Calculated energy levels of thallium and eka-thallium (element 113)

Ephraim Eliav and Uzi Kaldor

School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

Yasuyuki Ishikawa

Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, Puerto Rico 00931-3346

Michael Seth and Pekka Pyykkö

Department of Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland (Received 11 January 1996)

Multiconfiguration Dirac-Fock and relativistic coupled cluster results are reported for electron affinities, ionization potentials, and excitation energies of Tl and element 113 and their cations. Large basis sets are used, with *l* up to 6, the Dirac-Fock or Dirac-Fock-Breit orbitals found, and the external 35 electrons of each atom are correlated by the coupled-cluster method with single and double excitations. Very good agreement with experiment is obtained for the Tl transition energies. As in the case of elements 111 [Eliav *et al.*, Phys. Rev. Lett. **73**, 3203 (1994)] and 112 [Eliav, Kaldor, and Ishikawa, Phys. Rev. A **52**, 2765 (1995)], strong relativistic stabilization of the 7*s* orbital is observed for E113, leading to dramatic reduction (relative to Tl) in the energies of excitation from d^{10} to d^9 levels. Thus the $d^{10}s \rightarrow d^9s^2$ energy of E113²⁺ is 0.1 eV, compared to 8 eV for Tl²⁺. It is predicted that divalent or trivalent compounds of E113 with an open 6 d^9 shell could possibly exist. The calculated electron affinities of Tl and E113 are 0.40 ± 0.05 and 0.6-0.7 eV, respectively. [S1050-2947(96)01106-7]

PACS number(s): 31.30.Jv, 31.25.-v, 31.15.Dv, 31.50.+w

I. INTRODUCTION

Superheavy elements, up to eka-gold, element 111 (A = 272), have now been experimentally created [1]. One reason for studying them, apart from the nuclear physics involved, is the hope that the strong relativistic effects for the heavier elements would lend them exotic chemical properties, unknown for their lighter analogs. Indeed, it has already been shown that the eka-gold (E111) atom has a d^9s^2 ground state [2,3] instead of the $d^{10}s^1$ configurations of the lighter coinage metals. Similarly, the divalent eka-mercury (E112) cation has a d^8s^2 ground state instead of the d^{10} of M^{2+} , M=Zn-Hg [4].

Neutral Tl and its ions (up to Tl³⁺) have ground states with a full $5d^{10}$ shell; the excitation energies from the 5dorbital are rather high. We now consider the intriguing possibility that the relativistic stabilization of the 7*s* and destabilization of the 6*d* shell are strong enough to lower open-6*d*-shell states (which have higher 7*s* or 7*p* occupancy) of some E113 (eka-thallium) ions until they become low-lying (or even ground) states. The group 13 element E113 would then behave, at least in the gas phase, like a transition element. Although Dirac-Slater [5] and multiconfiguration Dirac-Fock (MCDF) [6] calculations on the d^{10} states of E113 have been published long ago and its chemistry has been discussed [2,7], this possibility appears to be new.

Numerous calculations have been performed for the energy levels of thallium or its ions [8–17]. The available experimental data include, in addition to standard references [18–20], new data for Tl IV [21]. Experimentally known energy levels and ionization potentials of thallium are calculated here to check the accuracy and provide calibration for the data on E113. The electron affinity of Tl is not known

accurately [20] and the value reported below is expected to provide a standard result.

Accurate theoretical prediction of transition energies in heavy atoms requires high-order inclusion of both relativistic and correlation terms in the Hamiltonian. An *ab initio* relativistic-coupled-cluster (RCC) method incorporating both effects has been applied recently to a series of heavy atoms, including gold [22], mercury [4], several lanthanides and actinides [23], and elements 104 [24], 111 [3], and 112 [4]. Calculated transition energies were in very good agreement with known experimental values, usually within a few hundred wave numbers. Even higher accuracy was obtained for fine-structure splittings.

II. METHOD

The relativistic coupled cluster method has been described in our previous publications [22,25], and only a brief review is given here. We start from the projected Dirac-Coulomb (or Dirac-Coulomb-Breit) Hamiltonian [26,27],

$$H_{+} = H_{0} + V,$$
 (1)

where (in atomic units)

$$H_0 = \sum_i \Lambda_i^+ h_D(i) \Lambda_i^+, \qquad (2)$$

$$h_D(i) = c \,\boldsymbol{\alpha}_i \cdot \mathbf{p}_i + c^2 (\boldsymbol{\beta}_i - 1) + V_{\text{nuc}}(i) + U(i), \qquad (3)$$

$$V = \sum_{i < j} \Lambda_i^+ \Lambda_j^+ (V_{\text{eff}})_{ij} \Lambda_j^+ \Lambda_i^+ - \sum_i \Lambda_i^+ U(i) \Lambda_i^+.$$
(4)

3926

© 1996 The American Physical Society

Here h_D is the one-electron Dirac Hamiltonian. An arbitrary potential U is included in the unperturbed Hamiltonian H_0 and subtracted from the perturbation V. This potential is chosen to approximate the effect of the electron-electron interaction; in particular, it may be the Dirac-Fock self-consistent field potential. The nuclear potential V_{nuc} includes the effect of finite nuclear size. Λ_i^+ are projection operators onto the positive-energy states of the Dirac Hamiltonian h_D . Because of their presence, the Hamiltonian H_+ has normalizable, bound-state solutions. This approximation is known as the no-(virtual-)pair approximation, since virtual electronpositron pairs are not allowed in intermediate states. The form of the effective potential V_{eff} depends on the gauge used. In Coulomb gauge it becomes (in atomic units, correct to the second order in the fine-structure constant α) [28]

$$V_{\rm eff} = \frac{1}{r_{12}} + B_{12} + O(\alpha^3), \tag{5}$$

where the frequency-independent Breit interaction is

$$B_{12} = -\frac{1}{2r_{12}} [\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2 + (\boldsymbol{\alpha}_1 \cdot \mathbf{r}_{12})(\boldsymbol{\alpha}_2 \cdot \mathbf{r}_{12})/r_{12}^2].$$
(6)

In *q*-number theory the Dirac-Coulomb-Breit Hamiltonian H_+ is rewritten in terms of normal-ordered products of the spinor operators, $\{r^+s\}$ and $\{r^+s^+ut\}$ [26,29]

$$H = H_{+} - \langle 0|H_{+}|0\rangle$$
$$= \sum_{rs} f_{rs}\{r^{+}s\} + \frac{1}{4}\sum_{rstu} \langle rs||tu\rangle\{r^{+}s^{+}ut\}, \qquad (7)$$

where f_{rs} and $\langle rs || tu \rangle$ are, respectively, elements of oneelectron Dirac-Fock and antisymmetrized two-electron Coulomb-Breit interaction matrices over Dirac fourcomponent spinors. The effect of the projection operators Λ^+ is now taken over by the normal ordering, denoted by the curly braces in the equation above, which requires annihilation operators to be moved to the right of creation operators as if all anticommutation relations vanish. The Fermi level is set at the top of the highest occupied positive-energy state, and the negative-energy states are ignored.

The no-pair approximation leads to a natural and straightforward extension of the nonrelativistic open-shell coupledcluster (CC) theory. The multireference valence-universal Fock space coupled-cluster approach is employed here, which defines and calculates an effective Hamiltonian in a low-dimensional model (or P) space, with eigenvalues approximating some desirable eigenvalues of the physical Hamiltonian. According to Lindgren's formulation of the open shell CC method [30], the effective Hamiltonian has the form

$$H_{\rm eff} = P H \Omega P, \tag{8}$$

where Ω is the normal-ordered wave operator,

$$\Omega = \{ \exp(S) \}. \tag{9}$$

The excitation operator S is defined in the Fock-space coupled-cluster approach with respect to a closed-shell ref-

erence determinant. In addition to the traditional decomposition into terms with different total (l) number of excited electrons, S is partitioned according to the number of valence holes (m) and valence particles (n) to be excited with respect to the reference determinant,

$$S = \sum_{m \ge 0} \sum_{n \ge 0} \left(\sum_{l \ge m+n} S_l^{(m,n)} \right). \tag{10}$$

The upper indices in the excitation amplitudes reflect the partitioning of the Fock space into sectors, which correspond to the different numbers of electrons in the physical system. This partitioning allows for partial decoupling of the open-shell CC equations, since the equations in each sector do not involve excitation amplitudes from higher sectors. The eigenvalues of the effective Hamiltonian (8) in a sector directly give the correlated energies in that sector with respect to the correlated (0,0) reference state. These transition energies may be ionization potentials, electron affinities, or excitation energies, according to the presence of valence holes and/or valence particles.

In the present application, we use the (0,0), (0,1), (0,2), (1,0), (2,0), and (1,1) sectors. The lower index l in (10) is truncated at l=2. The resulting coupled cluster with single and double excitations (CCSD) scheme involves the fully self-consistent, iterative calculation of all one- and two-body virtual excitations to infinite order. Negative-energy states are excluded from the Q space, and the diagrammatic summations in the CC equations are carried out only within the subspace of the positive-energy branch of the Dirac-Fock spectrum.

III. CALCULATIONS

Preliminary Dirac-Fock (DF) calculations were performed with the GRASP program [31]. A homogeneously charged nuclear model was assumed. The A values are 204 and 277 for Tl and E113, respectively. Both single and multireference calculations were of the optimized level (OL) type. The Breit operator was included by perturbation theory. When possible, the results were compared with those calculated by Desclaux's program [32]. The energies were rounded to the nearest 100 cm⁻¹. In comparison with experiment or with accurate calculations, DF and MCDF results turn out to be of comparable quality.

The Fock-space relativistic-coupled-cluster method was applied to several ionization states of the thallium and element 113 atoms. Three sequences of the open-shell CC calculations were carried out for Tl, starting from the closed-shell systems $Tl^{3+} 5d^{10}$, $Tl^+ 5d^{10}6s^2$, or $Tl^- 5d^{10}6s^26p_{1/2}^2$ (the latter is a closed-shell configuration due to the large relativistic splitting of the *p* shell), and then adding or removing electrons according to the schemes

$$\begin{array}{rcl} \mathrm{Tl}^{3+}(0,0) & \to \mathrm{Tl}^{4+}(1,0) & \to \mathrm{Tl}^{5+}(2,0) \\ & \to \mathrm{Tl}^{2+}(0,1) & \to \mathrm{Tl}^{+}(0,2) \\ & & \to \mathrm{Tl}^{3+}(1,1), \end{array} \tag{11}$$

	Basis	Ref.	S	р	d	f	g	h	i
Tl	35s27p21d15f9g6h4i	[36]	1-35	9-35	13-33	17-31	21-29	24-29	25-28
113	35s26p20d14f9g6h4i	[37]	1–35	9-34	13-32	17-30	21-29	24-29	25-28

TABLE I. Basis sets for Tl and element 113. Members of the well- or even-tempered s-basis series used in the various l sectors are given.

with valence particles (orbitals where electrons are added) 6s and 6p and valence holes (orbitals from which electrons are removed) 5d,

$$Tl^{+}(0,0) \rightarrow Tl^{2+}(1,0) \rightarrow Tl^{3+}(2,0)$$

$$\rightarrow Tl(0,1) \rightarrow Tl^{-}(0,2)$$

$$\rightarrow Tl^{+}*(1,1), \qquad (12)$$

with valence particles 6p and 7s and valence holes 6s, and

$$Tl^{-}(0,0) \rightarrow Tl(1,0) \rightarrow Tl^{+}(2,0),$$
 (13)

with valence holes 6p. Similar schemes are used for element 113, except for some changes in the selection of valence holes and particles in scheme (12) caused by the different relative orbital energies in the heavier atom. Electrons were added in the 7p and 8s orbitals in the (0,1) and (0,2) sectors and removed from 6d and 7s in the (1,0) and (2,0) sectors; a smaller *P* space was used in the (1,1) sector, comprising all one-electron excitations from $6d_{5/2}$ or 7s to $7p_{1/2}$.

The Dirac-Fock [29] and RCC [22,25] programs are both written for spherical symmetry, utilizing the angular decomposition of the wave function and CC equations in a central field. The energy integrals and CC amplitudes which appear in the Goldstone-type diagrams defining the CC equations are decomposed in terms of vector-coupling coefficients, expressed by angular-momentum diagrams, and reduced Coulomb-Breit or *S* matrix elements, respectively. The reduced equations for single and double excitation amplitudes

are derived using the Jucys-Levinson-Vanagas theorem [30] and solved iteratively. This technique makes possible the use of larger basis sets.

To avoid "variational collapse" [33], the Gaussian spinors in the basis are made to satisfy kinetic balance [34]. They also satisfy relativistic boundary conditions associated with a finite nucleus, described here as a sphere of uniform proton charge [29]. The atomic masses used are 204.37 for Tl and 297 for element 113. This higher A value is close to the other expected island of stability for elements around Z = 113 [35]. For excitation processes increasing the number of 7*s* electrons by one, the change of A from 277 to 297 will increase the excitation energy by about 10^2 cm⁻¹. The speed of light *c* is 137.035 99 a.u.

The uncontracted well-tempered basis set of Huzinaga and Klobukowski [36] was used for Tl, and the universal basis set of Malli, DaSilva, and Ishikawa [37] was selected for element 113. The basis sets, which go up to *i* orbitals (l=6), are summarized in Table I. Atomic orbitals with the same *l* but different *k* number (e.g., $p_{1/2}$ and $p_{3/2}$) are expanded in the same basis functions. Correlated shells include the external 35 electrons of each atom, i.e., the 5s5p5d4f6s6p electrons of Tl and the 6s6p6d5f7s7pelectrons of 113. Virtual orbitals with high orbital energies have been found to contribute very little to correlation effects on excitation energies; orbitals higher than 100 a.u. are therefore eliminated from the calculation, effecting considerable savings in computational effort.

The DF and MCDF calculations were carried out in Helsinki, and the RCC computations were done at Tel Aviv University.

TABLE II. Ionization potential (IP), excitation energies (EE), and electron affinity (EA) of Tl (cm⁻¹). Ground state is $6s^26p\ ^2P_{1/2}$. DF — Dirac Fock. B — Breit correction. CP — core polarization. PT — perturbation theory. PP — pseudopotential. MCDF — multiconfiguration Dirac Fock plus Breit correction. RCC1 — relativistic coupled cluster, scheme (12). RCC2 — relativistic coupled cluster, scheme (13).

Method	Ref.	IP	EE						
			$6s^26p(^2P_{3/2})$	$5d^96s^26p^2(^2D_{5/2})$	$6s6p^2(^4P_{1/2})$	$6s^27s(^2S_{1/2})$	$6s^26p^2$		
DF+CP	[8]		7712						
DF+PT	[13]	51 157	8114						
DF+PT	[14]	49 140							
PP	[11]		7409						
PP	[12]		7397						
MCDF ^a		42 400		96 900	34 000				
DF		45 100	7600	98 500	47 700		< 0		
RCC1		49 279	7710			26 456	2677		
RCC2		48 575					3361		
Expt.	[18]	49 264	7793		45 220	26 478			

^aThe number of configurations used is one for the Tl ground state, four for the Tl⁺ ground state, five for Tl ${}^{2}D_{5/2}$, and four for Tl ${}^{4}P_{1/2}$.

TABLE III. Ionization potential (IP) and excitation energies (EE) of Tl cations (cm $^{-1}$). RCC1 — relativistic coupled cluster, scheme (12). RCC3 — scheme (11).

	State	e	Expt.	RCC1	RCC3	DF	Other
			Tl ⁺ , grour	nd-state $5d^{10}6$	$s^2 {}^1S_0$		
IP		2 -	164 765	165 062	165 568	148 400	
EE	6 <i>s</i> 6 <i>p</i>	${}^{3}P_{0}$	49 451	50 663	49 468	38 300	
		$^{5}P_{1}$	52 393	53 772	52 464		46 703 [15]
							51 /80 [10] 52 110 [17]
		^{3}P	61 725	63 283	61 931		52 110 [17]
		${}^{1}P_{1}^{2}$	75 660	77 673	76 392		74 670 [15]
		- 1	10 000		10072		77 436 [10]
							75 358 [17]
	$5d^96s^26p$	${}^{3}F_{2}$	110 387			104 600	
			Tl ²⁺ , groun	id-state $5d^{10}6$	$s^{1} {}^{2}S_{1/2}$		
IP	10		240 600	240 520	241 073	227 100	237 700 [9]
EE	$5d^{10}6p_{1/2}$	${}^{2}P_{1/2}$	64 157		64 668		
	$5d^{10}6p_{3/2}$	${}^{2}P_{3/2}$	78 970	<5 0 10	79 568	51 000	
	$5d^{5}6s^{2}$	${}^{2}D_{5/2}$		65 942		71 000	
		$^{2}D_{3/2}$		84 316			
п			Tl^{3+} , gro	ound-state $5d^1$	$^{0}{}^{1}S_{0}$	207 500	
IP EE	- 19-	3 D	409 100	75 257	408 582	397 500	
EE	5d-6s	${}^{5}D_{3}$	15 052	15 351	/3 407	/6 100	
		$^{2}D_{2}$	/8 04 /	/8 915	// 105 02 307		
		$^{1}D_{1}$	95 070	94 343	92 307		
	$5d^{9}6n$	$J=2^{D_2}$	147 635)1 201	147 092		
	Su op	J=3	149 841		149 417		
		J=2	166 425		166 295		
		J = 1	167 499		167 365		
		J = 4	167 672		167 441		
		J=2	170 334		170 142		
		J=3	172 272		172 313		
		J=1	175 290		174 855		
		J=0 I=2	181 083		183 141		
		J=3 I=0	188 233		188 455		
		I=0	190 144		190 417		
	$5d^86s^2$	J=4	190 144	164 877	190 417		
		J=2		173 975			
		J = 3		182 432			
		J = 0		188 597			
		J=2		190 192			
		J=1		194 508			
		J=4		198 483			
		J = 2 J = 0		208 031 237 061			
			T14+		² D		
IP			11 [°] , gro	und-state $5d^2$	D _{5/2} 528 479	517 200	
EE	$5d^{9}$	${}^{2}D_{3/2}$			19 140	18 200	
	$5d^{8}6s$	${}^{4}F_{9/2}$				96 400	
	$5d^{7}6s^{2}$	${}^{4}F_{9/2}$				220 200	
			Tl ⁵⁺ , gro	bund-state $5d^8$	${}^{3}{}^{3}F_{4}$		
EE	$5d^{8}$	${}^{3}F_{2}$			8695		
		${}^{3}F_{3}$			18 268		
		${}^{3}P_{0}$			24 255		
		$^{3}P_{2}$			26 126		
		$^{5}P_{1}$			30 519		
		$^{1}\sigma_{4}$			54 /07 11 338		
		$^{1}S_{2}$			74 284		
		50			17 407		

TABLE IV. Ionization potentials and excitation energies of element 113 and its ions (cm⁻¹). RCC1 — relativistic coupled cluster, scheme (12). RCCB1 — same, including the Breit term (6). RCC2 — scheme (13). RCCB3 — scheme (11), Breit term included. MCDF — multiconfiguration Dirac-Fock (N_l and N_u are the number of configurations for the lower and upper states, respectively).

	State		RCC1	RCCB1	RCC2	DF	MCDF	N_l, N_u
IP (EA	A of 113)		113 ⁻ , gro 5143	ound-state 7 <i>s</i> 5035	${}^{2}7p_{1/2}^{2} {}^{3}P_{0}$ 5919	800		
IP EE	$7s^27p_{3/2}$ $7s^28s$ $7s7p_{3/2}^2$	${}^{2}P_{3/2}$ ${}^{2}S_{1/2}$ ${}^{2}S_{1/2}$	113, ground 59 417 22 831 35 401	-state 6d ¹⁰ 7. 59 115 22 528 35 124	$s^{2}7p_{1/2} {}^{2}P_{1/2}$ 58 810	57 200 25 100	53 900 54 500	1,4
	$6d^97s^27p^2$	${}^{2}D_{5/2}^{1/2}$				47 400	46 600	1,5
			112 ⁺ are	ound state 6	d ¹⁰ 7 c ² 1 c			
			115 , gio	Junu-state 07	RCCB3			
IP			193 513	193 053	192 646	177 300	180 600	4,1
EE	$6d^97s^27p_{1/2}$	J = 2	59 870	60 927		51 600	54 200	4,4
	10	J = 3	62 943	63 972				
	$6d^{10}7s7p_{1/2}$	J = 0	62 598	63 051	61 245	50 000	52 400	4,10
	$6d^{10}7s7n_{2}$	J = 1 I = 2	08 080	08 489	00 808 92 208			
	0 <i>u</i> 7 <i>s</i> 7 <i>p</i> 3/2	J = 1			107 182			
			1122+	1 -+-+- (4107 - 2 C			
IP			270 167	269 706	271.096	258 500	255 000	13
EE	$6d_{3/2}^46d_{5/2}^57s^2$	${}^{2}D_{5/2}$	236	933	271 090	5000	255 000	1,5
	$6d_{3/2}^{3/2}6d_{5/2}^{6/2}7s^2$	${}^{2}D_{3/2}^{3/2}$	31 066	31 411				
	$6d^{10}7p_{1/2}$	${}^{2}P_{1/2}$			74 779			
	$6d^{10}7p_{3/2}$	${}^{2}P_{3/2}$			111 044			
			113^{3+} ,	ground-state	$6d^{10} S_0$			
IP				-	366 312	355 300	353 500	3,10
EE	$6d^{9}7s$	${}^{3}D_{3}$	5384	6025	3213	4400	7900	3,2
	< 18 - 2	$^{3}D_{2}$	8748	9477	8738			
	$6d^{67}/s^2$	J=4	18 185	19 561				
	$6d^{9}7s$	J - 2 I = 1	23 187 37 845	20 521	35 093			
	$6d^87s^2$	J = 0	42 705	43 970	55 675			
	$6d^97s$	J = 2	43 612	44 077	38 721			
		J = 3	48 708	49 723				
		J=2	57 002	57 938				
		J = 1	58 780	59 797				
	$6d^{9}7n$	J=4 I=2	01 959	62 965	85 322			
	$6d^{9}7p_{3/2}$	J = 3			88 789			
			1124+		c 19 2 D			
IP			113*', g	ground-state	$6d^{2} D_{5/2}$ 471 338	458 400	460 100	10.15
EE	$6d^{8}7s$	${}^{4}F_{0/2}$			471 550	11 500	14 700	10,15
EE	$6d^9$	${}^{2}D_{3/2}$			31 836	30 100	22 200	10,10
	$6d^77s^2$	${}^{4}F_{9/2}$				46 200	49 800	10,3
			113 ⁵⁺	ground-state	$6d^{8} {}^{3}F$			
EE	$6d_{3/2}^46d_{5/2}^4$	${}^{3}F_{2}$, ,	Bround state	4980			
	512 512	${}^{3}P_{0}^{2}$			21 552			
	2 5	${}^{3}F_{3}$			31 711			
	$6d_{3/2}^{3}6d_{5/2}^{5}$	${}^{3}F_{2}$			37 108			
		${}^{5}P_{1}$			39 461			
	$6d_{2}^{2}6d_{2}^{6}$	${}^{1}D_{2}$			68 692			
	54 3/204 5/2	${}^{1}S_{0}^{2}$			92 441			

calculations, scheme (13). The Breit-corrected results were used in the case of E113.

TABLE V. Properties of group 13 elements (eV). Experimental data from Ref. [19]; calculated data, present work. In order to give the best possible results for E113, the results quoted are those that correspond to the values calculated for Tl that agree best with experiment, i.e., IP1 to IP3 are from the RCC1 calculations, scheme (12), IP4 is from the RCC3 calculations, scheme (11), and the EA's are from the RCC2

Property	B(expt)	Al(expt)	Ga(expt)	In(expt)	Tl(expt)	Tl(calc)	113(calc)
EA	0.277(10)	0.441(10)	0.30(15)	0.3(2)	0.2(2)	0.40(5)	0.68(5)
IP1	8.298	5.986	5.999	5.786	6.108	6.110	7.306
IP2	25.155	18.829	20.514	18.870	20.428	20.47	23.96
IP3	37.931	28.448	30.71	28.03	29.83	29.83	33.47
IP4	259.375	119.992	64.2 ^a	54.4 ^a	50.7 ^a	50.66	45.42

^aReference [18].

IV. RESULTS AND DISCUSSION

A. Tl

The ionization potential, electron affinity, and several excitation energies of neutral Tl are reported and compared with experiment and previous calculations in Table II. The DF values are off by 2000-4000 cm⁻¹; the RCC results (the Breit term is expected to be small and is therefore left out) show better agreement, with values obtained by using Tl⁺ as reference [scheme (12)] falling within 100 cm⁻¹ of experiment. The ionization potential calculated by scheme (13) is off by 700 cm⁻¹; this is not surprising, since Tl⁺ orbitals are expected to be more suitable for describing ionization (and excitation) than those of Tl⁻. It is interesting to note that the lowest d^9 state is very high, about 12 eV above the ground state. The electron affinity of Tl is not known experimentally; Hotop and Lineberger [20] provide a rough, semiempirical estimate of 0.2(2) eV. A previous calculation [38] using pseudopotentials and nonrelativistic configuration interaction in the valence shell obtained 0.27 eV; the neglect of spin-orbit interaction in the Tl atom may introduce significant error. Our calculations with Tl - orbitals predict an electron affinity of 0.42 eV. These results are expected to be more reliable than the value of 0.33 eV obtained with Tl^+ orbitals. The difference between these values indicates the precision of the CCSD calculations; we therefore put our electron affinity (EA) at 0.40 ± 0.05 eV. The smallest EA of an alkali metal Cs is 0.4716 eV. Compounds with the ceside ion Cs⁻ have been made. One could thus speculate [39] that molecular Tl⁻ compounds could also be made.

Ionization potentials and excitation energies of Tl cations are reported in Table III. The DF results differ from experiment by 1000–17 000 cm⁻¹. RCC results agree with available experimental data to a few hundred wave numbers, even for the very high levels of Tl³⁺. There is a large separation between d^9 and d^{10} levels for all ions, with the former higher by 70 000–100 000 cm⁻¹.

B. Element 113

The first, Dirac-Slater calculation of the ionization potential of element 113 gave 39 200 cm⁻¹ [5]. MCDF (point nucleus, average level) calculations by Pyper and Grant [6] predicted 57 300 cm⁻¹, which is closer to the RCC value. Ionization potentials and excitation energies of the atom and its cations are collected in Table IV. The salient feature of the results is the relativistic stabilization of the 7*s* and 7*p* orbitals relative to the 6d, in line with the previous observations [3,4]. This stabilization is not sufficient to change the ground-state electron configuration, with the possible exception of the dication, and all E113 species have ground states with a maximum 6d occupancy. The excitation energies from $6d^n(7s+7p)^m$ to $6d^{n-1}(7s+7p)^{m+1}$ are, however, much lower than for TI: 5.8 eV for neutral E113 vs 12.2 eV for Tl, 7.4 vs 13.7 eV for the monocations (the d^9s^2p is the first excited state of E113⁺, whereas Tl⁺ has several lowerlying $d^{10}sp$ states), 0.7 vs. 9.3 eV for the triply charged ion, and 1.8 eV for E113⁴⁺ compared to 12 eV for Tl⁴⁺. It should be noted that the numbers quoted for the neutral and quadruply charged species are DF values and may have larger errors than RCC results, but the trend is clear. Of special interest is the doubly charged ion. While the $d^{10}s \rightarrow d^9s^2$ excitation energy of Tl²⁺ is 66 000 cm⁻¹, the corresponding value for $E113^{2+}$ is a mere 900 cm⁻¹, and it is conceivable that more accurate calculations may reverse the order and produce a d^9s^2 ground state.

The stabilization of the 7*s* orbital and the relatively low $d^{10} \rightarrow d^9$ excitation energies in E113²⁺ and E113³⁺ mean that d^9 states may play an important role in compounds of the element. Thus the E113²⁺ ($6d^97s^2$) ion could form compounds which are chemically analogous to both Cu²⁺ ($3d^9$) and Tl⁺ ($6s^2$) compounds. For Tl²⁺ this configuration is energetically more remote. One Tl²⁺ compound with an unpaired electron has been reported and structurally characterized [40] but no theoretical analysis of the electronic structure of its Pt²⁺–Tl²⁺–Pt²⁺ core has been performed. The electron paramagnetic resonance spectrum suggests that the unpaired electron is in a 6s6p hybrid orbital. This shows that the main-group element thallium can have open-shell compounds.

Finally, the calculated electron affinity of E113 is about 0.68 eV, which is significantly higher than for Tl, due to the relativistic stabilization of the $7p_{1/2}^2$ shell. The appearance of the element as an anion is even more likely than for Tl.

The ionization potentials and electron affinities of all group 13 elements are shown in Table V. Only B and Al have reliable experimental electron affinities. In order to map the periodic trends, modern measurements for Ga, In, and Tl would be most welcome. The periodic trend for IP2 and IP3 shows a "secondary periodicity." This term was introduced by Biron [41] in 1915 to characterize the empirically observed similarity of chemical properties for every *second* row in a given column of the periodic system. It was later shown

[42] that the anomalously strong binding of the 4s and 4p valence electrons in row 4 elements is caused by the d-shell (or "scandide") contraction due to filling of the 3d shell. The anomalously strong binding of the 6s and 6p electrons in row 6 is due to both relativistic effects and the lanthanide contraction (filling of the 4f shell) [42,43]. The result is that both Ga and Tl show higher values of the first three consecutive ionization potentials than indium, situated between them.

V. SUMMARY AND CONCLUSION

Ionization potentials, excitation energies, and electron affinities of Tl and element 113 are calculated. Very good agreement with the known EE's and IP's of Tl and its ions is obtained. The EA of Tl is estimated at 0.40 ± 0.05 eV, which is probably more accurate than the semiempirical estimate of 0.2(2) eV [20]. This relatively high value raises the possibility of Tl⁻ compounds. The E113 levels are characterized by considerable relativistic stabilization of the 7*s* and 7*p* orbitals relative to 6*d*, leading to dramatic decreases of $d^n(s+p)^m \rightarrow d^{n-1}(s+p)^{m+1}$ excitation energies relative to Tl. These excitation energies are particularly low for E113⁺² and E113⁺³, 0.1 and 0.7 eV, respectively. It is therefore possible that the E113²⁺ (6d⁹7*s*²) ion will form compounds resembling at the same time both Cu²⁺(3d⁹) and Tl⁺(6*s*²) compounds. The calculated EA of E113 is 0.6–0.7 eV.

ACKNOWLEDGMENTS

The research reported above was supported at TAU by the U.S.-Israel Binational Science Foundation. Y.I. was supported by the National Science Foundation through Grant No. PHY–9008627. The stay of M.S. at Helsinki is supported by CIMO, Finland. P.P. holds a Research Professorship of The Academy of Finland.

- [1] S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, and M. Leino, Z. Phys. A **350**, 281 (1995).
- [2] B. Fricke, W. Greiner, and J. T. Waber, Theor. Chim. Acta (Berlin) 21, 235 (1971).
- [3] E. Eliav, U. Kaldor, P. Schwerdtfeger, B. A. Hess, and Y. Ishikawa, Phys. Rev. Lett. 73, 3203 (1994).
- [4] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A. 52, 2765 (1995).
- [5] B. Fricke and G. Soff, At. Data Nucl. Data Tables 19, 83 (1977).
- [6] N. C. Pyper and I. P. Grant, Proc. R. Soc. (London) Ser. A 376, 1766 (1981).
- [7] O. L. Keller, Jr., J. L. Burnett, T. A. Carlson, and C. W. Nestor, Jr., J. Phys. Chem. 74, 1127 (1970).
- [8] J. Migdalek and W. E. Baylis, Can. J. Phys. 59, 769 (1981).
- [9] J. Migdalek and W. E. Baylis, Can. J. Phys. 60, 1317 (1982).
- [10] J. Migdalek and W. E. Baylis, J. Phys. B 18, 1533 (1985).
- [11] R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 93, 6654 (1990).
- [12] W. Küchle, M. Dolg, H. Stoll, and H. Preuss, Mol. Phys. 74, 1245 (1991).
- [13] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 20, 1399 (1987).
- [14] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 42, 3751 (1990).
- [15] H.-S. Chou and K.-N. Huang, Phys. Rev. A 45, 1403 (1992).
- [16] A. V. Loginov, Opt. Spektrosk. 72, 296 (1992); 72, 161 (1992).
- [17] T. Brage, D. S. Leckrone, and C. Froese Fischer, Phys. Rev. A 53, 192 (1996).
- [18] C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C., 1952), Vol. II and Vol. III (1958).
- [19] Handbook of Chemistry and Physics, 74th ed., edited by D. R.

Lide (CRC Press, Boca Raton, Florida, 1993).

- [20] H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975); 14, 731 (1985).
- [21] Y. N. Joshi, A. J. J. Raassen, and A. A. Van der Valk, Can. J. Phys. 68, 284 (1990).
- [22] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).
- [23] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 51, 225 (1995); 52, 291 (1995).
- [24] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. Lett. 74, 1079 (1995).
- [25] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 50, 1121 (1994).
- [26] J. Sucher, Phys. Rev. A 22, 348 (1980); Phys. Scr. 36, 271 (1987).
- [27] W. Buchmüller and K. Dietz, Z. Phys. C 5, 45 (1980).
- [28] I. Lindgren, in Many-Body Methods in Quantum Chemistry, edited by U. Kaldor, Lecture Notes in Chemistry, Vol. 52 (Springer-Verlag, Heidelberg, 1989) p. 293.
- [29] Y. Ishikawa and H. M. Quiney, Phys. Rev. A 47, 1732 (1993);
 Y. Ishikawa, *ibid.* 42, 1142 (1990);
 Y. Ishikawa, R. Baretty, and R. C. Binning, Chem. Phys. Lett. 121, 130 (1985).
- [30] I. Lindgren and J. Morrison, *Atomic Many-Body Theory*, 2nd ed. (Springer-Verlag, Berlin, 1986).
- [31] K. G. Dyall, I. P. Grant, F. A. Parpia, and E. P. Plummer, Comput. Phys. Commun. 55, 425 (1989).
- [32] J. P. Desclaux, Comp. Phys. Commun. 9, 31 (1975).
- [33] W. Kutzelnigg, Int. J. Quantum Chem. 25, 107 (1984).
- [34] R. E. Stanton and S. Havriliak, J. Chem. Phys. 81, 1910 (1984).
- [35] G. Herrmann, Angew. Chem. Int. Ed. Engl. 34, 1713 (1995). See Fig. 3.
- [36] S. Huzinaga and M. Klobukowski, Chem. Phys. Lett. 212, 260 (1993).
- [37] G. L. Malli, A. B. F. Da Silva, and Y. Ishikawa, Phys. Rev. A 47, 143 (1993).
- [38] F. Arnau, F. Mota, and J. J. Novoa, Chem. Phys. **166**, 77 (1992).

- [39] P. Pyykkö, Chem. Rev. 88, 563 (1988). See Fig. 18.
- [40] R. Usón, J. Forniés, M. Tomás, R. Garde, and P. J. Alonso, J. Am. Chem. Soc. 117, 1837 (1995).
- [41] E.V. Biron, Zh. Russ. Fiz. Khim. Ova. 47, 964 (1915).
- [42] P. Pyykkö, J. Chem. Res. (S) 380 (1979).
- [43] P.S. Bagus, Y.S. Lee, and K.S. Pitzer, Chem. Phys. Lett. 33, 408 (1975).