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Transition to space-time chaos in a nonlinear optical system with two-dimensional feedback
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By varying an intensive parameter in a nonlinear optical system with two-dimensional feedback the wave
front displays a transition from a uniform to a patterned state, and eventually to space-time chaos. A nonlocal
interaction, introduced by means of a feedback rotation, is the source of the observed phenomena. The ob-
served space-time chaotic behavior is characterized by a rapid decay of correlation. We study the possibility
that the system eventually evolves from space-time chaos to a turbulent regime.

PACS numbsd(s): 42.65.Sf, 05.45tb

[. INTRODUCTION more complex or even space-time chaotic situations have
been reported in photorefractive oscillat¢Es17], in lasers

The issue of pattern formation and competition and, mor¢18], and in liquid-crystal-based devicEk9]. The transitions
generally, of complex behavior in extended systems, has rerise when increasing the Fresnel number; that is, the optical
cently attracted the attention of researchers working in mangperture of the experimental systems.
areas of physicEl] and of other sciences, such as chemistry Space-time chaos in a spatially extended system can be
[1,2] and biology[2]. In this context nonlinear optics has defined as a regime in which the spatial correlation length of
attained a relevant rolg3], due to its peculiar attitude in the signal is much shorter than the system size, and the tem-
coupling together different fundamental physical effects agoral dynamics inside any spatial correlation domain is cha-
diffraction, diffusion, and nonlinear interaction between elec-otic [20]. Typical indicators for detecting the presence of
tromagnetic fields and matter, thus allowing the study ofspace-time chaos regimes are therefore the spatial correlation
models and experiments that can often be considered adsngth of the signalor, equivalently, its spatial power spec-
metaphors for broader classes of phenomena. trum) and the local temporal correlation length. Indeed,

Ordered patterns with symmetries induced by the transthough several indicators preferable to time correlation
verse boundaries of the experimental system have bedangth exist in order to detect temporal chdegy., correla-
known in linear optics for a long time. Some examples aretion dimension, Lyapunov specjraa reliable evaluation of
the modes of an optical resonatpf] or even diffraction all these quantities is possible only in the case of low-
fringes from an aperture. However, only recently have dedimensional dynamical systems. This is clearly not the case
tailed experiments been reported on the interaction amonghen the signal is formed by a collection of many spatially
these structures in the presence of a nonlinear couf@ihé  uncorrelated domains.
satisfactory description of this nonlinearity has been accom- The study of optical high-dimensional systems has re-
plished either via the application of normal form equationsvealed the presence of phase singularities in the optical wave
[6] or by using numerical simulatiorjg]. fronts, whose role is to limit the correlation length of the

Another kind of regular pattern, whose symmetry can bepatternqd 17]. Furthermore, in systems exhibiting an intrinsic
either intrinsic of the nonlinear media used, or dependent ogutoff length due to diffusion, it has been shown that the
the transverse boundary, arises in the wave front of a lighboundary influence on pattern formation ceases to be rel-
beam due to the coupling of optical nonlinearities either withevant in the high Fresnel number linfR1].
nonlocal interaction$8] or diffraction [9]. In the case of a The above reported order-disorder transitions occur for
two-dimensional2D) nonlocal feedback, patterns consist of increasing values of an extensive parameter, namely, the
multipetal structures and rotating wavd®]. In the diffrac-  Fresnel number. This in fact puts strong limitations on draw-
tive case, patterns characterized by an hexagonal symmetiyg a comparison with other branches of physics, where tran-
have been theoretically predictg®l] and experimentally ob- sitions are mainly driven by an intensive parameter. Though
served[11]. The effect of the transverse boundary was alscmnumerical evidence exists that nonlinear optical systems
investigated both theoretical[jL2] and experimentally13]. could also exhibit order-disorder transitions versus an inten-
The combination of diffraction and nonlocality, introduced assive parametefpump rate in laserf22], intensity in Kerr-
a rotation of the field in the feedback loop, gives rise to alike systems[9]) from the experimental side, the only ex-
new class of spatial patterns called “Akhsealgl4], in  amples of an optical order-disorder transition controlled by
memory of the late Moscow physicist Akhmanov. For par-an intensive parameter come, to our knowledge, from the
ticular values of the feedback rotation angle, types of comsystem based on a liquid-crystal light valve with 2D nonlocal
petition similar to ones existing in hydrodynamical systemsfeedback[8,10,23. However, quantitative details of that
namely hexagon-roll transitions, have been shown to existransition have not yet been provided and the question is
[15], and also quasi-crystal-like structures have been obepen whether an optical nonlinearity plus nonlocality can
served[16]. give rise to space-time chaotic staf@s].

Several examples of transitions from ordered patterns to In this paper we report the quantitative characterization of
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FIG. 1. Experimental setup.O=microscope objective;

P.,P,=pinholes; B, BS,=beam splitters; LCL~liquid-crystal
light wvalve; L;,L,=lenses of f=25 cm focal length;
D =diaphragm; FB-fiber bundle; CCB-videocamera. Thefdcon-
figuration of the feedback loop provisea 1 to limaging of the
front plane of the LCLV on thé plane.
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FIG. 2. Open loop phase shift induced by the writing intensity
on the component of the reading light polarized along the liquid-
crystal director.

a transition from ordered patterns to a space-time chaotif@ssed through the polarizer PO and imaged by means of
regime in a nonlinear optical system, by keeping a fixed®NSL2 on the planeF. By appropriately choosing the ex-
Fresnel number and varying the level of excitation in thePerimental geometrisee Fig. 1 we obtain on plan€ a 1 to

nonlinear medium. The experimental system consists of thd image of the front plane of the LCLV. This image is then
fed back on the rear side of the valve by means of the fiber

bundle FB. The use of the fiber bundle allows to rotate the
the interplay between optical nonlinearity, excitation diffu- fe€dback image by an anglg thus establishing a nonlocal
sion, and nonlocal interactions. These last ones are intrdnteraction of the material excitation with itself. The video-
duced via a rotation of the optical beam around its propagaS@mera charge-coupled-device allows visualization and ac-
tion axis. The spatial bandwidth of the excited signal isauisition of the image on th& plane. We stress that in the
measured and compared with the theoretical predictiondréSent geometry, that is, with the use of an image forming

same kind of nonlinear interferometer introduced 8 and
discussed i110,23,24, in which the instabilities arise from

leading to a discussion on the capability and limitations off

the present experimental system.

II. TRANSITION FROM ORDERED PATTERNS
TO SPACE-TIME CHAQOS

formed by microscope objectiv@, pinholeP,, and lend_;.

vice utilizes the fact that nematic liquid-crystdlC) mol-

eedback path, diffraction plays no role at all in the experi-

ment, at variance with the situation already investigated us-
ing a similar setu15,16|.
Since the LCLV acts on the phase of the reading beam,
but it is sensitive to the intensity of the writing beam, an
effective feedback requires conversion of phase into intensity
The experimental setup is shown in Fig. 1. A light beammodulation. This is provided by the polarizer PO in the feed-
from an Ar' laser operating at a wavelength of 514 nm isback loop. In our experiment the input light is vertically

expanded and filtered by means of the telescopic systefolarized, the LC director forms an angle of 45° with the
vertical direction, and the polarizer nontransmissive axis is

This beam is then sent on an optically addressable liquidhorizontal. In these conditions the light intensity reaching the
crystal light valve(LCLV) operating in reflection. This de- Photoconductor on the rear plane of the LCLV has the ex-

pression

ecules are strongly birefringent, in order to modulate the

phase of the reflected liglitreading” light) in the presence

of another beam impinging on the rear side of the valve

(“writing” light ). In fact, the birefringence of the liquid crys-

rlg
|pC=R(7[1+COSp]], D

tals is due to the average alignment of the anisotropic LGvhereR represents the operator introduced by means of the
molecules along a preferential axis, called the LC directorfiber bundle rotationy =0.21 is an overall reflection factor,
By applying an ac voltage to a thin liquid-crystal layer, it is I is the input intensity, ang=u(l .+ ¢y(Vo) is the phase
possible to induce a reorientation of the molecules, andghift induced by the LCLV on the component of the input
light parallel to the LC director. This phase shift is the sum
In the LCLV, the mirror that reflects the reading light is of a partey(V,) that exists always in presence of the applied
sandwiched between a LC layer in front of it, and a photo-voltageV,, plus an additional par(l o) due to the presence

hence to control the amount of birefringence of the layer.

conductive layer behind it. By means of transparent elecef the writing light.

trodes an ac voltage is applied to the device. The fraction of In our experiment we keep fixed the input intensity
voltage dropping across the LC layer depends on the locdl,=9.5 mWi/cnf, the feedback rotation anglé=30°, the
illumination on the photoconductor, and hence the intensityl0-mm diam. of the diaphragi® in front of the LCLV, and

of the writing light determines the phase modulation on theuse the voltage applied to the LCLV as a control parameter.
ThoughV is an intrinsic parameter, it is in principle possible
In our experiment, the light reflected by the LCLV is that, since a variation d¥, induces a variation in the sensi-

reflected reading beam.
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FIG. 3. Patterns observed on the rear side of the LCLV for increasing values of the Vdjdgems). (a) Vy=12.0,(b) Vo=12.4,(c)
Vp=12.8,(d) V,=13.2,(e) Vy=13.6, (f) V;=13.8,(g) V,=14.0,(h) Vo=14.4,(i) V;=14.8,(j)) V,=15.2.

tivity of the optical nonlinearity, it results in a variation of tion is reachedFigs. 3g)-3(i), 4(d), and 4e)]. Finally, at

the area over which the input intensity is above the patteri/y=15.2 V an abrupt transition is observed from the space-
formation threshold. This is due to the Gaussian profile ofime chaotic regime to an homogeneous and stationary pat-
the input wave, and can result in a variation of the effectivetern, similar to that observed &,=12.0 V [Figs. 3j) and
Fresnel number of the system, as discussg@5%h Since the  4(f)].

input wave in our case is a Gaussian beam that expands to a A first quantitative characterization of the observed tran-
radius of =15 mm half width at half maximum, and the sition is provided by the second-order intensity structure
radius of the aperture limiting the system is 5 mm, we expecfunction, defined as

indeed that this effect is not strong in the present experimen-

tal conditions. )

The supply voltage applied to the LCLV is a sinusoidal S(0)= ([1(ro,00,0) = 1(ro, 00+ 6,1)]%)
wave at a fixed frequency of 2 kHz, and with a rms ampli- 2(1%(rg,60,t))
tude that varies between 12 and 15.5 V. In this range, the
stationary open loop response of the LCLV to writing inten-
sity u(l ,o) is with a good approximation independent\4f. 0 27T ©
The modulus of this function is reported in Fig. 2 together t t
with its derivative. Indeed, since the LCLV nonlinearity is of
defocusing type, the sign af(l ;o) is always negative. From
Fig. 2 it results that the response of the LCLV is linear in the
writing intensity (Kerr-like) only for a limited range of in-
tensities.

In Fig. 3 we show the sequence of patterns observed when
varyingV, between 12 and 15.2 V. The space-time evolution
of these patterns has also been visualized, by digitizing the
signal on a circle with a diameter of 9 mm at time intervals
of 1 sec. The digitization of each time series has startéd
min after adjusting the value &f,, in order to avoid possible
transient effects. The resulting space-time plots are shown in
Fig. 4. ForV,<12.5 V the output pattern is stationary and
homogeneous, apart from a noise distribution that is present
on the LCLV[Figs. 3a) and 4a)]. Then a six petal structure
begins to appear, reaching its maximum visibility around
V,=13.5 V. [Figs. 3c)—3(e)]. This structure is stationary
[Fig. 4(b)], in agreement with what was reported[R8]. t ¥

When the voltage is still increasdi,=13.8 V), the six
petal structure begins to break, sometimes showing a sort of F|G. 4. Space-time evolution of the signal on a circle of diam-
spatial period doublingFigs. 3f) and 4c)] and temporal eterD=9 mm for increasing values of the voltayg (Vrms). (a)
fluctuations. FolV, between 14 and 14.8 V the regular pat- Vy=12.0,(b) Vy=13.4,(c) Vo=13.9,(d) V;=14.3,(e) V,=14.8,()
tern disappears completely, and a space-time chaotic situ&,=15.2. For any value of/, the signal is displayed for 128 sec.

@
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FIG. 5. Second-order structure function of the signal measured
on a circle of diameteD =9 mm.
FIG. 6. Power spectra of the sign@ee text for the definition
We fix r,=4.5 mm, corresponding to the same radius af® Vo=12.0 (dashed ling and for Vo=14.0 V (solid ling). The
which Fig. 4 was recorded. Hefe) denotes a double aver- CUrve forVo=12 Vis the noise spectrum.
age, first on time and then on the azimuthal coordirgte

The structure function is reported in Fig. 5 for three differentchange in the sensitivity of the optical nonlinearity, it is to be
values of\/,. It can be seen that the pattern is fully correlatedeXpeCted that a scenario similar to that reported here by vary-

in the six petal reglmcévo 13.2 V), and it still has a long- "9 V, be observable i¥/, is kept fixed, and the input inten-
; Sity 1o is used as a control parameter. This conjecture has

(Vo=13.6 V). Finally, in the space-time chaotic regime P€€n confirmed by the experiments.

(Vp=14.7 V) the dip of the structure function close #-0 is
very narrow, indicating that the system is behaving like a set
of uncorrelated domains.

In order to give an indicator of the degree of complexity

that is present in the disordered state, beside the structu Theoretical and numerical analyses of the experimental
) ' . stem under consideration have been giveh2i8,26,2
function, we can evaluate the bandwidth of the exmted? given2a, 1

tarting from the equation for the evolution of the phase shift
modes. If we associated a mode with a spatial Fourier co 9 a P

ponentq, the bandwidthsq of the spatial power spectrum
gives directly this information.

We have measured the excited bandwidth for various val-
ues ofV, using the following method. For any value g of at
our interest we have digitized a set of 20 patterns separated
in time by 2 sec, and calculated the time-averaged spatial
power spectrum of these signals. The two-dimensional spec-
tra obtained in this way have been reduced to onewhereR denotes the rotation operator, the constaist com-
dimensional spectra by integrating over shells of constanprehensive of both the optical losses of the feedback loop
radius in the Fourier plane. These one-dimensional spectrand the responsivity of the LCLV;is the response time, and
are then compared with the noise spectrum measured &t is the diffusion constant of the LCLV. The source term is
V=12V, i.e., when the system is in the homogeneous uniproportional to the feedback intensity, on the photocon-
form state. This noise spectrum is shown in Fig. 6 togetheductor, given by Eq(1).
with the pattern spectrum fo¥,=14 V. From the compari- In the absence of the rotation operator, ER). gives rise
son of the two curves, it is possible to determine the largesto optical bistability for sufficiently high values afl ;. It has
excited wave number as the highésvalue beyond which been showifi23] that the introduction of the rotation can lead
the signal spectrum merges with the noise spectrum. It cato the destabilization of the spatially uniform solutions, giv-
be seen that the maximum spatial frequency excited in thang rise to transverse pattern formation. This occurs via the
system results in being around 10 mSince the optical excitation of a band of transverse wave vectprsymmetri-
aperture limiting the system has a 10-mm diam it followscally arranged around the origin in the Fourier plane.
that for Vy=14.5 V the signal behaves as a collection of In the conditions of our experiments, the light intensity
some hundreds of uncorrelated domains. With these condan the photoconductor varies approximately between 0 and 2
tions we are therefore in the presence of a well developechWi/cn?. As shown in Fig. 2, in this range the response of
space-time chaotic regime. the LCLV is strongly nonlinear in intensity. However, using

We remark that, even if the whole set of experiments revery small input intensities, that is, using only the linear part
ported here is carried out fak=30°, qualitative identical of the LCLV characteristic, we do not reproduce the ob-
results have been obtained for any value not too small of served phenomena, because no bifurcation occurs from the
of the formA=(2=/N), with N an even integer. It is worth uniform state. Indeed in this last case the level of excitation
also noting that, since a variation df, corresponds to a of the liquid crystal is too small. Due to these considerations,

Ill. EVALUATION OF THE MARGINAL STABILITY
CURVE AND COMPARISON WITH THE EXPERIMENT

au(r,t u(r,t .
Ty __ (7- )+DV2u(r,t)

+R{ylo(1+codu(r,t) + @o])}, 3
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it is clearly unrealistic to expect a good quantitative agree- 25
ment between the experiment and the model of &), ’ | Lo (rnW\cmz)
which implies a linear response of the LCLV to the writing
intensity. We therefore introduce a modified version of Eq. 2.0 1 oo
(3) of the form . E
1.5 " .
au(r,t) u(r,t) b, . .
FrE— +DVAu(r,t)— yR{f[1(r,1)]}, (4 1.0 ]
where the minus sign for the source term is reminiscent of 0.5 - ..
the fact that the medium is defocusing, and the function Teea.
f(l,o describes the nonlinear response of the LCLV to the
writing intensity. The equilibrium solution of Ed4) in the 0'011 12713 14 15 168 17

absence of rotation

V, (Volts rms)

FIG. 7. Closed loop intensity on the photoconductor vs applied

u=—y7f(lp 5

voltage, in the absence of rotation in the feedback loop. Bistability
is just the open loop response of the LCLV, the modulus ofof the system is manifested with the jump in intensity observed at
which is plotted in Fig. 2. Substituting expressidn for the ~ Vo=15V.
feedback intensity into Eq4), we obtain
able from Fig. 2 with the use of Eq5). Furthermore, we
need to know the functional shape Iq,g[GJr ¢©o(Vo)]. This
task is accomplished by measuring the intensjyon the
photoconductor at closed loop ¥, in the absence of rota-
tion. The result of this measurement, done by extracting a
fraction of the feedback light via the beam splitter ,B8
Fig. 1, is shown in Fig. 7. The bistable behavior of the device
is clearly visible neaV,=15 V rms. However, the presence
of small spatial inhomogeneities on the LCLV surface
(“noise”) prevents from observing an hysteresis cycle. Fig-
ure 7 also clarifies the nature of the abrupt transition from the
space-time chaotic regime to the homogeneous stationary so-
lution that is observed when increasivg from 14.8 to 15.2
V. This transition is due to the jump of the system to a new
We stress that Eq$5) and(7) have a different meaning. In fixed point, the solution of the bistability equation.
fact, while Eq.(5) refers to an open loop situation, E) By using Eq.(1) and relating the feedback intensity. to
takes into account the particular kind of feedback that wethe phasdi+ ¢q(V,), it is possible to extract the value of
have imposed. For the values of the parameters used in otiiis phase from the intensity measurement shown in Fig. 7. It
experiments, Eq(7) implies a bistability for the phase Let is then possible to combine together all these elements in the
us now add a perturbation to the homogeneous stationamglation(10) for I'(V,). The modulus of vs V, is reported in
solution(7),

au 202 rlo
T e = —UHIEVAu— yR f| = {1+ cogu+ eo(Vo) T} 1.
(6)

where the diffusion lengthy=+D7 has been introduced.
Equation(6) admits the homogeneous stationary solution:

U= — yq-f(rlz—o {1+CO{G+<P0(VO)]})

=—yrf(lpd U+ @o(Vo) D) (@)

10

u(r,t) =0+ &(r,t). ) 11T v
8_ ...
Substituting into Eq(6) and linearizing gives ] .
6_ o.
9 )
Ta—f= —E+13V2E+TRE, 9) 4
. . 2_ .
where the coupling constaitis ] .
0- 0ge®”’ RCT PO
rl 0 ﬁf L~ 1
I'= yT 7 Jl S|r[u+ @O(VO)] (10) -2

11 12 13 14 15 16 17
Vo (Volts rms)

PCl1 i+ eg(Vo)]

For |, fixed, I depends only ov,,.
It is possible to evaluate experimentally the behavior of FIG. 8. Modulus of the coupling constaffsee Eq(10)] vs the

the functionI'(Vy). In order to do this, we must know the applied voltage. Homogeneous perturbations are dampéH|fot,
behavior of the derivativer(df/dl ), that is easily obtain- amplified for|I[>1.
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15.5 R{a;j(t)cogK;-r)}=a;(t)cosKj1-r), (12
1 14=44 pum =33 um 1,=22 um
o a so that, by substitution of the expressi@il) in the linear-
] ° @ ized equation(9), we obtain
= 14.5 ° :
E 1 o . o O
= o . a ay a
g 13'5 1 o . o d a3 O F a3
~ 1 o e o T =7 =
5 . dt [ a4 ay
> 4 oe : O 0 :
12.5 —— . ; a a
0 8 12 16 20 24 N 0 0 N
q (mm™)
a;
. . a
FIG. 9. Marginal stability curve in theq-VOth plane;q=1/A, A a
being the wavelength of the perturbation considered. =M 3 , (13

Fig. 8. As we shall see, this is the relevant quantity with

respect to the dynamics of the system. ay
Coming back to Eq(9), if we want to evaluate the band-

width of the excited modes in the disordered regime, a ques- B 5 5 _ .

tion arises about the choice of the most convenient basis fo¥here a=—1-15q". In our experiments,A=30°=2z/N

expanding the perturbation Usually, the most appropriate with N=_12, so that we are mterested at the e.|genvalues of

approach for the description of the patterned state is the exXN€ matrixM for N even. In this case, the following two real

pansion in a series of Bessel functid28,27 because these €igenvalues exist:

functions are close to the shape of the observed patterns,

since they are the solution of the diffraction problem. How-

ever, if we are not interested in the low-dimensional regime,

in which there is an interplay between only a few modes, buface \hatever the sign bt the eigenvalue with maximal

we want to evaluate the width of the marginal stability CUIVe o part is

in the high-dimensional regime, it seems more appropriate to

use a Fourier expansion. This approach does not retain the

structural features of the patterns, but gives a description in

terms of the band of spatial frequencies excited, which we

want to use as an indicator of the degree of complexity of therpg gigenvalue determines the stability of the homogeneous
disordered state. The Fourier expansion was originally apgiationary solution. As previously stated, it depends only on
plied to the study of the present problem in RE6]. In our  1he modulus of” and not on its sign. The fact that the first

analysis we will follow closely that approach, but we intro- \hstaple eigenvalue is purely real is in agreement with the

duce furthermore the specific shape of our LCLV charactergiationary nature of the pattern observed just above thresh-
istics in order to be able to compare the theoretical predicgy.

tions with the results of the experiment. _ Having measured the dependencelldfvs V,, Eq. (15)
_ If we limit ourselves to considering the case of a rOtat'O”permits us to draw the marginal stability curve in @V,
in the feedback of an angla=(27/N) with N integer, we  yjane(we define herdj=q/2); that is, the locus of points

can, following Ref[26], expand the perturbatio{r,t) onto satisfying the threshold condition
a finite basis ofN plane waves:

A.=—1-13g%+T, (14)

N=—1-13¢2+|T]. (15)

) N . IT(Vo, )| —1—4m%44°=0. (16)

g(r,t)=j21 aj(t)cogK;-r), (11
. Three of these curves are plotted in Fig. 9 for different values

whereK;=(q,jA) for j=1,... N is the jth wave vector ex- of the diffusion length, . It is worth noting that, though it is
pressed in polar coordinates in the Fourier plane. In otheknown thatly is of the order of the tens of microns, its
words, we choose for the perturbation field a basis formed bprecise value depends on the specific experimental condi-
N wave vectors of equal wave numbegr and rotated of an tions (e.g., level of illumination, applied voltage
angle A, each one with respect to the following. We adopt From Eq.(16) we obtain that the excited band depends on
this choice that led to a fair agreement between theoretica¥, as
analysis and numerical simulations[ib9]. _

From the definition of the basis vectdfs it follows that e VEN TS
the effect of the rotation operaté on ei@h component of A= 1 = F(Vo)|—2 (17)
the perturbation is Amin 2mly 7
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12 light valve when a nonlocal interaction is introduced. A tran-
1 AG (mm™) sition from a uniform state to a patterned state and eventually
104 q o %o to space-time chaos state, has been shown by varying an
3 . 1 ° Y intensive parameter.
81 The theoretical analysis gives results in good agreement
] T‘ with the experiments, provided the nonlinear in intensity re-
6j % o sponse of the LCLV is taken into account. From the analysis
41 o it results also that there is an intrinsic limitation to the level
] of “useful” excitation at which the system can be brought,
2 o and hence to the highest spatial frequency that can be desta-
; 11 I bilized. This limitation comes from the fact that the system,
011 1% B3 12 15 16 even in presence of rotation in the feedback, is reminiscent

of the homogeneous stationary states given by the bistability
Vo (Volts rms) equation governing it in the absence of rotation. Thus, for
high levels of excitation, the system jumps to a new homo-
FIG. 10. Excited bandwidtfAq vs applied voltageV,. Filled  geneous stationary staffeom which it can start a new cycle
dots, experimental spectral widths; empty dots, predictions obtainegdf transitiong rather than becoming more and more chaotic.
by solving Eq.(17) and using the data shown in Fig. 8. However, in the most disordered state the measured struc-
ture functions and power spectra show a sharp decay that is a
where A, is the shortest wavelength excited in the patterncharacteristic feature of space-time chaos, while there is no
A direct comparison with the experimental data is shown inevidence of a power-law behavior. Therefore we cannot
Fig. 10, where the values afqvsV, measured using the strictly speak of a turbulent regime, since there is no signa-
procedure described in Sec. Ill are reported together withure of the self-similarity properties of turbulence.
their counterpart, calculated using Ed.7). A good agree-
ment between model and experiment is obtained fer44
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