
Large-scale multiconfiguration Hartree-Fock and configuration-interaction calculations
of the transition probability and hyperfine structures in the sodium resonance transition

Per Jo¨nsson
Department of Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund, Sweden

Anders Ynnerman and Charlotte Froese Fischer
Department of Computer Science, Box 1679 B, Vanderbilt University, Nashville, Tennessee 37235

Michel R. Godefroid
Laboratoire de Chimie Physique Mole´culaire, Universite´ Libre de Bruxelles, CP160/09, 50 avenue F-D Roosevelt,

B-1050 Bruxelles, Belgium

Jeppe Olsen
Theoretical Chemistry, University of Lund, P.O. Box 124, S-22100 Lund, Sweden
~Received 30 November 1995; revised manuscript received 27 February 1996!

Results from large-scale multiconfiguration Hartree-Fock~MCHF! and configuration-interaction~CI! calcu-
lations of the transition probability and hyperfine structures in the sodium 3s 2S23p 2P resonance transition
are presented. In the calculations the orbital sets of the initial and final state wave functions were not restricted
to be the same, but were optimized independently. The evaluation of the transition matrix elements was done
using a technique where the two orbital sets are transformed so as to become biorthonormal, in which case
standard Racah algebra can be used. Three-particle effects were taken into account in the CI calculations and
were found to be important for the hyperfine structures, but less important for the transition probability. The
calculated transition probability is in perfect agreement with the most recent experimental values, thus resolv-
ing the long-standing disagreement between theory and experiment. Also the 3s 2S1/2 and 3p 2P1/2,3/2 hyper-
fine interaction constants are in very good agreement with available experimental values.@S1050-
2947~96!07806-7#

PACS number~s!: 31.30.Gs, 32.70.Cs

I. INTRODUCTION

Recent progress in computational techniques, together
with today’s powerful computers, has made it possible to
calculate hyperfine structures and isotope shifts in light at-
oms with very high accuracy. See, for example,@1–7# and
references therein. For these properties a great number of
accurate experimental values are available, and a detailed
comparison shows that in favorable cases theoretical and ex-
perimental values agree to within a few parts in a thousand.

By contrast, there has been a seemingly persistent dis-
agreement between the most accurate theoretical and experi-
mental values for transition probabilities. Well known ex-
amples of this are the resonance lines in lithium and sodium,
for which the theoretical values of the transition parameters
disagree with the most accurate experimental values at the
percent level. For a recent review see Brageet al. @8#.

This disagreement between the theoretical and experimen-
tal values is especially severe for lithium, a system simple
enough allowing for an almost exact theoretical treatment
with a number of different methods. Considering the fact that
all the theoretical values agree perfectly, with the exception
of a recent quantum Monte Carlo calculation@9#, but are well
outside the error bars of the fast-beam laser measurement of
Gauppet al. @11#, one might be inclined to believe that the
latter are too small. This belief is supported by a new fast-
beam laser measurement@10# as well as by a measurement
using photoassociative spectroscopy on ultracold lithium

@12#. Both these quite different measurements give values
which agree well with the theoretical values.

For sodium the situation is different. Here accurate calcu-
lations of transition parameters, such as the multiplet
strength, have remained difficult due to orthogonality restric-
tions. To evaluate transition matrix elements using standard
Racah-algebra techniques the two states involved in the tran-
sition have to be described by the same orbital set@13# ~see
also Froese Fischeret al. @14#, who have relaxed the or-
thogonality condition slightly!. A high-quality wave func-
tion, however, demands orbitals optimized for the specific
electronic state, and it is usually not possible to obtain an
accurate description when the same orbital set is used for two
different states. This problem can be overcome using a bior-
thonormal orbital transformation technique@15# that has
been extended recently to symmetry adapted configuration
state expansions@16#, and it is now possible to perform
large-scale transition calculations where the orbital sets of
the two wave functions are not assumed to be the same, but
can be optimized independently.

In an effort to resolve the disagreement between the ex-
perimental and theoretical transition parameters for sodium,
we performed large-scale multiconfiguration Hartree-Fock
~MCHF! and configuration-interaction~CI! calculations for
the 3s 2S and 3p 2P terms using the biorthonormal transfor-
mation technique to evaluate the transition matrix elements.
As an additional test on the quality of the wave functions, the
hyperfine interaction constants were calculated for all the
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states involved in the transition.
Three-particle effects were taken into account in the CI

calculations to yield a deeper understanding of correlation in
the alkali-metal atoms. Whereas these effects have been in-
cluded in previous calculations of the hyperfine structure in
the sodium ground state@5#, giving surprisingly large contri-
butions, the importance for the transition parameters are less
well known.

The major part of the calculations reported here were per-
formed on a DEC 5100 workstation with 32 Mb internal
memory using different modules of the MCHF atomic struc-
ture package of Froese Fischer@17–21#, modified for large
scale computation. The largest calculations for the 3p 2P
term were performed on an IBM SP-2 at Kingston, using a
distributed memory version of the atomic structure package
@22#.

II. THEORY

A. MCHF

In the nonrelativistic MCHF approach@23# the wave func-
tion c for a state labeledgLS, whereg represents the con-
figuration and any other quantum numbers required to
specify the state, is expanded in terms of configuration state
functions~CSF’s! with the sameLS term.

c~gLS!5(
j
cjF~g jLS!. ~1!

The configuration state functionsF are antisymmetrized lin-
ear combinations of products of spin-orbitals,

fnlmlms
5
1

r
Pnl~r !Ylml

~u,w!jms
~s!, ~2!

where the radial functionsPnl(r ) are represented by their
numerical values at a number of grid points. The radial func-
tions are required to be orthonormal within each
l -symmetry,

E
0

`

Pn8 l~r !Pnl~r !dr5dn8n . ~3!

In the multiconfiguration self-consistent field~MC-SCF! pro-
cedure both the orbitals and the expansion coefficients are
optimized to self-consistency.

B. CI

Once a set of radial orbitals has been obtained, a configu-
ration interaction~CI! calculation can be performed. In a CI
calculation the wave function is expanded in configuration
state functions, but now only the expansion coefficients are
to be determined. This is done by diagonalizing the Hamil-
tonian matrix. For small expansions standard routines from
numerical libraries can be used, but for larger expansions
these routines become inefficient. Instead, the iterative
Davidson method@24# can be used to determine a restricted
number of the lowest eigenvalues and eigenvectors. Using a
sparse matrix representation@25#, where only nonzero matrix
elements are saved, large expansions can be used, the limit
being set by the available disk space.

C. Hyperfine structure

The hyperfine structure is due to the interaction between
the electrons and the nuclear magnetic dipole and electric
quadrupole moments. The interaction couples the nuclear,
I , and electronic,J, angular momenta to a total momentum
F5I1J, and leads to a splitting of the fine structure levels.
The splitting is often given in terms of the magnetic dipole
and electric quadrupole interaction constantsAJ andBJ ,

AJ5
m I

I

1

@J~J11!~2J11!#1/2
^gJJiT~1!igJJ&, ~4!

BJ52QF J~2J21!

~J11!~2J11!~2J13!G
1/2

^gJJiT~2!igJJ&,

~5!

whereI is the nuclear spin,m I the nuclear magnetic dipole
moment, andQ the nuclear quadrupole moment. For23Na
the values of the first two parameters areI53/2 and
m I52.217 655 6mN @26#. The electronic tensor operators
T(1) andT(2) are given by

T~1!5
a2

2 (
i51

N

$2l~1!~ i !r i
232gsA10@C~2!~ i !3s~1!~ i !#~1!r i

23

1gs
8
3pd~r i !s

~1!~ i !% ~6!

and

T~2!52(
i51

N

C~2!~ i !r i
23 , ~7!

wheregs52.002 319 3 is the electron sping factor, l(1) and
s(1) are, respectively, the orbital and spin angular momentum
operators, andC(k) is a spherical tensor of rankk with the
components related to the spherical harmonics as

Cq
~k!5A 4p

2k11
Ykq . ~8!

D. Multiplet strength

The multiplet strength for the transition between two
termsg8L8S8 and gLS in the length form can be written
@27#

Sl5U K gLSI(
i51

N

r iC
~1!~ i !I g8L8S8L U2. ~9!

To obtain a value of the multiplet strength, the transition
matrix element must be evaluated,

K gLSI(
i51

N

r iC
~1!~ i !I g8L8S8L . ~10!

In cases where both the initial and final states are given by
configuration state expansions
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c~g8L8S8!5(
j
cj8F~g j8L8S8!, ~11!

c~gLS!5(
k
ckF~gkLS!, ~12!

the transition matrix elements can be written

K gLSI(
i51

N

r iC
~1!~ i !I g8L8S8L

5(
k, j

ckcj8K F~gkLS!I(
i51

N

r iC
~1!~ i !IF~g j8L8S8!L

~13!

and the evaluation reduces to the evaluation of matrix ele-
ments between arbitrarilyLS coupled CSF’s

K F~gkLS!I(
i51

N

r iC
~1!~ i !IF~g j8L8S8!L . ~14!

This can be done with standard Racah-algebra assuming that
both left and right CSF’s are formed from thesameortho-
normal set of spin-orbitals@13#. This is a very severe restric-
tion, since a high-quality wave function requires that orbitals
be optimized for a specific electronic state. Recently, how-
ever, it has been shown@16# that for very general configura-
tion expansions, where the initial and final states are de-
scribed by different orbital sets, it is possible to change the
wave function representation of the two states in such a way
that the standard Racah-algebra can be used for the evalua-
tion of the matrix elements in the new representation. The
procedure for the calculation of the transition matrix element
can be summarized as follows.

~i! Perform MCHF or CI calculations for the initial and
the final state where the one-electron orbital sets of the two
wave functions ($f i% and $f i8%) arenot assumed to be the
same.

~ii ! Change the wave function representation by trans-
forming the two orbital sets

$f i%→$f̃ i%, $f i8%→$f̃ i8%

to a biorthonormal basis, i.e.,̂f̃ i uf̃ j8&5d i j . The orbital
transformation in effect changes the CSF’s and we have

$F~gkLS!%→$F̃~gkLS!%, $F~g j8L8S8!%→$F̃~g j8L8S8!%.

The orbital transformation is followed by a counter-
transformation of the CI expansion coefficients

$ck%→$c̃k%, $cj8%→$c̃ j8%

so as to leave the total wave functions invariant, i.e.,

c~gLS!5(
k
ckF~gkLS![(

k
c̃kF̃~gkLS!

and

c~g8L8S8!5(
j
cj8F~g j8L8S8![(

j
c̃ j8F̃~g j8L8S8!.

~iii ! Calculate the transition matrix element with the trans-
formed wave functions for which now the standard Racah-
algebra can be used:

K gLSI(
i51

N

r iC
~1!~ i !I g8L8S8L

5(
k, j

c̃kc̃ j8K F̃~gkLS!I(
i51

N

r iC
~1!~ i !I F̃~g j8L8S8!L .

~15!

The details of the transformation are discussed in@15,16#.

III. CALCULATIONS

A. Selection of configuration expansions

The configuration expansions for the MCHF and CI cal-
culations were obtained with the active space method
@29,30#, where CSF’s of a specified parity andLS symmetry
are generated by excitations from one or more reference con-
figurations to an active set of orbitals. In order to study the
convergence of the calculated multiplet strength and hyper-
fine interaction constants, the active set was increased in a
systematic way leading to consecutively larger configuration
expansions. The notation of the active set of orbitals follows
the conventions used in quantum chemistry where, for ex-
ample, the set 3s2p1d contains threes orbitals, twop or-
bitals, and oned orbital. Except for the reference configura-
tion, principal quantum numbers have no significance other
than defining the order in which the orbitals are introduced.

In the MCHF method the radial parts of the orbitals in the
active set are obtained by minimizing the total energy for a
certain configuration expansion. The shape and spatial loca-
tion of the resulting orbitals do, of course, strongly depend
on how this configuration expansion is chosen. If, for the
3s 2S and 3p 2P terms in sodium, the configuration expan-
sion is generated by allowing all single (S) and double
(D) excitations from the reference configuration to the active
set in order to account for the energetically dominating pair
correlation effects, the first correlation orbitals in the active
set will be strongly contracted. These strongly contracted
orbitals describe mainly core-core correlation effects. As the
active set is increased, the core-core correlation effects
gradually saturate, and the new orbitals tend to be localized
between the 2p core shell and the valence shell, accounting
for the core-valence effects. Since core-core effects are en-
ergetically much more important than core-valence effects, a
large number of orbitals is needed before the latter effects are
described in a proper way. The fundamental problem with
the MCHF method, and variational methods in general, is
that the expectation values of many operators describing
measurable physical quantities have a different dependence
on the correlation effects than the total energy. The expecta-
tion values of the hyperfine and transition operators, for ex-
ample, are more sensitive to core-valence effects than to
core-core effects. Thus, to obtain reliable expectation values
of these operators, one has to ensure that the generated active
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set of orbitals is flexible enough to describe also the core-
valence effects.

To ensure a good description of the core-valence effects
in the present calculation, orbitals were explicitly targeted to
describe these effects. This was done by taking into account
only single excitations from the 1s22s22p6 core to the active
set. In this way the core-core effects were left out, and the
correlation orbitals were forced to describe the energetically
less important core-valence effects. Once the core-valence
correlation effects saturated, the active set was extended to
include contracted orbitals that are necessary to describe the
core-core correlation effects.

B. The 3s 2S term

As a starting point, a Hartree-Fock~HF! calculation was
performed for the 1s22s22p63s 2S reference configuration.
Then a sequence of MCHF calculations were performed for
expansions generated by SD excitations from 1s22s22p63s
to the active set with the restriction that at most single exci-
tations were allowed from the core. As discussed above,
these expansions mainly describe core-valence effects and
result in an orbital basis largely localized between the 3s
valence shell and the 2p core shell. In these calculations the
core orbitals were kept fixed whereas the rest of the orbitals
were optimized simultaneously. In the first part of Table I,
the hyperfine interaction constant, the total energy, and num-

ber of generated configuration state functions are reported as
functions of the active set of orbitals. As can be seen from
the table, the convergence of the hyperfine interaction con-
stant with respect to the active set is rather slow, but for the
8s7p6d5 f4g3h2i active set the core-valence limit seems to
have been reached.

To investigate the effect of core-core correlation, a CI
calculation was performed for the configuration expansion
generated by allowing all SD excitation to the
8s7p6d5 f4g3h2i active set. As can be seen from the first
line in the middle part of Table I, the included core-core
correlation decreases the hyperfine interaction constant by
almost 60 MHz. Analyzing the contributions to the hyperfine
interaction constant from the CSF’s in the CI expansion, it
can be seen that the effect of the core-core correlation on this
property is mainly indirect. Being not directly coupled with
the dominant reference configuration through the hyperfine
operator, the CSF’s describing core-core correlation play
their role through their relatively large expansion weights
due to their important contribution to the total energy. When
these core-core correlation components are added, the expan-
sion weights of the CSF’s describing core-valence correla-
tion decrease, lowering the value of the hyperfine interaction
constant. For a more detailed investigation of these effects in
the case of the first row atoms, see Ref.@31#. To ensure
convergence of the core-core effects, the active set was in-

TABLE I. The interaction constantA1/2, the total energy, and the number of CSF’s for the 3s 2S1/2 state
in 23Na from core-valence and core-core MCHF calculations and from CI calculations including triple-
excitations. The configuration expansions for the core-valence calculations were generated by allowing all
SD excitations from 1s22s22p63s to the active set with the restriction that there should be no more than one
excitation from the core. The configuration expansions for the core-core calculations were obtained by
allowing all SD excitations from 1s22s22p63s to the active set without restrictions. The expansions for the
CI calculations were obtained by adding CSF’s generated byT excitations to the active sets to the CSF’s
generated by SD excitations from 1s22s22p63s to the 10s9p8d7 f6g5h4i active set. The orbital optimiza-
tion procedures are described in the text.

Active set A1/2 ~MHz! Energy~a.u.! Number of CSF’s

HF 626.2 -161.858 912 1
MCHF core-valence
3s2p1d 683.6 -161.863 313 11
4s3p2d1 f 843.2 -161.866 122 48
5s4p3d2 f1g 884.2 -161.866 771 119
6s5p4d3 f2g1h 907.6 -161.866 997 232
7s6p5d4 f3g2h1i 927.6 -161.867 099 395
8s7p6d5 f4g3h2i 928.1 -161.867 145 610

CI core-core:
8s7p6d5 f4g3h2i 868.8 -162.223 684 3 362
MCHF core-core:
9s8p7d6 f5g4h3i 865.0 -162.233 637 4 875
10s9p8d7 f6g5h4i 865.4 -162.236 676 6 687
11s10p9d8 f7g6h5i 865.7 -162.237 890 8 798

CI core-core1 triple-exc.
SD@10s9p8d7 f6g5h4i #
øT@4s3p2d1 f # 868.4 -162.238 239 9 911
øT@5s4p3d2 f1g# 871.0 -162.239 969 24 078
øT@6s5p4d3 f2g1h# 870.3 -162.240 734 66 394
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creased, and additional MCHF calculations were performed
for expansions generated by SD excitations to the active set.
In these calculations the orbitals from the previous core-
valence calculations (8s7p6d5 f4g3h2i ) were fixed and
only the new orbitals were optimized. As can be seen from
the table, the additional core-core effects have only a small
influence on the hyperfine interaction constant, which seems
to be well converged for the 10s9p8d7 f6g5h4i active set.

The added orbitals describing core-core effects are
strongly contracted compared with the orbitals describing
core-valence effects. To illustrate this, the radial expectation
values

^r &5E
0

`

rPnl
2 ~r !dr ~16!

of the reference orbitals and some of the correlation orbitals
are compared in Table II.

It is well known that three-particle effects are important
for the hyperfine structure@6#. To account for these, a set of
CI calculations was performed using the orbital set of the
10s9p8d7 f6g5h4i MCHF core-core calculation, for expan-
sions where configurations generated by triple (T) excita-
tions from 1s22s22p63s to systematically larger active sets
were added to the configurations generated by SD excitations
from 1s22s22p63s to the 10s9p8d7 f6g5h4i active set.
This addition is symbolized by the union (ø) of the two
CSF sets in Table I. As can be seen from the lower part of
Table I, the effect of the triple excitations is to increase the
hyperfine interaction constants. Previous tests@28# showed
that four-particle effects increase the value of the hyperfine
interaction constant. This increase, however, is small~less
than 2 MHz!, and four-particle effects have therefore been
neglected in all the CI calculations.

TABLE III. The interaction constantsAJ andBJ , the total energy, and the number of CSF’s for the
3p 2P1/2,3/2 states in23Na from core-valence and core-core MCHF calculations and from CI calculations
including triple excitations. The configuration expansions for the core-valence calculations were generated by
allowing all SD excitations from 1s22s22p63p to the active set with the restriction that there should be no
more than one excitation from the core. The configuration expansions for the core-core calculations were
obtained by allowing all SD excitations from 1s22s22p63p to the active set without restrictions. The expan-
sions for the CI calculations were obtained by adding CSF’s generated byT excitations to the active sets to
the CSF’s generated by SD excitations from 1s22s22p63p to the 10s9p8d7 f6g5h4i active set. The orbital
optimization procedures are described in the text.

Active set A1/2 ~MHz! A3/2 ~MHz! B3/2/Q ~MHz/b! Energy Number of CSF’s

HF 63.66 12.72 15.91 -161.786 408 1

MCHF core-valence
3s2p1d 66.94 11.82 16.20 -161.786 912 18
4s3p2d1 f 94.69 21.64 28.90 -161.788 795 85
5s4p3d2 f1g 96.67 21.67 27.88 -161.789 184 221
6s5p4d3 f2g1h 100.44 20.73 28.63 -161.789 317 444
7s6p5d4 f3g2h1i 101.13 20.54 28.70 -161.789 366 772
8s7p6d5 f4g3h2i 101.57 20.56 28.52 -161.789 385 1 206

CI core-core:
8s7p6d5 f4g3h2i 91.89 18.16 25.80 -162.140 285 16 818
MCHF core-core:
9s8p7d6 f5g4h3i 92.38 18.29 25.27 -162.156 406 24 733
10s9p8d7 f6g5h4i 92.33 18.29 25.23 -162.159 742 34 247

CI core-core1 triple-exc.
SD@10s9p8d7 f6g5h4i #
øT@4s3p2d1 f # 92.53 18.49 25.37 -162.160 640 50 864
øT@5s4p3d2 f1g# 93.16 18.74 25.67 -162.162 173 135 060

TABLE II. The expectation values of the radius for some of the radial orbitals in the active set used for
the 3s 2S term.

Reference Core-valence Core-core
orbitals ^r & orbitals ^r & orbitals ^r &

1s 0.14286 4s 1.91634 9s 0.31546
2s 0.77907 4p 2.03202 9p 0.35959
2p 0.79849 4d 1.87848 9d 0.32852
3s 4.07115 4f 1.77163 9f 0.35207
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C. The 3p 2P term

The calculations for the 3p 2P term were performed in
the same way as for the 3s 2S term. In the first part of Table
III, the hyperfine interaction constants, the total energy, and
number of generated configuration state functions are re-
ported as functions of the increasing active set. For the
3p 2P term the core-valence limit of the hyperfine interac-
tion parameters is reached already for the
7s6p5d4 f3g2h1i active set, but, in order to be consistent
with the previous calculations for the 3s 2S term, the core-
valence effects were evaluated also for the
8s7p6d5 f4g3h2i active set. As for the 3s 2S term, the
effect of the core-core correlation is to decrease the hyperfine
interaction constants. This decrease is even more pronounced
for 3p 2P than for 3s 2S and is of the order of 10% for all
the hyperfine interaction constants. The additional core-core
effects, included as the active set is increased, are of little
importance, and the core-core effects are very well con-
verged for the 10s9p8d7 f6g5h4i active set.

To account for three-particle effects, a set of CI calcula-
tions was performed for expansions where configurations
generated by triple excitations from 1s22s22p63p to system-
atically larger active sets were added to the configurations
generated by SD excitations from 1s22s22p63p to the
10s9p8d7 f6g5h4i active set, using the orbital set of the
largest MCHF core-core calculation. Due to the2P symme-
try the number of CSF’s in the CI expansion grows very
rapidly with the increasing active set, and it was not possible
to extend the calculations by allowing triple excitations to
the 6s5p4d3 f2g1h active set. This is unfortunate since the
hyperfine interaction constants are not properly converged
with respect to three-particle effects. However, a comparison
with the convergence trend of the hyperfine interaction con-
stant for the 3s 2S1/2 state suggests that the remaining three-
particle effects are small. One should note, however, that the
three-particle effects are relatively more important for the
3p 2P1/2,3/2 states than for the 3s 2S1/2 state.

D. The 3s 2S˜3p 2P multiplet strength

The 3s 2S→3p 2P multiplet strength was evaluated from
the generated MCHF and CI wave functions. The multiplet
strength and the transition energy are shown in Table IV as
functions of the active set of orbitals.

The multiplet strength and hyperfine interaction constants
have different dependencies on the correlation effects, and it
is interesting to compare the convergence trends. Part of the
differences in the latter can be explained by the different
radial scaling of the corresponding operators. The core-
valence correlation leads to a contraction of the valence or-
bital. Since the hyperfine operators scale asr23, the effect of
this contraction is to increase the hyperfine interaction con-
stants. The behavior for the multiplet strength is the opposite.
Since the transition operator scales liker , the effect of the
contraction is to decrease the multiplet strength. The size of
this effect can be seen in the first part of Table IV, where the
multiplet strength and the energy difference between the ini-
tial and final states for the transition are shown as functions
of the active set of orbitals for the core-valence expansions.

As can be seen from the middle part of Table IV, the
effect of the core-core correlation is to increase the multiplet

strength, that is, to counteract the effect of the core-valence
correlation. This behavior was also found for the hyperfine
interaction constants.

As for the hyperfine interaction constants, the additional
core-core effects, included as the active set is increased, are
of little importance, and the core-core effects seem to be very
well converged for the 10s9p8d7 f6g5h4i active set. Fi-
nally, the effect of the triple-excitations, as can be seen from
the last part of the table, is to decrease the multiplet strength.
This decrease is, however, small compared with the corre-
sponding increase of the hyperfine interaction constants.

Whereas the hyperfine interaction constants and the mul-
tiplet strength are well converged with respect to the differ-
ent correlation effects, the transition energy is not. As is seen
from Table IV, the transition energy is well converged with
respect to the core-valence correlation. However, when the
core-core correlation is introduced the transition energy
changes dramatically, and the active set describing the core-
core effects must be increased further in order to get a con-
verged value of the transition energy. Looking at the last part
of Table IV it is seen that three-particle effects have a large
influence on the transition energy. The transition energy is
clearly not converged with respect to these effects, and also
in this case it is necessary to increase the active set to which
excitations are done in order to get a converged value. In
addition to the lacking convergence of the transition energy
with respect to the core-core and three-particle effects, the
neglected four-particle effects are expected to be of impor-
tance. Therefore, no meaningful comparison with the esti-

TABLE IV. The multiplet strength in the length form and the
energy difference between the initial and final states for the
3s 2S→3p 2P transition from core-valence and core-core MCHF
calculations and from CI calculations including triple excitations.
The active sets are the same for the initial and final states.

Active set Sl DE (cm21)

HF 40.82 15 913

MCHF core-valence
3s2p1d 38.41 16 768
4s3p2d1 f 37.20 16 971
5s4p3d2 f1g 36.97 17 028
6s5p4d3 f2g1h 36.89 17 048
7s6p5d4 f3g2h1i 36.86 17 060
8s7p6d5 f4g3h2i 36.84 17 066

CI core-core:
8s7p6d5 f4g3h2i 37.20 18 304
MCHF core-core:
9s8p7d6 f5g4h3i 37.40 16 950
10s9p8d7 f6g5h4i 37.40 16 885

CI core-core1 triple-exc.
SD@10s9p8d7 f6g5h4i #
øT@4s3p2d1 f # 37.34 17 031
øT@5s4p3d2 f1g# 37.35 17 074
Estimateda 16 933.5

aEstimated nonrelativistic transition energy of Ref.@32#.

4026 53PER JÖNSSONet al.



mated nonrelativistic transition energy of Ref.@32# can be
done.

E. Relativistic corrections

All the calculations have been performed in the nonrela-
tivistic LS coupled formalism, and the effect of relativity
must be investigated. Qualitatively the relativistic effects
manifest themselves in a mass increase

m5
m0

A12~v/c!2
, ~17!

which for inners- andp-electrons with large average speed
leads to a decrease of the effective Bohr radius,

a05
4pe0\

2

me2
. ~18!

Due to the different scaling of the hyperfine and transition
operators with respect to the radius, the effect of the contrac-
tion is to increase the hyperfine interaction constants and
decrease the multiplet strength. In this study the relativistic
corrections for the hyperfine interaction constants were esti-
mated by multiplying the final nonrelativistic values from the
largest calculations by the ratio between Dirac-Fock~DF!
and Hartree-Fock~HF! values. To estimate the uncertainty of
the relativistic correction factor, a number of fully relativistic
multiconfiguration Dirac-Fock~MCDF! calculations were
performed for the2S state. The configuration expansions for
these calculations were generated by allowing SD excitations
from 1s22s22p63s 2S1/2 to an increasing active set of orbit-
als with the restriction that at most single excitations were
allowed from the core. In all these calculations the core-
orbitals were kept fixed from the DF calculation and only the
outer orbitals were varied. Due to stability problems in the
relativistic self-consistent field procedure the optimization of
the outer orbitals had to be done stepwise so that each time
the active set of orbitals was increased only the new orbitals
were optimized, whereas all the others were kept fixed. In
Table V the MCDF hyperfine interaction constants are com-
pared with equivalent MCHF calculations based on a similar
stepwise optimization procedure. Also shown in Table V is
the ratio between the MCDF and MCHF values for increas-
ing active sets. This ratio is to a large extent independent of

the size of the active set, indicating that the ratio between the
DF and HF values is a good measure of the relativistic cor-
rections in the core-valence limit. There is a possibility that
core-core and three-particle effects have slightly different
relativistic scalings as compared to the core-valence effects.
The former effects are, however, comparatively small and so
such a difference in scaling will be unimportant. Similar
comparisons between MCDF and MCHF values have previ-
ously been performed for the ground state of lithium@33#.
Also in that case it was found that the ratio between the DF
and HF values provides a reliable measure of the relativistic
corrections.

For the line strength the relativistic correction was ob-
tained by multiplying the final nonrelativistic value by the
ratio between frozen-core DF and HF values. Since the tran-
sition program of the MCDF package@34# does not allow the
use of nonorthogonal orbitals, a comparison between equiva-
lent MCDF and MCHF values could not be done. To esti-
mate the uncertainty in the relativistic corrections for the line
strength we instead performed large MCDF calculations for
the resonance transitions in lithiumlike sodium using an or-
bital set common to both the initial and final state. This
simple three electron system allows, even using a common
orbital set, for an almost exact treatment, and the final rela-
tivistic line strengths were estimated to be correct to within
two parts in ten thousand. The ratios between the
1s22s 2S1/221s22p 2P1/2 and 1s22s 2S1/221s22p 2P3/2
relativistic line strengths and the corresponding nonrelativis-
tic ones, also correct to within a few parts in ten thousand
@35#, are 0.9961 and 0.9984, respectively. These very accu-
rate ratios should be compared with the ratios 0.9959 and
0.9981 obtained from frozen-core DF and HF calculations.
Assuming that the frozen-core DF and HF corrections be-
have equally well for neutral sodium, we find that the uncer-
tainty in the final line strength due to the relativistic correc-
tions is only 0.01 a.u. The remaining uncertainties for the
line strength are mainly due to the neglected quadruple ex-
citations. We estimate, very conservatively, that the contri-
bution from the latter is less than one-third of the contribu-
tion from the triple excitations, that is, less than 0.02 a.u.

IV. COMPARISON WITH EXPERIMENT

In Table VI the final values of the hyperfine interaction
constants are compared with the most accurate experimental
values and with values obtained with other theoretical meth-
ods. As can be seen from the table, the relativistically cor-
rected CI value for the 3s 2S1/2 state is very close to the
coupled cluster singles and doubles~CCSD! value of
Salomonson and Ynnerman@5#. This agreement is very sat-
isfying since both methods, although quite different, include
the same important correlation effects. The small difference
between the two values can be explained by the four-particle
effects included in the CCSD calculation, but neglected in
the CI calculation. The values from both these calculations
agree to within a few parts in a thousand with the experimen-
tal value, showing that the neglected higher-order effects,
quintuple-, hexatuple-, etc. are indeed small.

Also for the 3p 2P1/2,3/2 states the relativistically cor-
rected CI values for the magnetic dipole interaction constants
are in very good agreement with the available experimental

TABLE V. The interaction constantA1/2 ~in MHZ! for the
3s 2S state in 23Na from equivalent MCDF and MCHF calcula-
tions. Shown is also the ratio between the MCDF and MCHF val-
ues. In the calculations the active sets for the initial and final states
contain the same number of orbitals for eachl symmetry, and it is
therefore necessary to specify the active set for only one of the
states.

Active set MCDF MCHF MCDF / MCHF

DF, HF 635.222 626.645 1.0137
3s2p1d 692.287 683.576 1.0127
4s3p2d1 f 838.286 828.179 1.0122
5s4p3d2 f1g 871.565 859.807 1.0137
6s5p4d3 f2g1h 896.576 885.089 1.0130
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values. For these states the CCSD calculation did not include
any genuine three-particle effects. Comparing the values
from the CCSD and CI calculations, it is seen that the greater
success of the latter calculation is mainly due to a better
description of the three-particle effects.

Since the nuclear quadrupole moment,Q, is inaccurately
known from direct nuclear measurements, the theoretical
values of the electric quadrupole interaction constant,B,
cannot be compared with the experimental values. To enable
a comparison between the different theoretical values, the
quantity B/Q is reported in Table VI. Whereas there is a
very good consistency between the CI and CCSD values for
the magnetic dipole interaction constants, this is not the case
for B/Q. For this quantity the CCSD value is 1.3% larger
than the CI value. Considering the fact that the action of the
neglected three-particle effects in the CCSD calculation is to
increase the value further, this difference is remarkable.

Accurate values of nuclear quadrupole moments are im-
portant for nuclear magnetic resonance relaxation studies.
This is particularly true for the biologically relevant sodium.
By combining the calculated quantityB/Q with the mea-
sured electric quadrupole interaction constantB, a value of
the nuclear quadrupole moment can be obtained. Nuclear
quadrupole moments can also be obtained from hyperfine
splittings of muonic atoms, i.e., atoms where one electron is

replaced by a muon. The muonic values have generally been
accepted to be fairly accurate, but lately doubts on the accu-
racy have been cast@38#. Combining the present value of
B/Q with the most accurate experimental coupling constant
B52.724(30) MHz@44#, a quadrupole momentQ5105.6
mb is obtained. This is significantly higher than the muonic
valueQ5100.6(20) mb. In Table VII quadrupole interaction
constants obtained from different methods are compared. As
seen from the table, all the values from the atomic or mo-
lecular calculations are higher than the muonic value, sup-
porting the conclusion of Ref.@38# that the uncertainty of the
muonic values may be larger than expected.

In Table VIII the final value of the multiplet strength in
the length form for the 3s 2S→3p 2P transition is compared
with the most accurate experimental values and with values
obtained with other theoretical methods. As seen from the
table, the relativistically corrected CI value is in good agree-
ment with the value from a previous MCHF calculation that
also included some core-core correlation. The difference be-
tween these two values is mainly due to the three-particle
effects accounted for in the CI calculation, but neglected in
the MCHF calculation. The CI value is also in good agree-
ment with the all order RMBPT value of Guetet al. @48#, the
difference being a little more than three parts in a thousand.
As in the previous case, a large part of this difference can be

TABLE VI. The interaction constantsAJ andBJ for 3s
2S1/2 and 3p 2P1/2,3/2 states in

23Na compared
with values from other calculations and from experiment.

3s2S 3p2P

Method A1/2 ~MHz! A1/2 ~MHz! A3/2 ~MHz! B3/2/Q ~MHz/b! Reference

HF 626.2 63.66 12.72 15.91 This work
CI 870.3 93.16 18.74 25.67 This work
CI a 882.2 94.04 18.80 25.79 This work
CCSDa 883.8 93.02 18.318 26.14 @5#

RMBPTb 860.9 91.40 19.80 @36#
RMBPTc 884.5 @37#
FE-MCHFd 25.45 @38#
Experiment 885.813 064 4~5! 94.42~19! 18.69~6! @39–41#

94.44~13! 18.62~21! @42#
18.64~6! @43#
18.534~15! @44#
18.79~12! @45#

aCorrected for relativistic effects using the ratio between DF and HF values.
bThird-order calculation.
cAll order calculation.
dCorrected for relativistic effects using results from quasirelativistic CI calculations.

TABLE VII. The nuclear quadrupole moment of23Na ~in mb! from different calculations. The values
from the atomic calculations have been obtained by combiningB/Q with the experimental quadrupole
coupling constantB52.724(30) MHz of Ref.@44#.

Method Q(23Na! Reference

hfs 1 CI calc. 105.6 This work
hfs 1 FE-MCHF calc. 107.1~2.1! @38#
hfs 1 CCSD calc. 104.2 @5#

hfs 1 molecular calc. 104.2 @46#
Muonic experiment 100.6~20! @47#
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explained by a different description of the three-particle ef-
fects.

Upon a comparison with the experimental values, it is
seen that the relativistically corrected CI value is in very
good agreement with the values from a number of new mea-
surements@45,50,51#. Thus, the previous disagreement be-
tween the theoretical and experimental values at the percent
level is now resolved.

V. SUMMARY AND CONCLUSIONS

We report large-scale MCHF and CI calculations of the
transition probability and hyperfine structures in the sodium
3s 2S23p 2P resonance transition. In the calculations the

orbital sets of the initial and final state wave functions were
not assumed to be the same, but were optimized indepen-
dently. The evaluation of the transition matrix elements was
done using a technique where the two orbital sets are trans-
formed to become biorthonormal, in which case standard Ra-
cah algebra can be used. The configuration expansion was
generated with the active space method, where CSF’s of a
particular parity andLS symmetry are generated by excita-
tions from one or more reference configurations to an active
set of orbitals. The active set was increased in a systematic
way, allowing for the convergence of the multiplet strength
and the hyperfine structure constants to be studied. In the
calculations the first correlation orbitals were targeted to de-
scribe core-valence effects and not until these effects were
saturated were core-core effects included. The effect on the
hyperfine structure and multiplet strength from the CSF’s
describing core-core correlation was found to be mainly in-
direct, through the action on the expansion coefficients of the
CSF’s describing core-valence effects. Three-particle effects
were included in the CI calculations and were found to be of
importance for the hyperfine interaction but unimportant for
the multiplet strength. The calculated hyperfine interaction
constants for the 3s 2S1/2 and 3p 2P1/2,3/2 states all agree to
within less than 0.7% with the experimental values. The cal-
culated multiplet strength is in perfect agreement with the
most recent experimental values resolving the long-standing
disrepancy between theory and experiment for this transition.

ACKNOWLEDGMENTS

Financial support by the Swedish Natural Science Re-
search Council~NFR! is gratefully acknowledged. C.F.F.
and A.Y. would like to acknowledge support from the Divi-
sion of Chemical Sciences, Office of Basic Energy Sciences,
Office of Energy Research, U.S. Department of Energy.
M.G. thanks the Belgian National Fund for Scientific Re-
search~FRFC Convention 2.4533.91! and the French Com-
munity of Belgium ~Research Convention ARC-93/98-166!
for financial support. NATO~collaborative research grant
No. 20225/89! is also acknowledged. The calculations for
the large cases were performed on the IBM SP2 multicom-
puter under a Joint Study Agreement with IBM, Kingston,
NY.

@1# S.A. Blundell, W.R. Johnson, Z.W. Liu, and J. Sapirstein,
Phys. Rev. A40, 2233~1989!.

@2# F.W. King, Phys. Rev. A40, 1735~1989!.
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