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Master equations are derived for the time evolution of density-matrix elements characterizing atoms inter-
acting with classical radiation fields that drive transitions between electronic-state manifolds of levels. The
atomic center-of-mass motion is quantized and recoil accompanying absorption, stimulated emission, and
spontaneous emission is included. An adiabatic elimination of the optical coherences is used to obtain quantum
rate equations for ground- and excited-state density-matrix elements. Subsequent adiabatic elimination of
excited-state density-matrix elements results in rate equations for the slow evolution of ground-state density-
matrix elements. It is shown that recoil during spontaneous emission mixes spatial and internal atomic degrees
of freedom.

PACS number~s!: 32.80.Wr, 32.70.Fw, 32.90.1a

I. INTRODUCTION

Rate equations were derived recently@1# to characterize
the interaction of atoms with classical radiation fields which
drive transitions between two electronic-state manifolds. The
density-matrix equations derived in@1# include all complica-
tions arising from fine structure, hyperfine structure, and
magnetic-state degeneracy. They can be applied to a wide
range of spectroscopic problems. Solutions of the density-
matrix equations enable one to calculate expectation values
of physical observables that can be compared directly with
experimental data for specific atomic transitions. The equa-
tions were used to calculate the transient response of atoms
to a set of radiation pulses in both the weak@2# and strong
@3# field limits. The equations derived in@1# were written
using an irreducible tensor representation for density-matrix
elements. In this representation the transformation properties
of the equations under rotation are easily established. These
transformation properties allow one to identify tensors asso-
ciated with the polarization vectors of the incident fields.

The purpose of this article is to generalize the results of
@1# to include quantization of the atomic center-of-mass mo-
tion. One can point out a number of problems where such
quantum equations can be applied. Among them are different
types of recoil-induced resonances~RIR! @4–9# , scattering
of atoms from standing wave fields~so-called resonant
Kapitza-Dirac effect! @10–14#, wave-matter interference
@15–19#, atomic Talbot effect@19–22#, grating stimulated
echo~GSE! @23#, and magnetic grating echo~MGE! @2#. For
the most part, these phenomena have been observed using
alkali-metal atoms, where hyperfine splitting and magnetic-
level degeneracy can play an important role. The recoil an
atom undergoes on the emission or absorption of radiation
@24# lies at the heart of these effects~recoil is not critical to
the GSE and MGE! and requires consideration of atomic
center-of-mass motion for multilevel atoms.

One distinguishes two kind of effects relevant to atomic
center-of-mass motion quantization: recoil during stimulated
interaction with fields~STR! @24# and recoil during sponta-
neous emission~SPR! @25#. An inclusion of the STR in mas-

ter equations for multilevel atoms can be carried out in the
same manner as that for ‘‘two-level’’ atoms@24#. Spontane-
ous emission leads to both ‘‘in’’ terms and ‘‘out’’ terms in the
density-matrix equations. The out term characterizes excited-
state decay with a rateG that is independent of the magnetic
quantum number and total angular momentum of the hyper-
fine sublevels. The in term, representing repopulation of
ground-state levels resulting from spontaneous emission, is
more complex@1,26,27#. The in terms depend on the total
angular momenta of the initial and final hyperfine sublevels
involved in the given radiative transition. In the absence of
recoil, however, one finds that, after averaging over final
states of the field, the in term is diagonal when the atomic
density matrix is expanded in a spherical tensor basis
$K,Q%. On average, spontaneous emission acts as a scalar.

When recoil is included, there is a correlation between the
spontaneously emitted radiation and the atomic center-of-
mass motion. As a consequence, it is no longer a simple
matter to average over final states of the field. One finds that,
with the inclusion of recoil, spontaneous emission mixes
states having different$K,Q% @28#. The resulting in term was
obtained previously@28,29# for transitions between a ground
and an excited state, each having a given total angular mo-
mentum. Even though the extension to manifolds of ground
and excited states is straightforward, we present the deriva-
tion for the purpose of completeness. Moreover, a derivation
of the in term has not been published previously, to our
knowledge. Having obtained the master equations, we adia-
batically eliminate certain density-matrix elements, to obtain
rate equations for ground- and excited-state density-matrix
elements.

This paper is arranged as follows. In Sec. II the in-term
derivation is given. In Secs. III and IV rate equations and
ground-state density-matrix equations are obtained, respec-
tively. A discussion of the results is given in Sec. V.

II. IN TERM

Consider radiative decay of an excited atom to its ground
state. If one neglects antiresonant terms and introduces an
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interaction representation for the field, he arrives at an atom-
quantized field Hamiltonian

H5~eG1ep!uG,mg ,p&^G,mg ,pu1~eH1ep!uH,mh ,p&

3^H,mh ,pu2$ i\ f k@e„l,k!•d#a~l,k…

3exp~ ik–r2 ivkt !1H.c.%, ~2.1!

whereG,mg andH,mh specify the total angular momenta
and magnetic quantum numbers of the ground and excited
states, respectively,p is the atomic center-of-mass momen-
tum, eF is the internal atomic energy of stateuF& (F5G or
H), ep5p2/2m is the kinetic energy of stateup&, m is the
atomic mass,a(l,k… ande„l,k) are the annihilation operator
and unit polarization vectors for a radiation mode having
wave vectork, polarizationl (l51 or 2!, and frequency
vk , d is a dipole moment operator,f k5@2pvk /\V #1/2,
andV is a quantization volume. A summation convention is
implicit in Eq. ~2.1! that will be used in all subsequent equa-
tions, in which repeated indices and symbols appearing in
the right-hand-side~rhs! of an equation are to be summed
over, unless they also appear on the left-hand side~lhs! of the
equation.

In an interaction picture, the amplitude for an atom to
decay to the ground state via radiation in a given mode
(l,k) evolves as

ḃ~k,l;G,mg ,p,t !5 f k* exp@ i ~vk2vHG2vp1\k,p!t#

3@e* „l,k…–^G,mguduH,mh&#

3b~H,mh ,p1\k,t !, ~2.2!

wherevHG5(eH2eG)/\ is theH→G transition frequency,

vpp85~ep2ep8!/\

is a transition frequency between atomic center-of-mass mo-
menta states, andb(H,mh ,p,t) is an excited-state amplitude.
In the Weisskopf-Wigner approximation, the in term

r̄~G,mg ,p;G8,mg8 ,p8; in![
d

dt
@b~k,l;G,mg ,p,t !

3b* ~k,l;G8,mg8 ,p8,t !# ~2.3!

is given by

r̄~G,mg ,p;G8,mg8 ,p8; in![2pF~ t !u f ku2d~vk2v̄ !eq~l,k!eq8
* ~l,k!^G,mgudq8uH,mh&

3^G8,mg8udquH8,mh8&* r~H,mh ,p1\k;H8,mh8 ,p81\k…, ~2.4!

F~ t !5exp~ iDvt !, ~2.4a!

where Dv5vH8G81vp81\k,p82vHG2vp1\k,p ,v̄ is some
average value of transition frequenciesvHG1vp1\k,p and
vH8G81vp81\k,p8, andeq anddq are spherical components
of vectorse andd, respectively, defined by

e61~l,k!57@ex~l,k!6 iey~l,k!#/A2,

e0~l,k!5ez~l,k!,

d6157~dx6 idy!/A2, d05dz . ~2.5!

In the ‘‘normal’’ representation, r(F,mf ,p;F8,mf8 ,p8)
5exp@2i(vFF81vpp8)t#r̄(F,mf ,p;F8,mf8 ,p8), the phase
factorF is absent in Eq.~2.4!.

The sum over magnetic quantum numbers can be carried
out using density-matrix elements in an irreducible tensor
basis defined by

rQ
K~F,F8;p,p8!5~21!F2m@K#S F F8 K

m 2m8 2QD
3r~F,mf ,p;F8,mf8 ,p8!, ~2.6!

where ( ) is a 32J symbol and

@X1
~n1!

•••Xs
~ns!#[@~2X111!~n1!

•••~2Xs11!~ns!#1/2.
~2.7!

In this representation one finds

rQ
K~G,G8;p,p8; in!5~21!K1K̄1Q811S K K8 K̄

Q 2Q8 Q̄
D

3@H,H8,K,K8,K̄#g~H,H8;G,G8!
3

8p H K K8 K̄

G H 1

G8 H8 1
J E dnE

Q̄

K̄
~n!rQ8

K8~H,H8;p1\k,p81\k…,

~2.8!

53 391ATOM-FIELD INTERACTIONS: DENSITY-MATRIX . . .



where

g~H,H8;G,G8!54dGHdG8H8
* v̄3/3@H,H8#\c3, ~2.9!

$ % is a 92J symbol,

n5k/k,

EQ
K~n!5eQ

K~e~l,k!,e~l,k!!, ~2.10!

eQ
K~A,B!5~21!K1q@K#S 1 1 K

q q8 QDA2qBq8
* ~2.11!

andAq andBq are spherical components of the vectorsA
andB. There is no summation overk in Eq. ~2.10! ~since
n5k/k, the vectork appears implicitly in the lhs of this
equation!.

Using the relation

(
l

eq~l,k…eq8
* ~l,k…5dqq82nqnq8 ~2.12!

one can reexpressEQ
K(n) as

EQ
K~n!52A3dK0dQ02eQ

K~n,n…. ~2.13!

For a real vector n, having spherical components
nq*5(21)qn2q , one can show that

EQ
K~n!5~21!KEQ

K~n!, ~2.14!

which implies that only even multipoles (K50 or 2! are
nonvanishing. The functionEQ

K is an irreducible tensor of
rank K. The only irreducible tensor of rankK, which is a
function of n, is the spherical harmonicYKQ(n…; conse-
quentlyEQ

K(n) has to be proportional toYKQ(n…. The coef-
ficients of proportionality can be obtained if one compares
these tensors for n5n05(0,0,1), where EQ

K(n)5
2A2/3(A2dK01dK2)dQ0 , YKQ(n)5A(2K11)/4pdQ0 . As
a result one arrives at an expression for the in term~2.8!:

rQ
K~G,G8;p,p8; in!5~21!Q8S K K8 K̄

Q 2Q8 Q̄
D

3BK̄I ~K,K8,K̄;G,G8;H,H8!

3
3

8pE dnYK̄Q̄~n!

3rQ8
K8~H,H8;p1\k,p81\k!,

~2.15!

I ~K,K8,K̄;G,G8;H,H8!5~21!K@H,H8,K,K8,K̄#

3g~H,H8;G,G8!

3H K K8 K̄

G H 1

G8 H8 1
J , ~2.15a!

BK̄5A16p/3d K̄01A8p/15d K̄2 . ~2.15b!

The integration over directionsn can be carried out if one
transforms to an ‘‘s2u’’ ‘‘coordinate’’ representation defined
by

rQ
K~F,F8;s,u!5E dpdp8

~2p\!3
expH i

\ F ~p2p8!•s

1
p1p8

2
•uG J rQ

K~F,F8;p,p8!. ~2.16!

Using Eqs.~2.15! and ~2.16!, and expanding the spherical
harmonics in terms of plane waves@30#, one finds

rQ
K~G,G8;s,u; in!5~21!Q8S K K8 K̄

Q 2Q8 Q̄
D

3B̄K̄I ~K,K8,K̄;G,G8;H,H8! j K̄~ku!

3YK̄Q̄~nu!rQ
K~H,H8;s,u!, ~2.17!

B̄K̄5A12pd K̄02A6p/5d K̄2 , ~2.17a!

where j s(x) is a spherical Bessel function of orders and
nu5u/u.

When recoil during spontaneous emission is negligible
@\k!min(p,p8) in Eq. ~2.15! or k!u21 in Eq.(2.17)], only
the term withK̄50 contributes in Eqs.~2.15! or ~2.17!, and
one finds

rQ
K~G,G8;p,p8; in!5~21!K1H1G811@H,H8#

3H H H8 K

G8 G 1 J g~H,H8;G,G8!

3rQ
K~H,H8;p,p8! ~2.18!

($ % is a 62J symbol!, coinciding with the equation obtained
for atoms moving along classical trajectories@1#. The in term
is now diagonal with respect toK and Q—spontaneous
emission acts as a scalar, on average.

Owing to recoil, the scalar nature of spontaneous emis-
sion is broken for given excited-state momentap,p8. As a
result, the in term mixes different$K,Q% multipoles. For
transitions in which there is only one value ofG and only
one value ofH (H5H8,G5G8) the in terms~2.15! or
~2.17! can be derived from that obtained in@28#. In this case,
the 92J symbol is invariant if multiplied by a factor

(21)K1K81K̄. SinceK̄ is even, only transitions satisfying

K2K850 or 2 ~2.19!

are allowed@28#. When coherences between sublevels hav-
ing different angular momenta are included (HÞH8 or G
ÞG8), the selection rule~2.19! no longer holds and transi-
tions between multipoles with opposite parity
(K2K8561) are also possible.

The general expressions~2.15! or ~2.17! for the in term
must be used when one considers interaction with noncolin-
ear radiation fields; however, when atoms interact with fields
propagating along a given direction it is possible to reduce
the equations to one dimension. Taking the quantization axis
ẑ along the field propagation direction and assuming that the
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atomic momentum distribution in the transverse directions is
much wider than the recoil momentum, one can write

rQ
K~F,F8;p,p8!5@~2p\!2V 22/3#d~p'2p'8 !

3W~p'…rQ
K~F,F8;p,p8!, ~2.20!

where p'5(px ,py), W(p'… is the transverse distribution
function having widthDp'@\k , andp5(p…z , p85(p8…z .
In this limit, the transverse momentum distribution can be
eliminated from all the equations. After the transverse distri-
bution function is eliminated in Eq.~ 2.15!, one can integrate
over azimuthal anglef to obtain

rQ
K~G,G8;p,p8; in!5~21!QS K K8 K̄

Q 2Q 0
D

3B
K̄

a
I ~K,K8,K̄;G,G8;H,H8!

3E
21

1

dxPK̄~x!

3rQ
K8~H,H8;p1\kx,p81\kx!,

~2.21!

B
K̄

a
5A3/2d K̄01A3/8d K̄2 , ~2.21a!

wherePl (x) is a Legendre polynomial of orderl . In the
‘‘ s2u’’ representation the in term can be expressed as

rQ
K~G,G8;s,u; in!52~21!Q1K̄/2

3S K K8 K̄

Q 2Q 0
D

3B
K̄

a
I ~K,K8,K̄;G,G8;H,H8! j K̄~ku!

3rQ
K8~H,H8;s,u!. ~2.22!

The one-dimensional in term in momentum space~2.21! has
been used by Castinet al. @31# and Guo and Berman@8# for

G50→H51 and G51→H52 transitions, respectively,
and a term similar to Eq.~2.22! has been used by Tan and
Walls @14# in a two-level model with an in term proportional
to the Bessel functionj 2(ku).

The in term can be simplified also when fields propagate
in a plane~two-dimensional case!. For aG5 1

2→H5 3
2 tran-

sition, the in term has been derived by Castinet al. @32# and
used in their analysis of two-dimensional sub-Doppler cool-
ing.

III. RATE EQUATIONS

Consider now interactions of atoms with a nearly resonant
field having amplitude

E„r ,t)5
1

2
E~ j !e~ j ! exp@ i ~k j•r2iV j t !1c.c. ~3.1!

The field consists of a set ofN traveling waves having am-
plitudeE( j ), frequencyV j , propagation vectork j , and po-
larization vectore( j ) @1< j<N in Eq. ~3.1!#. In the rotating
wave approximation, the Hamiltonian for the atom-field in-
teractionV52d–E(r ,t) has matrix elements given by

^H,mh,puVuG,mg,p8&5A3~21!H2mg11S H 1 G

2mh q mg
D

3\xHG
~ j ! e2q

~ j ! exp@2 iDHG
~ j ! t#

3d~p2p82\k j !, ~3.2!

where xHG
( j ) 5dHGE

( j )/2A3\ and DHG
( j ) 5V j2vHG are the

Rabi frequency and detuning of fieldj . Matrix elements are
written in an ‘‘interaction picture’’ with respect to the inter-
nal degrees of freedom only, defined by

r̃Q
K~F,F8;p,p8!5exp~ ivFF8t !rQ

K~F,F8;p,p8!. ~3.3!

Using Schro¨dinger’s equations, one finds that density-
matrix elements evolve according to

S ]

]t
1 ivpp8D r̃Q

K~G,G8;p,p8!5eivGG8trQ
K~G,G8;p,p8; in !1 i @1,K,K8#~21!Q8S K K8 1

Q 2Q8 qD
3S ~21!G1G811xHG8

~ j ! eq
~ j !e2 iD

HG8
~ j !

tH K K8 1

H G8 GJ r̃Q8
K8~G,H;p,p81\k j !

2~21!Q12H1K1K8@xHG
~ j ! e2q

~ j ! #* eiDHG
~ j ! tH K K8 1

H G G8
J @ r̃2Q8

K8 ~G8,H;p8,p1\k j !#* D ,
~3.4!

S ]

]t
1 ivpp8D r̃Q

K~H,H8;p,p8!52Gr̃Q
K~H,H8;p,p8!1 i @1,K,K8#~21!Q8S K K8 1

Q 2Q8 qD
3S 2~21!H1H81K1K8xHG

~ j ! eq
~ j !e2 iDHG

~ j ! tH K K8 1

G H H8
J r̃Q8

K8~G,H8;p2\k j ,p8!

1~21!Q12G11@xH8G
~ j ! e2q

~ j ! #* eiDH8G
~ j !

tH K K8 1

G H8 HJ @ r̃2Q8
K8 ~G,H;p82\k j ,p!#* D , ~3.4a!
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S ]

]t
1 ivpp8D r̃Q

K~G,H;p,p8!52gr̃Q
K~G,H;p,p8!2 i @1,K,K8#~21!Q8S K K8 1

Q 2Q8 qD @e2q
~ j ! #*

3S ~21!q1G1G8@xHG8
~ j !

#* eiDHG8
~ j !

tH K K8 1

G8 H GJ r̃Q8
K8~G,G8;p,p82\k j !

1~21!Q12G1K1K8@xH8G
~ j !

#* eiDH8G
~ j !

tH K K8 1

H8 G HJ @ r̃2Q8
K8 ~H,H8;p8,p1\k j !#* D , ~3.4b!

whereG is the (H-independent! excited-state decay rate and
g is the (G,H-independent! decay rate of the optical coher-
ences. If stateG (H) is a hyperfine sublevel of the ground-
~excited-! state manifold, having electronic angular moment
J (J8) and radiative decay occurs only between theH andG
manifolds~‘‘closed’’ system!, then

g5G/2 ~3.5!

andG54udJJ8u
2v̄3/3(2J811)\c3. When recoil is negligible

the quantum transport Eqs.~3.4! can be reduced to those
given in Refs.@26,27# ~see also@1#! for atoms moving clas-
sically.

Under appropriate conditions, Eqs.~3.4! can be reduced
to rate equations for ground- and excited-state density-matrix
elements. When the ground- and excited-state density-matrix
elements vary slowly with respect to the optical coherences
~see discussion of the validity conditions in@1#!, andg and
G are larger than the Doppler width and recoil frequency
vk5\k2/2m @33#,

min$G,g%@max$vpp8,k j•p/m,vk%, ~3.6!

an approximate solution of Eq.~3.4b! is

r̃Q8
K8~G,H;p,p8!52 i @1,K8,K9#~21!Q9S K8 K9 1

Q8 2Q9 q8
D @e2q8

~ j 8!
#* S ~21!q81G1G9@xHG9

~ j 8!
#* eiDHG9

~ j 8!
t~g1 iDHG9

~ j 8!
!21

3H K8 K9 1

G9 H GJ r̃Q9
K9~G,G9;p,p82\k j 8!1~21!Q812G1K81K9@xH9G

~ j 8!
#* eiDH9G

~ j 8!
t~g1 iDH9G

~ j 8!
!21

3H K8 K9 1

H9 G HJ @ r̃2Q9
K9 ~H,H9;p8,p1\k j 8!#* D . ~3.7!

Substituting this expression in Eqs.~3.4!,~3.4a! one finds bi-
linear forms with respect to the fields’ polarization vectors. It
is convenient@1# to expand them in a coupled tensor basis
~2.11! as

eq
~ j ! @eq8

~ j 8!
#*5~21!q@K̄#S 1 1 K̄

q 2q8 2Q̄
D e

Q̄

K̄
~ j , j 8!, ~3.8!

where simplified notation,e
Q̄

K̄
( j , j 8)[e

Q̄

K̄
@e( j ),e( j 8)#, is used.

The sums overq,q8,Q8 in Eqs.~3.4,3.4a! lead to 62J sym-
bols and the sum overK8 can be carried out analytically. As
a result, one finds rate equations for ground- and excited-
state density matrixes which, in the normal representation,
are given by

S ]

]t
1 ivGG81 ivpp8D rQ

K~G,G8;p,p8!5rQ
K~G,G8;p,p8; in!1~21!Q8S K K8 K̄

Q 2Q8 Q̄
D e

Q̄

K̄
~ j , j 8!e2 iV j j 8t

3@S1~K,K8,K̄;G,G8,G9; j , j 8!rQ8
K8~G,G9;p,p81\k j j 8!

1S2~K,K8,K̄;G,G8,G9; j , j 8!rQ8
K8~G9,G8;p2\k j j 8,p8!

1S~K,K8,K̄;G,G8,H,H8; j , j 8!rQ8
K8~H,H8;p1\k j 8,p81\k j !#, ~3.9!
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S ]

]t
1G1 ivHH8D rQ

K~H,H8;p,p8!5~21!Q8S K K8 K̄

Q 2Q8 Q̄
D e

Q̄

K̄
~ j , j 8!e2 iV j j 8t@S1~K,K8,K̄;H,H8,H9; j , j 8!

3rQ8
K8~H,H9;p,p81\k j j 8!1S2~K,K8,K̄;H,H8,H9; j , j 8!rQ8

K8~H9,H8;p2\k j j 8,p8!

1S~K,K8,K̄;H,H8,G,G8; j , j 8!rQ8
K8~G,G8;p2\k j ,p82\k j 8!#, ~3.9a!

where
k j j 85k j2k j 8,V j j 85V j2V j 8,

S1~K,K8,K̄;G,G8,G9; j , j 8!523~21!H2G1K̄@K,K8,K̄#xHG8
~ j !

@xHG9
~ j 8!

#* ~g1 iDHG9
~ j 8!

!21H K K8 K̄

G9 G8 GJ H 1 1 K̄

G8 G9 HJ ,
~3.10!

S2~K,K8,K̄;G,G8,G9; j , j 8!523~21!H2G1G92G81K1K8@K,K8,K̄#xHG9
~ j !

@xHG
~ j 8!#* ~g2 iDHG9

~ j ! !21

3H K K8 K̄

G9 G G8
J H 1 1 K̄

G G9 HJ , ~3.10a!

S~K,K8,K̄;G,G8,H,H8; j , j 8!53~21!G82G1H82H1K11@K,K8,K̄#xH8G8
~ j !

@xHG
~ j 8!#* @~g1 iDHG

~ j 8!!211~g2 iDH8G8
~ j ! !21#

3H K K8 K̄

G H 1

G8 H8 1
J ; ~3.10b!

S1~K,K8,K̄;H,H8,H9; j , j 8!523~21!G1H1H81H9@K,K8,K̄#xH9G
~ j !

@xH8G
~ j 8!

#* ~g2 iDH9G
~ j ! !21H K K8 K̄

H9 H8 HJ H 1 1 K̄

H8 H9 GJ ,
~3.11!

S2~K,K8,K̄;H,H8,H9; j , j 8!523~21!H82G1K1K8@K,K8,K̄#xHG
~ j ! @xH9G

~ j 8!
#* ~g1 iDH9G

~ j 8!
!21H K K8 K̄

H9 H H8
J H 1 1 K̄

H H9 GJ ,
~3.11a!

S~K,K8,K̄;H,H8,G,G8; j ,, j 8!53~21!11K1K̄@K,K8,K̄#xHG
~ j ! @xH8G8

~ j 8!
#* @~g1 iDH8G8

~ j 8!
!211~g2 iDHG

~ j ! !21#H K K8 K̄

H G 1

H8 G8 1
J .

~3.11b!

IV. GROUND-STATE DENSITY-MATRIX EVOLUTION

In many problems associated with laser cooling or optical
pumping, the ground state evolves on a time scalet8 that is
slow compared withG21, i.e.,

Gt8@1, ~4.1!

and the Rabi frequencies are smaller thanG, i.e.,

uxHG
~ j ! u!G. ~4.2!

These conditions allow one to adiabatically eliminate both
the optical coherences and excited-state density-matrix ele-
ments in Eqs.~3.4! or ~3.9!. Condition ~4.2! allows one to
neglect all excited-state density-matrix elements in the rhs of
Eq. ~3.9a!. If ground-state density-matrix elements@in the
‘‘interaction picture’’ ~3.3!# vary slowly with respect to
G21, the approximate solution of Eq.~3.9a! is

rQ8
K8~H,H8;p,p8!5~21!Q9S K8 K9 K̄

Q8 2Q9 Q̄
D e

Q̄

K̄
~ j , j 8!e2 iV j j 8t~G2 iDHG9

~ j !
1 iDH8G98

~ j 8!
!21

3S~K8,K9,K̄;H,H8,G9,G98; j , j 8!rQ9
K9~G9,G98;p2\k j ,p82\k j 8!. ~4.3!

Substituting this expression in Eqs.~2.15! and then in Eq.~3.9!, and introducing higher-order tensor products
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l
Q̃

K̃
~n;K̄,K̄8; j , j 8!5~21!K̄1K̄81Q̃@K̃#S K̄ K̄8 K̃

Q̄ Q̄8 2Q̃
DYK̄Q̄~n!e

Q̄8
K̄8

~ j , j 8! ~4.4!

in carrying out the summation over magnetic quantum numbers, one finds that the ground-state density matrix evolves as

S ]

]t
1 ivGG81 ivpp8D rQ

K~G,G8;p,p8!5~21!Q8S K K8 K̃

Q 2Q8 Q̃
D e2 iV j j 8tH T~K,K8,K̃,K̄,K̄8;G,G8,G9,G-, j , j 8!

3

8p

3E dnl
Q̃

K̃
~n;K̄,K̄8; j , j 8!rQ8

K8
„G9,G98;p1\~k2k j !,p81\~k2k j 8!…1e

Q̃

K̃
~ j , j 8!

3@S1~K,K8,K̃;G,G8,G9; j , j 8!rQ8
K8~G,G9;p,p81\k j j 8!

1S2~K,K8,K̃;G,G8,G9; j , j 8!rQ8
K8~G9,G8;p2\k j j 8,p8!#J , ~4.5!

where

T~K,K8,K̃,K̄,K̄8;G,G8,G9,G-; j , j 8!53~21!11K̄1K8BK̄@H,H8,K,K8,K̃,K̄,K̄8#g~H,H8,G,G8!xHG9
~ j !

@xH8G-
~ j 8!

#*

3~g2 iDHG9
~ j ! !21~g1 iDH8G-

~ j 8!
!21A~K,K8,K̃,K̄,K̄8;G,G8;H,H8;G9,G-! ~4.6!

and

A~K,K8,K̃,K̄,K̄8;G,G8;H,H8;G9,G-!5@X2#H K K8 K̃

K̄8 K̄ XJ H K X K̄

G H 1

G8 H8 1
J H X K8 K̄8

H G9 1

H8 G- 1
J . ~4.6a!

For simplicity, we have setg5G/2 in deriving Eq.~4.5!.
Equation~4.6a! is a representation of the 152J symbol of the third kind@34# ,

A~K,K8,K̃,K̄,K̄8;G,G8;H,H8;G9,G-!5~21!G1G81H1H81K1K81K̃H G G9 K K8 G8

G- H K̃ H8 1

1 K̄ K̄8 1 1
U3J . ~4.7!

In the absence of recoil, Eq.~4.5! reduces to ground-state density-matrix equations derived previously@1# @see also Eq.~2A!
in @2# #.

One can simplify the rhs of the density matrix equations~4.5! in the ‘‘s2u’’ representation~2.16!. Replacing the in-term in
Eq. ~4.5! by that given in~2.17!, one can obtain

F ]

]t
1 ivGG81

i

m S ]

]s
•

]

]uD GrQ
K~G,G8;s,u!5~21!Q8S K K8 K̃

Q 2Q8 Q̃
D exp@ i ~k j j 8•s2V j j 8t !#

3P
Q̃

K̃
~K,K8;G,G8;G9,G-; j , j 8!rQ8

K8~G9,G-;s,u!, ~4.8!

where
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P
Q̃

K̃
~K,K8;G,G8;G9,G-; j , j 8!5l

Q̃

K̃
~nu ,K̄,K̄8; j . j 8!3~21!11K̄1K8B̄K̄ j K̄~ku!exp~ iu–k̄ j j 8!

3@H,H8,K,K8,K̃,K̄,K̄8#g~H,H8,G,G8!xHG9
~ j !

@xH8G-
~ j 8!

#* ~g2 iDHG9
~ j ! !21

3~g1 iDH8G-
~ j ! !21A~K,K8,K̃,K̄,K̄8;G,G8;H,H8;G9,G-!

1e
Q̃

K̃
~ j , j 8!@exp~2 iu–k j j 8/2!S1~K,K8,K̃;G,G8,G-; j , j 8!dG9G

1exp~ iu–k j j 8/2!S2~K,K8,K̃;G,G8,G9; j , j 8!dG-G8# ~4.9!

and k̄ j j 85(k j1k j 8)/2.
As was noted above, evolution equations in one dimension can be obtained when all fields propagate along the quantization

axis, i.e., whenk j5(0,0,kj ), k j j 85(0,0,kj j 8). The corresponding one-dimensional equations for ground-state density-matrix
elements can be derived in the same manner as for the three-dimensional Eqs.~ 4.5,4.8!. Using the in terms~2.21! and~2.22!,
one arrives at

S ]

]t
1 ivGG81 ivpp8D rQ

K~G,G8;p,p8!5~21!Q8e
Q̄

K̄
~ j , j 8!e2 iV j j 8tHRQQ8Q̄

KK8K̄
~K̄8;G,G8;G9,G-; j , j 8!

3E
21

1

dxPK̄8~x!rQ8
K8
„G9,G-;p1\~kx2kj !,p81\~kx2kj 8!…

1S K K8 K̄

Q 2Q8 Q̄
D @S1~K,K8,K̄;G,G8,G9; j , j 8!rQ8

K8~G,G9;p,p81\kj j 8!

1S2~K,K8,K̄;G,G8,G9; j , j 8!rQ8
K8~G9,G8;p2\kj j 8,p8!#J ~4.10!

and

S ]

]t
1 ivGG81

i

m

]2

]s]uD rQ
K~G,G8;s,u!5~21!Q8e

Q̄

K̄
~ j , j 8!exp@ i ~kj j 8•s2V j j 8t !#H 2~21!K̄8/2 exp~ iuk̄j j 8!

3 j K̄8~ku!R
QQ8Q̄
KK8K̄

~K̄8;G,G8;G9,G-; j , j 8!1S K K8 K̄

Q 2Q8 Q̄
D

3@exp~2 iukj j 8/2!S1~K,K8,K̃;G,G8,G-; j , j 8!dG9G

1exp~ iukj j 8/2!S2~K,K8,K̃;G,G8,G9; j , j 8!dG98G8#J rQ8
K8~G9,G-;s,u!,

~4.11!

where

R
QQ8Q̄
KK8K̄

~K̄8;G,G8;G9,G-; j , j 8!5~21!QS K X K̄8

Q 2Q 0
D S X K8 K̄

Q 2Q8 Q̄
D ~G2 iDHG9

~ j !
1 iDH8G-

~ j 8!
!21

3S~X,K8,K̄;H,H8;G9,G-; j . j 8!B
K̄8
a
I ~K,X,K̄8;G,G8;H,H8!. ~4.12!

V. CONCLUSION

It has seen that atomic recoil can be included in the equa-
tions for ground- and excited-states density-matrix elements
when fields drive the transition between electronic-state
manifolds. In this article we have focused on the effects of
recoil associated with spontaneous emission. Since the in
term ~2.15! is a tensor product of the excited-state density-

matrix elements in a spherical tensor basis and a spherical
harmonicYK̄Q̄(n…, it is covariant with respect to rotation.
The contribution to the in term from a given direction of
spontaneous emissionn depends on the momentum distribu-
tion of the excited states’ populations and internal coherences

through the factorrQ8
K8(H,H8;p1\kn,p81\kn). Covari-

ance is established by the coupling of spatial~center-of-mass
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momenta! and internal~magnetic quantum numbers, total an-
gular momenta! degrees of freedom. This coupling can lead
to Faraday rotation of a probe field’s polarization vector
when the probe field passes through an atomic beam~con-
sidered for aG50→H51 transition in Ref.@29#! or an
atomic vapor that is also driven by a pump field~considered
for a G5 1

2→H5 1
2 transition in Ref.@9#!. Equation~4.5!

allows one to generalize these results to arbitrary manifolds,
which we plan to present in a future paper.

The density-matrix elements appearing in the master
equations~3.9, 4.5, 4.8! are functions of three-dimensional
vector quantities. For collinear radiation fields these equa-
tions can be reduced to ones in which the density-matrix
elements are functions of one-dimensional variables, with all
dependence on transverse momenta (p',p'8 ) or transverse
coordinates (s',u') eliminated@see Eqs.~4.10, 4.11!#. The
price one pays for this reduction is that Eqs.~4.10, 4.11! are
no longer rotationally covariant; under rotation, the momenta
or coordinates would be rotated outside of the reduced one-
dimensional subspace. When the contribution from the in
term is included, the multipolesrQ

K no longer are tensor
quantities; their properties with respect to rotation no longer
obey simple transformation properties.

Two representations, momentum ‘‘p2p8’’ and ‘‘coordi-
nate’’ ‘‘ s2u, ’’ have been used in this article. The momentum
representation is convenient for steady-state problems, such
as pump-probe or nonlinear spectroscopy. In the momentum
representation the in term contains an integral, which can be
evaluated numerically or using various perturbation schemes.
In the coordinate representation the in term is local; however,
the corresponding equations~4.8, 4.11! include mixed sec-
ond derivatives in the variabless and u. The situation im-
proves for a number of transient problems, such as resonant

Kapitza-Dirac scattering, wave-matter interference, atomic
Talbot effect, GSE, or MGE. When the atom-field interaction
time is smaller than inverse frequency transitionvpp8

21 one
can use the Raman-Nath approximation and omit the second
derivatives in Eqs.~4.8, 4.11!, greatly simplifying the equa-
tions. For example, if the spatial or temporal envelope func-
tions and amplitudes of the incident traveling wave electric
fields coincide with one another and if the coherences
rQ
K(G,G8;s,u) for GÞG8 can be neglected, one can use the
method of Ref.@3# to solve Eqs.~4.8, 4.11!. An important
example where the field requirements can be met is the scat-
tering of atoms by a standing wave field~resonance Kapitza-
Dirac effect@10–14#!. Using this technique one can calculate
the total momentum distribution of the scattered particles
(G@G#r0

0(G,G;p,p), as well as the momentum distribution
associated with the various ground-state multipoles.

Finally, we would like to point out that, in adiabatically
eliminating the optical coherences and excited-state density-
matrix elements, we neglect recoil shifts in the resonance
denominators of the rhs of Eqs.~3.7, 4.3!. These recoil shifts
can be responsible for RIR when pump and probe fields are
collinear@7#. To consider RIR for this case one needs to start
from the exact master equations~3.4!.
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