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Results from large-scale multiconfiguration Hartree-FGdiCHF) and configuration-interactiofCl) calcu-
lations of the transition probability and hyperfine structures in the sodisif83-3p 2P resonance transition
are presented. In the calculations the orbital sets of the initial and final state wave functions were not restricted
to be the same, but were optimized independently. The evaluation of the transition matrix elements was done
using a technique where the two orbital sets are transformed so as to become biorthonormal, in which case
standard Racah algebra can be used. Three-particle effects were taken into account in the ClI calculations and
were found to be important for the hyperfine structures, but less important for the transition probability. The
calculated transition probability is in perfect agreement with the most recent experimental values, thus resolv-
ing the long-standing disagreement between theory and experiment. Alss fi8;3and 3 2Py, 3, hyper-
fine interaction constants are in very good agreement with available experimental vER1€&50-
294796)07806-7

PACS numbes): 31.30.Gs, 32.70.Cs

I. INTRODUCTION [12]. Both these quite different measurements give values
which agree well with the theoretical values.

Recent progress in computational techniques, together For sodium the situation is different. Here accurate calcu-
with today’s powerful computers, has made it possible tdations of transition parameters, such as the multiplet
calculate hyperfine structures and isotope shifts in light atstrength, have remained difficult due to orthogonality restric-
oms with very high accuracy. See, for examgle;-7] and  tions. To evaluate transition matrix elements using standard
references therein. For these properties a great number &acah-algebra techniques the two states involved in the tran-
accurate experimental values are available, and a detailesition have to be described by the same orbital $8} (see
comparison shows that in favorable cases theoretical and eriso Froese Fischest al. [14], who have relaxed the or-
perimental values agree to within a few parts in a thousandhogonality condition slightly. A high-quality wave func-

By contrast, there has been a seemingly persistent digion, however, demands orbitals optimized for the specific
agreement between the most accurate theoretical and expeeiectronic state, and it is usually not possible to obtain an
mental values for transition probabilities. Well known ex- accurate description when the same orbital set is used for two
amples of this are the resonance lines in lithium and sodiundifferent states. This problem can be overcome using a bior-
for which the theoretical values of the transition parameter¢honormal orbital transformation techniqyé5] that has
disagree with the most accurate experimental values at tHeeen extended recently to symmetry adapted configuration
percent level. For a recent review see Bragal. [8]. state expansion§l6], and it is now possible to perform

This disagreement between the theoretical and experimefarge-scale transition calculations where the orbital sets of
tal values is especially severe for lithium, a system simplghe two wave functions are not assumed to be the same, but
enough allowing for an almost exact theoretical treatmentan be optimized independently.
with a number of different methods. Considering the fact that In an effort to resolve the disagreement between the ex-
all the theoretical values agree perfectly, with the exceptioperimental and theoretical transition parameters for sodium,
of a recent quantum Monte Carlo calculati@i, but are well ~we performed large-scale multiconfiguration Hartree-Fock
outside the error bars of the fast-beam laser measurement 0fICHF) and configuration-interactiofCl) calculations for
Gauppet al. [11], one might be inclined to believe that the the 3s 2S and 3 2P terms using the biorthonormal transfor-
latter are too small. This belief is supported by a new fastimation technique to evaluate the transition matrix elements.
beam laser measuremdni0] as well as by a measurement As an additional test on the quality of the wave functions, the
using photoassociative spectroscopy on ultracold lithiumhyperfine interaction constants were calculated for all the
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states involved in the transition. C. Hyperfine structure

Three-particle effects were taken into account in the Cl 1hg pynerfine structure is due to the interaction between
calculatpns to yield a deeper understanding of correlation Ifhe electrons and the nuclear magnetic dipole and electric
the alkali-metal atoms. Whereas these effects have been igyadrupole moments. The interaction couples the nuclear,
cluded in previous calculations of the hyperfine structure iny o4 electronic), angular momenta to a total momentum
the sodium ground stafé], giving surprisingly large contri- F=I1+J, and leads to a splitting of the fine structure levels.

butions, the importance for the transition parameters are lesg,o splitting is often given in terms of the magnetic dipole

well known. _ and electric quadrupole interaction constafjsandB;,
The major part of the calculations reported here were per-

formed on a DEC 5100 workstation with 32 Mb internal i 1 .

memory using different modules of the MCHF atomic struc- A= [0+ 1)(29+ 1)]1/2<7JJ||T( Nvs), @

ture package of Froese FiscHd&i7—21], modified for large

scale computation. The largest calculations for the?B 12

term were performed on an IBM SP-2 at Kingston, using a B,=2Q J(23-1) (753 T@] 5,

distributed memory version of the atomic structure package > (J+1)(2J+1)(23+3) J I

[22]. 5)

Il. THEORY wherel is the nuclear sping, the nuclear magnetic dipole
moment, andQ the nuclear quadrupole moment. FoiNa

A. MCHF the values of the first two parameters are3/2 and

In the nonrelativistic MCHF approadB3] the wave func- 1, =2.217 655 @y [26]. The electronic tensor operators
tion ¢ for a state labeledL S, wherey represents the con- T and T are given by
figuration and any other quantum numbers required to
specify the state, is expanded in terms of configuration state 2

N
a - — . - —
functions(CSF’9 with the same. S term. T(1)=72 {210(i)r %= ge 10 C) (i) x V(i) ] Pr 3

i=1
w(yLS>=; ¢;®(yLS). (1) +gs3ma(rsY(i)} (6)

The configuration state functiords are antisymmetrized lin- and

ear combinations of products of spin-orbitals, N

1 T@=—-2 CcA(i)r 3, @)
¢n|m,ms: Fpnl(r)YIml(aa(P)ng(o')v 2 izl

where the radial function®,(r) are represented by their Wheregs=2.002 319 3 is the electron spinfactor,|*) and

numerical values at a number of grid points. The radial funcS"” are, respectively, the orbital and spin angular momentum
tions are required to be orthonormal within eachoperators, ancC™® is a spherical tensor of rark with the

|-symmetry, components related to the spherical harmonics as
fmp A(DP (1) dr= 8,01 3) clo_ | A7, 8
0 n’l nl n’n a = 2k+1 kq - €]
In the multiconfiguration self-consistent figllC-SCH pro- _
cedure both the orbitals and the expansion coefficients are D. Multiplet strength
optimized to self-consistency. The multiplet strength for the transition between two

termsy'L'S’ and yLS in the length form can be written
B. Cl [27]

Once a set of radial orbitals has been obtained, a configu-
ration interactionCl) calculation can be performed. In a Cl S = < S
calculation the wave function is expanded in configuration
state functions, but now only the expansion coefficients are
to be determined. This is done by diagonalizing the Hamil-To obtain a value of the multiplet strength, the transition
tonian matrix. For small expansions standard routines fronmatrix element must be evaluated,
numerical libraries can be used, but for larger expansions
these routines become inefficient. Instead, the iterative <

yLS

N

> e

=1

2

9

‘}/’L’S,>

N

>, riCi)

i=1

Davidson method24] can be used to determine a restricted
number of the lowest eigenvalues and eigenvectors. Using a
sparse matrix representatif2b], where only nonzero matrix
elements are saved, large expansions can be used, the lirhit cases where both the initial and final states are given by
being set by the available disk space. configuration state expansions

y’L’S’>. (10)
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¢(y'L's'):§j) c/d(y/L'S), (11) l//(y'L'S')sz: CJ-’<I>(3/J-’L’S’)E§]_: T B(y/L'S)).

(iii) Calculate the transition matrix element with the trans-
(YL =2 c@(%LS), (120 formed wave functions for which now the standard Racah-
k algebra can be used:

N

>, rici)

=1

the transition matrix elements can be written
< yLS

<'yLS

:kzj ckcj’<<b(ykLS)

N
> riC(i)
i=1

,y/L/S/>

YLS> N

> rici)

N =

2, ricti)

=1

=k2j EkEj'<‘5(7k|—5) c‘1’3(7/1-'L’S’)>.

o)

(13)  The details of the transformation are discussefll&16].

and the evaluation reduces to the evaluation of matrix ele-

ments between arbitrarilyS coupled CSF'’s lll. CALCULATIONS
N A. Selection of configuration expansions
<‘D(7k|-5) 2 r,c(i) CI)(yj’L’S’)>. (14 The configuration expansions for the MCHF and CI cal-
i=1 culations were obtained with the active space method

) ) ) [29,30, where CSF's of a specified parity abh& symmetry
This can be done with standard Racah-algebra assuming thafe generated by excitations from one or more reference con-
both left and right CSF's are formed from tisameortho-  figyrations to an active set of orbitals. In order to study the
normal set of spin-orbitallsL3]. This is a very severe restric- ¢onyergence of the calculated multiplet strength and hyper-
tion, since a high-quality wave function requires that orbitalsgine interaction constants, the active set was increased in a
be optimized for a specific electronic state. Recently, howgystematic way leading to consecutively larger configuration
ever, it has been showa ] that for very general configura- expansions. The notation of the active set of orbitals follows
tion expansions, where the initial and final states are dege conventions used in quantum chemistry where, for ex-
scribed by different orbital sets, it is possible to change theample, the set @p1d contains threes orbitals, twop or-
wave function representation of the two states in such a Waitals, and onel orbital. Except for the reference configura-
that the standard Racah-algebra can be used for the evalygsn principal quantum numbers have no significance other
tion of the matrix elements in the new representation. Thgpan defining the order in which the orbitals are introduced.
procedure for the calculation of the transition matrix element |, the MCHF method the radial parts of the orbitals in the
can be summarized as follows. _ active set are obtained by minimizing the total energy for a

(i) Perform MCHF or CI calculations for the initial and cgrain configuration expansion. The shape and spatial loca-

the final state where the one-electron orbital sets of the tW@q of the resulting orbitals do, of course, strongly depend
wave functions {¢;} and{¢/}) arenot assumed to be the on how this configuration expansion is chosen. If, for the

same. 3s ?Sand 3 2P terms in sodium, the configuration expan-
(ii_) Change the wave function representation by transsjgn is generated by allowing all singleS)( and double
forming the two orbital sets (D) excitations from the reference configuration to the active
- ~ set in order to account for the energetically dominating pair
{di}—={oi}, {di1—={e} correlation effects, the first correlation orbitals in the active
_ ~ set will be strongly contracted. These strongly contracted
to a biorthonormal basis, i.e{¢i|¢{)=&;. The orbital  orbitals describe mainly core-core correlation effects. As the
transformation in effect changes the CSF's and we have active set is increased, the core-core correlation effects
~ - gradually saturate, and the new orbitals tend to be localized
{P(NL}—={P(%lLS)}, {P(y/{L'S)}—={P(¥{L'S)}.  between the @ core shell and the valence shell, accounting
for the core-valence effects. Since core-core effects are en-
The orbital transformation is followed by a counter- ergetically much more important than core-valence effects, a

transformation of the CI expansion coefficients large number of orbitals is needed before the latter effects are
described in a proper way. The fundamental problem with
{ed—{cd, {c{}—{c]} the MCHF method, and variational methods in general, is
that the expectation values of many operators describing
so as to leave the total wave functions invariant, i.e., measurable physical quantities have a different dependence
on the correlation effects than the total energy. The expecta-
N =5 tion values of the hyperfine and transition operators, for ex-
i yLS)_Ek Ck(b(ykLS)_Ek GPndLS) ample, are more s}(i:-pnsitive to core-valencep effects than to

core-core effects. Thus, to obtain reliable expectation values
and of these operators, one has to ensure that the generated active
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TABLE |. The interaction constar,,, the total energy, and the number of CSF’s for ths?3,, state
in ?°Na from core-valence and core-core MCHF calculations and from CI calculations including triple-
excitations. The configuration expansions for the core-valence calculations were generated by allowing all
SD excitations from $22s?2p83s to the active set with the restriction that there should be no more than one
excitation from the core. The configuration expansions for the core-core calculations were obtained by
allowing all SD excitations from 422s?2p®3s to the active set without restrictions. The expansions for the
ClI calculations were obtained by adding CSF’s generated Iexcitations to the active sets to the CSF's
generated by SD excitations frons?Rs?2p®3s to the 189p8d7f6g5h4i active set. The orbital optimiza-
tion procedures are described in the text.

Active set Ay (MHZ) Energy(a.u) Number of CSF's
HF 626.2 -161.858 912 1
MCHF core-valence

3s2pld 683.6 -161.863 313 11
4s3p2d1f 843.2 -161.866 122 48
5s4p3d2flg 884.2 -161.866 771 119
6s5p4d3f2glh 907.6 -161.866 997 232
7s6p5d4f3g2hli 927.6 -161.867 099 395
8s7p6d5f4g3h2i 928.1 -161.867 145 610
CI core-core:

8s7p6d5f4g3h2i 868.8 -162.223 684 3 362
MCHF core-core:

9s8p7d6f5g4h3i 865.0 -162.233 637 4 875
10s9p8d7f6g5h4i 865.4 -162.236 676 6 687
11s10p9d8f7g6h5i 865.7 -162.237 890 8 798

ClI core-core+ triple-exc.
SO 10s9p8d7f6g5h4i]

UT[4s3p2d1f] 868.4 -162.238 239 9911
UT[5s4p3d2fig] 871.0 -162.239 969 24 078
UT[6s5p4d3f2glh] 870.3 -162.240 734 66 394

set of orbitals is flexible enough to describe also the coreber of generated configuration state functions are reported as

valence effects. functions of the active set of orbitals. As can be seen from
To ensure a good description of the core-valence effectthe table, the convergence of the hyperfine interaction con-

in the present calculation, orbitals were explicitly targeted tostant with respect to the active set is rather slow, but for the

describe these effects. This was done by taking into accou§s7ped5f4g3h2i active set the core-valence limit seems to
only single excitations from thes?2s?2p® core to the active have been reached.

set. In this way the core-core effects were left out, and the T investigate the effect of core-core correlation, a Cl
correlation orbitals were forced to describe the energetically.5iculation was performed for the configuration expansion
less important core-valence effects. Once the core-valenGg.nerated by allowing all SD excitaton to the

correlation effects saturated, the active set was extended 7p6d5f4g3h2i active set. As can be seen from the first

include contracted orbitals that are necessary to describe the " w1« hiddle part of Table I, the included core-core

core-core correlation effects. . Vo )
correlation decreases the hyperfine interaction constant by

almost 60 MHz. Analyzing the contributions to the hyperfine
interaction constant from the CSF’s in the Cl expansion, it

As a starting point, a Hartree-Fo¢klF) calculation was can be seen that the effect of the core-core correlation on this
performed for the §22s%2p°®3s 2S reference configuration. property is mainly indirect. Being not directly coupled with
Then a sequence of MCHF calculations were performed fothe dominant reference configuration through the hyperfine
expansions generated by SD excitations frosd25?2p®3s  operator, the CSF’s describing core-core correlation play
to the active set with the restriction that at most single excitheir role through their relatively large expansion weights
tations were allowed from the core. As discussed abovedue to their important contribution to the total energy. When
these expansions mainly describe core-valence effects aridese core-core correlation components are added, the expan-
result in an orbital basis largely localized between tle 3 sion weights of the CSF’s describing core-valence correla-
valence shell and the@core shell. In these calculations the tion decrease, lowering the value of the hyperfine interaction
core orbitals were kept fixed whereas the rest of the orbitalsonstant. For a more detailed investigation of these effects in
were optimized simultaneously. In the first part of Table I,the case of the first row atoms, see R1]. To ensure
the hyperfine interaction constant, the total energy, and nunconvergence of the core-core effects, the active set was in-

B. The 3s %S term
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TABLE Il. The expectation values of the radius for some of the radial orbitals in the active set used for
the 3s 2S term.

Reference Core-valence Core-core

orbitals (r) orbitals (r) orbitals (r)

1s 0.14286 4 1.91634 g 0.31546
2s 0.77907 i) 2.03202 )] 0.35959
2p 0.79849 4 1.87848 o) 0.32852
3s 4.07115 4 1.77163 9 0.35207

creased, and additional MCHF calculations were performed It is well known that three-particle effects are important

for expansions generated by SD excitations to the active sefior the hyperfine structurgs]. To account for these, a set of

In these calculations the orbitals from the previous coreCl calculations was performed using the orbital set of the

valence calculations @ p6d5f4g3h2i) were fixed and 10s9p8d7f6g5h4i MCHF core-core calculation, for expan-

only the new orbitals were optimized. As can be seen fromsions where configurations generated by tripld Excita-

the table, the additional core-core effects have only a smalions from 1s22s22p®3s to systematically larger active sets

influence on the hyperfine interaction constant, which seeMgere added to the configurations generated by SD excitations

to be well converged for the $0p8d7f6g5h4i active set. 15225%2p%3s to the 1@9p8d7f6g5h4i active set.
The added orbitals describing core-core effects arerhis addition is symbolized by the uniorJj of the two

strongly contracted compared with the orbitals describingCSF sets in Table I. As can be seen from the lower part of
core-valence effects. To illustrate this, the radial expectaﬂoq.able I, the effect of the triple excitations is to increase the

values hyperfine interaction constants. Previous t¢&8| showed
<r>:f rPﬁ,(r)dr (16) f[hat fou_r—particle effects_ingrease the value of fche hyperfine
0 interaction constant. This increase, however, is srilalis

of the reference orbitals and some of the correlation orbitaid@n 2 MH2, and four-particle effects have therefore been
are compared in Table I. neglected in all the CI calculations.

TABLE lll. The interaction constant#; and B;, the total energy, and the number of CSF’s for the
3p 2P1,2,3,2 states in?*Na from core-valence and core-core MCHF calculations and from CI calculations
including triple excitations. The configuration expansions for the core-valence calculations were generated by
allowing all SD excitations from 422s?2p®3p to the active set with the restriction that there should be no
more than one excitation from the core. The configuration expansions for the core-core calculations were
obtained by allowing all SD excitations fronms32s?2p83p to the active set without restrictions. The expan-
sions for the ClI calculations were obtained by adding CSF’s generat@debygitations to the active sets to
the CSF'’s generated by SD excitations frosf4s?2p®3p to the 189p8d7f6g5h4i active set. The orbital
optimization procedures are described in the text.

Active set Aip (MHz) Agp (MHZ) Bgi/Q (MHz/b) Energy Number of CSF's
HF 63.66 12.72 15.91 -161.786 408 1
MCHF core-valence

3s2pld 66.94 11.82 16.20 -161.786 912 18
4s3p2d1f 94.69 21.64 28.90 -161.788 795 85
5s4p3d2fig 96.67 21.67 27.88 -161.789 184 221
6s5p4d3f2glh 100.44 20.73 28.63 -161.789 317 444
7s6p5d4f3g2hli 101.13 20.54 28.70 -161.789 366 772
8s7p6d5f4g3h2i 101.57 20.56 28.52 -161.789 385 1206
Cl core-core:

8s7p6d5f4g3h2i 91.89 18.16 25.80 -162.140 285 16 818
MCHF core-core:

9s8p7d6f5g4h3i 92.38 18.29 25.27 -162.156 406 24 733
10s9p8d7f6g5h4i 92.33 18.29 25.23 -162.159 742 34 247

ClI core-core+ triple-exc.

SO 10s9p8d7f6g5h4i]

UT[4s3p2d1f] 92.53 18.49 25.37 -162.160 640 50 864
UT[5s4p3d2flg] 93.16 18.74 25.67 -162.162 173 135 060
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C. The 3p 2P term TABLE IV. The multiplet strength in the length form and the

The calculations for the 8 2P term were performed in energy difference between the initial and final states for the
i P 3s 2S—3p 2P transition from core-valence and core-core MCHF

the same WaY as _for ths_3°—8 term. In the first part of Table calculations and from CI calculations including triple excitations.
I1l, the hyperfine interaction constants, the total energy, antne active sets are the same for the initial and final states.

number of generated configuration state functions are re
ported as functions of the increasing active set. For thective set S AE (cm™?)
3p 2P term the core-valence limit of the hyperfine interac-

tion parameters is reached already for the 40.82 15913
7s6p5d4f3g2hli active set, but, in order to be consistent MCHF core-valence

with the previous calculations for thes#S term, the core- 3s2pld 38.41 16 768
valence effects were evaluated also for the4s3p2dif 37.20 16 971
8s7p6d5f4g3h2i active set. As for the 8°S term, the 5s4p3d2fig 36.97 17 028
effect of the core-core correlation is to decrease the hyperfinessp4d3f2g1h 36.89 17 048
interaction constants. This decrease is even more pronouncggépsd4f3g2hii 36.86 17 060
for 3p 2P than for 3 %S and is of the order of 10% for all 8s7p6dsf4g3h2i 36.84 17 066
the hyperfine interaction constants. The additional core-core

effects, included as the active set is increased, are of littlg:| core-core:

importance, and the core-core effects are very well congs7pgdsfagan2i 37.20 18 304
verged for the 169p8d7f6g5h4i active set. MCHE core-core:

To account for three-particle effects, a set of Cl CalCUla‘958p7d6f5g4h3i 37.40 16 950
tions was performed for expansions where Configuratior‘ﬁoSgde?f695h4i 37.40 16 885
generated by triple excitations frons?2s22p®3p to system-
atically larger active sets were added to the conﬁguration%I core-core+ trile-exc
generated by SD excitations froms?Rs?2p®3p to the oDl 1059084766 p5h4_ '
10s9p8d7f6g5h4i active set, using the orbital set of the orLooP8d7TegSh4i]

. UT[4s3p2d1f] 37.34 17 031

largest MCHF core-core calculation. Due to thie symme-
try the number of CSF's in the Cl expansion grows veryUT,[SSA'deZflg] 37.35 17 074
stimated® 16 933.5

rapidly with the increasing active set, and it was not possibléE
to extend the calculations by allowing triple excitations toaggiimated nonrelativistic transition energy of RES2].
the 6s5p4d3f2glh active set. This is unfortunate since the

hyperfine interaction constants are not properly converged

with respect to three-particle effects. However, a Compariso@trength, that is, to counteract the effect of the core-valence

with the converzgence trend of the hyperfine |ntera§:tlon CONZorrelation. This behavior was also found for the hyperfine
stant for the 3 <S;, state suggests that the remaining three- .
particle effects are small. One should note, however, that th@terachon constant_s. . . .

: ’ As for the hyperfine interaction constants, the additional

three-particle effects are relatively more important for the . . T
P y P core-core effects, included as the active set is increased, are

2 2
3P “Puz g States than for thes3"sy, state. of little importance, and the core-core effects seem to be very
well converged for the 1€®p8d7f6g5h4i active set. Fi-
nally, the effect of the triple-excitations, as can be seen from
The 3 2S—3p 2P multiplet strength was evaluated from the last part of the table, is to decrease the multiplet strength.
the generated MCHF and CI wave functions. The multipletThis decrease is, however, small compared with the corre-
strength and the transition energy are shown in Table IV asponding increase of the hyperfine interaction constants.
functions of the active set of orbitals. Whereas the hyperfine interaction constants and the mul-
The multiplet strength and hyperfine interaction constantsiplet strength are well converged with respect to the differ-
have different dependencies on the correlation effects, and é@nt correlation effects, the transition energy is not. As is seen
is interesting to compare the convergence trends. Part of tfeom Table 1V, the transition energy is well converged with
differences in the latter can be explained by the differentespect to the core-valence correlation. However, when the
radial scaling of the corresponding operators. The coreeore-core correlation is introduced the transition energy
valence correlation leads to a contraction of the valence orehanges dramatically, and the active set describing the core-
bital. Since the hyperfine operators scale a3, the effect of  core effects must be increased further in order to get a con-
this contraction is to increase the hyperfine interaction converged value of the transition energy. Looking at the last part
stants. The behavior for the multiplet strength is the oppositeof Table IV it is seen that three-particle effects have a large
Since the transition operator scales likethe effect of the influence on the transition energy. The transition energy is
contraction is to decrease the multiplet strength. The size dflearly not converged with respect to these effects, and also
this effect can be seen in the first part of Table IV, where then this case it is necessary to increase the active set to which
multiplet strength and the energy difference between the iniexcitations are done in order to get a converged value. In
tial and final states for the transition are shown as functionsddition to the lacking convergence of the transition energy
of the active set of orbitals for the core-valence expansionswith respect to the core-core and three-particle effects, the
As can be seen from the middle part of Table IV, theneglected four-particle effects are expected to be of impor-
effect of the core-core correlation is to increase the multipletance. Therefore, no meaningful comparison with the esti-

D. The 3s 2S—3p 2P multiplet strength
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TABLE V. The interaction constanf, (in MHZ) for the  the size of the active set, indicating that the ratio between the
3s %S state in**Na from equivalent MCDF and MCHF calcula- DF and HF values is a good measure of the relativistic cor-
tions. Shown is also the ratio between the MCDF and MCHF val-rections in the core-valence limit. There is a possibility that
ues. In the calculations the active sets for the initial and final stateggre-core and three-particle effects have slightly different
contain the same number of orbitals for edsymmetry, and itis  re|ativistic scalings as compared to the core-valence effects.
therefore necessary to specify the active set for only one of thgne former effects are, however, comparatively small and so

states. such a difference in scaling will be unimportant. Similar
comparisons between MCDF and MCHF values have previ-

Active set MCDF ~ MCHF  MCDF/MCHF . v been performed for the ground state of lithi{ig3].

DF, HF 635.222 626.645 1.0137 Also in that case it was found that the ratio between the DF
3s2pld 692.287  683.576 1.0127 and HF values provides a reliable measure of the relativistic
4s3p2d1f 838.286  828.179 1.0122 corrections. o _

5s4p3d2flg 871.565  859.807 1.0137 _For the line strength the relativistic correction was ob-
6s5p4d3f2gih 896.576 885.089 1.0130 tained by multiplying the final nonrelativistic value by the

ratio between frozen-core DF and HF values. Since the tran-
sition program of the MCDF packagj@4] does not allow the
mated nonrelativistic transition energy of RE82] can be Use of nonorthogonal orbitals, a comparison between equiva-
done. lent MCDF and MCHF values could not be done. To esti-
mate the uncertainty in the relativistic corrections for the line
strength we instead performed large MCDF calculations for
the resonance transitions in lithiumlike sodium using an or-
All the calculations have been performed in the nonrelapital set common to both the initial and final state. This
tivistic LS COUp|Ed formalism, and the effect of relatiViW Simp|e three electron System allows, even using a common
must be investigated. Qualitatively the relativistic effectsorbital set, for an almost exact treatment, and the final rela-
manifest themselves in a mass increase tivistic line strengths were estimated to be correct to within
two parts in ten thousand. The ratios between the
m= 17 1s22_s _25.1,2.— 1s22p 2Py, and 1s?2s 2S,,—15%2p 2Py,
Ji—(vic)?’ relativistic line strengths and the corresponding nonrelativis-
tic ones, also correct to within a few parts in ten thousand

which for inners- and p-electrons with large average speed[35], are 0.9961 and 0.9984, respectively. These very accu-

E. Relativistic corrections

My

leads to a decrease of the effective Bohr radius, rate ratios should be compared with the ratios 0.9959 and
0.9981 obtained from frozen-core DF and HF calculations.

41regh? Assuming that the frozen-core DF and HF corrections be-

ap= me (18 have equally well for neutral sodium, we find that the uncer-

tainty in the final line strength due to the relativistic correc-

Due to the different scaling of the hyperfine and transitiontions is only 0.01 a.u. The remaining uncertainties for the
operators with respect to the radius, the effect of the contrad'—he _strength are _malnly due to the neglected quadruple ex-
tion is to increase the hyperfine interaction constants anglta_tmns. i estimate, very conservatlvgly, that the contri-
decrease the multiplet strength. In this study the relativisti oution from the_ latter IS Igss than one-thwd of the contribu-
corrections for the hyperfine interaction constants were estton from the triple excitations, that is, less than 0.02 a.u.
mated by multiplying the final nonrelativistic values from the

largest calculations by the ratio be_:tween Dirac-FcﬁE_iF) IV. COMPARISON WITH EXPERIMENT

and Hartree-FockHF) values. To estimate the uncertainty of

the relativistic correction factor, a number of fully relativistic ~ In Table VI the final values of the hyperfine interaction
multiconfiguration Dirac-Fock(MCDF) calculations were constants are compared with the most accurate experimental
performed for the’S state. The configuration expansions for values and with values obtained with other theoretical meth-
these calculations were generated by allowing SD excitationeds. As can be seen from the table, the relativistically cor-
from 1s?2s?2p®3s 2S,,, to an increasing active set of orbit- rected Cl value for the 82S,,, state is very close to the
als with the restriction that at most single excitations werecoupled cluster singles and doublé€CSD value of
allowed from the core. In all these calculations the core-Salomonson and YnnermaB]. This agreement is very sat-
orbitals were kept fixed from the DF calculation and only theisfying since both methods, although quite different, include
outer orbitals were varied. Due to stability problems in thethe same important correlation effects. The small difference
relativistic self-consistent field procedure the optimization ofbetween the two values can be explained by the four-particle
the outer orbitals had to be done stepwise so that each tineffects included in the CCSD calculation, but neglected in
the active set of orbitals was increased only the new orbitalthe CI calculation. The values from both these calculations
were optimized, whereas all the others were kept fixed. Iragree to within a few parts in a thousand with the experimen-
Table V the MCDF hyperfine interaction constants are comial value, showing that the neglected higher-order effects,
pared with equivalent MCHF calculations based on a similaquintuple-, hexatuple-, etc. are indeed small.

stepwise optimization procedure. Also shown in Table V is Also for the 3 2P1/2,3,2 states the relativistically cor-
the ratio between the MCDF and MCHF values for increas+ected Cl values for the magnetic dipole interaction constants
ing active sets. This ratio is to a large extent independent ofire in very good agreement with the available experimental
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TABLE VI. The interaction constant8; andB; for 3s 2Sy, and 3 2Py, 3, states in*Na compared
with values from other calculations and from experiment.

3s’S 3p%P
Method A1 (MHz) A1, (MHz) Az, (MHz) B3,/Q (MHz/b) Reference
HF 626.2 63.66 12.72 15.91 This work
Cl 870.3 93.16 18.74 25.67 This work
cl@ 882.2 94.04 18.80 25.79 This work
ccsp? 883.8 93.02 18.318 26.14 [5]
RMBPT® 860.9 91.40 19.80 [36]
RMBPT® 884.5 [37]
FE-MCHFY 25.45 [38]
Experiment 885.813 064(8) 94.4219) 18.696) [39-41]
94.4413) 18.6221) [42]
18.646) [43]
18.53415) [44]
18.7912) [45]

@Corrected for relativistic effects using the ratio between DF and HF values.
®Third-order calculation.

CAll order calculation.

dCorrected for relativistic effects using results from quasirelativistic Cl calculations.

values. For these states the CCSD calculation did not includeeplaced by a muon. The muonic values have generally been
any genuine three-particle effects. Comparing the valueaccepted to be fairly accurate, but lately doubts on the accu-
from the CCSD and CI calculations, it is seen that the greateracy have been ca$88]. Combining the present value of
success of the latter calculation is mainly due to a betteB/Q with the most accurate experimental coupling constant
description of the three-particle effects. B=2.724(30) MHz[44], a quadrupole momer=105.6
Since the nuclear quadrupole mome@t, is inaccurately mb is obtained. This is significantly higher than the muonic
known from direct nuclear measurements, the theoreticatalueQ=100.6(20) mb. In Table VII quadrupole interaction
values of the electric quadrupole interaction const&)t, constants obtained from different methods are compared. As
cannot be compared with the experimental values. To enabkeen from the table, all the values from the atomic or mo-
a comparison between the different theoretical values, thkecular calculations are higher than the muonic value, sup-
guantity B/Q is reported in Table VI. Whereas there is a porting the conclusion of Ref38] that the uncertainty of the
very good consistency between the Cl and CCSD values famuonic values may be larger than expected.
the magnetic dipole interaction constants, this is not the case In Table VIII the final value of the multiplet strength in
for B/Q. For this quantity the CCSD value is 1.3% larger the length form for the 8 2S— 3p 2P transition is compared
than the CI value. Considering the fact that the action of thevith the most accurate experimental values and with values
neglected three-particle effects in the CCSD calculation is tmbtained with other theoretical methods. As seen from the
increase the value further, this difference is remarkable. table, the relativistically corrected ClI value is in good agree-
Accurate values of nuclear quadrupole moments are imment with the value from a previous MCHF calculation that
portant for nuclear magnetic resonance relaxation studieslso included some core-core correlation. The difference be-
This is particularly true for the biologically relevant sodium. tween these two values is mainly due to the three-particle
By combining the calculated quantif$/Q with the mea- effects accounted for in the CI calculation, but neglected in
sured electric quadrupole interaction constBnta value of the MCHF calculation. The CI value is also in good agree-
the nuclear quadrupole moment can be obtained. Nucleanent with the all order RMBPT value of Guet al.[48], the
guadrupole moments can also be obtained from hyperfindifference being a little more than three parts in a thousand.
splittings of muonic atoms, i.e., atoms where one electron ié\s in the previous case, a large part of this difference can be

TABLE VII. The nuclear quadrupole moment éfNa (in mb) from different calculations. The values
from the atomic calculations have been obtained by combihQ with the experimental quadrupole
coupling constanB=2.724(30) MHz of Ref[44].

Method Q(*Na) Reference
hfs + ClI calc. 105.6 This work
hfs + FE-MCHF calc. 107.@2.1) [38]
hfs + CCSD calc. 104.2 [5]
hfs + molecular calc. 104.2 [46]

Muonic experiment 100(80) [47]
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TABLE VIIIl. The multiplet strength for the 82S—3p 2P orbital sets of the initial and final state wave functions were
transition compared with values from other calculations and fromnot assumed to be the same, but were optimized indepen-

experiment. dently. The evaluation of the transition matrix elements was
done using a technique where the two orbital sets are trans-
Method S Reference formed to become biorthonormal, in which case standard Ra-
HE 4082 This work cah algebra can be us_ed. The configuration expansi(?n was
cl 37.35 This work gengrated wr;h the active space method, where CSF; of a
cla 3726 This work particular parity and_S symmetry are generated by excita-

tions from one or more reference configurations to an active

a
EEASBIET 27722 [Efg] set of orbit_als. The active set was increased in a systematic
MCHE-CCP 37,39 8] way, allowing f(_)r the convergence of the multlplet. strength
MGHE-GOPP 37 '30 (8] and the_ hyperflng structure constants to be studied. In the
' calculations the first correlation orbitals were targeted to de-
scribe core-valence effects and not until these effects were
Beam lasef 37.047) [11] saturated were core-core effects included. The effect on the
Beam lasef 37.089) [49] hyperfine structure and multiplet strength from the CSF’s
Delayed coincidencé 37.0421) [41] describing core-core correlation was found to be mainly in-
Delayed coincidence 37.1514) [40] direct, through the action on the expansion coefficients of the
Beam lasef 37.265) [45] CSF’s describing core-valence effects. Three-particle effects
C; analysis’ 37.2413 [50] were included in the CI calculations and were found to be of
Linewidth® 37.309) [51] importance for the hyperfine interaction but unimportant for

— - - the multiplet strength. The calculated hyperfine interaction
&Corrected for relativistic effects using the ratio between DF andConstants for the§281,2 and 2P1/2 o States all agree to
HF values. L _ . within less than 0.7% with the experi’mental values. The cal-
bvalue of Ref.[8] corrected for relativistic effects using the ratio culated multiplet strength is in perfect agreement with the
between DF and HF values. iy most recent experimental values resolving the long-standing
“Value obtained for thd=1/2— 1/2 transition.

disrepancy between theory and experiment for this transition.
YWeighted value for thd= 1/2— 1/2 andJ= 1/2— 3/2 transitions. pancy y P

®/alue obtained for thd= 1/2— 3/2 transition.
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