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Influence of an intense magnetic field on transition arrays

Pierre Dallot
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The effect of an intense magnetic field on transition arrays is investigated. Explicit formulas for the first
moments of the array are given in the weak- and strong-field limits. The result related to the strong-field case
is particularly simple: the transition array splits into three components located at the relative positions
—ugH,0,ugH, each component having the same variance as the array without magnetic field. The changes in
the opacity of aluminum and neon at low density are then computed for a range of magnetic fields relevant to
Z-pinch experiment§S1050-29476)07106-5

PACS numbsgs): 32.70.Cs, 32.66:i, 52.55.Ez

I. INTRODUCTION

2
A A e
H-(L+29+ s— HXr,).
The magnetic fields obtained ifrpinch experiments are meH-( ) 8mczza (HxTa)

so strong(of the order of 18 T) that they may affect radia-

tive transport in the surrounding plasma. A small change inThe second ternfdiamagnetit is usually neglected in the
the transition arrays, for instance, could cause the Rosselangeak-field limit. Following[3], the ratio of the second term
mean opacity to vary significantly. However, the effect of aover the first is approximatelygHr?m/#2. This ratio is
magnetic field on the bound-bound transition spectrum hagund to be small in most situations when the field is not
been investigated only in the case where Coulombigreater than 10T, and when the ionic density is larger than
electron-electron interactions are negleqte Since the lat- 10-4 g/cm3. We therefore neglect the diamagnetic term. Fi-
ter effect can be important, this assumption limits the use Oﬁally, the field that makes the magnetic term of the order of
these results. 102 hartree is 5 10° T. Hence the magnetic term is gen-

In this paper we first show that the overall increase ofg o smaller than the electrostatic interactions.

variance due to the magnetic field is equal to the variance As is well known, only two situations are easily dealt

obtained when neglecting the Coulombic terms, average\c;lvi,[h

over the possible polarizations of the absorbed photon. (1) The Zeeman effect is relevant to the weak-field limit.

Hence the formulas given ifl] can be directly used to cal- The el : i< then d ibed USi h
culate the overall variance ifj coupling. In the strong-field e electronic state Is then described using the guantum

limit, the transitions must be described in intermediate cou"UMPers (.. ,J,M,), and the perturbation due to the field is
pling. The effect of the field is then particularly simple: it

splits the transition array into three components located at AE=pugHg,M;, @)
the relative positions- ugH,0,ugH. The variance of each

of these components is equal to the variance of the transitioffnere the coefficieng, is the Landefactor. .
array in the absence of magnetic field. Note that the term (2) The Paschen-Back effect applies 1o the stron_g-fleld
variance for a transition array is used in its usual statisticalMit: The electronic state must then be described using the

sense as the mean square measure of the spread of ffidantum numbers (.. L,S,M,Ms). The perturbation due

intensity-weighted frequencies of the individual spectral®© the field is

lines in the array, calculated relative to the intensity-

weighted mean transition frequency of the individual lines in

the array. . : . . L
In the first section we give some orders of magnitude anéod(\jth'Fh the perturbation due to the spin-orbit coupling is

a qualitative analysis of the effect of a magnetic field onadded:

bound-bound transitions. In Sec. Il we present calculations

of the transition arrays ij and intermediate coupling. A

_numerical application is carried out in the last sec_tio_n, The, hydrogen, the critical field for which the magnetic inter-

influence of the field on the Rosseland mean opacity is com;

din alumi d 20 eV f ) densiti action is equal to the spin-orhit is 7800 [B]. Because the
puted in aluminum and neon at 20 eV for various ens't'esspin-orbit coupling is of orderZ e %c)?me/#? [2], we

obtain estimates of this critical field for various effective
charges(cf. Table ). Except for a few core electrons, the
screening effect makes the effective charge significantly
The coupling with the magnetic field is given 2],  smaller than the atomic number. Hence, given the large val-
Chap. XV, paragraph 113 ues of the magnetic field obtained #hpinch, the Paschen-
Back (PB) effect generally applies to outer electrons,
whereas core electrons may necessitate a Zeeiprdé-
“Electronic address: dallot@limeil.cea.fr scription.

AE=ugH(M_ +2My) 2

+AM Msg. (3

Il. ORDERS OF MAGNITUDE AND GENERAL
BACKGROUND
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TABLE I. Order of magnitude of the critical field for which the The effect of a magnetic field on an absorption spectrum
magnetic interaction is equal to the spin orbit, as a function of theyill be described in the weak- and strong-field limits,

effective charge. Z—Z and PB-PB, using transition arraygt,5]. We first
— recall how the moments of the transition arrays are calcu-
e Critical field (teslag lated in the absence of magnetic field.

Following [4—6], we denote byH, the average central

1 0.78

4 13 potential, G the electrostatic interaction between electrons,

6 o8 and A the spin-orbit coupling. Arorbital is the group of

13 130 one-electron states which are degenerate in a one-electron
description. For example, if the one-electron basis used is

29 650 . : - .

47 1700 diagonal with respect tblg+ A (case ofjj coupling, then a

29 4900 transition is first described as a transition from an orbital

(n,l,j) to an orbital @',1’,j’) (which defines a single ab-
sorption ling. The electron-electron interaction, however, is
ot diagonalized in this description. Its diagonalization trans-
orms the unique liner(,1,j)—(n’,I’,j’) into a distribution
of lines called a transition array. Followind,4], the first
two moments of this distribution can be calculated exactly.
The transition array may then be represented using a Gauss-
ian profile having these moments in the place of the true
_ _ distribution(unresolved transition arrays, super transition ar-
AE(H)=pugH(g;My—g3My) rays[8,9]). Because the moments canybe ex?)ressed as a trace
=ugH[(gy—g))My +0;(M3—M3)], (4  [see[4], Eq.(6), for instance, they can be calculated in the
basis we choose. Sin€& is a two-electron operator, we may
where |AM;|<1 and|J—-1|<J'<|J+1|. Two modifica- use a two-electron basis, and this is the origin of Moszkows-
tions of the spectrum are therefore expected. The first is &i's approximation5,10]. Finally, it is sufficient to calculate
decomposition of the line into three components, accordinghe moments related to the transition from a configuration
to the value of AM;, which arises from the term with one electron in orbitaK and one in orbitall, to a
g;(M;, —M ;). Each component corresponds to a polariza<configuration with one electron in orbit& and one in or-
tion of the absorbed photon, which is related tobital F. The two-electron basis required for a calculation in
AM;=0,*+1. The second is an increase of the variance ofj coupling is then characterized by the quantum numbers
each component, which originates from the variations of the AKJM), whereA represents either or F. The moments
Landefactor [term (g5, —g;)M;/]. The increase of variance are
can be calculated exactly followirig,5] (see Sec. I). How-
ever, when the magnetic field is large, the calculated vari- (EFK—E“()”:E Pi(JI)[Erky — Eiksl,
ance does not represent a continuous broadening of each 3.9
component, but a decomposition in subcomponents which (6)
corresponds to the new description required for the final <(EFK_EIK)2>jj:§ PFF(JJ,)[EFKJ’_EIKJ]za

Three types of transitions should therefore be considere
according to the effectPB or Z) that applies to the initial
and final states.

(1) Weak-field limit: Z—Z. According to(1) the change
in the transition energy due to the magnetic field is

state.

(2) Intermediate fieldZ— PB. The initial state, which is
correctly described using the quantum numberswhere P{t(JJ') is the probability that a photon induces a
(...,J,M;), is a linear combination of states such astransition from a state with momentuth to a state with
(....L",sM,,Mg). The transition to a state momentuml’, and where
(....L,SM_,Mg) may then be calculated. Practical use of
this description is difficult, since the electrons of the same Eaki=(AKIM|Ho+ A+ G|AKIM).
atom must be calculated differently. Moreover, the resulting
analysis would be incomplete because the Zeeman anthe two-electron variance is o?(IK—FK)={(Egx
Paschen-Back effects are simplifications which are not nec— E|K)2)jj —(Epx— E,K>J-2j .
essarily valid for intermediate fields. When A is treated on the same footing & we have a

(3) strong-field limit: PB—PB. In that case, the initial and situation of intermediate coupling in which the lines are best
final states are described using the quantum numbergescribed as broadened,()—(n’,lI’) transitions. As is well
(...,L,SM_,Mg). The electronic transitions are subject to known [4], the crossed term& G that appear in calculating
the selection rulefL —1|<L’'<|L+1|, |]AM_|<1,AS=0, the variance then have a zero contribution. Hence the vari-
and|AMg =0. The change in the transition energy is then ance of the transition array is simply the sum of the variance

due toG and of that due to\.
AE(H)=pugHAM, . (5)
. . . Ill. CALCULATION OF THE TRANSITION ARRAYS

Provided that the three causes of broader(glgctrostatic, ) )
spin orbit, magneticcan be calculated independentiis LetI'= ugH(L,+2S,) be the coupling with the magnetic
will be seen in Sec. )| the effect of the field is a decom- field, andq represent the polarization of the incident photon.
position in three subcomponer(@ccording toAM ). In the following, we consider a specific polarization, and we
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compute the weighted momen).

The energieg Ay in Eq. (6) are the expectation values of
the Hamiltonian Hy+A+G in a two-electron state

| ....,J,M;). In the presence of a magnetic field, these ener-

gies are changed inIEAKJMJ= Eakst uggsHM ;. If we part

the transitions according t9Q=M; —M;(=0,+1) and de-

note P{t(JM;,J;) the probability of a transition from
J,M;) to (I',M;+q), then the angular part in
Pi-(IM;,J'q) may be factorized atsee[11])

2
PIE(33).

J
—M;

1 J’

B,KF(JMJ,J’q): -q Mj+q

Well-known sum rules on the B- symbols vyield
S PiE(IMdq) =Pi(JJ)P(q), where P(q)=3 is the
probability of a given polarization. In the following, we de-

note ~
Pir(IM3J'q)

P(a)

Supposing is given, the first moment of the transition is

PE(IMyd'q)= (7)

(Erx—Ei ;q>jj = E PIKF(J MjJ'q)
3,3 M

X{Erky —Eika+ neH(gy My
—g;M))}.
In this expression, we write the magnetic term using
9y My —g3M;=(95 —gy)(a;yM+byyMy)
+(a3395 +b339:) (M3 —My),

wherea;y +b;; =1. The first moment is then

(Erk—Eik:9)j;=(Erx— EIK)jj,0+MBqu Pit(3J")

33
X (23595 +b;3295)
PIE(33")
+ugHY —5——(95—9))
B = P(q) J J

X > (ajyM+by;M")
M,M’

J
-M

1 J’ 2

X —-q M’

where(Egx—Ek)jj o is the first moment in the absence of

magnetic field, and where the expressiof¥) of
P (IM,J’q) has been used. =0, then

J 1 J\2 J 1 J)\?2
2 MM —qg M| =2M-m 0 m]| =0
MM’ M
The first moment reduces to

(Erk—Eik:d=0)j;=(Erx —Eik)jj 0- (8)
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If q#0, then
J 1 J)\2
X (M=-M| M —q wm
M,M’
J 1 J)\?2
=42 |-M —q M| =93 C)
M,M’
Choosing
3 J 1 J\2
a r=—2 M’ -M - M’
JJ qM,M’ q
(10
_3 J 1 J\?
byy=— 2 M| —m M’
AN - — )
A yiw’ q

thena;y +b;; =1, and the first moment simplifies into

(Erxk—Ei;a)jj :<EFK_EIK>jj,O+MBHq2 PIL(33")
3,

X(ay59y +by397). (11

The second moment is

((Erk—En)%a);;= > PE(IMI Q){(Epxy —Eks)?
33 M,

+2pgH(Erky —Eiks)(9y My
—g;M;) +[ugH(gy My —g;M3) 1%}
Since the energids,«; do not depend oM ;, the technique

detailed above can be used to simplify the crossed terms
which are linear with respect tol ;. We obtain

((Erx—Ei)%a)j;=((Erk —Ei)jj 0
+2ugHAY, PR(33)(Epky —Eixy)
3,3

X (23395 +b;3595)

PI(3J)

P(q) (gJ’_gJ)z

+(psH)2

3,3

XME (aJJrMJ+bJJrMJr)2
J

J 2

_MJ

1 J’

X -q My

+(peHQ)2Y PR(JJ)
J,J’

X (23595 +b35:95)% (12

Taking into account the expressiéhl) of the first moment,
the variance is
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o?(IK—FK;0)j;=((Erx—Ei)D)jj.0 (Erk— Ei)Ji0

+2MBHQE PIE(33) (85595 +by305) (Eekyr — By — (Epx— Eik)jj.0

2

J 1 J’
) PIE(3J") 2 2
, a;yM;+b;My _ _
(ms )JEJ/ P(Q) 5 (9 QJ)%(JJ 3t by M) M; —q My
2
peHO)?| X PFF(JJ’)(aJJ’gJ’+bJJ’gJ)z_(2 PIt(33)(ayy9 J’+bJJ’gJ)) ] (13
3,y 3,0

The above expression comprises the following.

(1) The variance without magnetic field@irst line).

(2) A term which is linear inH (second ling This term
originates from the correlations betwe€nandI" and does 2
not appear if1], since electron-electron interaction was ne-
glected in that work.

(3) Terms that are proportional té squared. These terms (15)
are independent of the electron-electron interaction. They are
calculated in1] using a one-electron framework. is the variance due to the Zeeman splitting, and where

In order to simplify these results, we may use a simpler
description of the effect of the field. We may, for instance,
calculate the moments irrespective of the polarization of the
photon. This strategy is supported by the possibility that the

O'jzj i~ % P(a){Erx—Eik ;q>j2j

I
wl

3,3

2
weHAY, Pi(33') (3505 + bJJ'gJ)>

o =(ugH)? [E Pi(39')(gy —91)? 2 P(q

term (g —g3)M ., that appears in the transition energy,
AE(H)=ugH[(g9y—gy)My +g5(My —=My)],
is larger thang;(M ;. —

one broad line.

The first moment of the total distribution is equal to zero

from Eqgs.(8) and(11):
(Erk—Eik)jj= ; P(d)(Erk—Ek :0)j;=0.
The overall variance is
o*(IK—FK);; =2 P(a)(Erc—Eic;a)]
+% P(q)o?(IK—FK;q);;

This may be expressed as
o?(IK—FK)jj=0f o+ ol 1+ 07, (14)
where

‘szj ,O:<(EFK_ EIK)2>jj,0_<EFK_ EIK)ij,O

is the variance without magnetic field

M), which corresponds to the Zee-
man effect. The three components would then be merged in

X (a3 My+by3M;y)?

J 1 J\?
_MJ _q MJ/

2 PiE(33) (83595 +b;305)?

J,J

2
(E PiE(JJ )(aJJ’gJ’+bJJ’gJ)) ” (16)

3,3

is the variance of each componé€aB), averaged oveg. In
the above expression, the crossed terms of(E8):

2ugHgY, Pit(33) (23595 +b35:05)
3,3

X (Epkar —Eika—(Erk—Eik)jj 0

have disappeared because they are odd with respegt to
Hence the increase in variance caused by the magnetic field
(of 1 +0%) is independent of the correlations betwe@n
andI. It can then be calculated in a one-delectron basis, and
the work of Bauche and Ored] can be directly used to
obtain o7 ;+ o} when the transitions are described jin
coupling (weak-field limid).

We have seen that the correlations betw€eandI” do
not contribute to the total variance jp coupling. It is shown
in the Appendix that the contributions of the correlation be-
tweenG andT', and those between andT to the total
variance, are also equal to zero in intermediate coupling. The
moments are then obtained from the formulagjircoupling
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TABLE Il. Rosseland mean opacity in Gty for aluminum at 20 eV and various densities. Calculation
performed using thePAP code.

Rosseland mean opacitgm?/g)

H (teslag 104 g/em® 103 g/ecm® 102 g/lem®
0 203.8 1001 4715
500 233.2 1076 4821
1500 234.4 1102 4844
3000 234.0 1117 4888
5000 233.8 1123 4940

by replacingd with L, andg; with 1. Applying this rule to ~ where(Erx—Ek)int 0 @and f’iz;n,o are the first moment and
Eq. (15 and(16) yields the results in intermediate coupling: variance without magnetic fiel@including spin-orbit calcu-
lated in intermediate coupling. The effect of a magnetic field
on a transition array described in intermediate coupling is
therefore to split the array into three identical components
(17 located at the relative positions ugH,0,ugH. This result
— was confirmed by a detailed calculation ofst-sp) tran-
o2,=0. sition [12].

2
T, 1= 3 (1eH)?,

Moreover, the difference of variance between the left and
right polarizations arises from the crossed tef@sulombic
plus spin orbit multiplied by magnetic, as is seen in E§3) The above effect is expected to be significatange the
and in the Appendix. The expectation value of the Hamil-Rosseland mean opaditin situations whered1) the transi-
tonian Hy+G+A+I" in a two-electron state tion arrays play an important role, ai#) ugH is not neg-
[7)=|AK,L,M_,Mg) is ligible when compared to other causes of broadening. This
can be the case when the density and the temperature are
relatively low. As examples of application, we calculated the
absorption spectra and mean Rosseland opacity for alumi-
From this and the selection rules, the first two moments of,ym and neon at a temperature of 20 eV. The effect can be
the transition are observed whemgH is larger than the interval of frequency
used to calculate the absorption spectrum. In our calcula-
_ -q). = K tions, this was the case for fields larger than 300 T. Accord-
(Erc™ B i@ L ,L,:,EMLI,MSI PIF(LM Lea) ing to Table I, the field must then be accounted for in the

IV. NUMERICAL APPLICATION

EAKLMLMS:<77|H0+G+A| )+ ugH(M_ +2Mg).

Paschen-Back limit for both aluminum and neon.
X{(me[Ho+ G+ Al 7¢) We used theprap code, developed in Limeil, to calculate
the opacity. The magnetic field was taken into account by
— Ho+G+Al|#n)+ ugHal, e . " J
{mlHo )+ reHat modifying the calculations of the transition arrays in inter-
mediate coupling according t@d.8). The results are repro-
((Erk—Ei)%Q)ine= > PIKF(LIMLlLFq) duced in Tables Il and llI. Figure 1 shows the influence of a
LiLp M Mg field of 500 T on the absorption spectrum of aluminum at 20
eV and 10“ g/cm®. Because of the continuous broadening
X{(e[Ho+ G+ A7e) of each line(due to Stark effect, natural life time, etcthe

—(m|Ho+G+A| 7))+ ugHq}? magnetic field results in a broadening of the rays, thus in-
creasing their overlap. Hence the magnetic field contributes
from which the crossedCoulombic plus spin orbjitmulti- ~ to smoothing the absorption spectrum, and this causes the

plied by magnetic terms in the variance are reckoned as Rosseland mean opacity to increase.

S 2PI(LML Q) ueHA{( nelHo+ G+ Al 76) v+ CONCLUSION

LL"ML Ms The effect of a magnetic field on transition arrays has

—(m[Ho+G+A| 7))~ (Erk—Eiint ot =0. been investigated. Simple formulas are proposed to account
’ for the effect of magnetic field on transition arrays in both
Hence the first moment and the variance related to a givethe weak- and strong-field limits. It is found that the very

polarization are simply strong magnetic fields obtained Hpinch experiments can
change the Rosseland mean opacity of the plasma. This ef-
(Eek—Eik s Dine=(Erk — Eik)int, o+ #sHY, fect may be significant at low temperatures and low densi-

(18 ties. Calculations in aluminum and neon at 20 eV and*10
5 ) g/cm® under a field of 500 T have shown a 20% increase in
o (IK=FK;@)int= it o the Rosseland mean opacity.
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TABLE lIl. Rosseland mean opacity in cify for neon at 20 eV and various densities. Calculation
performed using thePAP code.

Rosseland mean opacity

H (teslag 104 g/em® 103 g/ecm® 102 g/lem®
0 524.3 4112 21130
500 629.6 4466 21420
1500 640.6 4527 21680
3000 660.7 4635 22020
5000 690.5 4753 22 540
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Bauche for helpful discussions. is the projector on the two-electron orbifdK ], and where
[AK] is either[IK] or [FK].
2) If the polarization is circular right or left, they are such
APPENDIX: CONTRIBUTIONS OF CROSSED TERMS as( ) P 9 y
TO THE VARIANCE
We suppose that the magnetic field is polarized alpng Prk)(X£i1y) Prreg(x+1y) PpiiGPrakg I

The coupling with the field is then

In expressionAl), PpxizPrkiz Pk arises from the tran-
[=keH(Lr+25). ot the term of the Hamitonian. We now conader the opera
We considgr the contribution of crossed terms to the varianc'EeOr T, defined in the spaddK Jo[FK] by
" Igif)rs,n;ggl?éfmcsoggltlvr\l/geén G afid The two-electron states TIAKLMMg=[AKL ~M ~Ms),
?r:e(r?,e,f,c)ngreg j%r?:,lls,,Ka{rI;d'\\A/th’el\:lelsg,iswtzeer?)'rbt\)igl %Imﬁre whereA is eitherl or F. The following may be seen.

e i T2

spectator electron. We define a two-electanbital as the 8 $ :: ggﬁ?z;g?;i.r-:—t'TJ:.T

spgce[AK] generated by the ;tatéA,K,L,ML ,MS>. for (3) T commutes Wiih botrF;[|K] and Pie;
variousL,M ,Mg. The contribution ofGl_“ to the variance @ TIii|zlF)(F|==[i)(i|2lF)(F|T according to the
can be expressed as the trace of certain operésees]4]).

) o evenness of ;+Lg.
We sort these operators according to the polarization of the N F o .
P J P (8) Tl F)(FI=[i)iIx|F)(F[T and TIi)ilylF)(f]

photon.(1) If the polarization is parallel ta, they are such

=—|i)(i|ly|f){f|T (or inversely, according to the evenness
as
of Li + Lf) .
(6) T commutes withG, becausé& depends on distances.
Prk1ZPrkiz Pk GPraki L, (A1) (7) T commutes with
where, for example, Oz=Prik1ZPirk1Z PrriZ Pk G Pracg -

(8) Denoting

0. =Ppiy(XEiy)Pek)(XFiY) Pk G Prakg »

we haveTO.,=0-T.
(9) T anticommutes witH".
From the above properties, we see that

TH(O,T)=Tr(O,T2)=— Tr(O,TI'T)=—Tr(TO, TI)

R — U =—Tr(O_T). (A2)
0 100 200 300 0 100 200 300
hv (V)
o o A similar calculation shows that T&,I')=—Tr(O,I') and
therefore TrQ,I')=0. When we average over polarizations,
FIG. 1. Spectral cross sectionof aluminum atT=20 eV and  We find the overall contribution of the crossed terms to the
density 104 g/cm®, without magnetic fielda) and under 500 T Variance:
(b). The Rosseland mean opacities are, respectively, equal to

kr=203.8 and 233.2 chig. [Tr(O_T)+Tr(O,I')+Tr(0O,I')]/3=0.
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It is equal to zero from EqA2). This result was obtained in whereO can be eithet)£L or OFiL. Hence the contributions

Sec. lll, together with an explicit expression for O(I')  of AT to the variance is equal to zero for each polarization.
(which reduces to zero in intermediate coupling RegardingAT's, we consider the operatdt defined in the
Crossed terms betweenandI'. With obvious notations, space[l]®[F] by

we decomposg asl'| +1'g,and examine their contributions
separately. Because bathandI" are one-electron operators, UIA M, Mg )=|A, =M, ,—Ms )

the contribution to the variance can be calculated in a one- . .
electron basiga)=|A,M, ,M, ). The two basegobtained and remark thatl) U commutes withA; (2) U anticom-

. . _ m with Ts; mm with O%
usinga=i anda="f) generate the one-electron orbitalg _utes t S _(3) U commutes . t AO_Z
. . . =P11zPeizPjAPa;; and, (4 denoting OZ=

and[F]. Again, we introduceP;; and Pgy, the projectors P +iv)P — VP AP haveUOA = OA U
on the electronic orbitals between which the transition oc-P11XE 1Y) PrEi(X=1y)PpijAPa;, we haveUO:=0zU.

curs. We now consider the operay defined in the space The same argument used (A2) yields
[I]®[F] by Tr(OATg)=Tr(0O}U?Tg)= —Tr(O"I'g)

RIAM Mg )=|AM, ,—Ms). and TrO2T'g)=—Tr(O2T's) so that TrOAT'g)=0. The

o . o overall contribution of the crossed terms to the variance is
Then (1) R is nilpotent: R?=R; (2) R is self-adjoint: then

R"=R; (3) R commutes withPpy,Pg1,Ppi,Prey, (X* A A
iy)Pirp, and ' ; (4) hence, R commutes with both [Tr(OI'g)+Tr(0;T's)+ Tr(0}I'g)1/3=0.
r T :

OZL: P[|]Z P[F]Z P[|]F|_P[A] and OiL: P[|](Xi |y) P[F]

. . - We conclude that the crossed terms betw&eandI” do not
X(xFiy)PpiI' Prag; (5) R anticommutes withA; and we

contribute to the overall variance. Furthermore, the calcula-

have tion presented in the main text shows that the increase of
THOA)=Tr(OR?A)=—Tr(ORAR) = — Tr(RORA) variance related to a given pplarization, (lek_l“s), for ex-
ample, also reduces to zero in the case of intermediate cou-
=—Tr(OA), pling.
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