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The effect of an intense magnetic field on transition arrays is investigated. Explicit formulas for the first
moments of the array are given in the weak- and strong-field limits. The result related to the strong-field case
is particularly simple: the transition array splits into three components located at the relative positions
2mBH,0,mBH, each component having the same variance as the array without magnetic field. The changes in
the opacity of aluminum and neon at low density are then computed for a range of magnetic fields relevant to
Z-pinch experiments@S1050-2947~96!07106-5#

PACS number~s!: 32.70.Cs, 32.60.1i, 52.55.Ez

I. INTRODUCTION

The magnetic fields obtained inZ-pinch experiments are
so strong~of the order of 103 T! that they may affect radia-
tive transport in the surrounding plasma. A small change in
the transition arrays, for instance, could cause the Rosseland
mean opacity to vary significantly. However, the effect of a
magnetic field on the bound-bound transition spectrum has
been investigated only in the case where Coulombic
electron-electron interactions are neglected@1#. Since the lat-
ter effect can be important, this assumption limits the use of
these results.

In this paper we first show that the overall increase of
variance due to the magnetic field is equal to the variance
obtained when neglecting the Coulombic terms, averaged
over the possible polarizations of the absorbed photon.
Hence the formulas given in@1# can be directly used to cal-
culate the overall variance inj j coupling. In the strong-field
limit, the transitions must be described in intermediate cou-
pling. The effect of the field is then particularly simple: it
splits the transition array into three components located at
the relative positions2mBH,0,mBH. The variance of each
of these components is equal to the variance of the transition
array in the absence of magnetic field. Note that the term
variance for a transition array is used in its usual statistical
sense as the mean square measure of the spread of the
intensity-weighted frequencies of the individual spectral
lines in the array, calculated relative to the intensity-
weighted mean transition frequency of the individual lines in
the array.

In the first section we give some orders of magnitude and
a qualitative analysis of the effect of a magnetic field on
bound-bound transitions. In Sec. II we present calculations
of the transition arrays inj j and intermediate coupling. A
numerical application is carried out in the last section. The
influence of the field on the Rosseland mean opacity is com-
puted in aluminum and neon at 20 eV for various densities.

II. ORDERS OF MAGNITUDE AND GENERAL
BACKGROUND

The coupling with the magnetic field is given by~@2#,
Chap. XV, paragraph 113!

mBH•~ L̂12Ŝ!1
e2

8mc2(a ~H3ra!.

The second term~diamagnetic! is usually neglected in the
weak-field limit. Following@3#, the ratio of the second term
over the first is approximatelymBHr̄

2m/\2. This ratio is
found to be small in most situations when the field is not
greater than 103 T, and when the ionic density is larger than
1024 g/cm3. We therefore neglect the diamagnetic term. Fi-
nally, the field that makes the magnetic term of the order of
1022 hartree is 53103 T. Hence the magnetic term is gen-
erally smaller than the electrostatic interactions.

As is well known, only two situations are easily dealt
with.

~1! The Zeeman effect is relevant to the weak-field limit.
The electronic state is then described using the quantum
numbers (. . . ,J,MJ), and the perturbation due to the field is

DE5mBHgJMJ , ~1!

where the coefficientgJ is the Lande´ factor.
~2! The Paschen-Back effect applies to the strong-field

limit. The electronic state must then be described using the
quantum numbers (. . . ,L,S,ML ,MS). The perturbation due
to the field is

DE5mBH~ML12MS! ~2!

to which the perturbation due to the spin-orbit coupling is
added:

1AMLMS . ~3!

In hydrogen, the critical field for which the magnetic inter-
action is equal to the spin-orbit is 7800 G@3#. Because the
spin-orbit coupling is of order (Zeffe

2/\c)2me4/\2 @2#, we
obtain estimates of this critical field for various effective
charges~cf. Table I!. Except for a few core electrons, the
screening effect makes the effective charge significantly
smaller than the atomic number. Hence, given the large val-
ues of the magnetic field obtained inZ pinch, the Paschen-
Back ~PB! effect generally applies to outer electrons,
whereas core electrons may necessitate a Zeeman (Z) de-
scription.*Electronic address: dallot@limeil.cea.fr
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Three types of transitions should therefore be considered,
according to the effect~PB or Z) that applies to the initial
and final states.

~1! Weak-field limit:Z→Z. According to~1! the change
in the transition energy due to the magnetic field is

DE~H !5mBH~gJ8MJ82gJMJ!

5mBH@~gJ82gJ!MJ81gJ~MJ82MJ!#, ~4!

where uDMJu<1 and uJ21u<J8<uJ11u. Two modifica-
tions of the spectrum are therefore expected. The first is a
decomposition of the line into three components, according
to the value of DMJ , which arises from the term
gJ(MJ82MJ). Each component corresponds to a polariza-
tion of the absorbed photon, which is related to
DMJ50,61. The second is an increase of the variance of
each component, which originates from the variations of the
Landéfactor @term (gJ82gJ)MJ8#. The increase of variance
can be calculated exactly following@4,5# ~see Sec. III!. How-
ever, when the magnetic field is large, the calculated vari-
ance does not represent a continuous broadening of each
component, but a decomposition in subcomponents which
corresponds to the new description required for the final
state.

~2! Intermediate field:Z→PB. The initial state, which is
correctly described using the quantum numbers
( . . . ,J,MJ), is a linear combination of states such as
( . . . ,L8,S8,ML8

,MS8). The transition to a state
( . . . ,L,S,ML ,MS) may then be calculated. Practical use of
this description is difficult, since the electrons of the same
atom must be calculated differently. Moreover, the resulting
analysis would be incomplete because the Zeeman and
Paschen-Back effects are simplifications which are not nec-
essarily valid for intermediate fields.

~3! strong-field limit: PB→PB. In that case, the initial and
final states are described using the quantum numbers
( . . . ,L,S,ML ,MS). The electronic transitions are subject to
the selection rulesuL21u<L8<uL11u, uDMLu<1, DS50,
and uDMSu50. The change in the transition energy is then

DE~H !5mBHDML . ~5!

Provided that the three causes of broadening~electrostatic,
spin orbit, magnetic! can be calculated independently~this
will be seen in Sec. III!, the effect of the field is a decom-
position in three subcomponents~according toDML).

The effect of a magnetic field on an absorption spectrum
will be described in the weak- and strong-field limits,
Z→Z and PB→PB, using transition arrays@4,5#. We first
recall how the moments of the transition arrays are calcu-
lated in the absence of magnetic field.

Following @4–6#, we denote byH0 the average central
potential,G the electrostatic interaction between electrons,
and L the spin-orbit coupling. Anorbital is the group of
one-electron states which are degenerate in a one-electron
description. For example, if the one-electron basis used is
diagonal with respect toH01L ~case ofj j coupling!, then a
transition is first described as a transition from an orbital
(n,l , j ) to an orbital (n8,l 8, j 8) ~which defines a single ab-
sorption line!. The electron-electron interaction, however, is
not diagonalized in this description. Its diagonalization trans-
forms the unique line (n,l , j )→(n8,l 8, j 8) into a distribution
of lines called a transition array. Following@7,4#, the first
two moments of this distribution can be calculated exactly.
The transition array may then be represented using a Gauss-
ian profile having these moments in the place of the true
distribution~unresolved transition arrays, super transition ar-
rays@8,9#!. Because the moments can be expressed as a trace
@see@4#, Eq. ~6!, for instance#, they can be calculated in the
basis we choose. SinceG is a two-electron operator, we may
use a two-electron basis, and this is the origin of Moszkows-
ki’s approximation@5,10#. Finally, it is sufficient to calculate
the moments related to the transition from a configuration
with one electron in orbitalK and one in orbitalI , to a
configuration with one electron in orbitalK and one in or-
bital F. The two-electron basis required for a calculation in
j j coupling is then characterized by the quantum numbers
uAKJM&, whereA represents eitherI or F. The moments
are

^EFK2EIK& j j5(
J,J8

PIF
K ~JJ8!@EFKJ82EIKJ#,

~6!

^~EFK2EIK !2& j j5(
J,J8

PIF
K ~JJ8!@EFKJ82EIKJ#

2,

wherePIF
K (JJ8) is the probability that a photon induces a

transition from a state with momentumJ to a state with
momentumJ8, and where

EAKJ5^AKJMuH01L1GuAKJM&.

The two-electron variance is s2(IK→FK)5^(EFK

2EIK)
2& j j2^EFK2EIK& j j

2 .
WhenL is treated on the same footing asG, we have a

situation of intermediate coupling in which the lines are best
described as broadened (n,l )→(n8,l 8) transitions. As is well
known @4#, the crossed termsLG that appear in calculating
the variance then have a zero contribution. Hence the vari-
ance of the transition array is simply the sum of the variance
due toG and of that due toL.

III. CALCULATION OF THE TRANSITION ARRAYS

Let G5mBH(L̂z12Ŝz) be the coupling with the magnetic
field, andq represent the polarization of the incident photon.
In the following, we consider a specific polarization, and we

TABLE I. Order of magnitude of the critical field for which the
magnetic interaction is equal to the spin orbit, as a function of the
effective charge.

Zeff Critical field ~teslas!

1 0.78
4 13
6 28
13 130
29 650
47 1700
79 4900
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compute the weighted moments~6!.
The energiesEAKJ in Eq. ~6! are the expectation values of

the Hamiltonian H01L1G in a two-electron state
u . . . ,J,MJ&. In the presence of a magnetic field, these ener-
gies are changed intoEAKJMJ

5EAKJ1mBgJHMJ . If we part

the transitions according toq5MJ82MJ(50,61) and de-
note P̃IF

K (JMJ ,Jq8) the probability of a transition from
(J,MJ) to (J8,MJ1q), then the angular part in
P̃IF
K (JMJ ,J8q) may be factorized as~see@11#!

P̃IF
K ~JMJ ,J8q!5S J 1 J8

2MJ 2q MJ1qD 2

PIF
K ~JJ8!.

Well-known sum rules on the 3-j symbols yield
(MJ

P̃IF
K (JMJJ8q)5PIF

K (JJ8)P(q), where P(q)5 1
3 is the

probability of a given polarization. In the following, we de-
note

PIF
K ~JMJJ8q!5

P̃IF
K ~JMJJ8q!

P~q!
. ~7!

Supposingq is given, the first moment of the transition is

^EFK2EIK ;q& j j5 (
J,J8,MJ

PIF
K ~JMJJ8q!

3$EFKJ82EIKJ1mBH~gJ8MJ8

2gJMJ!%.

In this expression, we write the magnetic term using

gJ8MJ82gJMJ5~gJ82gJ!~aJJ8MJ1bJJ8MJ8!

1~aJJ8gJ81bJJ8gJ!~MJ82MJ!,

whereaJJ81bJJ851. The first moment is then

^EFK2EIK ;q& j j5^EFK2EIK& j j ,01mBHq(
J,J8

PIF
K ~JJ8!

3~aJJ8gJ81bJJ8gJ!

1mBH(
J,J8

PIF
K ~JJ8!

P~q!
~gJ82gJ!

3 (
M ,M8

~aJJ8M1bJJ8M 8!

3S J 1 J8

2M 2q M8D 2

,

where^EFK2EIK& j j ,0 is the first moment in the absence of
magnetic field, and where the expression~7! of
PIF
K (JMJJ8q) has been used. Ifq50, then

(
M ,M8

M S J 1 J8

2M 2q M8D 2

5(
M

M S J 1 J8

2M 0 M D 2

50.

The first moment reduces to

^EFK2EIK ;q50& j j5^EFK2EIK& j j ,0 . ~8!

If qÞ0, then

(
M ,M8

~M 82M !S J 1 J8

2M 2q M8D 2

5q (
M ,M8

S J 1 J8

2M 2q M8D 2

5q/3. ~9!

Choosing

aJJ85
3

q (
M ,M8

M 8S J 1 J8

2M 2q M8D 2

,

~10!

bJJ85
23

q (
M ,M8

M S J 1 J8

2M 2q M8D 2

,

thenaJJ81bJJ851, and the first moment simplifies into

^EFK2EIK ;q& j j5^EFK2EIK& j j ,01mBHq(
J,J8

PIF
K ~JJ8!

3~aJJ8gJ81bJJ8gJ!. ~11!

The second moment is

^~EFK2EIK !2;q& j j5 (
J,J8,MJ

PIF
K ~JMJJ8q!$~EFKJ82EIKJ!

2

12mBH~EFKJ82EIKJ!~gJ8MJ8

2gJMJ!1@mBH~gJ8MJ82gJMJ!#
2%.

Since the energiesEAKJ do not depend onMJ , the technique
detailed above can be used to simplify the crossed terms
which are linear with respect toMJ . We obtain

^~EFK2EIK !2;q& j j5^~EFK2EIK !2& j j ,0

12mBHq(
J,J8

PIF
K ~JJ8!~EFKJ82EIKJ!

3~aJJ8gJ81bJJ8gJ!

1~mBH !2(
J,J8

PIF
K ~JJ8!

P~q!
~gJ82gJ!

2

3(
MJ

~aJJ8MJ1bJJ8MJ8!
2

3S J 1 J8

2MJ 2q MJ8D 2

1~mBHq!2(
J,J8

PIF
K ~JJ8!

3~aJJ8gJ81bJJ8gJ!
2. ~12!

Taking into account the expression~11! of the first moment,
the variance is
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s2~ IK→FK;q! j j5^~EFK2EIK !2& j j ,02^EFK2EIK& j j ,0
2

12mBHq(
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!~EFKJ82EIKJ2^EFK2EIK& j j ,0!

1~mBH !2(
J,J8

PIF
K ~JJ8!

P~q!
~gJ82gJ!

2(
MJ

~aJJ8MJ1bJJ8MJ8!
2S J 1 J8

2MJ 2q MJ8D 2

1~mBHq!2F(
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!

22S (
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!D 2G . ~13!

The above expression comprises the following.
~1! The variance without magnetic field~first line!.
~2! A term which is linear inH ~second line!. This term

originates from the correlations betweenG andG and does
not appear in@1#, since electron-electron interaction was ne-
glected in that work.

~3! Terms that are proportional toH squared. These terms
are independent of the electron-electron interaction. They are
calculated in@1# using a one-electron framework.

In order to simplify these results, we may use a simpler
description of the effect of the field. We may, for instance,
calculate the moments irrespective of the polarization of the
photon. This strategy is supported by the possibility that the
term (gJ82gJ)MJ8 , that appears in the transition energy~4!,

DE~H !5mBH@~gJ82gJ!MJ81gJ~MJ82MJ!#,

is larger thangJ(MJ82MJ), which corresponds to the Zee-
man effect. The three components would then be merged in
one broad line.

The first moment of the total distribution is equal to zero
from Eqs.~8! and ~11!:

^EFK2EIK& j j5(
q

P~q!^EFK2EIK ;q& j j50.

The overall variance is

s2~ IK→FK ! j j5(
q

P~q!^EFK2EIK ;q& j j
2

1(
q

P~q!s2~ IK→FK;q! j j .

This may be expressed as

s2~ IK→FK ! j j5s j j ,0
2 1s j j ,1

2 1s j j
2 , ~14!

where

s j j ,0
2 5^~EFK2EIK !2& j j ,02^EFK2EIK& j j ,0

2

is the variance without magnetic field

s j j ,1
2 5(

q
P~q!^EFK2EIK ;q& j j

2

5
2

3 S mBHq(
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!D 2

~15!

is the variance due to the Zeeman splitting, and where

s j j
2 5~mBH !2H (

J,J8
PIF
K ~JJ8!~gJ82gJ!

2 (
q,MJ

P~q!

3~aJJ8MJ1bJJ8MJ8!
2S J 1 J8

2MJ 2q MJ8D 2

1
2

3 F(J,J8 PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!

2

2S (
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!D 2G J ~16!

is the variance of each component~13!, averaged overq. In
the above expression, the crossed terms of Eq.~13!:

2mBHq(
J,J8

PIF
K ~JJ8!~aJJ8gJ81bJJ8gJ!

3~EFKJ82EIKJ2^EFK2EIK& j j ,0!

have disappeared because they are odd with respect toq.
Hence the increase in variance caused by the magnetic field
(s j j ,1

2 1s j j
2 ) is independent of the correlations betweenG

andG. It can then be calculated in a one-delectron basis, and
the work of Bauche and Oreg@1# can be directly used to
obtain s j j ,1

2 1s j j
2 when the transitions are described inj j

coupling ~weak-field limit!.
We have seen that the correlations betweenG andG do

not contribute to the total variance inj j coupling. It is shown
in the Appendix that the contributions of the correlation be-
tweenG and G, and those betweenL and G to the total
variance, are also equal to zero in intermediate coupling. The
moments are then obtained from the formulas inj j coupling

4010 53PIERRE DALLOT



by replacingJ with L, andgJ with 1. Applying this rule to
Eq. ~15! and~16! yields the results in intermediate coupling:

s int , 1
2 5

2

3
~mBH !2,

~17!

s int
2 50.

Moreover, the difference of variance between the left and
right polarizations arises from the crossed terms~Coulombic
plus spin orbit! multiplied by magnetic, as is seen in Eq.~13!
and in the Appendix. The expectation value of the Hamil-
tonian H01G1L1G in a two-electron state
uh&5uA,K,L,ML ,MS& is

EAKLMLMS
5^huH01G1Luh&1mBH~ML12MS!.

From this and the selection rules, the first two moments of
the transition are

^EFK2EIK ;q& int5 (
LI ,LF ,MLI

,MSI

PIF
K ~LIMLI

LFq!

3$^hFuH01G1LuhF&

2^h I uH01G1Luh I&1mBHq%,

^~EFK2EIK !2;q& int5 (
LI ,LF ,MLI

,MSI

PIF
K ~LIMLI

LFq!

3$^hFuH01G1LhF&

2^h I uH01G1Luh I&1mBHq%2

from which the crossed~Coulombic plus spin orbit! multi-
plied by magnetic terms in the variance are reckoned as

(
L,L8,ML ,MS

2PIF
K ~LMLL8q!mBHq$^hFuH01G1LuhF&

2^h I uH01G1Luh I&2^EFK2EIK& int , 0%50.

Hence the first moment and the variance related to a given
polarization are simply

^EFK2EIK ;q& int5^EFK2EIK& int , 01mBHq,

~18!

s2~ IK→FK;q! int5s int ,0
2 ,

where ^EFK2EIK& int ,0 and s int , 0
2 are the first moment and

variance without magnetic field~including spin-orbit! calcu-
lated in intermediate coupling. The effect of a magnetic field
on a transition array described in intermediate coupling is
therefore to split the array into three identical components
located at the relative positions2mBH,0,mBH. This result
was confirmed by a detailed calculation of a (s2→sp) tran-
sition @12#.

IV. NUMERICAL APPLICATION

The above effect is expected to be significant~change the
Rosseland mean opacity! in situations where~1! the transi-
tion arrays play an important role, and~2! mBH is not neg-
ligible when compared to other causes of broadening. This
can be the case when the density and the temperature are
relatively low. As examples of application, we calculated the
absorption spectra and mean Rosseland opacity for alumi-
num and neon at a temperature of 20 eV. The effect can be
observed whenmBH is larger than the interval of frequency
used to calculate the absorption spectrum. In our calcula-
tions, this was the case for fields larger than 300 T. Accord-
ing to Table I, the field must then be accounted for in the
Paschen-Back limit for both aluminum and neon.

We used theOPAPcode, developed in Limeil, to calculate
the opacity. The magnetic field was taken into account by
modifying the calculations of the transition arrays in inter-
mediate coupling according to~18!. The results are repro-
duced in Tables II and III. Figure 1 shows the influence of a
field of 500 T on the absorption spectrum of aluminum at 20
eV and 1024 g/cm3. Because of the continuous broadening
of each line~due to Stark effect, natural life time, etc.!, the
magnetic field results in a broadening of the rays, thus in-
creasing their overlap. Hence the magnetic field contributes
to smoothing the absorption spectrum, and this causes the
Rosseland mean opacity to increase.

V. CONCLUSION

The effect of a magnetic field on transition arrays has
been investigated. Simple formulas are proposed to account
for the effect of magnetic field on transition arrays in both
the weak- and strong-field limits. It is found that the very
strong magnetic fields obtained inZ-pinch experiments can
change the Rosseland mean opacity of the plasma. This ef-
fect may be significant at low temperatures and low densi-
ties. Calculations in aluminum and neon at 20 eV and 1024

g/cm3 under a field of 500 T have shown a 20% increase in
the Rosseland mean opacity.

TABLE II. Rosseland mean opacity in cm2/g for aluminum at 20 eV and various densities. Calculation
performed using theOPAP code.

Rosseland mean opacity~cm2/g!

H ~teslas! 1024 g/cm3 1023 g/cm3 1022 g/cm3

0 203.8 1001 4715
500 233.2 1076 4821
1500 234.4 1102 4844
3000 234.0 1117 4888
5000 233.8 1123 4940
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APPENDIX: CONTRIBUTIONS OF CROSSED TERMS
TO THE VARIANCE

We suppose that the magnetic field is polarized alongz.
The coupling with the field is then

G5mBH~ L̂z12Ŝz!.

We consider the contribution of crossed terms to the variance
in intermediate coupling.

Crossed terms between G andG. The two-electron states
are described asua&5uA,K,L,ML ,MS&, whereA is either
I5(nI ,l I) or F5(nF ,l F), and whereK is the orbital of the
spectator electron. We define a two-electronorbital as the
space@AK# generated by the statesuA,K,L,ML ,MS& for
variousL,ML ,MS . The contribution ofGG to the variance
can be expressed as the trace of certain operators~see@4#!.
We sort these operators according to the polarization of the
photon.~1! If the polarization is parallel toz, they are such
as

P@ IK #zP@FK#zP@ IK #GP@AK#G, ~A1!

where, for example,

P@ IK #5 (
iP@ IK #

u i &^ i u

is the projector on the two-electron orbital@ IK #, and where
@AK# is either@ IK # or @FK#.

~2! If the polarization is circular right or left, they are such
as

P@ IK #~x6 iy !P@FK#~x7 iy !P@ IK #GP@AK#G.

In expression~A1!, P@ IK #zP@FK#zP@ IK # arises from the tran-
sition matrix element, whereasGP@AK#G is the cross product
of the terms of the Hamiltonian. We now consider the opera-
tor T, defined in the space@ IK # % @FK# by

TuA,K,L,MLMS&5uA,K,L,2ML2MS&,

whereA is eitherI or F. The following may be seen.
~1! T is nilpotent:T25T.
~2! T is self-adjoint:T15T.
~3! T commutes with bothP@ IK # andP@FK# .
~4! Tu i &^ i uzu f &^ f u56u i &^ i uzu f &^ f uT according to the

evenness ofLi1LF .
~5! Tu i &^ i uxu f &^ f u5u i &^ i uxu f &^ f uT and Tu i &^ i uyu f &^ f u

52u i &^ i uyu f &^ f uT ~or inversely, according to the evenness
of Li1L f).

~6! T commutes withG, becauseG depends on distances.
~7! T commutes with

Oz5P@ IK #zP@FK#zP@FK#zP@ IK #GP@AK# .

~8! Denoting

O65P@ IK #~x6 iy !P@FK#~x7 iy !P@ IK #GP@AK# ,

we haveTO65O7T.
~9! T anticommutes withG.
From the above properties, we see that

Tr~O1G!5Tr~O1T
2G!52 Tr~O1TGT!52Tr~TO1TG!

52Tr~O2G!. ~A2!

A similar calculation shows that Tr(OzG)52Tr(OzG) and
therefore Tr(OzG)50. When we average over polarizations,
we find the overall contribution of the crossed terms to the
variance:

@Tr~O2G!1Tr~OzG!1Tr~O1G!#/350.

TABLE III. Rosseland mean opacity in cm2/g for neon at 20 eV and various densities. Calculation
performed using theOPAP code.

Rosseland mean opacity
H ~teslas! 1024 g/cm3 1023 g/cm3 1022 g/cm3

0 524.3 4112 21 130
500 629.6 4466 21 420
1500 640.6 4527 21 680
3000 660.7 4635 22 020
5000 690.5 4753 22 540

FIG. 1. Spectral cross sectionk of aluminum atT520 eV and
density 1024 g/cm3, without magnetic field~a! and under 500 T
~b!. The Rosseland mean opacities are, respectively, equal to
kR5203.8 and 233.2 cm2/g.
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It is equal to zero from Eq.~A2!. This result was obtained in
Sec. III, together with an explicit expression for Tr(O1G)
~which reduces to zero in intermediate coupling!.

Crossed terms betweenL andG. With obvious notations,
we decomposeG asGL1GS ,and examine their contributions
separately. Because bothL andG are one-electron operators,
the contribution to the variance can be calculated in a one-
electron basisua&5uA,Mla

,Msa
&. The two bases~obtained

usinga5 i anda5 f ) generate the one-electron orbitals@ I #
and @F#. Again, we introduceP@ I # andP@F# , the projectors
on the electronic orbitals between which the transition oc-
curs. We now consider the operatorR, defined in the space
@ I # % @F# by

RuA,Mla
,Msa

&5uA,Mla
,2Msa

&.

Then ~1! R is nilpotent: R25R; ~2! R is self-adjoint:
R15R; ~3! R commutes withP@ I # ,P@F# ,P@ I # ,P@F# ,(x6
iy)P@F# , and GL ; ~4! hence, R commutes with both
Oz

GL5P@ I #zP@F#zP@ I #GLP@A# and O
6

GL5P@ I #(x6 iy)P@F#

3(x7 iy)P@ I #GLP@A# ; ~5! R anticommutes withL; and we
have

Tr~OL!5Tr~OR2L!52Tr~ORLR!52Tr~RORL!

52Tr~OL!,

whereO can be eitherOz
GL or O

6

GL . Hence the contributions
of LGL to the variance is equal to zero for each polarization.
RegardingLGS , we consider the operatorU defined in the
space@ I # % @F# by

UuA,Mla
,Msa

&5uA,2Mla
,2Msa

&

and remark that~1! U commutes withL; ~2! U anticom-
mutes with GS ; ~3! U commutes with Oz

L

5P@ I #zP@F#zP@ I #LP@A# ; and, ~4! denoting O6
L 5

P@ I #(x6 iy)P@F#(x7 iy)P@ I #LP@A# , we haveUO6
L 5O7

LU.
The same argument used in~A2! yields

Tr~O1
L GS!5Tr~O1

LU2GS!52Tr~O2
L GS!

and Tr(Oz
LGS)52Tr(Oz

LGS) so that Tr(Oz
LGS)50. The

overall contribution of the crossed terms to the variance is
then

@Tr~O2
L GS!1Tr~Oz

LGS!1Tr~O1
L GS!#/350.

We conclude that the crossed terms betweenL andG do not
contribute to the overall variance. Furthermore, the calcula-
tion presented in the main text shows that the increase of
variance related to a given polarization, Tr(O1

L GS), for ex-
ample, also reduces to zero in the case of intermediate cou-
pling.

@1# J. Bauche and J. Oreg, J. Phys.~Paris! Colloq. 49, C1-263
~1988!.

@2# L. D. Landau and E. M. Lifshitz,Mécanique Quantique~Mir,
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