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A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects
for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic
basis sets of Gaussian spinors. The theory retains the essential aspects of Mo” ller-Plesset perturbation theory by
employing the relativistic single-Fock-operator method of Koc and Ishikawa@Phys. Rev. A49, 794~1994!# for
general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are
reported for the ground and low-lying excited states of Li, B21, Ne71, and Ca111. @S1050-2947~96!05006-8#

PACS number~s!: 31.25.2v, 31.30.Jv, 31.50.1w

I. INTRODUCTION

In recent years, a great deal of effort has been directed
toward developing a relativistic many-body theory which ac-
curately accounts for relativistic, electron-correlation, and
quantum electrodynamic~QED! effects. Relativistic Dirac-
Fock ~DF! self-consistent field~SCF! and many-body pertur-
bation theories~MBPT!, which do account for relativistic
and electron-correlation effects, have been developed by sev-
eral groups. Discrete basis sets of both ‘‘local’’@1–3# and
‘‘global’’ @4,5# functions as well as numerical finite-
difference algorithms@6–8# have been used. Implementa-
tions based on expansion in analytic basis functions@1–5#
have the advantage over those based on numerical finite-
difference algorithms@6–8# of providing a compact repre-
sentation of the complete Dirac spectrum. Further, they fa-
cilitate the evaluation of many-body diagrams by finite
summation@1–5#.

In a series of studies@1#, Johnson and co-workers have
employed ‘‘local’’ basis sets of spline functions to attain
impressive accuracy in relativistic MBPT calculations for
alkali-metal atoms and their isoelectronic sequences employ-
ing VN-1 potentials. In theVN21 potential approach, a DF
SCF calculation is done on the closed-shell core, followed by
a relativistic MBPT calculation constructed for the open-
shell system. They have recently@2# extended the formalism
to excited-state multiplets of closed-shell atoms. Ishikawa
and co-workers@5,9# have developed matrix DF and relativ-
istic MBPT for closed-shell atoms. Calculations which have
employed ‘‘global’’ basis sets ofG spinors~G for ‘‘Gauss-
ian’’ after Grant@10#! have been done on a number of many-
electron systems. Analytic basis set expansion inG spinors
has yielded accurate results for closed-shell systems with no
sign of the near-linear dependency problems reported with
S-spinor~S for ‘‘Slater’’ ! basis sets@4,11,12#. In the present
study we address the problem of applying perturbation
theory to determining the effects of relativity and electron

correlation in the general open-shell states of atoms and mol-
ecules.

We recently@13# employed the generalized coupling op-
erator method@14–16# to construct a single Fock operator
for open-shell DF SCF, and showed that with such an opera-
tor all closed- and open-shell spinors can be determined. Our
interest in the single-Fock-operator method in matrix DF cal-
culations on open-shell systems arises from the need for a
state-specific relativistic MBPT for general open-shell sys-
tems. Construction of a single Fock operator for general SCF
theory is important not only to simplify open-shell SCF cal-
culations but also in formal applications; a single Fock op-
erator is required when the Mo” ller-Plesset-type@17# separa-
tion of theN-electron Hamiltonian is used in the perturbation
theory of electron correlation. In this paper, we report a state-
specific relativistic MBPT for general open-shell systems in
which our single-Fock-operator method is employed for a
Mo” ller-Plesset-type separation of the relativistic many-
electron Hamiltonian. The state-specific MBPT involves a
full implementation of generalized Mo” ller-Plesset perturba-
tion theory applied to general open-shell reference wave
functions, and in low order, yields a large fraction of the
dynamical correlation. The relativistic MBPT is a size-
consistent theory of electron-correlation effects in atoms and
molecules, a theory which leads to expressions that are di-
rectly proportional to the number of electrons in the system.
We start with a general form for the total DF SCF energy
expression which does not restrict the configurational form
of the DF wave function, a formalism which thus applies to
excited as well as to ground states.

In the next section, we outline the relativistic MBPT
based on our single Fock operator for open-shell systems. In
the third section, the results of matrix DF and relativistic
MBPT calculations on the ground and low-lying excited
states of neutral lithium, lithiumlike boron, lithiumlike neon,
and fluorinelike calcium are presented.

II. STATE-SPECIFIC PERTURBATION THEORY
WITH MO” LLER-PLESSET PARTITIONING

The starting point for our development of state-specific
MBPT is the relativistic ‘‘no-pair’’ Dirac-Coulomb~DC!
Hamiltonian@18,19#:
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wherehD( i ) is the Dirac one-electron Hamiltonian;

hD~ i !5caipi1~b21!c21Vnuc~r i !. ~2!

Herea andb are the Dirac matrices.Vnuc(r ) is the nuclear
attraction term,

Vnuc~r !5 H 2Z/r for r.R
2~Z/2R!~32r 2/R2! for r<R. ~3!

The nucleus is modeled as a sphere of uniform proton-charge
distribution.Z is the nuclear charge.R is the radius of the
nucleus and is related to the atomic massA by
R5(2.267731025)A1/3.L15L1(1)L1(2),...,L1(n), with
L1( i ) the projection operator onto the space spanned by the
positive-energy eigenfunctions of the matrix DF SCF equa-
tion @19#. The projection operatorL1 takes into account the
field-theoretic condition that the negative-energy states are
filled @18,19#. Throughout this study, atomic units are used
and the speed of light is taken to be 137.035 989 5 a.u.

A. Single-Fock-operator method
for matrix Dirac-Fock calculations

We first outline how to optimize the energy of the refer-
ence open-shell configuration state function~CSF!,
F0~g0JP!, by the open-shell DF SCF procedure. The refer-
ence CSF is an eigenfunction of the total angular momentum
and parity operators.J andP represent the total angular mo-
mentum and parity quantum numbers, respectively.g de-
notes a set of quantum numbers other thanJ andP needed to
specify the state uniquely. In general, the reference CSF is
given by a linear combination of antisymmetrized products
of positive-energy eigenspinors of the matrix DF SCF equa-
tion. In our single-Fock-operator method, the virtual spinors
and their energies are calculated in the field of the nucleus
and all electrons~VN potential! at the DF SCF stage.

The total energy of a general open-shell reference state
uF0~g0JP!& can be expressed@20# as

ESCF5^F0~g0JP!uH1
DCuF0~g0JP!&,

where

^F0~g0JP!uH1
DCuF0~g0JP!&

5 (
i ~PC !

NihDii1 (
i , j ~PC !

NiNj~Ji j2Ki j !

1 (
k~PO !

f kSNkhDkk1 (
i ~PC !

NiNk~Jik2Kik! D
1 (

k,m~PO !
~akmJkm2bkmKkm! ~4!

and wheref k is the fractional occupation of thekth open
shell. ThehDii , Ji j , and Ki j represent Dirac one-electron
integrals, direct, and exchange integrals of the electron-
electron interaction, respectively. Theakm andbkm are cou-
pling constants, the values of which depend on the state un-

der study. The occupation numberN of the i th spinor shell is
given byNi52Ji11. C and O represent closed-shell and
open-shell manifolds, respectively. The energy expression in
Eq. ~4! is not general enough to handle all multiconfigura-
tional DF wave functions. It is restricted to single-
configuration open-shell DF wave functions as well as some
classes of multiconfiguration DF wave functions. Conse-
quently the open-shell DF SCF formalism is applicable to
single-configuration reference functions and to some classes
of multireference model spaces@e.g., a multiconfiguration
wave function for the beryllium isoelectronic sequence
formed from (1s1/2)

2(2s1/2)
2, (1s1/2)

2(2p1/2)
2, and

(1s1/2)
2(2p3/2)

2 CSFs#. The first-order variation of the total
energy in Eq.~4! gives a set of Euler equations and a set of
Lagrange multiplier Hermiticity conditions@14,15#.

To construct a single Fock operator, one need only intro-
duce projection operators in terms of the occupied and vir-
tual SCF spinors,

Pc5P c1P y , Pk5P k1P y , kPO , cPC , ~5!

with

P c5 (
i ~PC !

u i &^ i u, P k5uk&^ku, ~6!

and

P y5 (
y~PV 2!

uy&^yu1 (
y~PV 1!

uy&^yu, ~7!

whereV 2 andV 1 are manifolds generated by the negative
and unoccupied positive-energy branches of the DF spec-
trum, respectively.

The crucial difference between the nonrelativistic cou-
pling operator formalism@14–16# and its relativistic gener-
alization is the definition of the projection operatorP y ,
which projects the spinors onto the virtual space. In the rela-
tivistic generalization, the projection operatorP y must be
constructed from both the negative and unoccupied positive-
energy branches of the DF spectrum in order to guarantee
completeness@13#.

P c1 (
k~PO !

P k1P y51. ~8!

Using the projection operators introduced in Eqs.~5!–~7!,
a single Fock operator which satisfies the correct variational
condition can be derived@13–16#. With the single Fock op-
erator, the DF equations for a general class of open-shell
systems are reduced to single pseudosecular equation form,

Ru i &5« i u i &. ~9!

Here the single Fock operatorR is given by

R5R01T, ~10!

where

R05PcFcPc1 (
k~PO !

PkFkPk , ~11!
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Here the$li j % are arbitrary, nonzero numbers satisfying the
conditionsl i jÞl j i . We have shown that these constants can
be optimized to improve SCF convergence@16#. The opera-
tor T ensures Hermiticity of the Lagrange multipliers during
the iterative DF SCF procedure. It is a formal device that
enables one to remove the off-diagonal multipliers and reex-
press the DF equations as a pseudoeigenvalue equation in-
volving a single Fock operator,R of Eq. ~9!. At convergence,
the total SCF energy is identical to that computed by single-
configurational or multiconfigurationalj j -coupled DF equa-
tions with off-diagonal Lagrange multipliers. Matrix ele-
ments of the operatorT become identically zero at SCF
convergence@13#, and thus only the operatorR0 enters the
MBPT calculations. Because the cross termsP yFcP c ,
P cFcP y , P yFkP k , andP kFkP y are identically zero at SCF
convergence, the SCF spinors satisfy the eigenvalue equation

R0u i &5« i u i &, ~13!

where the Fock operatorR0 now has the following reduced
form in terms of the SCF spinors:

R05P cFcP c1 (
k~PO !

P kFkP k1P yFcP y

1P yS (
k~PO !

FkDP y . ~14!

The last two terms in Eq.~14! are responsible for generating
the virtual spinors and their energy levels. In our relativistic
MBPT calculations, we modify the virtual spinors generated
in this manner by neglecting the last term. This is achieved
by diagonalizing the matrix form of the operator,

R05P cFcP c1 (
k~PO !

P kFkP k1P yFcP y . ~15!

In this form, the virtual spinors and their energy levels are
generated solely by the mean-field operatorFc for the
closed-shell electrons. There is an arbitrariness with the
choice of virtual spinors and their energy levels, and they are
usually chosen to improve convergence in low order of
MBPT. The matrix form of the operators of Eqs.~5!–~13!

has been presented in a previous work@13#. The SCF spinors
obtained from the single-Fock-operator algorithm are auto-
matically orthogonal to one another and are ideally suited to
relativistic MBPT based on open-shell reference wave func-
tions.

B. Relativistic many-body perturbation theory
for open-shell systems

In relativistic MBPT, theN-electron HamiltonianH1
DC is

partitioned into a model HamiltonianH0 and a perturbation
V such thatH1

DC5H01V @1–9#. The zero-order Hamiltonian
H0 is arbitrary but should be chosen as close to the full
HamiltonianH1

DC as possible so that the perturbation series
converges rapidly in low order. In practice, the zero-order
Hamiltonian is most commonly chosen to be a sum of the
one-electron DF operators@4,5# ~i.e., Mo” ller-Plesset parti-
tioning! because, in such a formulation, all the perturbation
corrections describe electron-correlation effects. For closed-
shell systems, the best results have been obtained with the
Mo” ller-Plesset partitioning. We chooseH0 to be the sum of
the single Fock operatorsR0 @13# for the open-shell reference
state and fully implement generalized Mo” ller-Plesset pertur-
bation theory applied to general open-shell reference wave
functions. The generalized Mo” ller-Plesset perturbation
theory provides a hierarchy of well-defined algorithms that
allow one to calculate relativistic correlation corrections in
noniterative steps and, in low order, yields a large fraction of
the dynamical correlation.

TheN-electron Dirac-Coulomb HamiltonianH1
DC is par-

titioned into an unperturbed Hamiltonian and a perturbation
term following Mo” ller and Plesset@17#,

H1
DC5H01V, ~16!

where the unperturbed HamiltonianH0 is a sum of the single
Fock operatorsR0 @Eq. ~15!#,

H05(
i
R0~ i ! and V5H1

DC2(
i
R0~ i !. ~17!

We generate the CSFs$F i(g iJP); i51,2,...% by single,
double, triple,... excitations from the reference CSF,
F0~g0JP!, in order to expand the exact many-electron wave
functions. The individual CSFs are constructed as eigenfunc-
tions of the total angular momentum and parity operators
and, in general, are expressed as linear combinations of an-
tisymmetrized products of positive-energy SCF spinors. The
SCF spinors are solutions of the single pseudoeigenvalue
equation ~9!, and thus are mutually orthogonal. Conse-
quently, all the CSFs$F i(g iJP); i50,1,2,...% are orthogonal
to one another. The unperturbed Hamiltonian is diagonal in
this space;

H05(
i

uF i~g iJP!&Ei
~0!^F i~g iJP!u ~18!

so that

H0uF i~g iJP!&5Ei
~0!uF i~g iJP!& ~ i50,1,2,...!. ~19!

E i
(0) is a sum of the SCF one-electron energies$«q%,
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Ei
~0!5(

q
«qNqnq@F i #, ~20!

where nq[F i ] is the occupancy of theqth spinor in
F i(g iJP).

A straightforward application of Rayleigh-Schro¨dinger
perturbation theory@17# provides the order-by-order expres-
sions for the perturbation series for the state approximated by
uF0~g0JP!&,

C5F0~g0JP!1F~1!~JP!1••• , ~21!

E5E0
~0!1E~1!1E~2!1E~3!1••• , ~22!

where

F~1!~JP!5(
i51

F i~g iJP!$Vi0~E02Ei !
21%, ~23!

E0
~0!1E~1!5ESCF, ~24!

E~2!5(
i51

V0iVi0~E02Ei !
21, ~25!

E~3!5 (
i , j51

V0iWi j Vj0~E02Ei !
21~E02Ej !

21. ~26!

Here

Vi j5^F i~g iJP!uVuF j~g j JP!&

and

Wij5^F i~g iJP!uWuF j~g j JP!& with W5V2E~1!.

The matrix elements$Vi j % and$Wij % are evaluated using the
angular momentum recoupling scheme described in Ref.
@20#. In our generalized Mo” ller-Plesset formalism, the CSFs
$F i(g iJP); iÞ0% generated by single excitations relative to
the reference CSF do not contribute to the second- and third-
order energies because the singly excited CSFs,F i(g iJP),
generated by the SCF spinors satisfy the generalized Bril-
louin theorem@21#, ^F i(g iJP) uH1

DCuF0~g0JP!&50. There-
fore Vi050. The CSFs generated by excitations higher than
double, relative to the reference CSF,F0~g0JP!, also do not
contribute to the second- and third-order because for them
Vi050 andHi050.

C. Computation

In the central field approximation, the solution of the
pseudosecular equation~9! takes the form

fnk~r !5FPnk~r !

Qnk~r !G , ~27!

wherePnk(r ) andQnk(r ) are the large and small compo-
nents of the radial wave function. In the matrix DF scheme,
the radial functions are expanded in basis sets of analytic
functions,

Pnk~r !5(
i
Cnk i
L gk i

L ~r ! ~28!

and

Qnk~r !5(
i
Cnk i
S gk i

S ~r !, ~29!

where $Cnk i
L % and $Cnk i

S % are expansion coefficients for
spinors of symmetryk, and $gk i

L (r )% and $gk i
S (r )% are the

large and small component basis sets, respectively. Kim@22#
and Kagawa@20# pioneered the matrix DF SCF method, us-
ing basis sets of Slater-type functions to study closed- and
open-shell atoms. Their work revealed a tendency for calcu-
lated energies to fall below the variational limit. This failure
of the matrix DF method can be avoided by constraining
‘‘global’’ basis sets @4,5,9,11,12#. Goldman and Dalgarno
@11#, Drake and Goldman@12#, and Quiney, Grant, and Wil-
son @4# have implemented the matrix DF equations by em-
ploying S spinors which avoid variational failure@4,11,12#
and spurious solutions@4#. B-spline ‘‘local’’ basis sets em-
ployed by Johnson and co-workers@1# also lead to matrix
Dirac-Fock equations. Instead of constraining basis sets,
proper boundary conditions based on the MIT bag model are
imposed to avoid variational failure in the local basis expan-
sion DF scheme@1#. In the present study, we employ basis
sets ofG spinors with a representation of the nucleus as a
body of finite extent@5,9#.

For the large component, the basis functions are of the
form @9#

gk i
L ~r !5Ak i

L r nkexp~2zk i r
2!, ~30!

with nk52k for k,0, andnk5k11 for k.0. A k i
L is the

normalization constant. The small component basis set
$gk i

S (r )% is constructed to satisfy the boundary condition as-
sociated with the finite nucleus of uniform proton-charge dis-
tribution @9#. With the uniformly charged finite nucleus ap-
proximation,G spinors of integer power ofr are appropriate
basis functions because imposition of the finite nuclear
boundary results in a solution which is Gaussian at the origin
@9#. TheG-spinor basis functions which satisfy the boundary
conditions associated with the finite nucleus@5,9# automati-
cally satisfy the so-called ‘‘kinetic balance’’ criterion@23–
25# for a finite value ofc.

For all the lithiumlike systems studied, even-tempered ba-
sis sets@26# of 24s22p14d12 f10g10h G spinors were used.
In basis sets of even-temperedG spinors, the exponents$zk i%
are given in terms of the parametersa andb, according to
the geometric series,

zk i5ab i21, i51,2,...,Nk . ~31!

In DF calculations on lithiumlike and fluorinelike species,
the parametersa andb are optimized until a minimum in the
DF total energy is found@27#. The optimala andb values
thus determined for, e.g., lithium are, respectively,
0.002 484 5 and 2.059 68. For lithiumlike boron, the optimal
a and b values are 0.006 093 5 and 2.151 02. The radial
functions that possess a differentk quantum number but the
same quantum numberl are expanded in the same set of
basis functions~e.g., the radial functions ofp1/2 and p3/2

53 3969RELATIVISTIC MANY-BODY PERTURBATION THEORY FOR . . .



symmetries are expanded in the same set ofp-type radial
Gaussian-type functions!. The nuclei were modeled as
spheres of uniform proton charge in every calculation. The
model has been discussed in Ref.@9#. Atomic masses for the
Li, B, Ne, and Ca atoms are, respectively, 6.94, 10.81, 20.18,
and 40.08.

Virtual spinors used in the MBPT calculations were gen-
erated in the field of the nucleus and all electrons~VN poten-
tial!. The order of the partial-wave expansion~Lmax!, the
highest angular momentum of the spinors included in the
virtual space, isLmax55 throughout this study. The effects
on the transition energies of radiative corrections, mass po-
larization, and reduced mass are non-negligible. In the
present study, however, we neglect these effects.

III. RESULTS AND DISCUSSION

DF and MBPT calculations have been performed on the
ground 2S1/2(1s1/2

2 2S1/2
1 ) and excited 2P1/2(1s1/2

2 2p 1/2
1 )

states of lithium and lithiumlike ions with moderately large
basis sets of 24s22p14d12 f10g10h G spinors. The three-
electron open-shell states have been chosen to assess the ac-
curacy of our MBPT algorithm by comparing results with the
high-accuracyB-spline calculations of Johnson, Blundell,
and Sapirstein@1#. Table I displays the DF and MBPT ener-
gies of theZ53,5,10 ions computed in the present study. In
the second column of Table I, we present the open-shell DF
SCF energiesESCF

~0! for the ground2S1/2 and excited2P1/2
states. The third column of the table gives the second-order
Dirac-Couloumb correlation energiesEDC

~2! . The third-order
Dirac-Coulomb correlation correctionsEDC

~3! are given in the
fourth column. The second- and third-order energies are nec-
essarily approximate due to the truncation of the partial-
wave expansion~Lmax55!. The MBPT calculations were
also performed with the frequency-independent Breit inter-
action included. The Breit interaction is introduced into the
no-pair DC HamiltonianH1

DC by adding the term@1,2,28–
30#

Bi j52~1/2r i j !$ai•aj1@~ai•r i j !~aj•r i j !/r i j
2 #% ~32!

to the instantaneous Coulomb interaction 1/r i j . In the fifth
column we present the first-order Breit interaction energies
B~1!. In the sixth column the second-order correlation correc-
tions to the Breit interaction,B~2!, are given.B~2! is the dif-
ference between the second-order correlation correction
evaluated with the inclusion ofBi j in the electron-electron
interaction and the second-order DC correlation correction,
EDC

~2! . B~2! in correlation energies is the relativistic many-
body shift that arises from incorporation of the frequency-
independent Breit interaction into the effective two-body in-
teraction.

For all the systems considered, the DF energies for the
reference2S1/2 and

2P1/2 states are in excellent agreement
with the numerical finite-difference DF energies. For the
neutral Li atom, the DF energies27.433 532 8 a.u. and
27.365 861 2 a.u., respectively, for the2S1/2 and

2P1/2 states
computed with a basis of 24s22p G spinors agree with the
corresponding numerical DF limits27.433 533 2 a.u. and
27.365 861 7 a.u. obtained with the numerical finite-
difference DF program of Desclaux@28#. The results in
Table I clearly indicate that the Dirac-Coulomb correlation
correction converges rapidly as nuclear chargeZ increases
for the Li isoelectronic sequence; the nuclear Coulomb field
becomes increasingly dominant asZ increases. WhileEDC

~2!

remains almost constant, with a slight increase in magnitude
as Z increases,EDC

~3! decreases in magnitude, undergoing a
threefold decrease asZ increases from 3 to 10. As the
nuclear charge increases, the first- and second-order Breit
interaction energies increase dramatically.

In a recent MBPT study@1#, Johnson, Blundell, and Sa-
pirstein computed the contributions to the energies of the
n52 states for lithiumlike ions in the rangeZ53–92 using
the no-pair DC Hamiltonian with Breit and mass-polarization
corrections. The starting point of their calculations was a
frozen-core DF description of a three-electron ion. The high-
precision MBPT calculations employed at least 40B-spline
basis functions andLmax58. The corresponding lowest-order
contribution,E i

(0), to the energy of a valence electron is the
DF eigenvalue. They computed MBPT corrections to the
lowest-order energy. It is of interest to compare the rate of

TABLE I. Calculated DF and MBPT energies of Li and Li-like ions~a.u.!.

ESCF
~0! EDC

~2! EDC
~3! B~1! B~2! Total

Li ~Z53!
2S1/2 27.433 533 20.041 517 20.003 121 0.000 262 20.000 102 27.478 011
2P1/2 27.365 861 20.041 241 20.003 278 0.000 260 20.000 101 27.410 221

Li1
1S0 27.237 204 20.039 931 20.002 966 0.000 258 20.000 101 27.279 944

B21 ~Z55!
2S1/2 223.383 328 20.045 938 20.002 194 0.001 433 20.000 332 223.430 359
2P1/2 223.160 832 20.047 811 20.002 295 0.001 451 20.000 325 223.209 812

B31

1S0 221.993 147 20.042 358 20.001 973 0.001 369 20.000 321 222.036 429
Ne71 ~Z510!

2S1/2 2102.765 444 20.049 452 20.001 264 0.012 982 20.001 478 2102.804 65
2P1/2 2102.177 510 20.053 299 20.001 408 0.013 630 20.001 449 2102.220 03

Ne81

1S0 293.982 747 20.044 238 20.001 137 0.012 110 20.001 400 294.017 406
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convergence of the perturbation series obtained by theVN-1
method of Johnson, Blundell, and Sapirstein@1# with that
obtained by our generalized MP method based on aVN po-
tential. Each order of perturbation theory should be some-
what different between the two perturbation series since the
N-electron Hamiltonian is partitioned differently. In order to
compare the convergence pattern of our MBPT energies with
those of Johnson, Blundell, and Sapirstein@1#, we have
evaluated, in each order of perturbation theory, the contribu-
tions to the valence electron energy by taking the differences
in energies~DE(0),DEDC

~2! ,DEDC
~3! ,DB(1),DB(2)! between the

three-electron systems and the1S0 ground-state energies of
the corresponding heliumlike ions.

Table II displays the convergence patterns of the two per-
turbation series. Contributions to the valence electron energy
computed in the present study withLmax55 are given in the
first row. In the second row, the second-order correlation
contributions to the valence electron energy~DEDC

~2! and
DB~2!! extrapolated toLmax58 are given in parentheses for
comparative purposes. Second-order correlation energies
were computed in partial-wave expansions ofLmax53, 4, and
5, and extrapolated toLmax58 assuming that the energy in-
crements decrease asA~Lmax1

1
2!

2n, whereA andn are, re-
spectively, a proportionality constant and an exponent. In the
third row, the contributions to the valence electron energy
taken from Table I of Ref.@1# are presented for comparison.
For all the lithiumlike ions considered, ourDE~0! are consis-
tently larger in magnitude than those obtained by Johnson,

Blundell, and Sapirstein@1#. The difference between the two
zero-order energies increases dramatically asZ increases.
The zero-order energiesDE~0! computed in theVN21 method
are a frozen-core description of the three-electron ions
whereas our zero-order energies are determined self-
consistently by our open-shell DF scheme in which the Cou-
lomb one-photon diagrams are summed through all orders.
The second-order corrections obtained by Johnson, Blundell,
and Sapirstein are consistently larger in magnitude than
those computed by our generalized MP method and offset
the difference in zero-order energies. In our MBPT scheme,
the zero-order Hamiltonian is chosen to be a sum of the
open-shell DF operators, and thus all the perturbation correc-
tions describe electron-correlation effects.

We have summarized in Table III the ionization potentials
for the ground2S1/2 states and

2P1/2-
2S1/2 transition energies

of the lithiumlike ions. The computed ionization energies,
including corrections due to reduced mass taken from Table
I of Ref. @1#, are listed in the second column of Table III. For
comparative purposes, we also list in the second column the
ionization potentials of Johnson, Blundell, and Sapirstein@1#,
and experimental values@31# as well. The ionization poten-
tials computed in the present study are in excellent agree-
ment both with those obtained by Johnson, Blundell, and
Sapirstein and with experimental values.

The third column of Table III shows the2P1/2-
2S1/2 tran-

sition energies computed by our MBPT method along with
the available experimental data@31# and the values computed

TABLE II. Contributions to the energies of 2s1/2 and 2p1/2 states of Li and Li-like ions~a.u.!.

DE~0! DEDC
~2! DEDC

~3! DB~1! DB~2! Total

Li ~Z53!

2s1/2 state
20.196 329 20.001 586 20.000 155 0.000 004 20.000 001 20.198 067

~20.001 598! ~20.000 001! ~20.198 079!
Ref. @1# 20.196 320 20.001 649 20.000 125 0.000 005 20.000 002 20.198 091

2p1/2 state
20.128 657 20.001 310 20.000 312 0.000 002 20.000 000 20.130 277

~20.001 312! ~20.000 000! ~20.130 279!
Ref. @1# 20.128 638 20.001 375 20.000 145 0.000 003 20.000 001 20.130 156

B21 ~Z55!

2s1/2 state
21.390 181 20.003 580 20.000 221 0.000 064 20.000 011 21.393 929

~20.003 607! ~20.000 013! ~21.393 958!
Ref. @1# 21.390 126 20.003 719 20.000 164 0.000 069 20.000 018 21.393 958

2p1/2 state
21.167 685 20.005 453 20.000 322 0.000 082 20.000 004 21.173 382

~20.005 479! ~20.000 004! ~21.173 408!
Ref. @1# 21.167 352 20.005 904 20.000 335 0.000 092 20.000 016 21.173 515

Ne71 ~Z510!
2s1/2 state

28.782 697 20.005 214 20.000 127 0.000 872 20.000 078 28.787 244
~20.005 236! ~20.000 080! ~28.787 268!

Ref. @1# 28.782 576 20.005 424 20.000 127 0.000 904 20.000 111 28.787 334
2p1/2 state

28.194 763 20.009 061 20.000 271 0.001 520 20.000 049 28.202 624
~20.009 106! ~20.000 050! ~28.202 670!

Ref. @1# 28.193 839 20.010 117 20.000 277 0.001 601 20.000 139 28.202 771
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by theB-spline MBPT method including the Breit interac-
tion and mass-polarization corrections@1#. The transition en-
ergies obtained in the present study with the no-pair Hamil-
tonian agree well with those reported by Johnson, Blundell,
and Sapirstein@1# as well as with experimental values. For
the lithium atom in particular the transition energies obtained
by Johnson, Blundell, and Sapirstein usingLmax58 along
with the Breit and mass-polarization corrections@1# are in
very good agreement with the experimental data.

Table IV shows the DF SCF energies, second-order
Dirac-Coulomb correlation energies, and the first- and
second-order Breit interaction energies for the lowest2P1/2
and2S1/2 states of fluorinelike calcium in increasing order of
partial-wave expansion. The third-order correlation correc-
tions for fluorinelike calcium are much more computation-
ally demanding than those for second order, and are therefore
neglected in the present study. We have also neglected the
effect of radiative corrections. The DF and MBPT calcula-
tions on the2P1/2 and

2S1/2 states have been performed with
a moderately large basis set of 22s20p14d12 f10g10h G
spinors. In each entry in Table IV, the order of partial-wave,

DF SCF, and correlation corrections for the2P1/2 state are
given in the first row. In the second row, the DF SCF and
correlation corrections for the2S1/2 state are given. The third
row gives the2P1/2-

2S1/2 excitation energy computed as the
difference between the total energies of the2P1/2 and

2S1/2
states. In the third column of the table, we present the open-
shell DF SCF energies. The fourth column of the table gives
the second-order Dirac-Coulomb correlation energiesEDC

~2! .
In the fifth and sixth columns, we present the first- and
second-order Breit interaction energiesB~1! andB~2!. As for
the lithiumlike ions, the second-order energies are necessar-
ily approximate due to truncation of the partial-wave expan-
sion. As the order of partial-wave expansion increases, the
computed excitation energy smoothly converges to about
3.085 a.u. This value is to be compared with the experimen-
tal value 3.0937 a.u.@32#. A crude estimate of the QED
effects employing the one-electron formula indicates that the
effect of the Lamb shift on the excitation energy will be of
the order of 0.001 a.u. The residual discrepancy between
theory and experiment is attributed to the effects of third-

TABLE III. Ionization potentials and transition energies of Li and Li-like ions~a.u.!.

Ionization potential 2P1/2-
2S1/2 transition energy

Li ~Z53! This work 0.198 05 0.067 783
~0.198 06!a ~0.067 793!a

Ref. @1# 0.198 08 0.067 928
Experimentb 0.198 14 0.067 906

B21 ~Z55! This work 1.393 86 0.220 51
~1.393 89!a ~0.220 51!a

Ref. @1# 1.393 89 0.220 41
Experimentb 1.393 93 0.220 34

Ne71 ~Z510! This work 8.787 00 0.584 48
~8.787 03!a ~0.584 46!a

Ref. @1# 8.787 09 0.584 42
Experimentb 8.786 72 0.583 90

aIonization and transition energies computed by using the extrapolated second-order energies.
bReference@31#.

TABLE IV. Calcualted DF and MBPT energies of F-like calcium in increasing partial-wave expansion
~a.u.!.

DF SCF EDC
~2! B~1! B~2! Total

Lmax52 2P1/2 2621.429 63 20.276 54 0.170 17 20.007 74 2621.543 74
2S1/2 2618.250 83 20.367 78 0.163 59 20.008 01 2618.463 02
EEa 3.080 7

Lmax53 2P1/2 2621.429 63 20.316 61 0.170 17 20.008 52 2621.584 59
2S1/2 2618.250 83 20.402 12 0.163 59 20.008 78 2618.498 13
EEa 3.086 5

Lmax54 2P1/2 2621.429 63 20.330 23 0.170 17 20.008 91 2621.598 60
2S1/2 2618.250 83 20.416 69 0.163 59 20.009 19 2618.513 11
EEa 3.085 5

Lmax55 2P1/2 2621.429 63 20.335 37 0.170 17 20.009 13 2621.603 97
2S1/2 2618.250 83 20.422 09 0.163 59 20.009 43 2618.518 75
EEa 3.085 2
EEb 3.093 7 ~experiment!

aComputed2P1/2-
2S1/2 excitation energy.

bExperimental excitation energy: Ref.@32#.
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order correlation corrections and Lamb shifts neglected in
the present study.

IV. CONCLUSIONS

We have implemented a reliable procedure for performing
relativistic MBPT calculations on ground and excited mul-
tiplet states of atoms and ions. We have chosen the zero-
order Hamiltonian to be the sum of single Fock operators for
the open-shell reference state and developed a relativistic
MBPT method which employs a full implementation of gen-
eralized Mo” ller-Plesset perturbation theory applied to a gen-
eral class of open-shell systems. The generalized Mo” ller-
Plesset perturbation theory provides a hierarchy of well-

defined algorithms that allow one to calculate relativistic
correlation corrections in noniterative steps and, in low or-
der, yields a large fraction of the dynamical correlation. The
state-specific MBPT algorithm has been applied to both
closed- and open-shell systems and has proven to be capable
of accuracy comparable to that of the best MBPT calcula-
tions @1# on then52 states of lithiumlike ions.
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