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Relativistic many-body perturbation theory for general open-shell multiplet states of atoms
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A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects
for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic
basis sets of Gaussian spinors. The theory retains the essential aspe¢tiesfPidsset perturbation theory by
employing the relativistic single-Fock-operator method of Koc and IshiK&@®kgs. Rev. A49, 794(1994] for
general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are
reported for the ground and low-lying excited states of 137 BNe’", and C&*". [S1050-294{06)05006-4

PACS numbd(s): 31.25-v, 31.30.Jv, 31.56:w

I. INTRODUCTION correlation in the general open-shell states of atoms and mol-
ecules.

In recent years, a great deal of effort has been directed We recently[13] employed the generalized coupling op-
toward developing a relativistic many-body theory which ac-erator method14-16 to construct a single Fock operator
curately accounts for relativistic, electron-correlation, andfor open-shell DF SCF, and showed that with such an opera-
quantum electrodynamitQED) effects. Relativistic Dirac- tor all closed- and open-shell spinors can be determined. Our
Fock (DF) self-consistent fieldSCP and many-body pertur- interestin the single-Fock-operator r_nethod in matrix DF cal-
bation theoriesMBPT), which do account for relativistic culations on open-shell systems arises from the need for a
and electron-correlation effects, have been developed by segtate-specific relativistic MBPT for general open-shell sys-
eral groups. Discrete basis sets of both “locd’—3] and tems. Qonstructlon of a single Fc_Jck Qperatorfor general SCF
“global” [4,5] functions as well as numerical finite- theor_y IS lmportant_ not only to S|r_npl|_fy OPe”'she" SCF cal-
difference algorithmg6-8| have been used. Implementa- culations but also in formal applications; a single Fock op-
tions based on expansion in analytic basis functihs5] erator is required when the Mer-Plesset-typ¢17] separa-
have the advantage over those based on numerical finittlon of theN-electron Hamiltonian is used in the perturbation

%heory of electron correlation. In this paper, we report a state-
difference algorithmg6—8| of providing a compact repre- y Paper, P

specific relativistic MBPT for general open-shell systems in

sentation of the complete Dirac spectrum. Further, they faynich our single-Fock-operator method is employed for a

cilitate the evaluation of many-body diagrams by finite pig|ler-Plesset-type separation of the relativistic many-
summation1-5]. electron Hamiltonian. The state-specific MBPT involves a
In a series of studiepl], Johnson and co-workers have fy|| implementation of generalized Mer-Plesset perturba-
employed “local” basis sets of spline functions to attain tion theory applied to general open-shell reference wave
impressive accuracy in relativistic MBPT calculations for functions, and in low order, yields a |arge fraction of the
alkali-metal atoms and their isoelectronic sequences employtynamical correlation. The relativistic MBPT is a size-
ing VN potentials. In thevN~! potential approach, a DF consistent theory of electron-correlation effects in atoms and
SCF calculation is done on the closed-shell core, followed bynolecules, a theory which leads to expressions that are di-
a relativistic MBPT calculation constructed for the open-rectly proportional to the number of electrons in the system.
shell system. They have recenfB] extended the formalism We start with a general form for the total DF SCF energy
to excited-state multiplets of closed-shell atoms. Ishikawzxpression which does not restrict the configurational form
and Co-worker$5'9] have deve|oped matrix DF and relativ- of the DF wave function, a formalism which thus applies to
istic MBPT for closed-shell atoms. Calculations which have€Xcited as well as to ground states.
employed “global” basis sets of spinors(G for “Gauss- In the next section, we outline the relativistic MBPT
ian” after Grant[10]) have been done on a number of many-based on our single Fock operator for open-shell systems. In
electron systems. Ana|ytic basis set expansiomispinors the third section, the results of matrix DF and relativistic
has yielded accurate results for closed-shell systems with n/BPT calculations on the ground and low-lying excited
Sign of the near-linear dependency pr0b|ems reported witgtates of neutral lithium, lithiumlike boron, lithiumlike neon,
S-spinor (S for “Slater”) basis set$4,11,17. In the present and fluorinelike calcium are presented.
study we address the problem of applying perturbation

theory to determining the effects of relativity and electron Il STATE-SPECIFIC PERTURBATION THEORY

WITH MO/ LLER-PLESSET PARTITIONING

*Electronic address: YISHIKAWA@UPR1.UPR.CLU.EDU The starting point for our development of state-specific
"Permanent address: Department of Physics, Pedagogical UniveMBPT is the relativistic “no-pair” Dirac-Coulomb(DC)
sity, Podchorazych 2 30-084 Krakow, Poland. Hamiltonian[18,19:
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. . B der study. The occupation numkérof theith spinor shell is
H2C=2 ho(i)+ 24| 2 1| 2, (1) given byN,=2J,+1. ¢ and ¢ represent closed-shell and
' b open-shell manifolds, respectively. The energy expression in
wherehp(i) is the Dirac one-electron Hamiltonian; Eq. (4) is not general enough to handle all multiconfigura-
tional DF wave functions. It is restricted to single-
ho(i)=ca;p;+(B—1)c%+Vpudri). (20  configuration open-shell DF wave functions as well as some

classes of multiconfiguration DF wave functions. Conse-
Here @ and B are the Dirac matrices/,,{(r) is the nuclear quently the open-shell DF SCF formalism is applicable to
attraction term, single-configuration reference functions and to some classes
of multireference model spacés.g., a multiconfiguration
(3 Wwave function for the beryllium isoelectronic sequence
formed from (I8,)%(2s15)° (1s19)%(2pyn)? and
_ _ (1s1,,)%(2p3,)? CSF4. The first-order variation of the total
The nucleus is modeled as a sphere of uniform proton—charg@nergy in Eq.(4) gives a set of Euler equations and a set of
distribution. Z is the nuclear chargeR is the radius of the Lagrange multiplier Hermiticity conditionL4,15.
nucleus and is related to the atomic mags by To construct a single Fock operator, one need only intro-

— —5\A1/3 & _ .
R_(2'2677X 1,0 ,)A -2 =Ly (1)L 1(2),... L (n), with duce projection operators in terms of the occupied and vir-
L. (i) the projection operator onto the space spanned by thg o scg spinors

positive-energy eigenfunctions of the matrix DF SCF equa-

tion [19]. The projection operatof , takes into account the .=7+7,, W=%~+7,, ke, ce?, (5
field-theoretic condition that the negative-energy states are

filled [18,19. Throughout this study, atomic units are usedwith

and the speed of light is taken to be 137.035989 5 a.u.

_ —ZIlr for r>R
Voud =) _(z/2R)(3-12/R?) for r<R.

Fe= iXil, Z=1k)K|, 6
A. Single-Fock-operator method ¢ i(§(> il =)k ©

for matrix Dirac-Fock calculations q
an
We first outline how to optimize the energy of the refer-

ence open-shell configuration state functiofCSH,

Dy(v9IP), by the open-shell DF SCF procedure. The refer- Py= E lv) (o] + 2 lv)(v
ence CSF is an eigenfunction of the total angular momentum mEFo) ue7)

and parity operatorsl andP represent the total angular mo- \\bare 7" and 7. are manifolds generated by the negative

mentum and parity quantum numbers, respectiveyde- 54 noccupied positive-energy branches of the DF spec-
notes a set of quantum numbers other thamdP neededto  ,m respectively.

specify the state uniquely. In general, the reference CSF iS e crycial difference between the nonrelativistic cou-

given by a linear combination of antisymmetrized produc:tsp”ng operator formalisnil4—16 and its relativistic gener-

of positive-energy eigenspinors of the matrix DF SCF equaz;i»ation is the definition of the projection operatof,,
tion. In our single-Fock-operator method, ; h

; (7)

N .
and all electrongV™ potentia) at the DF SCF stage. constructed from both the negative and unoccupied positive-

The total energy of a general open-shell reference statgnegy pranches of the DF spectrum in order to guarantee
|®o(v9IP)) can be expressd@0] as completenesgl3).

Escr=(Po(¥0IP)[HY@o(70IP)),

Dot X A+ P=1. )
where k(e
(Do y0IP)|HRC B (10 P)) Using the projection operators introduced in EG8—(7),

a single Fock operator which satisfies the correct variational
condition can be derivefll3—-1§. With the single Fock op-

:igf%) NihD““Li'j(zE%) NiN; (Ji; = Kij) erator, the DF equations for a general class of open-shell
systems are reduced to single pseudosecular equation form,
+ fil Nkhpgit NN (Jik—K; : .
k;) k| NiNoik i(g%) iNk(Jik— Kik) Rli)=gi). 9)
Here the single Fock operat®& is given by
2 (Bmdm brarkm) (4)
mee) R=R,+T, (10)

and wheref, is the fractional occupation of thkth open

shell. Thehp;;, J;;, andK;; represent Dirac one-electron where

integrals, direct, and exchange integrals of the electron-

elgctron interaction, res;pectively._TIa\qgm andb,, are cou- Ro=TIF I+ > T F I, (12)
pling constants, the values of which depend on the state un- k(e)
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with has been presented in a previous wd8|. The SCF spinors
obtained from the single-Fock-operator algorithm are auto-
matically orthogonal to one another and are ideally suited to
relativistic MBPT based on open-shell reference wave func-
tions.

Fe=hp+ 2 Nj(J—Kp)+ 2 FiNe(J—Ky),
i(e?) k(e )

Fr="fl hp+ N:(Ji—Kj) |+ amIm— bmKm) s .
KTk TP j(g‘g) i=Kp mz‘/)( kI~ Bicrkm) B. Relativistic many-body perturbation theory

for open-shell systems

and In relativistic MBPT, theN-electron HamiltoniarH € is
partitioned into a model HamiltoniaH, and a perturbation
T= > [(\ek— M) Z(F—Fo) 7 V such thaH ?°=Hy+V [1-9]. The zero-order Hamiltonian
k(=) H, is arbitrary but should be chosen as close to the full
+ e N A Fo— F)2] HamiltonianH2C as possible so that the perturbation series

converges rapidly in low order. In practice, the zero-order
,,j Hamiltonian is most commonly chosen to be a sum of the
+k(§/) m[e/%#m)] Nk Mem) 7 m(Fie = Fm) 7k one-electron DF operatoifsh5] (i.e., Mdler-Plesset parti-
(12 tioning) because, in such a formulation, all the perturbation
corrections describe electron-correlation effects. For closed-

Here the{\;} are arbitrary, nonzero numbers satisfying theshell systems, the .pesy results have been obtained with the
conditions\; #\;; . We have shown that these constants cardller-Plesset partitioning. We choosé, to be the sum of

be optimized to improve SCF convergerids]. The opera- the single Fock'operatol%o [13] for_the open-shell reference
tor T ensures Hermiticity of the Lagrange multipliers during State and fully implement generalized/o-Plesset pertur-

the iterative DF SCF procedure. It is a formal device thatPation theory applied to general open-shell reference wave
enables one to remove the off-diagonal multipliers and reexiunctions. The generalized Mer-Plesset perturbation
press the DF equations as a pseudoeigenvalue equation €Ty provides a hierarchy of well-defined algorithms that
volving a single Fock operatoR of Eq. (9). At convergence allow one to calculate relativistic correlation corrections in
the total SCF energy is identical to that computed by Sing|e_non|tera'uve steps and, in low order, yields a large fraction of

configurational or multiconfigurationdj -coupled DF equa- the dynamical correlation. e
tions with off-diagonal Lagrange multipliers. Matrix ele- __ '€ N-électron Dirac-Coulomb HamiltoniaH =™ is par-

ments of the operatol become identically zero at SCF titioned intq an unperturbed Hamiltonian and a perturbation

convergencd13], and thus only the operatd, enters the (€M following Mdler and Plesseft17],

MBPT calculations. Because the cross termsF. .7, HOC—H. 4V (16)

PR, PF Tk, and#F 7, are identically zero at SCF * or

convergence, the SCF spinors satisfy the eigenvalue equati%here the unperturbed Hamiltonidh, is a sum of the single
Ryli)=2ii), (13) Fock operator};, [Eq. (15)],

where the Fock operatd®, now has the following reduced Ho=> Ro(i) and V=HPC-> Ry(i). (17
form in terms of the SCF spinors: [ i

- i B - i We generate the CSH;(y;JP); i=1,2,..} by single,
Ro=7cFc7ct 2/ HE Gt P Ty double, triple,... excitations from the reference CSF,
K€D ®y(y,JP), in order to expand the exact many-electron wave
DAL (14 f_unctions. The individual CSFs are constructed as eigenfunc-
K= k|7 v tions of the total angular momentum and parity operators
and, in general, are expressed as linear combinations of an-

The last two terms in Eq14) are responsible for generating tisymmetrized products of positive-energy SCF spinors. The
the virtual spinors and their energy levels. In our relativisticSCF spinors are solutions of the single pseudoeigenvalue
MBPT calculations, we modify the virtual spinors generatedequation (9), and thus are mutually orthogonal. Conse-

in this manner by neglecting the last term. This is achievediuently, all the CSF$®;(y;JP); i=0,1,2,..} are orthogonal
by diagonalizing the matrix form of the operator, to one another. The unperturbed Hamiltonian is diagonal in

this space;

+7,

Ro=7F 7t > AR+ PFP,. (15
k(<) Ho=20 [@i(7IP)E(®i(%IP) (18)

In this form, the virtual spinors and their energy levels are

generated solely by the mean-field operatey for the  so that

closed-shell electrons. There is an arbitrariness with the

choice of virtual spinors and their energy levels, and they are  Ho|®;(yJP))=E!?|®,(,dP)) (i=0,1,2...). (19

usually chosen to improve convergence in low order of

MBPT. The matrix form of the operators of Eq&)—(13) E(? is a sum of the SCF one-electron enerdieg,
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EI=2 eqNgno[ i) (20 Po(r)=2 Crqgli(r) (28)
where n,[®;] is the occupancy of thegth spinor in and
A stra_|ghtforward apphqatlon of Rayleigh-Sclidiager QnK(r)zz Cﬁxigfi(r), (29)
perturbation theory17] provides the order-by-order expres- i
sions for the perturbation series for the state approximated by L s . .
|o(76 P) where {C;;;} and {C;,;} are expansion coefficients for
0 ' spinors of symmetry, and{g;(r)} and{g3/(r)} are the
U=y yodP)+PVIP)+--- (21)  large and small component basis sets, respectively.[REh
and Kagawd20] pioneered the matrix DF SCF method, us-
E:Eg°)+E(l)+E<2>+E<3>+~- , 22) ing basis sets of Slater-type functions to study closed- and

open-shell atoms. Their work revealed a tendency for calcu-
lated energies to fall below the variational limit. This failure
of the matrix DF method can be avoided by constraining
“global” basis sets[4,5,9,11,12 Goldman and Dalgarno
dDIP)=D, di(%IP){Vio(Eo—E) "%}, (23  [11], Drake and Goldmafl2], and Quiney, Grant, and Wil-
=1 son[4] have implemented the matrix DF equations by em-
ploying S spinors which avoid variational failurgt, 11,12
Ey)+EY=Escr, (249 and spurious solutiont]. B-spline “local” basis sets em-
ployed by Johnson and co-workdrE| also lead to matrix
Dirac-Fock equations. Instead of constraining basis sets,
proper boundary conditions based on the MIT bag model are
imposed to avoid variational failure in the local basis expan-
sion DF schem¢l]. In the present study, we employ basis
EG = VoiWi;Vjo(Eo—E)) "H(Eo—E;))~*. (26) sets ofG spinors with a representation of the nucleus as a
ihj=1 body of finite exten{5,9].
For the large component, the basis functions are of the
Here form [9]

where
E@=2 VgVio(Eo—E) %, (25)
i=1

Vij=(@i(%IP)|V|®;(¥;IP)) gui(r) =ALrexp —¢,r?), (30

and with n,=—« for k<0, andn,=«+1 for k>0. AL; is the
normalization constant. The small component basis set
Wi;=(Di(yIP)|W|D;(y;JP)) with W=V— EW. {g5.(r)} is constructed to satisfy the boundary condition as-
sociated with the finite nucleus of uniform proton-charge dis-
The matrix element§V;;} and{W;;} are evaluated using the tribution [9]. With the uniformly charged finite nucleus ap-
angular momentum recoupling scheme described in Refproximation,G spinors of integer power af are appropriate
[20]. In our generalized Mter-Plesset formalism, the CSFs basis functions because imposition of the finite nuclear
{®,(y;JP); i #0} generated by single excitations relative to boundary results in a solution which is Gaussian at the origin
the reference CSF do not contribute to the second- and third9]. The G-spinor basis functions which satisfy the boundary
order energies because the singly excited C8kéy,JP),  conditions associated with the finite nucld&s9] automati-
generated by the SCF spinors satisfy the generalized Brileally satisfy the so-called “kinetic balance” criteridi23—
louin theorem[21], (®;(y;JP)|H2®(y,JP))=0. There- 25] for a finite value ofc.
fore V,,=0. The CSFs generated by excitations higher than For all the lithiumlike systems studied, even-tempered ba-
double, relative to the reference CS3Py(y,JP), also do not  sis set§26] of 24s22p14d12f10g10h G spinors were used.
contribute to the second- and third-order because for therin basis sets of even-temper&dspinors, the exponentis, ;}
V;o=0 andH,,=0. are given in terms of the parametersand 3, according to
the geometric series,

C. Computation La=aB ™l i=12,..N,. (3D
In the central field approximation, the solution of the
pseudosecular equati@f) takes the form In DF calculations on lithiumlike and fluorinelike species,
the parametera and 8 are optimized until a minimum in the
Phi(r) DF total energy is found27]. The optimala and 8 values
Que(n) 27 thus determined for, e.g., lithium are, respectively,
0.002 484 5 and 2.059 68. For lithiumlike boron, the optimal
whereP,.(r) and Q,,(r) are the large and small compo- « and B values are 0.006 0935 and 2.151 02. The radial
nents of the radial wave function. In the matrix DF schemefunctions that possess a differeaguantum number but the
the radial functions are expanded in basis sets of analytisame quantum numbérare expanded in the same set of
functions, basis functions(e.g., the radial functions op,, and ps,

¢nx(r) =
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TABLE |. Calculated DF and MBPT energies of Li and Li-like iofeu).

EQe EE S5 BY B®@ Total
Li (Z=3)

231 —7.433533 —0.041517 —0.003121  0.000262 —0.000 102 —-7.478 011
P —7.365861 —0.041241 —0.003278  0.000260 —0.000 101 —7.410 221
Li"

s, —7.237204 —0.039931 —0.002966  0.000258 —0.000 101 —7.279 944
B%" (z=5)

28/ —23.383328 —0.045938 —0.002194  0.001433 —0.000 332 —23.430 359
2Py —23.160832 —0.047811 —0.002295 0.001451 —0.000 325 —23.209 812
B3+
s, —21.993147 -0.042358 —0.001973  0.001369 —0.000 321 —22.036 429
Ne’* (Z=10)

23 —102.765444 —0.049452 —0.001264  0.012982 —0.001478 —102.804 65
2P, —102.177510 -—0.053299 —0.001408 0.013630 —0.001449 —102.22003
Ne8+
s, —93.982747 —0.044238 —0.001137 0.012110 -—0.001 400 —94.017 406

symmetries are expanded in the same sep-type radial to the instantaneous Coulomb interactiom;1/In the fifth
Gaussian-type functiohs The nuclei were modeled as column we present the first-order Breit interaction energies
spheres of uniform proton charge in every calculation. TheB®. In the sixth column the second-order correlation correc-
model has been discussed in R&f. Atomic masses for the tions to the Breit interactiorB®, are givenB® is the dif-
Li, B, Ne, and Ca atoms are, respectively, 6.94, 10.81, 20.18erence between the second-order correlation correction
and 40.08. _ _ evaluated with the inclusion d;; in the electron-electron
Virtual spinors used in the MBPT calculations were gen-interaction and the second-order DC correlation correction,
e_rated in the field of the nuc!eus and all eIect_r(M§ poten- E(DZE;. B? in correlation energies is the relativistic many-
tial). The order of the partial-wave expansi®bna), the pogy shift that arises from incorporation of the frequency-

highest angular momentum of the spinors included in the?ndependent Breit interaction into the effective two-body in-
virtual space, id,,,=5 throughout this study. The effects teraction.

on the transition energies of radiative corrections, mass po- For all the systems considered, the DF energies for the

larization, and reduced mass are non-negligible. In th?eferencezsl,z and 2P, states are in excellent agreement
present study, however, we neglect these effects. with the numerical finite-difference DF energies. For the
neutral Li atom, the DF energies7.4335328 a.u. and
. RESULTS AND DISCUSSION —7.365 861 2 a.u., respectively, for th®,,, and®P,,, states
computed with a basis of 822p G spinors agree with the
%orresponding numerical DF limits-7.433 533 2 a.u. and
—7.3658617 a.u. obtained with the numerical finite-
difference DF program of Desclaup28]. The results in

DF and MBPT calculations have been performed on th
ground 2S;,,(1s2,,2S1,,) and excited?P;,,(152,,2p 1)
states of lithium and lithiumlike ions with moderately large
basis sets of 2P2p14d12710g10h G spinors. The three- Table | clearly indicate that the Dirac-Coulomb correlation
electron open-shell states have been chosen to assess the Arection converges rapidly as nuclear chafgincreases
curacy of our MBPT algorithm by comparing results with the ¢, e | j isoelectronic sequence; the nuclear Coulomb field
high-accuracyB-spline calculations of Johnson, Blundell, j,o.omeq increasingly dominant Zsincreases. Whilee 2.
and Sapirsteifl]. Tal:_JIe | displays th? DF and MBPT ener- remains almost constant, with a slight increase in magnitude
gies of theZz=3,5,10 ions computed in the present study. In s7 increasesE<D33; decreases in magnitude, undergoing a
the second column of Table I, we present the open-shell D reefold decrease aZ increases from 3 to 10. As the

e O) 2 e
SCF energiesce: for the ground®Sy, and excited™Py, 1 cjear charge increases, the first- and second-order Breit
states. The third column of the table gives the second-ord hteraction energies increase dramatically

. _ . . 2) . _
Dirac-Couloumb correlation enerng‘D%. The third-order In a recent MBPT study1], Johnson, Blundell, and Sa-

Plrac;] ColulomchhorreIatloré corréacrtll'ocljst%are given in the irstein computed the contributions to the energies of the
ourth column. The second- and third-order energies are Neq_, giates for lithiumlike ions in the range=3-92 using

essarily appr(_)xm:_ate _dsue }% th&érg?catllonlof the partialy,e o nair DC Hamiltonian with Breit and mass-polarization
wave expansion(Lpyg,—5). The calculations were .. oqtions. The starting point of their calculations was a

also performed with the frequency-independent Breit intery, ;o cqre DF description of a three-electron ion. The high-
action' included. The _BreitDiCnteractio_n is introduced into theprecision MBPT calculations employed at leastB@pline
no-pair DC HamiltoniarH 3~ by adding the ternil,2,28— basis functions antl,,,,=8. The corresponding lowest-order
30] contribution,Ei(O), to the energy of a valence electron is the
DF eigenvalue. They computed MBPT corrections to the
Bij=—(U2rij{ai- e +[(a-ry)(e-ri)/ri]} (32  |owestorder energy. It is of interest to compare the rate of



53 RELATIVISTIC MANY-BODY PERTURBATION THEORY FCR. .. 3971

TABLE Il. Contributions to the energies ofsg, and 24, states of Li and Li-like ionda.u).

AE© AEZL AES) ABY AB®@ Total
Li (z=3)
2s,,, State
-0.196329 —0.001586 —0.000155 0.000 004 —0.000001  —0.198 067
(—0.001 598 (-0.000001  (—0.198 079

Ref.[1] —-0.196 320 —0.001649 —0.000125 0.000005 —0.000 002 —0.198 091
2p State
—0.128 657 —0.001310 —0.000312 0.000002 —0.000 000 —0.130 277

(—0.001 312 (—0.000000 (—0.130279

Ref.[1] —0.128638 —0.001375 —0.000145 0.000003 -0.000001  —0.130 156
B?* (z=5)
2s,,, State

—-1.390181 —0.003580 —0.000221 0.000064 —0.000011  —1.393929

(—0.003 607 (—0.000013 (—1.393 958

Ref. [1] —-1.390126 —0.003719 —0.000164 0.000069 —0.000018 —1.393 958
2pq State
—1.167685 —0.005453 —0.000322 0.000082 —0.000 004 —1.173 382

(—0.005 479 (—0.000004 (—1.173 408
Ref.[1] —1.167352 —0.005904 —0.000335 0.000092 -0.000016 —1.173515
Ne’* (Z=10)
2sy), State
—-8.782697 —0.005214 —0.000127 0.000872 —0.000078  —8.787 244
(—0.005 236 (—0.000080 (—8.787 268

Ref.[1] —8.782576  —0.005424 —0.000127 0.000904 —0.000 111 —8.787 334
2p State

—8.194763 —0.009061 —0.000271 0.001520 —0.000 049 —8.202 624

(—0.009 106 (—0.000050 (—8.202670

Ref.[1] —8.193839 —-0.010117 —0.000277 0.001601 —0.000 139 —8.202 771

convergence of the perturbation series obtained byvhe  Blundell, and Sapirsteifil]. The difference between the two
method of Johnson, Blundell, and Sapirstglj with that  zero-order energies increases dramaticallyZamcreases.
obtained by our generalized MP method based af\gpo-  The zero-order energiesE® computed in tha/N ™ method
tential. Each order of perturbation theory should be someare a frozen-core description of the three-electron ions
what different between the two perturbation series since thethereas our zero-order energies are determined self-
N-electron Hamiltonian is partitioned differently. In order to consistently by our open-shell DF scheme in which the Cou-
compare the convergence pattern of our MBPT energies wittomb one-photon diagrams are summed through all orders.
those of Johnson, Blundell, and Sapirst¢iti, we have The second-order corrections obtained by Johnson, Blundell,
evaluated, in each order of perturbation theory, the contribuand Sapirstein are consistently larger in magnitude than
tions to the valence electron energy by taking the differencethose computed by our generalized MP method and offset
in energies(AE(® AE2. AES. AB AB®) between the the difference in zero-order energies. In our MBPT scheme,
three-electron systems and tH&, ground-state energies of the zero-order Hamiltonian is chosen to be a sum of the
the corresponding heliumlike ions. open-shell DF operators, and thus all the perturbation correc-
Table Il displays the convergence patterns of the two pertions describe electron-correlation effects.
turbation series. Contributions to the valence electron energy We have summarized in Table 11l the ionization potentials
computed in the present study with,..=5 are given in the for the ground’S,, states andP,,-2S,, transition energies
first row. In the second row, the second-order correlatiorof the lithiumlike ions. The computed ionization energies,
contributions to the valence electron energyEZ. and including corrections due to reduced mass taken from Table
AB®) extrapolated td_,,~=8 are given in parentheses for | of Ref.[1], are listed in the second column of Table IIl. For
comparative purposes. Second-order correlation energieomparative purposes, we also list in the second column the
were computed in partial-wave expansiond gf,=3, 4, and  ionization potentials of Johnson, Blundell, and Sapirst#in
5, and extrapolated tb,,,,=8 assuming that the energy in- and experimental valud81] as well. The ionization poten-
crements decrease &$L ., +3) ", whereA andn are, re- tials computed in the present study are in excellent agree-
spectively, a proportionality constant and an exponent. In thenent both with those obtained by Johnson, Blundell, and
third row, the contributions to the valence electron energySapirstein and with experimental values.
taken from Table | of Refl1] are presented for comparison.  The third column of Table Ill shows theP,,-2S,,, tran-
For all the lithiumlike ions considered, oaE© are consis- sition energies computed by our MBPT method along with
tently larger in magnitude than those obtained by Johnsorthe available experimental d4t2l] and the values computed
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TABLE llI. lonization potentials and transition energies of Li and Li-like idi@asu).
lonization potential 2p,,-2S, ), transition energy
Li (Z=3) This work 0.198 05 0.067 783
(0.198 062 (0.067 793
Ref. [1] 0.198 08 0.067 928
Experimen’i 0.198 14 0.067 906
B2 (z=5) This work 1.393 86 0.220 51
(1.393 892 (0.220 532
Ref.[1] 1.393 89 0.220 41
Experiment 1.393 93 0.220 34
Ne’ (Z=10) This work 8.787 00 0.584 48
(8.787 03?2 (0.584 462
Ref. [1] 8.787 09 0.584 42
Experimen’i 8.786 72 0.583 90

Jonization and transition energies computed by using the extrapolated second-order energies.
bReferencd 31].

by the B-spline MBPT method including the Breit interac- DF SCF, and correlation corrections for the,,, state are
tion and mass-polarization correctioiid. The transition en- given in the first row. In the second row, the DF SCF and
ergies obtained in the present study with the no-pair Hamilcorrelation corrections for thes,, state are given. The third
tonian agree well with those reported by Johnson, Blundellrow gives the?P,,,-2S,, excitation energy computed as the
and Sapirsteifl] as well as with experimental values. For difference between the total energies of iRy, and >S,,
the lithium atom in particular the transition energies obtainedstates. In the third column of the table, we present the open-
by Johnson, Blundell, and Sapirstein usibg.,=8 along  snell DF SCF energies. The fourth column of the table gives
with the Breit and mass-polarization correctidil§ are in - he second-order Dirac-Coulomb correlation enerdié .
very good agreement with the experimental data. In the fifth and sixth columns, we present the first- and
_Table IV shows the_ DF SCF_ energies, Sec(_md'Ord‘:"gecond—order Breit interaction energie$ andB®. As for
sDcl,rcEt)Cr;g-%lﬂjoeT%rggr{r?:(?::cr:ioﬁngr:gelresi(’ase:‘?)(rj '[I’tlr(;eloc\;;’:t‘; andthe lithiumlike ions, the second-order energies are necessar-
> o ergies. : % ily approximate due to truncation of the partial-wave expan-
and“S,;, states of fluorinelike calcium in increasing order of sion. As the order of partia-wave expansion increases, the
partial-wave expansion. The third-order correlation correc- q o hl b
tions for fluorinelike calcium are much more computation-Comlete ex_C|tat|on energy smoothly converges to a out
ally demanding than those for second order, and are therefor 082 @U. This value is to be compared with the experimen-
neglected in the present study. We have also neglected tfig! value 3.0937 a.ul32]. A crude estimate of the QED
effect of radiative corrections. The DF and MBPT calcula-&ffects employing the one-electron formula indicates that the
tions on the?P,;, and?S,, states have been performed with effect of the Lamb shift on the excitation energy will be of
a moderately large basis set ofs2Pp14d12f10gich G  the order of 0.001 a.u. The residual discrepancy between
spinors. In each entry in Table IV, the order of partial-wave, theory and experiment is attributed to the effects of third-

TABLE IV. Calcualted DF and MBPT energies of F-like calcium in increasing partial-wave expansion

(a.u).
DF SCF EZ BW B® Total

L max=2 P,  —621.42963  —0.27654 017017 —0.00774  —621.54374
’5,,  —61825083  —0.36778 0.16359 —0.00801  —618.463 02
EE? 3.080 7

Lma=3 P,  —621.42963  —0.31661 017017 —0.00852  —621.584 59
%5,  —618.25083  —0.40212 0.16359 —0.00878  —618.498 13
EE® 3.086 5

Lma=4 %P,  —621.42963  —0.33023 017017 -0.00891  —621.598 60
%5,  —618.25083  —0.41669 0.16359 —0.00919 -618.51311
EE? 3.0855

Lma=5 P,  —621.42963  —0.33537 017017 —0.00913  —621.603 97
%5,  —618.25083  —0.42209 0.16359 —0.00943 —618.51875
EE? 3.085 2
EE” 3.0937 (experimenkt

3Computed®P,,,-°S,,, excitation energy.
PExperimental excitation energy: RéB2].
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order correlation corrections and Lamb shifts neglected irdefined algorithms that allow one to calculate relativistic
the present study. correlation corrections in noniterative steps and, in low or-
der, yields a large fraction of the dynamical correlation. The
state-specific MBPT algorithm has been applied to both

closed- and open-shell systems and has proven to be capable

We have implemented a reliable procedure for performingof accuracy comparable to that of the best MBPT calcula-
relativistic MBPT calculations on ground and excited mul-tions[1] on then=2 states of lithiumlike ions.

tiplet states of atoms and ions. We have chosen the zero-
order Hamiltonian to be the sum of single Fock operators for
the open-shell reference state and developed a relativistic
MBPT method which employs a full implementation of gen-  This work was supported in part by the National Science

eralized Mdler-Plesset perturbation theory applied to a gen-Foundation. The authors thank Dr. D. Kelleher, National In-

eral class of open-shell systems. The generalizedleido stitute of Standards and Technology, for valuable discussions
Plesset perturbation theory provides a hierarchy of welland encouragement.

IV. CONCLUSIONS
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