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By varying an intensive parameter in a nonlinear optical system with two-dimensional feedback the wave
front displays a transition from a uniform to a patterned state, and eventually to space-time chaos. A nonlocal
interaction, introduced by means of a feedback rotation, is the source of the observed phenomena. The ob-
served space-time chaotic behavior is characterized by a rapid decay of correlation. We study the possibility
that the system eventually evolves from space-time chaos to a turbulent regime.

PACS number~s!: 42.65.Sf, 05.45.1b

I. INTRODUCTION

The issue of pattern formation and competition and, more
generally, of complex behavior in extended systems, has re-
cently attracted the attention of researchers working in many
areas of physics@1# and of other sciences, such as chemistry
@1,2# and biology @2#. In this context nonlinear optics has
attained a relevant role@3#, due to its peculiar attitude in
coupling together different fundamental physical effects as
diffraction, diffusion, and nonlinear interaction between elec-
tromagnetic fields and matter, thus allowing the study of
models and experiments that can often be considered as
metaphors for broader classes of phenomena.

Ordered patterns with symmetries induced by the trans-
verse boundaries of the experimental system have been
known in linear optics for a long time. Some examples are
the modes of an optical resonator@4# or even diffraction
fringes from an aperture. However, only recently have de-
tailed experiments been reported on the interaction among
these structures in the presence of a nonlinear coupling@5#. A
satisfactory description of this nonlinearity has been accom-
plished either via the application of normal form equations
@6# or by using numerical simulations@7#.

Another kind of regular pattern, whose symmetry can be
either intrinsic of the nonlinear media used, or dependent on
the transverse boundary, arises in the wave front of a light
beam due to the coupling of optical nonlinearities either with
nonlocal interactions@8# or diffraction @9#. In the case of a
two-dimensional~2D! nonlocal feedback, patterns consist of
multipetal structures and rotating waves@10#. In the diffrac-
tive case, patterns characterized by an hexagonal symmetry
have been theoretically predicted@9# and experimentally ob-
served@11#. The effect of the transverse boundary was also
investigated both theoretically@12# and experimentally@13#.
The combination of diffraction and nonlocality, introduced as
a rotation of the field in the feedback loop, gives rise to a
new class of spatial patterns called ‘‘Akhseals’’@14#, in
memory of the late Moscow physicist Akhmanov. For par-
ticular values of the feedback rotation angle, types of com-
petition similar to ones existing in hydrodynamical systems,
namely hexagon-roll transitions, have been shown to exist
@15#, and also quasi-crystal-like structures have been ob-
served@16#.

Several examples of transitions from ordered patterns to

more complex or even space-time chaotic situations have
been reported in photorefractive oscillators@5,17#, in lasers
@18#, and in liquid-crystal-based devices@19#. The transitions
arise when increasing the Fresnel number; that is, the optical
aperture of the experimental systems.

Space-time chaos in a spatially extended system can be
defined as a regime in which the spatial correlation length of
the signal is much shorter than the system size, and the tem-
poral dynamics inside any spatial correlation domain is cha-
otic @20#. Typical indicators for detecting the presence of
space-time chaos regimes are therefore the spatial correlation
length of the signal~or, equivalently, its spatial power spec-
trum! and the local temporal correlation length. Indeed,
though several indicators preferable to time correlation
length exist in order to detect temporal chaos~e.g., correla-
tion dimension, Lyapunov spectra!, a reliable evaluation of
all these quantities is possible only in the case of low-
dimensional dynamical systems. This is clearly not the case
when the signal is formed by a collection of many spatially
uncorrelated domains.

The study of optical high-dimensional systems has re-
vealed the presence of phase singularities in the optical wave
fronts, whose role is to limit the correlation length of the
patterns@17#. Furthermore, in systems exhibiting an intrinsic
cutoff length due to diffusion, it has been shown that the
boundary influence on pattern formation ceases to be rel-
evant in the high Fresnel number limit@21#.

The above reported order-disorder transitions occur for
increasing values of an extensive parameter, namely, the
Fresnel number. This in fact puts strong limitations on draw-
ing a comparison with other branches of physics, where tran-
sitions are mainly driven by an intensive parameter. Though
numerical evidence exists that nonlinear optical systems
could also exhibit order-disorder transitions versus an inten-
sive parameter~pump rate in lasers@22#, intensity in Kerr-
like systems@9#! from the experimental side, the only ex-
amples of an optical order-disorder transition controlled by
an intensive parameter come, to our knowledge, from the
system based on a liquid-crystal light valve with 2D nonlocal
feedback @8,10,23#. However, quantitative details of that
transition have not yet been provided and the question is
open whether an optical nonlinearity plus nonlocality can
give rise to space-time chaotic states@23#.

In this paper we report the quantitative characterization of
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a transition from ordered patterns to a space-time chaotic
regime in a nonlinear optical system, by keeping a fixed
Fresnel number and varying the level of excitation in the
nonlinear medium. The experimental system consists of the
same kind of nonlinear interferometer introduced in@8# and
discussed in@10,23,24#, in which the instabilities arise from
the interplay between optical nonlinearity, excitation diffu-
sion, and nonlocal interactions. These last ones are intro-
duced via a rotation of the optical beam around its propaga-
tion axis. The spatial bandwidth of the excited signal is
measured and compared with the theoretical predictions,
leading to a discussion on the capability and limitations of
the present experimental system.

II. TRANSITION FROM ORDERED PATTERNS
TO SPACE-TIME CHAOS

The experimental setup is shown in Fig. 1. A light beam
from an Ar1 laser operating at a wavelength of 514 nm is
expanded and filtered by means of the telescopic system
formed by microscope objectiveO, pinholeP1, and lensL1.
This beam is then sent on an optically addressable liquid-
crystal light valve~LCLV ! operating in reflection. This de-
vice utilizes the fact that nematic liquid-crystal~LC! mol-
ecules are strongly birefringent, in order to modulate the
phase of the reflected light~‘‘reading’’ light ! in the presence
of another beam impinging on the rear side of the valve
~‘‘writing’’ light !. In fact, the birefringence of the liquid crys-
tals is due to the average alignment of the anisotropic LC
molecules along a preferential axis, called the LC director.
By applying an ac voltage to a thin liquid-crystal layer, it is
possible to induce a reorientation of the molecules, and
hence to control the amount of birefringence of the layer.

In the LCLV, the mirror that reflects the reading light is
sandwiched between a LC layer in front of it, and a photo-
conductive layer behind it. By means of transparent elec-
trodes an ac voltage is applied to the device. The fraction of
voltage dropping across the LC layer depends on the local
illumination on the photoconductor, and hence the intensity
of the writing light determines the phase modulation on the
reflected reading beam.

In our experiment, the light reflected by the LCLV is

passed through the polarizer PO and imaged by means of
lens L2 on the planeF. By appropriately choosing the ex-
perimental geometry~see Fig. 1! we obtain on planeF a 1 to
1 image of the front plane of the LCLV. This image is then
fed back on the rear side of the valve by means of the fiber
bundle FB. The use of the fiber bundle allows to rotate the
feedback image by an angleD, thus establishing a nonlocal
interaction of the material excitation with itself. The video-
camera charge-coupled-device allows visualization and ac-
quisition of the image on theF plane. We stress that in the
present geometry, that is, with the use of an image forming
feedback path, diffraction plays no role at all in the experi-
ment, at variance with the situation already investigated us-
ing a similar setup@15,16#.

Since the LCLV acts on the phase of the reading beam,
but it is sensitive to the intensity of the writing beam, an
effective feedback requires conversion of phase into intensity
modulation. This is provided by the polarizer PO in the feed-
back loop. In our experiment the input light is vertically
polarized, the LC director forms an angle of 45° with the
vertical direction, and the polarizer nontransmissive axis is
horizontal. In these conditions the light intensity reaching the
photoconductor on the rear plane of the LCLV has the ex-
pression

I pc5RH rI 02 @11cosw#J , ~1!

whereR represents the operator introduced by means of the
fiber bundle rotation,r50.21 is an overall reflection factor,
I 0 is the input intensity, andw5u~I pc!1w0~V0! is the phase
shift induced by the LCLV on the component of the input
light parallel to the LC director. This phase shift is the sum
of a partw0~V0! that exists always in presence of the applied
voltageV0, plus an additional partu~I pc! due to the presence
of the writing light.

In our experiment we keep fixed the input intensity
I 059.5 mW/cm2, the feedback rotation angleD530°, the
10-mm diam. of the diaphragmD in front of the LCLV, and
use the voltage applied to the LCLV as a control parameter.
ThoughV0 is an intrinsic parameter, it is in principle possible
that, since a variation ofV0 induces a variation in the sensi-

FIG. 2. Open loop phase shift induced by the writing intensity
on the component of the reading light polarized along the liquid-
crystal director.

FIG. 1. Experimental setup.O5microscope objective;
P1 ,P25pinholes; BS1, BS25beam splitters; LCLV5liquid-crystal
light valve; L1 ,L25lenses of f525 cm focal length;
D5diaphragm; FB5fiber bundle; CCD5videocamera. The 4f con-
figuration of the feedback loop provides a 1 to 1imaging of the
front plane of the LCLV on theF plane.
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tivity of the optical nonlinearity, it results in a variation of
the area over which the input intensity is above the pattern
formation threshold. This is due to the Gaussian profile of
the input wave, and can result in a variation of the effective
Fresnel number of the system, as discussed in@25#. Since the
input wave in our case is a Gaussian beam that expands to a
radius of.15 mm half width at half maximum, and the
radius of the aperture limiting the system is 5 mm, we expect
indeed that this effect is not strong in the present experimen-
tal conditions.

The supply voltage applied to the LCLV is a sinusoidal
wave at a fixed frequency of 2 kHz, and with a rms ampli-
tude that varies between 12 and 15.5 V. In this range, the
stationary open loop response of the LCLV to writing inten-
sity u~I pc! is with a good approximation independent ofV0.
The modulus of this function is reported in Fig. 2 together
with its derivative. Indeed, since the LCLV nonlinearity is of
defocusing type, the sign ofu~I pc! is always negative. From
Fig. 2 it results that the response of the LCLV is linear in the
writing intensity ~Kerr-like! only for a limited range of in-
tensities.

In Fig. 3 we show the sequence of patterns observed when
varyingV0 between 12 and 15.2 V. The space-time evolution
of these patterns has also been visualized, by digitizing the
signal on a circle with a diameter of 9 mm at time intervals
of 1 sec. The digitization of each time series has started.1
min after adjusting the value ofV0, in order to avoid possible
transient effects. The resulting space-time plots are shown in
Fig. 4. ForV0<12.5 V the output pattern is stationary and
homogeneous, apart from a noise distribution that is present
on the LCLV @Figs. 3~a! and 4~a!#. Then a six petal structure
begins to appear, reaching its maximum visibility around
V0513.5 V. @Figs. 3~c!–3~e!#. This structure is stationary
@Fig. 4~b!#, in agreement with what was reported in@23#.

When the voltage is still increased~V0.13.8 V!, the six
petal structure begins to break, sometimes showing a sort of
spatial period doubling@Figs. 3~f! and 4~c!# and temporal
fluctuations. ForV0 between 14 and 14.8 V the regular pat-
tern disappears completely, and a space-time chaotic situa-

tion is reached@Figs. 3~g!–3~i!, 4~d!, and 4~e!#. Finally, at
V0515.2 V an abrupt transition is observed from the space-
time chaotic regime to an homogeneous and stationary pat-
tern, similar to that observed atV0512.0 V @Figs. 3~j! and
4~f!#.

A first quantitative characterization of the observed tran-
sition is provided by the second-order intensity structure
function, defined as

S~u!5
^@ I ~r 0 ,u0 ,t !2I ~r 0 ,u01u,t !#2&

2^I 2~r 0 ,u0 ,t !&
. ~2!

FIG. 3. Patterns observed on the rear side of the LCLV for increasing values of the voltageV0 ~Vrms!. ~a! V0512.0, ~b! V0512.4, ~c!
V0512.8, ~d! V0513.2, ~e! V0513.6, ~f! V0513.8, ~g! V0514.0, ~h! V0514.4, ~i! V0514.8, ~j! V0515.2.

FIG. 4. Space-time evolution of the signal on a circle of diam-
eterD59 mm for increasing values of the voltageV0 ~Vrms!. ~a!
V0512.0,~b! V0513.4,~c! V0513.9,~d! V0514.3,~e! V0514.8,~f!
V0515.2. For any value ofV0 the signal is displayed for 128 sec.
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We fix r 054.5 mm, corresponding to the same radius at
which Fig. 4 was recorded. Here^ & denotes a double aver-
age, first on time and then on the azimuthal coordinateu0.
The structure function is reported in Fig. 5 for three different
values ofV0. It can be seen that the pattern is fully correlated
in the six petal regime~V0513.2 V!, and it still has a long-
range correlation when the structures begin to break
~V0513.6 V!. Finally, in the space-time chaotic regime
~V0514.7 V! the dip of the structure function close tou50 is
very narrow, indicating that the system is behaving like a set
of uncorrelated domains.

In order to give an indicator of the degree of complexity
that is present in the disordered state, beside the structure
function, we can evaluate the bandwidth of the excited
modes. If we associated a mode with a spatial Fourier com-
ponentq, the bandwidthdq̃ of the spatial power spectrum
gives directly this information.

We have measured the excited bandwidth for various val-
ues ofV0 using the following method. For any value ofV0 of
our interest we have digitized a set of 20 patterns separated
in time by 2 sec, and calculated the time-averaged spatial
power spectrum of these signals. The two-dimensional spec-
tra obtained in this way have been reduced to one-
dimensional spectra by integrating over shells of constant
radius in the Fourier plane. These one-dimensional spectra
are then compared with the noise spectrum measured at
V0512 V, i.e., when the system is in the homogeneous uni-
form state. This noise spectrum is shown in Fig. 6 together
with the pattern spectrum forV0514 V. From the compari-
son of the two curves, it is possible to determine the largest
excited wave number as the highestq̃ value beyond which
the signal spectrum merges with the noise spectrum. It can
be seen that the maximum spatial frequency excited in the
system results in being around 10 mm21. Since the optical
aperture limiting the system has a 10-mm diam it follows
that for V0.14.5 V the signal behaves as a collection of
some hundreds of uncorrelated domains. With these condi-
tions we are therefore in the presence of a well developed
space-time chaotic regime.

We remark that, even if the whole set of experiments re-
ported here is carried out forD530°, qualitative identical
results have been obtained for any value not too small ofD
of the formD5(2p/N), with N an even integer. It is worth
also noting that, since a variation ofV0 corresponds to a

change in the sensitivity of the optical nonlinearity, it is to be
expected that a scenario similar to that reported here by vary-
ing V0 be observable ifV0 is kept fixed, and the input inten-
sity I 0 is used as a control parameter. This conjecture has
been confirmed by the experiments.

III. EVALUATION OF THE MARGINAL STABILITY
CURVE AND COMPARISON WITH THE EXPERIMENT

Theoretical and numerical analyses of the experimental
system under consideration have been given in@23,26,27#,
starting from the equation for the evolution of the phase shift
u:

]u~rW,t !

]t
52

u~rW,t !

t
1D¹2u~rW,t !

1R$gI 0„11cos@u~rW,t !1w0#…%, ~3!

whereR denotes the rotation operator, the constantg is com-
prehensive of both the optical losses of the feedback loop
and the responsivity of the LCLV,t is the response time, and
D is the diffusion constant of the LCLV. The source term is
proportional to the feedback intensityI pc on the photocon-
ductor, given by Eq.~1!.

In the absence of the rotation operator, Eq.~3! gives rise
to optical bistability for sufficiently high values ofgI 0. It has
been shown@23# that the introduction of the rotation can lead
to the destabilization of the spatially uniform solutions, giv-
ing rise to transverse pattern formation. This occurs via the
excitation of a band of transverse wave vectorsqW symmetri-
cally arranged around the origin in the Fourier plane.

In the conditions of our experiments, the light intensityI pc
on the photoconductor varies approximately between 0 and 2
mW/cm2. As shown in Fig. 2, in this range the response of
the LCLV is strongly nonlinear in intensity. However, using
very small input intensities, that is, using only the linear part
of the LCLV characteristic, we do not reproduce the ob-
served phenomena, because no bifurcation occurs from the
uniform state. Indeed in this last case the level of excitation
of the liquid crystal is too small. Due to these considerations,

FIG. 5. Second-order structure function of the signal measured
on a circle of diameterD59 mm.

FIG. 6. Power spectra of the signal~see text for the definition!
for V0512.0 ~dashed line! and for V0514.0 V ~solid line!. The
curve forV0512 V is the noise spectrum.
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it is clearly unrealistic to expect a good quantitative agree-
ment between the experiment and the model of Eq.~3!,
which implies a linear response of the LCLV to the writing
intensity. We therefore introduce a modified version of Eq.
~3! of the form

]u~rW,t !

]t
52

u~rW,t !

t
1D¹2u~rW,t !2gR$ f @ I pc~rW,t !#%, ~4!

where the minus sign for the source term is reminiscent of
the fact that the medium is defocusing, and the function
f ~I pc! describes the nonlinear response of the LCLV to the
writing intensity. The equilibrium solution of Eq.~4! in the
absence of rotation

ū52gt f ~ I pc! ~5!

is just the open loop response of the LCLV, the modulus of
which is plotted in Fig. 2. Substituting expression~1! for the
feedback intensity into Eq.~4!, we obtain

t
]u

]t
52u1 l d

2¹2u2gtRH f S rI 02 $11cos@u1w0~V0!#% D J ,
~6!

where the diffusion lengthl d5ADt has been introduced.
Equation~6! admits the homogeneous stationary solution:

ũ52gt f S rI 02 $11cos@ ũ1w0~V0!#% D
[2gt f „I pc@ ũ1w0~V0!#…. ~7!

We stress that Eqs.~5! and ~7! have a different meaning. In
fact, while Eq.~5! refers to an open loop situation, Eq.~7!
takes into account the particular kind of feedback that we
have imposed. For the values of the parameters used in our
experiments, Eq.~7! implies a bistability for the phaseũ. Let
us now add a perturbation to the homogeneous stationary
solution ~7!,

u~rW,t !5ũ1j~rW,t !. ~8!

Substituting into Eq.~6! and linearizing gives

t
]j

]t
52j1 l d

2¹2j1GRj, ~9!

where the coupling constantG is

G5gt
rI 0
2

] f

]I pc
U
Ipc@ ũ1w0~V0!#

sin@ ũ1w0~V0!#. ~10!

For I 0 fixed, G depends only onV0.
It is possible to evaluate experimentally the behavior of

the functionG~V0!. In order to do this, we must know the
behavior of the derivativegt~d f /dIpc!, that is easily obtain-

able from Fig. 2 with the use of Eq.~5!. Furthermore, we
need to know the functional shape ofI pc[ ũ1w0(V0)]. This
task is accomplished by measuring the intensityI pc on the
photoconductor at closed loop vsV0, in the absence of rota-
tion. The result of this measurement, done by extracting a
fraction of the feedback light via the beam splitter BS2 in
Fig. 1, is shown in Fig. 7. The bistable behavior of the device
is clearly visible nearV0515 V rms. However, the presence
of small spatial inhomogeneities on the LCLV surface
~‘‘noise’’ ! prevents from observing an hysteresis cycle. Fig-
ure 7 also clarifies the nature of the abrupt transition from the
space-time chaotic regime to the homogeneous stationary so-
lution that is observed when increasingV0 from 14.8 to 15.2
V. This transition is due to the jump of the system to a new
fixed point, the solution of the bistability equation.

By using Eq.~1! and relating the feedback intensityI pc to
the phaseũ1w0(V0), it is possible to extract the value of
this phase from the intensity measurement shown in Fig. 7. It
is then possible to combine together all these elements in the
relation~10! for G~V0!. The modulus ofG vsV0 is reported in

FIG. 8. Modulus of the coupling constantG @see Eq.~10!# vs the
applied voltage. Homogeneous perturbations are damped foruGu,1,
amplified for uGu.1.

FIG. 7. Closed loop intensity on the photoconductor vs applied
voltage, in the absence of rotation in the feedback loop. Bistability
of the system is manifested with the jump in intensity observed at
V0.15 V.
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Fig. 8. As we shall see, this is the relevant quantity with
respect to the dynamics of the system.

Coming back to Eq.~9!, if we want to evaluate the band-
width of the excited modes in the disordered regime, a ques-
tion arises about the choice of the most convenient basis for
expanding the perturbationj. Usually, the most appropriate
approach for the description of the patterned state is the ex-
pansion in a series of Bessel functions@23,27# because these
functions are close to the shape of the observed patterns,
since they are the solution of the diffraction problem. How-
ever, if we are not interested in the low-dimensional regime,
in which there is an interplay between only a few modes, but
we want to evaluate the width of the marginal stability curve
in the high-dimensional regime, it seems more appropriate to
use a Fourier expansion. This approach does not retain the
structural features of the patterns, but gives a description in
terms of the band of spatial frequencies excited, which we
want to use as an indicator of the degree of complexity of the
disordered state. The Fourier expansion was originally ap-
plied to the study of the present problem in Ref.@26#. In our
analysis we will follow closely that approach, but we intro-
duce furthermore the specific shape of our LCLV character-
istics in order to be able to compare the theoretical predic-
tions with the results of the experiment.

If we limit ourselves to considering the case of a rotation
in the feedback of an angleD5~2p/N! with N integer, we
can, following Ref.@26#, expand the perturbationj(rW,t) onto
a finite basis ofN plane waves:

j~rW,t !5(
j51

N

aj~ t !cos~KW j•rW !, ~11!

whereKW j5(q, jD) for j51,...,N is the j th wave vector ex-
pressed in polar coordinates in the Fourier plane. In other
words, we choose for the perturbation field a basis formed by
N wave vectors of equal wave numberq, and rotated of an
angleD, each one with respect to the following. We adopt
this choice that led to a fair agreement between theoretical
analysis and numerical simulations in@19#.

From the definition of the basis vectorsKW j it follows that
the effect of the rotation operatorR on each component of
the perturbation is

R$aj~ t !cos~KW j•rW !%5aj~ t !cos~KW j11•rW !, ~12!

so that, by substitution of the expression~11! in the linear-
ized equation~9!, we obtain

t
d

dt S a1
a2
a3
a4
A
aN

D 5S a 0 0 ••• 0 G

G a 0 ••• 0 0

0 G a ••• 0 0

A A A � A A

0 0 0 ••• a 0

0 0 0 ••• G a

D S a1
a2
a3
a4
A
aN

D
[MS a1

a2
a3
a4
A
aN

D , ~13!

where a[212l d
2q2. In our experiments,D530°52p/N

with N512, so that we are interested at the eigenvalues of
the matrixM for N even. In this case, the following two real
eigenvalues exist:

l65212 l d
2q26G, ~14!

hence, whatever the sign ofG, the eigenvalue with maximal
real part is

l̄5212 l d
2q21uGu. ~15!

This eigenvalue determines the stability of the homogeneous
stationary solution. As previously stated, it depends only on
the modulus ofG and not on its sign. The fact that the first
unstable eigenvalue is purely real is in agreement with the
stationary nature of the pattern observed just above thresh-
old.

Having measured the dependence ofuGu vs V0, Eq. ~15!
permits us to draw the marginal stability curve in theq̃-V0
plane~we define hereq̃5q/2p!; that is, the locus of points
satisfying the threshold condition

uG~V0th
!u2124p2l d

2q̃250. ~16!

Three of these curves are plotted in Fig. 9 for different values
of the diffusion lengthl D . It is worth noting that, though it is
known that l d is of the order of the tens of microns, its
precise value depends on the specific experimental condi-
tions ~e.g., level of illumination, applied voltage!.

From Eq.~16! we obtain that the excited band depends on
V0 as

Dq̃[
1

Lmin
5

AuG~V0!u21

2p l d
, ~17!

FIG. 9. Marginal stability curve in theq̃-V0th
plane;q̃51/L, L

being the wavelength of the perturbation considered.
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whereLmin is the shortest wavelength excited in the pattern.
A direct comparison with the experimental data is shown in
Fig. 10, where the values ofDq̃vsV0 measured using the
procedure described in Sec. III are reported together with
their counterpart, calculated using Eq.~17!. A good agree-
ment between model and experiment is obtained forl D544
mm.

IV. CONCLUSIONS

We have experimentally investigated the dynamical be-
havior of a nonlinear optical system based on a liquid-crystal

light valve when a nonlocal interaction is introduced. A tran-
sition from a uniform state to a patterned state and eventually
to space-time chaos state, has been shown by varying an
intensive parameter.

The theoretical analysis gives results in good agreement
with the experiments, provided the nonlinear in intensity re-
sponse of the LCLV is taken into account. From the analysis
it results also that there is an intrinsic limitation to the level
of ‘‘useful’’ excitation at which the system can be brought,
and hence to the highest spatial frequency that can be desta-
bilized. This limitation comes from the fact that the system,
even in presence of rotation in the feedback, is reminiscent
of the homogeneous stationary states given by the bistability
equation governing it in the absence of rotation. Thus, for
high levels of excitation, the system jumps to a new homo-
geneous stationary state~from which it can start a new cycle
of transitions! rather than becoming more and more chaotic.

However, in the most disordered state the measured struc-
ture functions and power spectra show a sharp decay that is a
characteristic feature of space-time chaos, while there is no
evidence of a power-law behavior. Therefore we cannot
strictly speak of a turbulent regime, since there is no signa-
ture of the self-similarity properties of turbulence.
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