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1Universitédu Littoral, Boı̂te Postale 5526, F59379 Dunkerque Cede´x 1, France

2Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, F91440, France
~Received 26 September 1995!

We analyze the transition from a Zeeman to a Stark structure of a weakly split Rydbergn multiplet of the
H atom in parallel magnetic and electric fields. The use of classical mechanics, topology, and group theory
provides a detailed description of the modifications of dynamics due to the variation of the electric field. We
focus on the point where the collapse of the Zeeman structure occurs, give the sequence of classical bifurca-
tions responsible for the transition between different dynamic regimes, and compare it to the quantum energy-
level structure.@S1050-2947~96!10906-9#

PACS number~s!: 32.60.1i, 03.20.1i

Rydberg atoms in parallel magnetic and electric fields
have been studied extensively both theoretically and experi-
mentally during the last decade. In particular, many studies
have focused on the situation where the fields are~relatively!
weak and the dynamics can be analyzed in terms of addi-
tional approximate integrals of motion@1–8#. We use a simi-
lar idea to analyze several dynamic regimes that exist for
different strength of the electric (F) and magnetic (G) fields.
These regimes clearly manifest themselves in the energy
level pattern in Fig. 1. At very weak electric field, where
most of the studies@1–8# have been done, we have a struc-
ture characteristic of the second-order Zeeman effect~see
Fig. 2!. WhenF increases this structure quickly disappears.
Instead we observe regular ‘‘resonance’’ structures at certain
values ofF ~see Fig. 1!. This culminates in an almost com-
plete collapse of the internal structure. Surprisingly, and con-
trary to theF;0 case the dynamics near this collapse has
not, to our knowledge, been analyzed. Furthermore, exist-

ence of collapsed levels with different projections of the or-
bital momentumm can be used in the experiment to selec-
tively produce states with any possiblem using adiabatic
change of field parameters@9#. In this paper we give a de-
tailed analysis of the collapse region.

Neglecting the spin effects the Hamiltonian for the hydro-
gen atom in constant parallel magneticg and electricf fields
~along thez axis! has the form~in atomic units!
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with g and f in units of 2.353105 T and 5.143109 V/cm.
We restrict ourselves to the low field case where the splitting
of ann shell caused by both fields is small compared to the
splitting between neighboringn shells~see Fig. 3!. As is well
known, in the absence of electric field low-m submanifolds
of the n shell show the characteristic pattern of the second-
order Zeeman effect. When the electric field effect is of the

FIG. 2. Deformation of the quantum Zeeman effect structure of
the n510, m50 multiplet of the hydrogen atom. Dashed lines
show the energy in stationary points of classical Hamiltonian re-
stricted onm50.

FIG. 1. Collapse of the Zeeman structure for the magnetic field
G50.06 due to the increasing electric field. Quantum levels are
calculated for then510 multiplet of the hydrogen atom. Electric
field strength is given in unitsF05G/3 @see Eq.~3!#.
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same order as the quadratic Zeeman effect~see Fig. 2!, this
pattern disappears and turns into a Stark structure for each
m submanifold@4,6#. Much less attention has been paid to
the region where the Stark splitting of then shell (}3 f n2) is
of the same order as then shell splitting due to magnetic
field (}gn) ~Fig. 1, region near 3F/G51), in other words
when

f 05g/3n. ~2!

Equation ~2! gives the collapse condition for shelln. To
ensure that this collapse happens when then-shell splitting
remains small compared to the gap betweenn shells we take
g,1/n4. Under this assumption we can study an isolatedn
shell and can use scaling

F5 f n4, G5gn3, Ẽn52n2En11, ~3!

to removen from the effectiven-shell Hamiltonian@Eq. ~7!
below#. This transforms the initial collapse condition~2! into
F05G/3.

Our purpose is to study the dynamics under the variation
of the electric fieldf in the neighborhood of its critical value
f 0 . The natural parameter for this study is
d53F/G2153 f n/g21.

The analysis is based on the transformation of the initial
Hamiltonian ~1! into an effective one for an individualn
shell. This can be done either by quantum or by classical
perturbation theory@6–8#.

An effective n-shell Hamiltonian can be expressed in
terms of angular momentumL and Runge-Lenz vector
A5p3L2r /r , or, alternatively, in terms of their linear
combinationsJ15(L1A)/2 andJ25(L2A)/2. For the lin-
ear Stark-Zeeman effect in parallel fields the effective
Hamiltonian is

H5
1

2n2
~211gn2Lz13 f n3Az!. ~4a!

If we impose the relation between field strengths~2! this
Hamiltonian becomes

H5
1

2n2
@2113 f 0n

3~J1!z#. ~4b!

The n2 energy levels in then shell described by~4b! form
n-fold degenerate groups. The levels in each group are la-
beled by the same value of (J1)z and by different values of
(J2)z . Figure 1 shows how the Zeeman structure of then
shell atf50 transforms into this highly degenerate structure
at f5 f 0 (F5G/3). We call this effect the collapse of the
Zeeman structure caused by electric field. To describe the
fine structure of each (J1)z manifold of states the second-
order effects should be taken into account.

To develop the effectiven-shell Hamiltonian to higher
orders we considern as an integral of motion and use the
perturbation theory to reduce the initial problem~1! to two
degrees of freedom. Naturally, the pair (Lz ,fLz

) describes
one of these degrees; the other degree can be described by
Az andfAz

@7#. Of course, for Hamiltonian~1! Lz is strictly

conserved and then-shell Hamiltonian does not depend on
fLz

. However, to study the collapse we should consider the

energy-level structure of then shell as a whole, and there-
fore, we should keepLz as a dynamical variable. Hence our
n-shell Hamiltonian is a function of dynamical variables
(Lz ,Az ,fAz

) and parameters (n, f ,g).

The classical phase spaceS for an effective n-shell
Hamiltonian is a four-dimensional space with topology
S23S2 (S2 is a 2D sphere!. Its parametrization can be done
either usingL,A variables withL21A25n2, andL•A50,
or usingJ1 ,J2 variables withJ1

25J2
25n2/4. ~In the classical

limit n is sufficiently large andn2'n221.)
For the qualitative analysis of then-shell dynamics spe-

cial variables

n5Az /n, m5Lz /n, j5~L22A2!/n2. ~5!

are the most useful. This choice of variables~5! is based on
group theory and, in particular, on invariant theory. In fact,
(n,m,j) form the set of invariant polynomials~the so-called
integrity basis! that is used both to label the points of the
phase space and to expand the Hamilton function@10,11#.
Furthermore, the proper scaling in~5! and~3! results in equa-
tions that do not depend onn.

The symmetry groupG of the problem is made up of the
rotationsr u and operations (Tsf). r u are rotations around
the ‘‘vertical’’ axis oz, the common direction of the electric
and magnetic field; they form the groupC` . Each operation
(Tsf) is a product of time reversalT and reflectionsf
through a vertical plane that containsoz and has azimuth
f. We emphasize that neitherT nor sf is separately a sym-
metry of the problem. We verify that (Tsf)

251,
(Tsf)r u(Tsf)5r2u5r u

21 , andr u(Tsf)(r u)
215Tsf1u . So

G is isomorphic~but not identical! to the groupC`v and the
(Tsf)’s form one conjugacy class ofG.

Consecutive steps in the qualitative analysis of an effec-
tive Hamiltonian under the presence of the symmetry group
@11# includes the study of the action of the symmetry group
on the classical phase space, construction of the space of

FIG. 3. Neighboring Rydberg multipletsn59,10,11 of the hy-
drogen atom. a.u.e. denotes atomic unit of energy.
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orbits ~orbifold!, and the analysis of the system of stationary
points~orbits! of the Hamilton function using the topological
and group theoretical information about the phase space. To
study the action ofG on S we just need the following facts:
L and A are, respectively, axial and polar vectors, andT
reversesL . This allows us to find all orbits of the action of
the groupG onS. According to the general theory of invari-
ants, different orbits can be distinguished by three~algebra-
ically independent! invariants of G and every smooth
G-invariant function onS is a smooth function of these in-
variants. We have chosenn,m,j in ~5! as these basic invari-
ants. The possible range of variation ofn,m,j is given by a
G-invariant functions25@(L3A)•n#2, with n the unit vec-
tor of oz. It is a polynomial ofn,m,j and it gives a repre-
sentation of the space of orbitsO ~see Fig. 4!:

O:21<j<1,

4s2512j222~12j!m222~11j!n2>0. ~6!

Every orbit is represented by a point ofO @12#. There are
three strata. They contain, respectively,~i! four fixed points
A,B,C,D, with G the stabilizer; these four points are also
called four critical orbits since they are extrema ofany G-
invariant function onS @10#; their coordinates (n,m,j) are
given in Fig. 4; ~ii ! a two-parameter family of circlesS1
~orbits of C`) whose points have$1,Tsf% as stabilizers;
these orbits belong to the boundary ofO given by the equa-
tion s50; we remark that this boundary contains the edges
of the tetrahedron with verticesA,B,C,D; ~iii ! a three-
parameter family of generic orbits made of a pair of circles
~52S1) with trivial stabilizer 1~internal points of the orbi-
fold!.

The Hamilton function can be expressed as a polynomial
H5H(n,m,j) of invariant polynomialsn,m,j. Up to qua-
dratic inF andG terms the scaled energyẼ has the form

Ẽ5Gm13Fn2 1
4G

2j1 1
8 ~9F21G2!m2

1 1
8 ~3F225G2!n21 1

8 ~3G2217F2!. ~7!

To qualitatively characterize classical and quantum dynam-
ics we find the system of stationary points~manifolds! of the
energy function on the phase space. Group theory asserts that
four pointsA,B,C,D ~critical orbits! must be stationary for
any smooth function defined over the phase space@10#. En-
ergy values~7! at these points are shown in Figs. 1 and 3.
Morse inequalities confirm that the simplest Morse-type
functions possessing stationary points only on the four criti-
cal orbits really exist onS and have one minimum, one
maximum, and two saddle points. For more complicated
functions any other stationary points can be found by looking
for those energy sections of the orbifold that correspond to
the modification of the topology of the energy section.

Simple geometrical analysis shows that in the linear~in
F andG) approximation forF,F0 the energy function is of
the simplest type with a minimum inB, a maximum inA,
and two saddle points inC andD. For F.F0 the energy
function is again of the simplest type with a minimum in
D, maximum inC, and two saddle points inA andB. Sud-
den transition from one simple type of energy function to
another in the linear model occurs due to the formation of the
degenerate stationary manifold atF5F0 corresponding to
Hamiltonian ~4b!. In the linear model the energy surface
touches the orbifold through the whole interval@C,A# or
@B,D#. Introduction of theF2 andG2 terms into the energy
function removes this degeneracy. The energy surface~7! is
the second-order surface inj,m,n variables. It can touch
orbifold O at some isolated points on thes50 surface,
which are different from the critical orbitsA,B,C,D. If this
happens, additional stationary orbits are present. A detailed
analysis of a system of stationary points as a function ofF
near the collapse valueF0 shows how the transformation
from the Zeeman-type energy function~with only four sta-
tionary critical orbits having minimum and maximum inB
and A) to the Stark-type energy function~with only four
stationary critical orbits having minimum and maximum in
D andC) occurs. Two sequences of bifurcations are present
with two bifurcations in each sequence. AsF increases, one
sequence begins with a bifurcation at pointB, which creates
a new stationaryS1 orbit of Ẽ on S. The corresponding
point on the surface of the orbifold moves fromB to D and
disappears atD after the second bifurcation. Another se-
quence of bifurcations proceeds in a similar way with two
bifurcations atC andA and the additional stationary orbit
moving fromC to A.

Positions of all stationary orbits can be found by solving
the Hamiltonian equations onS. An alternative way is to use
the geometrical representation of the orbifold and of the en-
ergy surface. To find noncritical stationary orbits we find
points where the energy surface touches the orbifold. In other
words we find points where the normal vector to thes50
surface and the normal vector to the energy surface
k5(kn ,km ,kj) are collinear. This geometric view gives us
extremely simple conditions for bifurcations at points
A,B,C,D:

A:4kjkm5kn
22km

2 ; dA'2G2/82G3/16, ~8a!

FIG. 4. The space of orbits of the symmetry group of the Ryd-
berg electron in the presence of parallel electric and magnetic fields
in then-shell approximation.
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C:4kjkn5kn
22km

2 ; dC'2G/31G2/72, ~8b!

B:4kjkm5km
22kn

2 ; dB'2G2/81G3/16, ~8c!

D:4kjkn5km
22kn

2 ; dD'22G/31G2/72. ~8d!

When d varies betweendA and dC an additional stationary
orbit exists on the surface of the orbifold and moves from
point A to pointC. Similarly for d betweendD anddB an-
other additional stationary orbit moves fromD to B. The
energies of all stationary orbits near the bifurcation points
and the quantum energy levels are shown in Fig. 5.

A simple quantum mechanical interpretation of the effect
of the transformation of the Zeeman-type structure into the
Stark-type one can be done by looking at the two extremal
states~with minimal and maximal energy! of the samen
multiplet ~Fig. 5!. We can characterize each extremal state
by two average values,^Lz& and^Az&. From the positions of
stationary points on the orbifold it follows immediately that
for the state with maximal energŷLz&'n for d,dA and
^Lz&'0 for d.dC , whereaŝLz& varies almost linearly with
d for dA,d,dC . For the same statêAz&'0 for d,dA and
^Az&'n for d.dC , whereaŝAz& varies almost linearly with
d for dA,d,dC .

We conclude that important qualitative modifications of
dynamics take place in the collapse region. This suggests
new experimental investigations that can use the detailed in-
formation on many energy-level crossings in the collapse

region to obtain quantum states with desired properties by
fine tuning the field parameters. The present paper also dem-
onstrates the powerful geometrical and group theoretical
technique based on the orbifold representation.
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FIG. 5. Bifurcation diagram near the collapse region. Classical
~left! vs quantum~right! representation.
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