, and exchange energy functionals are supplemented

FIG. 4. Condensation energyEC
@nmax#(b) of a hydrogenic chain

for nmax50,1,2 andnmax→`.

FIG. 5. Binding lengtha0
@nmax#(b) of a hydrogenic chain for

nmax50,1,2 andnmax→`.

FIG. 6. Same as Fig. 1, but for helium atbZ550.

FIG. 7. Ground-state energyEG
@nmax50#(a) of a carbonic chain at

bZ550. The horizontal line marks the ground-state energy
EA

@nmax50# of a carbon atom atbZ550.
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by a gradient correction to the kinetic energy. Mu¨ller @10#
applied a variational method within the Hartree-Fock ap-
proximation and divided, for the modeling of atomic chains,
electrons into ‘‘core’’ and ‘‘sheath’’ electrons. The interac-
tion between these two kinds of electrons was approximated
by effective charges of the nuclei. Neuhauser, Koonin, and
Langanke@11#, Lai, Salpeter, and Shapiro@12#, as well as
Demeur, Heenen, and Godefroid@13# used the unrestricted
Hartree-Fock method directly, which can be applied with

present computer resources only to single atoms or — as in
Refs. @12,13# — to finite chains. The results of Demeur,
Heenen, and Godefroid@13# given in Table II are actually for
the H5 molecule, but appear to be already stabilized when
compared with the results for Hi ( i52,3,4) also presented
in their paper. Because of the numerical complexity of this
unrestricted Hartree-Fock method when applied to many-
electron systems, Refs.@11,12# also had to retreat on varia-
tional calculations for infinite chains. Neuhauser, Koonin,
and Langanke@11# restricted the longitudinal single-particle
wave functions to productsum(z)e

ikz of plane waves and
k-independent periodic functions with perioda; and Lai, Sal-
peter, and Shapiro@12#, simply to plane waves.

Despite the fact that the Hartree-Fock approximation
gives, in general, better results for single atoms than density-
functional methods applying the LDA, this superiority is eas-
ily destroyed by the further approximations that are necces-
sary for extended systems. The order of magnitude of the
effect of restrictions imposed on the wave functions on the
ground-state energy can be seen from the two values for
EA of a helium atom atbZ'53.18 (B5108 T! calculated by
Müller @10# and by Neuhauser, Koonin, and Langanke@11#,

TABLE I. Quadrupole moment componentQzz in units of
aZ
25aBohr

2 /Z2 for atoms with nuclear chargeZ within atomic chains
at large internuclear distancesa ~repulsive region! in magnetic
fields corresponding to the valuebZ550 for theZ-scaled magnetic
field parameter.

Z Qzz

1 0.255
2 1.1
6 6.7

TABLE II. Ground-state energyEA of hydrogen atoms, binding energyE0 of hydrogenic chains, condensation energyEC , binding
lengtha0 , and the valuemmax of thez component of the angular momentum of the highest occupied single-particle state in magnetic fields
corresponding to the magnetic field parameterb from calculations allowing the maximum Landau quantum numbernmax. We use atomic
units, rydbergs, andaBohr, and compare our results with those of other authors.~Slashes separate upper and lower limit of the true values.!

b nmax EA E0 EC a0 mmax

20 0 25.308 25.946 0.637 0.614 23
20 →` 25.516 26.241 0.725 0.563 23

RWHGa 20 →` 25.602058/60
21.2717 0 25.429 26.100 0.671 0.599 23

LSSb 21.2717 0 25.613 25.809 0.196 0.58
100 0 29.431 211.58 2.14 0.320 25
100 →` 29.554 211.75 2.19 0.313 25

RWHGa 100 →` 29.4531/50
106.359 0 29.635 211.87 2.24 0.313 25

LSSb 106.359 0 29.570 210.77 1.20 0.31
200 0 211.98 215.40 3.42 0.241 25
200 →` 212.08 215.54 3.46 0.237 25

RWHGa 200 →` 211.7023/39
212.717 0 212.24 215.80 3.56 0.235 26

AS c 212.717 0 2.94 0.206
LSSb 212.717 0 211.87 213.99 2.12 0.23

425.434 0 215.48 221.00 5.52 0.177 27
LSSb 425.434 0 214.59 218.15 3.56 0.17

500 0 216.34 222.43 6.10 0.166 27
500 →` 216.41 222.54 6.13 0.165 27

RWHGa 500 →` 215.3241/53
DHG d 500 0 215.2 218.8 3.6 0.17 23

1000 0 220.56 229.80 9.23 0.126 28
1000 →` 220.62 229.88 9.26 0.125 28

RWHGa 1000 →` 218.60896/986
LSSb 1063.59 0 218.90 225.56 6.66 0.12

aRuderet al. @3#.
bLai, Salpeter, and Shapiro@12#.
cAbrahams and Shapiro@9#.
dDemeur, Heenen, and Godefroid@13#.
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respectively, listed in Table III. Mu¨ller @10# allowed only for
in the z direction exponentially decaying wave functions
with no or one node. The unrestricted result of Neuhauser,
Koonin, and Langanke@11# is lower by 5.5%. As in both
papers similar variational Hartree-Fock-like approaches are
chosen for atomic chains, the values forE0 differ only by
0.9%. But the condensation energies differ by 50%. For the
chains, such Hartree-Fock-like calculations give weaker
binding, i.e., condensation energies that are smaller than the
ones we found. The differences inEC for hydrogen increase,
for example, if compared with the results of Lai, Salpeter,
and Shapiro@12# from about 30% for the largest magnetic
fields considered here to 71% atb'21.27.

Our condensation energies and binding lengths can be
compared quite directly with the results of similar density-
functional calculations by Jones@14–16# for atomic chains
and lattices. The local exchange-correlation functional ap-
plied in those papers reads

«xc
Jones~N!5@~13.723p ln~2bZ!12p lnN!bZ

21N

29.45A2bZ
2 5/2N21$0.0288ln~2bZ!20.244

20.0192lnN%A2bZ#
EZ

Z
, ~4.1!

with N[naZ
3 . Using this functional, we were able to repro-

duce the results of Jones@14# for helium atbZ'265.9 in the
adiabatic approximation with an accuracy of about 0.25% for
EA andE0 , 0.4% forEC , and 1.5% fora0 . Using the Dirac
exchange functional, we get a very similar value forEC that
differs only by 0.25%, althoughEA andE0 differ by about
2% ~see Table III!. This shows that the condensation ener-
gies are rather insensitive to the actual local exchange-
correlation functional used.

V. CONCLUSION AND OUTLOOK

We presented results of multichannel density-functional
calculations for matter in astrophysically relevant magnetic

fields using a set of Landau functions. In weak neutron star
magnetic fields, the effect of higher Landau levels on
ground-state energies, condensation energies, and binding
lengths is not negligible. Within the heuristic density-
functional method applied here, the local exchange-
correlation functional actually used has little effect on con-
densation energies, as differences in ground-state energies
largely cancel. Comparision of the condensation energies we
find with the ones obtained within other heuristic theories
~Thomas-Fermi-like or Hartree-Fock-like! shows much
larger differences. These are not only due to the use of dif-
ferent physical theories; they are, in the case of Hartree-
Fock-like calculations for chains, also due to restrictions on
the allowed single-particle wave functions.

Our calculational scheme is such that it can be easily gen-
eralized to an implementation of current-density-functional
theory~CDFT! ~Vignale and Rasolt@17,18#; Vignale, Rasolt,
and Geldart@19#!, the only theory available today which —
apart from a Monte Carlo treatment of the many-particle
Schrödinger equation — in principle can lead to true ground-
state energies for many-particle systems in strong magnetic
fields. In such a modified scheme, calculations for these sys-
tems are only restricted by the quality of the exchange-
correlation functional. As additional terms containing gradi-
ents enter the Kohn-Sham equations when going from the
heuristic density-functional method applied here to CDFT,
the condensation energies obtained may be considerably
shifted. Therefore, we plan to substitute the method applied
in this work by CDFT, which correctly takes into account
diamagnetic effects, together with the corresponding
exchange-correlation functionals~e.g., Skudlarski@20# and
Skudlarski and Vignale@21#!.
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TABLE III. Same as Table II, but for helium and carbon. We useZ-scaled atomic units, i.e.,EZ5Z2Ry andaZ5aBohr/Z.

Z bZ nmax EA E0 EC a0 mmax

2 50 0 210.56 211.59 1.03 0.583 28
2 50 →` 210.71 211.75 1.04 0.572 28

RWHGa 2 50 →` 210.36
AS b 2 53.1793 0 29.00 210.29 1.29 0.51
M c 2 53.1793 0 210.01 210.93 0.92 0.550 26
NKL d 2 53.1793 0 210.57 211.03 0.46 0.58

2 265.896 0 218.77 222.81 4.04 0.293 212
Je 2 265.896 0 219.11 223.16 4.05 0.29
Je 6 29.5440 0 216.4 216.6 0.2 1.35

6 50 0 219.44 219.93 0.49 1.014 222

aRuderet al. @3#.
bAbrahams and Shapiro@9#.
cMüller @10#.
dNeuhauser, Koonin, and Langanke@11#.
eJones@14#.
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