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Collapse of the Zeeman structure of the hydrogen atom in an external electric field
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We analyze the transition from a Zeeman to a Stark structure of a weakly split Ryalmeuifiplet of the
H atom in parallel magnetic and electric fields. The use of classical mechanics, topology, and group theory
provides a detailed description of the modifications of dynamics due to the variation of the electric field. We
focus on the point where the collapse of the Zeeman structure occurs, give the sequence of classical bifurca-
tions responsible for the transition between different dynamic regimes, and compare it to the quantum energy-
level structure[S1050-29476)10906-9

PACS numbed(s): 32.60:+i, 03.20+i

Rydberg atoms in parallel magnetic and electric fieldsence of collapsed levels with different projections of the or-
have been studied extensively both theoretically and experbital momentumm can be used in the experiment to selec-
mentally during the last decade. In particular, many studiesively produce states with any possibbe using adiabatic
have focused on the situation where the fields(eekatively)  change of field parametef8]. In this paper we give a de-
weak and the dynamics can be analyzed in terms of addtailed analysis of the collapse region.
tional approximate integrals of motigta—8|. We use a simi- Neglecting the spin effects the Hamiltonian for the hydro-
lar idea to analyze several dynamic regimes that exist fogen atom in constant parallel magnetiand electricf fields
different strength of the electrid=) and magnetic@) fields.  (along thez axis) has the form(in atomic unit$
These regimes clearly manifest themselves in the energy 2 4 )
level pattern in Fig. 1. At very weak electric field, where p Y Y
most of the studiefl—8] have been done, we have a struc- H= o + §Lz+ E(Xzﬂlz)_ fz, @
ture characteristic of the second-order Zeeman effsee
Fig. 2. WhenF increases this structure quickly disappears.with y andf in units of 2.35<10° T and 5.1410° V/cm.
Instead we observe regular “resonance” structures at certaiwe restrict ourselves to the low field case where the splitting
values ofF (see Fig. 1 This culminates in an almost com- of ann shell caused by both fields is small compared to the
plete collapse of the internal structure. Surprisingly, and consplitting between neighboring shells(see Fig. 3. As is well
trary to theF~0 case the dynamics near this collapse haknown, in the absence of electric field law-submanifolds
not, to our knowledge, been analyzed. Furthermore, existef the n shell show the characteristic pattern of the second-

order Zeeman effect. When the electric field effect is of the

L Il L i 1 1 1 1

0.4 | =10, m=0, G=0.06

\\Q\

&\1
‘«

|

0.3 1

'\
?

\\
Q
|
|

I

i

i
|
|

Energy E in units 2nE+1
}

{

0.2 1

\\\\

)

4‘?«
|
;
|

= =

|
|

|

0.1+

—

|
?g.‘

|

W

0.0

-0.14

-0.2 1

-0.3 1

classical

. quantum ~e.
-0.4 e |

T T T _
0.0 0.2 0.4 0.6 0.8 1.0 1.2 f J !

T T T T T
- . . 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Electric field strength F in units 3F/G Electric field strength F in units 3F/G

FIG. 1. Collapse of the Zeeman structure for the magnetic field FIG. 2. Deformation of the quantum Zeeman effect structure of
G=0.06 due to the increasing electric field. Quantum levels arghe n=10, m=0 multiplet of the hydrogen atom. Dashed lines
calculated for then=10 multiplet of the hydrogen atom. Electric show the energy in stationary points of classical Hamiltonian re-
field strength is given in units,=G/3 [see Eq(3)]. stricted onu=0.
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85t : ; ; 1 . . If we impose the relation between field strengil2s this
1=6x10%au. Hamiltonian becomes

4.0 L

1
n=11 H=W[—1+3fon3(Jl)z]. (4b)

The n? energy levels in the shell described by4b) form
n-fold degenerate groups. The levels in each group are la-
beled by the same value of{), and by different values of
(J5),. Figure 1 shows how the Zeeman structure of the
shell atf =0 transforms into this highly degenerate structure
at f=f, (F=G/3). We call this effect the collapse of the
Zeeman structure caused by electric field. To describe the

60 1 L fine structure of eachJg), manifold of states the second-
n=9 order effects should be taken into account.
To develop the effectiven-shell Hamiltonian to higher

8.5 i » A ) . " orders we considen as an integral of motion and use the
° ' 8' _76 ° perturbation theory to reduce the initial probléf) to two
Electric field strength f [107 a.u] degrees of freedom. Naturally, the palr,(¢ ) describes

FIG. 3. Neighboring Rydberg multiplets=9,10,11 of the hy- ©ON€ of these degrees; the other degree can be described by

drogen atom. a.u.e. denotes atomic unit of energy. A; and ¢, [7]. Of course, for Hamiltoniaril) L, is strictly
conserved and tha-shell Hamiltonian does not depend on
same order as the quadratic Zeeman effeee Fig. 2, this ¢ . However, to study the collapse we should consider the
pattern disappears and turns into a Stark structure for eaghergy-level structure of the shell as a whole, and there-
m submanifold[4,6]. Much less attention has been paid to fore, we should keep, as a dynamical variable. Hence our
the region where the Stark splitting of theshell (x3fn®) is  n-shell Hamiltonian is a function of dynamical variables
of the same order as the shell splitting due to magnetic (L, A, ¢, ) and parametersn(f,y).
field («<yn) (Fig. 1, region near B/G=1), in other words §
when

Energy E (102 aue)

The classical phase space for an effective n-shell
Hamiltonian is a four-dimensional space with topology
S, XS, (S, is a 2D spherp Its parametrization can be done
either usingL,A variables withL?+A?=n?, andL-A=0,
or usingJ; ,J, variables withJ3=J5=n?/4. (In the classical
limit n is sufficiently large anch®~n?—1.)

For the qualitative analysis of the-shell dynamics spe-
cial variables

Equation (2) gives the collapse condition for sheil. To
ensure that this collapse happens whennkshell splitting
remains small compared to the gap betwnaeshells we take
y<1/n*. Under this assumption we can study an isolated

shell and can use scaling v=A,/n, p=L,/n, &=(L2—A?)/n2 (5)

F=fn* G=9n® E,=2n°E,+1, (3)  are the most useful. This choice of variab(&s is based on
group theory and, in particular, on invariant theory. In fact,
to removen from the effectiven-shell HamiltonianEq. (7) (v, u,£) form the set of invariant polynomialshe so-called
below]. This transforms the initial collapse conditi@?) into  integrity basi$ that is used both to label the points of the
Fo=G/3. phase space and to expand the Hamilton funcfitdy11].
Our purpose is to study the dynamics under the variatiorFurthermore, the proper scaling(@) and(3) results in equa-
of the electric fieldf in the neighborhood of its critical value tions that do not depend am
fo. The natural parameter for this study is The symmetry groug of the problem is made up of the
0=3F/G—-1=3fn/y—-1. rotationsr, and operationsTs,). r, are rotations around
The analysis is based on the transformation of the initiathe “vertical” axis 0z, the common direction of the electric
Hamiltonian (1) into an effective one for an individuat and magnetic field; they form the gro@h, . Each operation
shell. This can be done either by quantum or by classica(rsqs) is a product of time reversal and reflections,,
perturbation theory6—8]. through a vertical plane that contaieg and has azimuth
An effective n-shell Hamiltonian can be expressed in $. We emphasize that neithé&rnor Sg is Separate|y a sym-
terms of angular momenturh and Runge-Lenz vector metry of the problem. We verify that T(s,,,)zzl,
A=pXL-—r/r, or, alternatively, in terms of their linear (TS¢)rg(TS¢)=Lg=r§1, andrg(Ts¢)(r9)‘1=Ts¢+0. So
combinations; = (L +A)/2 andJ,= (L —A)/2. For the lin- ¢ s isomorphic(but not identical to the groupC.., and the
ear Stark-Zeeman effect in parallel fields the effective(-|-5¢)’S form one conjugacy class @
Hamiltonian is Consecutive steps in the qualitative analysis of an effec-
tive Hamiltonian under the presence of the symmetry group
[11] includes the study of the action of the symmetry group

1
- (_ 2 3
H 2n2( L4yl +31n74,). (43 on the classical phase space, construction of the space of
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B(0,-1,1) E=Gu+3Fv— G2+ L(9F2+ G2 u?

) s-~ +5(3F2—5G?) v+ 5(3G*—17F?). @)
?&Q&~ To qualitatively characterize classical and quantum dynam-
0.5 §§Q--~.‘ S A(0,1,1) ics we find the system of stationary poititsanifolds of the
§$§§#$% energy function on the phase space. Group theory asserts that
& o §§$$$g5“’_-‘i,/// four pointsA,B,C,D (critical orbits must be stationary for
‘Qgggs,'/;"/;’///// any smooth function defined over the phase sjacé En-
0.5 &#5:;5.-‘5//// D(-1,0-1) ergy values(7) at these points are shown in Figs. 1 and 3.
?##E..IE’ Y Morse inequalities confirm that the simplest Morse-type
NF A functi ing stati ints only on the four criti-
o S unctions possessing stationary points only on the four criti
o #;"" 7 1 cal orbits really exist or®, and have one minimum, one
?,':/ maximum, and two saddle points. For more complicated

functions any other stationary points can be found by looking

for those energy sections of the orbifold that correspond to

the modification of the topology of the energy section.
Simple geometrical analysis shows that in the lin@ar

) F andG) approximation foi- <F the energy function is of
FIG. 4. The space of orbits of the symmetry group of the Ryd-ie simplest type with a minimum iB, a maximum inA,

perg electron in the presence of parallel electric and magnetic fieldg,4 two saddle points i€ andD. For F>F, the energy
in the n-shell approximation. function is again of the simplest type with a minimum in

D, maximum inC, and two saddle points iA andB. Sud-
orbits (orbifold), and the analysis of the system of stationaryden transition from one simple type of energy function to
points(orbits) of the Hamilton function using the topological another in the linear model occurs due to the formation of the
and group theoretical information about the phase space. T@egenerate stationary manifold Bt=F, corresponding to
study the action ofj on 2, we just need the following facts: Hamiltonian (4b). In the linear model the energy surface
L and A are, respectively, axial and polar vectors, ahd touches the orbifold through the whole intenjal,A] or
reversed.. This allows us to find all orbits of the action of [B,D]. Introduction of theF? and G2 terms into the energy
the groupg on .. According to the general theory of invari- function removes this degeneracy. The energy surfaces
ants, different orbits can be distinguished by th{algebra- the second-order surface ifyu,v variables. It can touch
ically independent invariants of G and every smooth orbifold © at some isolated points on the=0 surface,
G-invariant function on is a smooth function of these in- which are different from the critical orbit&,B,C,D. If this
variants. We have chosenpu, ¢ in (5) as these basic invari- happens, additional stationary orbits are present. A detailed
ants. The possible range of variationmfu,£ is given by a  analysis of a system of stationary points as a functiof of
G-invariant functiono?=[ (L X A)-n]?, with n the unit vec- near the collapse valuE, shows how the transformation
tor of oz. It is a polynomial ofv,u,& and it gives a repre- from the Zeeman-type energy functigwith only four sta-
sentation of the space of orbit2 (see Fig. % tionary critical orbits having minimum and maximum B
and A) to the Stark-type energy functiofwith only four
stationary critical orbits having minimum and maximum in
D andC) occurs. Two sequences of bifurcations are present
with two bifurcations in each sequence. Rsncreases, one

4o2=1—2—2(1— &) u2—2(1+ &) v?=0. 6) sequence pegins with g bifurcation at pdtwhich creat'es

a new stationaryS; orbit of E on 3. The corresponding

point on the surface of the orbifold moves frddnto D and
Every orbit is represented by a point 6f [12]. There are disappears aD after the second bifurcation. Another se-
three strata. They contain, respectively,four fixed points  quence of bifurcations proceeds in a similar way with two
A,B,C,D, with G the stabilizer; these four points are also bifurcations atC and A and the additional stationary orbit
called four critical orbits since they are extremaasfy G- moving fromC to A.
invariant function on2 [10]; their coordinates ¥, u,&) are Positions of all stationary orbits can be found by solving
given in Fig. 4;(ii) a two-parameter family of circle§;  the Hamiltonian equations dir. An alternative way is to use
(orbits of C..) whose points havg1l,Ts,} as stabilizers; the geometrical representation of the orbifold and of the en-
these orbits belong to the boundary®fgiven by the equa- ergy surface. To find noncritical stationary orbits we find
tion o=0; we remark that this boundary contains the edgegoints where the energy surface touches the orbifold. In other
of the tetrahedron with vertice&,B,C,D; (iii) a three- words we find points where the normal vector to the 0
parameter family of generic orbits made of a pair of circlessurface and the normal vector to the energy surface
(=2S;) with trivial stabilizer 1(internal points of the orbi- k=(k, .k, ,k;) are collinear. This geometric view gives us
fold). extremely simple conditions for bifurcations at points

The Hamilton function can be expressed as a polynomiaf,B,C,D:

H=H(v,u,£) of invariant polynomialsy,u,£. Up to qua- .
dratic in F andG terms the scaled enerdy has the form Adkek,=k;—ki; Sp~—G?/8—G%16, (8



53 COLLAPSE OF THE ZEEMAN STRUCTURE OF THE HYDROGE. . . 4067

Cidkek,=K2—K5; 8c~2GI3+G?72,  (8b) O E—
! 5.52 !
B:akk,=ki—k2; 8p~—G28+G%16, (80 o 550
1 5.48-
D:4kk,=k%—K2; Sp~—2G/3+G¥72. (8d) Z;: c 5.461
When § varies betweerd, and 6c an additional stationary tHE 606{ | A >4 E
orbit exists on the surface of the orbifold and moves from 5 gosf | 7 5'42'%//'/
point A to pointC. Similarly for 6 betweensp and 65 an- E 089 10 101 102 103 104 " 080 10 101 102 103 108
other additional stationary orbit moves frob to B. The o 5.04] - .
energies of all stationary orbits near the bifurcation points & b
and the quantum energy levels are shown in Fig. 5. ; 5881
A simple quantum mechanical interpretation of the effect %]
of the transformation of the Zeeman-type structure into the -5.90
Stark-type one can be done by looking at the two extremal -5.921
states(with minimal and maximal energyof the samen 5941 B
multiplet (Fig. 5. We can characterize each extremal state -5.964 \ . .
by two average valuegl ;) and(A,). From the positions of 0.95 0.96 0.97 0.98 099 10 101 095 0.96 097 0.98 0.99 1.0
stationary points on the orbifold it follows immediately that Electric field strength in units 3F/G

for the state with maximal energiL,)~n for 6<8, and

(L,)=~0 for 6> 6., whereagL,) varies almost linearly with

d for §4<6< . For the same staté\,)~0 for §< 5, and FIG. 5. Bifurcation diagram near the collapse region. Classical
(Ag=nfor 6> 6c, whereagA,) varies almost linearly with  (jeft) vs quantum(right) representation.

S for Sp<d<éc.

We conclude that important qualitative modifications of region to obtain quantum states with desired properties by
dynamics take place in the collapse region. This suggestine tuning the field parameters. The present paper also dem-
new experimental investigations that can use the detailed irenstrates the powerful geometrical and group theoretical
formation on many energy-level crossings in the collapsaechnique based on the orbifold representation.
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