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Atom-field interactions: Density-matrix equations including quantization
of the center-of-mass motion

B. Dubetsky and P. R. Berman
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120
(Received 7 August 1995

Master equations are derived for the time evolution of density-matrix elements characterizing atoms inter-
acting with classical radiation fields that drive transitions between electronic-state manifolds of levels. The
atomic center-of-mass motion is quantized and recoil accompanying absorption, stimulated emission, and
spontaneous emission is included. An adiabatic elimination of the optical coherences is used to obtain quantum
rate equations for ground- and excited-state density-matrix elements. Subsequent adiabatic elimination of
excited-state density-matrix elements results in rate equations for the slow evolution of ground-state density-
matrix elements. It is shown that recoil during spontaneous emission mixes spatial and internal atomic degrees
of freedom.

PACS numbsds): 32.80.Wr, 32.70.Fw, 32.96.a

[. INTRODUCTION ter equations for multilevel atoms can be carried out in the
same manner as that for “two-level” atonji24]. Spontane-
Rate equations were derived recenth} to characterize ous emission leads to both “in” terms and “out” terms in the
the interaction of atoms with classical radiation fields whichdensity-matrix equations. The out term characterizes excited-
drive transitions between two electronic-state manifolds. Thestate decay with a rafé that is independent of the magnetic
density-matrix equations derived [it] include all complica- quantum number and total angular momentum of the hyper-
tions arising from fine structure, hyperfine structure, andine sublevels. The in term, representing repopulation of
magnetic-state degeneracy. They can be applied to a widg@round-state levels resulting from spontaneous emission, is
range of spectroscopic problems. Solutions of the densitymore complex1,26,27. The in terms depend on the total
matrix equations enable one to calculate expectation valuedngular momenta of the initial and final hyperfine sublevels
of physical observables that can be compared directly Witﬁnvol_\/ed in the given rgdiative transition. In th.e absenceT of
experimental data for specific atomic transitions. The equat©coil, however, one finds that, after averaging over final
tions were used to calculate the transient response of atonssates of the field, the in term is diagonal when the atomic
to a set of radiation pulses in both the weah and strong density matrix is expanded in a s_phgrlcal tensor basis
[3] field limits. The equations derived ifil] were written {K,Q}. On average, spontaneous emission acts as a scalar.
using an irreducible tensor representation for density-matrix When recoil is |n'cluded, t.he.re is a correlation petween the
elements. In this representation the transformation propertiesspomaneOUSIy emitted radiation and the atomic center-of-

of the equations under rotation are easily established. Thesgo> motion. As a consequence, it is no longer a simple
qual . oY €1 ' Thatter to average over final states of the field. One finds that,
transformation properties allow one to identify tensors ass

| . o o ; Oith the inclusion of recoil, spontaneous emission mixes
ciated with the polarization vectors of the incident fields. states having differer{<,Q} [28]. The resulting in term was

The purpose of this article is to generalize the results ofpained previously28,29 for transitions between a ground
[_1] to include qua_ntlzanon of the atomic center-of-mass Mo4nq an excited state, each having a given total angular mo-
tion. One can point out a number of problems where SuChnentum. Even though the extension to manifolds of ground
quantum equations can be applied. Among them are differenind excited states is straightforward, we present the deriva-
types of recoil-induced resonancéBIR) [4-9] , scattering  tion for the purpose of completeness. Moreover, a derivation
of atoms from standing wave fieldéso-called resonant of the in term has not been published previously, to our
Kapitza-Dirac effect [10-14, wave-matter interference knowledge. Having obtained the master equations, we adia-
[15-19, atomic Talbot effec{19-23, grating stimulated patically eliminate certain density-matrix elements, to obtain
echo(GSB [23], and magnetic grating echMGE) [2]. For  rate equations for ground- and excited-state density-matrix
the most part, these phenomena have been observed usi@gments.
alkali-metal atoms, where hyperfine splitting and magnetic- This paper is arranged as follows. In Sec. Il the in-term
level degeneracy can play an important role. The recoil agjerivation is given. In Secs. Ill and IV rate equations and
atom undergoes on the emission or absorption of radiatioground-state density-matrix equations are obtained, respec-
[24] lies at the heart of these effec(’lECOil is not critical to t|Ve|y A discussion of the results is given in Sec. V.
the GSE and MGE and requires consideration of atomic
center-of-mass motion for multilevel atoms.

One distinguishes two kind of effects relevant to atomic
center-of-mass motion quantization: recoil during stimulated
interaction with fields(STR) [24] and recoil during sponta- Consider radiative decay of an excited atom to its ground
neous emissiofSPR [25]. An inclusion of the STR in mas- state. If one neglects antiresonant terms and introduces an

II. IN TERM
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interaction representation for the field, he arrives at an atom- In an interaction picture, the amplitude for an atom to
guantized field Hamiltonian decay to the ground state via radiation in a given mode
(\,k) evolves as
T=(€c+ €p)|G,mg,p)(G,my,p|+ (e + €p)|H, My, p) _
X(H,my,p|—{i%f e\, k) -d]a(),k) b(k,N\;G,my,p,t) = expli(wx— oue— ®piikp)t]
Xexplik-r—iwgt)+H.cl}, (2.1 x[e*()\,k)-(G,mg|d|H,mh>]
where G,my and H,m,, specify the total angular momenta Xb(H,my praik,0), (2.2
and magnetic quantum numbers of the ground and excite\gl
states, respectively is the atomic center-of-mass momen-
tum, er is the internal atomic energy of stdte) (F=G or
H), e,=p%2m is the kinetic energy of statgp), m is the
atomic massa(\,k) ande(\ k) are the annihilation operator s a transition frequency between atomic center-of-mass mo-
and unit polarization vectors for a radiation mode havingmenta states, arts{H,m;,,p,t) is an excited-state amplitude.
wave vectork, polarizationA (=1 or 2), and frequency |n the Weisskopf-Wigner approximation, the in term
wy, d is a dipole moment operatof,=[2mw, /%712,
and 7" is a quantization volume. A summation convention is _ , ) d
implicit in Eq. (2.1) that will be used in all subsequent equa- P(G.Mg.p;G’,my,p’;in)= ﬁ[b(kﬂ‘?e’mg P,t)
tions, in which repeated indices and symbols appearing in
the right-hand-sidérhs) of an equation are to be summed Xb*(k,\;G',mg,p",1)] (2.3
over, unless they also appear on the left-hand @idg of the
equation. is given by

herewyg=(eq— €g)/ is theH— G transition frequency,

(Dpp/ = (Ep_ €p/)/ﬁ

p(G,my,p;G’,my ,p’;in)527-r<I>(t)|fk|25(wk—G)eq(x,k)eé,(k,k)(G,mg|dq,|H,mh>

X{(G',mg|dg|H",mp)* p(H,my ,p+Ak;H',my ,p’ +7K), (2.9
O (t)=expiAwt), (2.439
|
where Aw=wy g/ + ®p 4 jkp — OHG ™ @ptsikp @ IS SOME The sum over magnetic quantum numbers can be carried

average value of transition frequenciegg+ wp.4xp and  out using density-matrix elements in an irreducible tensor
wyrgr T ®p 1 pkpr, andeg andd, are spherical components basis defined by
of vectorse andd, respectively, defined by

F’ K
K ’. "N ( F—m|
6.1\ K) = F[e, (N k) Hiey (V) 12, polF.Fhp.PY=(—1) [K](m —m —Q)
eo(N,K)=e,(\,k), X p(F,m¢,p;F",m¢,p’), 2.9
d+1=1(dxtidy)/\/§, do=4d,. 2.5 where () is a 3-J symbol and
(N ye(Ne)q = (n). .. (ng)71/2
In the “normal” representation, p(F,m;,p;F’,m; .p’) [X; X T1=[(2X+ DT - (2Xs+ 1)) 7
=exd —i(wgp +wpp)t]p(F,m;,p;F',m¢ ,p’), the phase '
factor @ is absent in Eq(2.4). In this representation one finds

_ K' K
K . Feim)y— (1 \K+K+Q'+1
P (GaG 1p1p vln)_( 1) ( ’ _>
° Q -Q Q
L[ K K )
X[H,H' KK KI¥HHG,G g1 G H 1 fdn%(n)péi(H,H':pwk,p'+hk>,
G' H 1

(2.9
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where The integration over directions can be carried out if one

_ transforms to an $—u” “coordinate” representation defined
¥(H,H";G,G")=4dgudg,,, 0*3[H,H']Ac®, (2.9 py

{}is a 9-J symbol, (s ) f dpdp’ p[ i {( 3
JFlisu)= | ——exp =|(p—p’)-s
p+p’
2

Zo(n = eg(e(N k), e(\ k), (2.10 +

-u

}pS(F,F’;p,p’)- (2.16

K)A B*, (2.11) Using EQgs.(2.195 and (2.16, and expanding the spherical
Q ' harmonics in terms of plane wavg30], one finds

and A, and B, are spherical components of the vectérs K _ , K' K
andB. There is no summation ovér in Eq. (2.10 (since p6(G,G';s,uin)=(—1)° Q -0 Q
n=k/k, the vectork appears implicitly in the |hs of this

equation. _ X Byl (K,K',K;G,G";H,H")jr(ku)
Using the relation

K K+q 1 1
SAB)=(-D K|

X Yra(ny)pS(H,H';s,u), (2.1

; eq(\K)es (N K)=8qq —NgNg: (2.12 B JTZmoc,— JBTEsc,. 2173

one can reexpres}§g(n) as where j4(x) is a spherical Bessel function of orderand
#8(n)=—38kodg0— e(n,N). (2.13 nutl\%lejﬁ recoil during spontaneous emission is negligible

_ _ [Ak<min(p,p’) in Eq. (2.15 or k<u~!in Eq.(2.17)], only
For a real vectorn, having spherical components the term withk=0 contributes in Eqs(2.15 or (2.17), and

ng=(—1)In_g, one can show that one finds
K —(_1\KK , s ' ’
Zo(M=(=1)"&q(n), (2.19 p&(G,G';p,p’in)=(—1)KFHFEHITH H']

which implies that only even multipolesK&0 or 2 are H H' K

nonvanishing. The functioré{»é is an irreducible tensor of X G G 1 y(H,H'";G,G")

rank K. The only irreducible tensor of rank, which is a
function of n, is the spherical harmoni¥kq(n); conse- ng(H,H’;p,p’) (2.18
quently é"é(n) has to be proportional t¥,(n). The coef-

ficients of proportionality can be obtained if one compared{ } is a 6—J symbo), coinciding with the equation obtained

these tensors for n=ny,=(0,0,1), where g‘é(n): for atoms moving along classical trajectorj@$. The in term
—213(\2 80+ Sk2) 800, YKQ(n):m%O_ As is now diagonal with respect t& and Q—spontaneous
a result one arrives at an expression for the in tézr8): emission acts as a scalar, on average. .
Owing to recaoil, the scalar nature of spontaneous emis-
(KK K sion is broken for given excited-state momepta’. As a
po(G,G";p,p’;in)=(—1)° (Q Y 6) result, the in term mixes differerftk,Q} multipoles. For

transitions in which there is only one value Gf and only
< Bl K,K’,IZ;G,G’;H,H’ one value ofH (H=H’,G=G') the in terms(2.15 or

I ) (2.17) can be derived from that obtained[i®8]. In this case,

y 3 fd - the 9—J symbol is invariant if multiplied by a factor
gr) dMYke(M (—1)K*K'*K sinceK is even, only transitions satisfying

X py(H,H';p+1ik,p’ + k), K—K'=0or2 (2.19

(2.19 are allowed[28]. When coherences between sublevels hav-
ing different angular momenta are included£H’ or G

I(K,K'",K;G,G';H,H")=(=1)"[H,H’" K,K' K] #G'), the selection rulg2.19 no longer holds and transi-
. , tions between multipoles with  opposite parity
X ;
v(HH ’G’G_) (K—K’'==1) are also possible.
K K' K The general expressiori2.15 or (2.17) for the in term

must be used when one considers interaction with noncolin-

Xy G H 1., (2158 ear radiation fields; however, when atoms interact with fields

G'" H 1 propagating along a given direction it is possible to reduce

the equations to one dimension. Taking the quantization axis

Bx= V16m/36co+ V87/156¢>5 . (2.15h z along the field propagation direction and assuming that the
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atomic momentum distribution in the transverse directions iss5=0—H=1 and G=1—H=2 transitions, respectively,

much wider than the recoil momentum, one can write and a term similar to Eq2.22 has been used by Tan and
K L, 2] , Walls [14] in a two-level model with an in term proportional
po(F.F";p,p")=[(27h)=7" "3]8(p,. —p;) to the Bessel functiof,(ku).
XW(pi)pg(F,F’;p,p’), (2.20 The in term can be simplified also when fields propagate

in a plane(two-dimensional cageFor aG=3—H =2 tran-
where p, =(py,py), W(p,) is the transverse distribution sition, the in term has been derived by Casiral.[32] and
function having widthAp, >#k , andp=(p),, p'=(p’),. used in their analysis of two-dimensional sub-Doppler cool-
In this limit, the transverse momentum distribution can being.
eliminated from all the equations. After the transverse distri-
bution function is eliminated in Ed.2.15), one can integrate IIl. RATE EQUATIONS
over azimuthal angles to obtain

Consider now interactions of atoms with a nearly resonant

K K K - i -
pg(G,G’;p,p’;in)z(—l)Q( ) field having amplitude
Q -Q O 1
« fl dxPg(x) The field consists of a set & traveling waves having am-
K plitude EW, frequency();, propagation vectok;, and po-

o larization vectorel) [l<j<N in Eq. (3.1]. In the rotating
X pg (H,H";p+fikx,p’ +7kx), wave approximation, the Hamiltonian for the atom-field in-
(2.21) teractionvV=—d-E(r,t) has matrix elements given by

a_ - _ 1 G
BE=\/3/25¢0+ \/3/85k,, @218 vIGmp') @(_1),4_%“( no )
where P (x) is a Legendre polynomial of ordef. In the " M
“s—u” representation the in term can be expressed as X fxtsel) exd —iA{Lt]
PS(G.G'is,uiin) =2(—1)2 K~ X 8(p—p’ —iky), (32
" K K K where x{5=dycE/2y3% and AlL=0Q,— wue are the
Q -Q O Rabi frequency and detuning of fieJd Matrix elements are
_ written in an “interaction picture” with respect to the inter-
xB%I(K,K’,K;G,G’;H,H’)jg(ku) nal degrees of freedom only, defined by
ng’(H,H';s,u). (2.22 PS(F.Fip.p) =expiwre ) pS(F,F';p.p'). (3.3
The one-dimensional in term in momentum sp&e1) has Using Schrdinger’s equations, one finds that density-

been used by Castiet al. [31] and Guo and Bermaf8] for ~ matrix elements evolve according to

J K K 1
! ioga't I Q
at+|wpp>pQ(GG 1p.p')=€cepg(G,G';p,p";in) +i[1K,K'I(—1) (Q oY q)

IA(J

HG’

) K K 1
X (_1)G+G +1XI J)e

~K' ’
’ 150, + j

Q+2H+K+K' () 1% |A'> K K 1 ~K' ' ' *
—(=1) [xtee!lq]* el ne H o o [lPoo (G HIP p+AK)T* |,
(3.9
d K K 1
v . ~K ’. "N— _ ~K /. ! H " — Q’

— (= 1)HFH KK () o) |A(FJ| KoK 1 ~K,GH %
(=1 XHc€q € G H HlPt ;p—1ik;,p")

DR el © G (G i kg |, (349
H'G~—q G H/ H -Q ERLE} jo ’
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!

J Q' K K 1 (J) 1%
i i |PS(GHIpR) =~ 3G Hipp ) SILK KD o, el

% (_1)q+G+G'[ () ]*eA(J 't K K 1 ~K' G.G': "— K
XHG/ HG G, H G pQr( ’ :p:p J)
-1 Q+2G+K+K'r (i) % IA(J) KK ~K' I/ rk)1* 3.4b
+( ) [XH’G] e'%na! H G H [pr'(H-H PP+ j)] ) (3.4b

wherel is the H-independentexcited-state decay rate and  Under appropriate conditions, Eg8.4) can be reduced

v is the (G,H-independentdecay rate of the optical coher- to rate equations for ground- and excited-state density-matrix
ences. If statés (H) is a hyperfine sublevel of the ground- elements. When the ground- and excited-state density-matrix
(excited) state manifold, having electronic angular momentelements vary slowly with respect to the optical coherences
J (J') and radiative decay occurs only between khandG (see discussion of the validity conditions|[if]), andy and

manifolds(“closed” system, then I' are larger than the Doppler width and recoil frequency
w=Hhk?/2m [33],
y=T1/2 (3.5
andl’ =4|d,|?®°%/3(23" + 1)Ac3. When recoil is negligible min{T", y}>max wgpr, K- p/m, oy, (3.6

the quantum transport Eq$3.4) can be reduced to those
given in Refs[26,27] (see alsd1]) for atoms moving clas-
sically. an approximate solution of E¢3.4b) is

! n

4 " K 1 " ”
58(G,H;p,p'>:—i[l,K',K"]<—1>Q( q,)[e“ 1 (( 1)7 GG 1) T ey +i A0, 2

Q/ _Qn
% K K 1 ,BK”(G G";p pr_hk_l)+(_1)Q’+2G+K’+K” G’ )]*e H”G ’)/+|A )
G" H G Q/I 1 M ] HH H"G
K, K" ~K” 4 ! *
X H” G H [pr”(HiH P 1p+hkj’)] . (37)

Substituting this expression in Eq8.4),(3.439 one finds bi- . Ky L Ke ) A7
linear forms with respect to the fields’ polarization vectors. ItWhere simplified nOtatloan(] ) eQ[e( ,€07], s used.

is convenien1] to expand them in a coupled tensor basis e SUMs oveq,q’,Q" in Egs.(3.4,3.4a lead to 6-J sym-
(2.11) as bols and the sum ovéd{’ can be carried out analytically. As

a result, one finds rate equations for ground- and excited-
state density matrixes which, in the normal representation,

1 K o
—q -0 eoli.i’), (38  are given by

el [ey 1" =(~1)[K]

K K K
Q -Q Q
X[S:(K,K',K;G,G",G";,]")piy/(G,G";p,p’ +1ikij )

d
ot

+|wGGI+uwpp)pQ<G G'ip.p')=pk(G.G'; p':in)+<—1)Q’( )egu,j')e‘“n*

+S_(K,K'K;G,G',G":],i")pks,(G",G";p—tikjj,p")

+S(K.K' K;G,G' H,H";j,j )pl, (HH';p+iki ' +7ik)], (3.9
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i : K ’. nN_/_1\Q’ K K’ E @ N a—iQirt I - e i
at+F+leHf)pQ(H,H p.p)=(—-1) (Q _o é)eQ(J,J ye S (KKK HHHY L))
X piy (HH":p,p’ +fikjj )+ S_ (KK KiH,H H": i) pl (H" H';p—fikjj,p')
+S(K,K'KiH,H',G,G'5j,i")pt (GG sp—fik; b’ —fik; )], (3.99
where

k”/:k]_le,Q“/:QJ_QJ/,

' P iy — H-G+K r e ) () 1% G 1 K K' K|][1 1 K
S, (K,K',K;G,G',G";j,j")=—3(—1) [K.K" Klxpexner* (v+iA gn) o o olle o ul

(3.10
S_(K,K',K;G,G',G";j,j")=—3(—1)H~6+&" -6 +K+K'[k K K]yUL [yUd1* (y—ialll,)-1
K K' K|[{1 1 K
X , (3.10a
G" G G||G & H
S(K,K',K;G,G' H,H ;) ") =3(—1)8 S HH HHKH 1 i Ky e T (v +iAdd) 1+ (y—ial)g) 1]
K K' K
x{ G H 1}: (3.10b
G' H 1

S I - ’ meiily=—3 G+H+H'+H" et ) (DR A(J) -1 K K’ K 1 1 K
+(KaK aK:HuH 1H 1) )__ (_1) [K,K iK]XH"G[XH'G] (y_l H//G) H” H’ H H’ H" G ’

(3.11
S (K K/ IZH HI H//.j j'):_3(_1)H,76+K+K,[K K/ IZ]X(J) [X(l’) ]*(’y+iA(jl))7l K K’ lz 1 1 'z
— 3 LAY ’ ’ 1) ' ’ HG H"G H"G H// H H/ H H// G !
(3.11a
K K' K
S(K,K'KiH,H, GG, ) =3(= DM KKK Kl 6 P Lr AL 6) 7P+ (vl 1y H G
H G 1
(3.11h
[
IV. GROUND-STATE DENSITY-MATRIX EVOLUTION |X=—PG|<F' 4.2

In many problems associated with laser cooling or opticalrhese conditions allow one to adiabatically eliminate both
pumping, the ground state evolves on a time sealéhat is  the optical coherences and excited-state density-matrix ele-

B _l -
slow compared witd"~, i.e., ments in Eqs(3.4) or (3.9). Condition (4.2) allows one to
) neglect all excited-state density-matrix elements in the rhs of
rr'>1, (4.)  Eq. (3.9a. If ground-state density-matrix elemerfis the

“interaction picture” (3.3)] vary slowly with respect to
and the Rabi frequencies are smaller thah i.e., I 1, the approximate solution of E¢3.99 is

K’ ' ' Q" K’ K IZ K oo amiQt A () A V-1
po(HHEPPI=("D o g St Je (I —iA e +iAygn)
X S(K', K" K;H,H',G",G"";].]")pyn(G",G" :p—Tik; ,p’ —fik;.). 4.3

Substituting this expression in Eq2.15 and then in Eq(3.9), and introducing higher-order tensor products
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K’ K Ko
g Yeameg i (4.4

Q Q

NS(MIK K31, = (= 1)F < QK]

in carrying out the summation over magnetic quantum numbers, one finds that the ground-state density matrix evolves as

!

P

d K _ _ 3
’. Q' —ISl-rt . ’ "oemoyoir
0t+|wGG'+|wpp )pQ(G G';p,p')=(—-1) (Q Y Q)e |T(K K’, K K";G,G',G",G",],] )_877

xf dnAG(niK LK 5,§)plg (G, G sp+ Ak —K;),p’ + i (k=kj )+ €5 (i)
X[S4(K,K',KiG,G",G":].i")pis,(G.G";p,p’ +7ik;; )

+S_(K,K",K;G,G',G";],i")pis,(G".G;p—fikjj,p")] (4.5

where

T(K.K' KKK G,G",G".G":],j")=3(— 1) KK B H,H' KK, K,K,K']y(H,H",G,G )y UL [ 1%

X (y—iAUL) "y +iallL)"IAK,K',K,K,K';G,G'";H,H";G",G") (4.6)

and

ko m[KOx K) ( X K K
AK,K' K,K,K";G,G";H,H";G",G")=[X2]{ — o Kk x[]G H 1fyH & 1 (4.63
G'" H' 1 H G” 1
For simplicity, we have sey=1'/2 in deriving Eq.(4.5).
Equation(4.63 is a representation of the 5 symbol of the third kind34] ,
G G K K' G’
A(K K }Z IZ,;G,G,;H,H/;G/’,Gm):(_1)G+GI+H+H/+K+K,+k G/" H |~< H' 1 3 . (47)
1 K K 1 1

In the absence of recoil, E¢4.5 reduces to ground-state density-matrix equations derived previfilisgee also Eq(2A)

in[2]].
One can simplify the rhs of the density matrix equati¢h$) in the “s—u” representation(2.16). Replacing the in-term in
Eq. (4.5 by that given in(2.17), one can obtain

K K’
Q -Q’

XPE(K,K';G,G";G",G":],}")ply (G",G";s), 4.8

K

7, oL il o
i
gt vee Js au

where
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PE(K,K'1G,G1G",G":],i ) = NNy K K111 )3(— 1)K Byj(ku)exp(iu-k ;)
X[H,H" K, K", KKK Jy(H,H",G,G )\l [l L1 (y—ialll )1
X(y+iAd e AK K KKK ;G,G';H,H'";G",G")
+e5(j.Jlexp—iu-k; /S, (K,K' K;G,G",G":,j") bgrc

+expiu-k;;/2)S_(K,K',K;G,G",G"j,j")Sana'] (4.9

andk;; = (k;+k;.)/2.
As was noted above, evolution equations in one dimension can be obtained when all fields propagate along the quantization
axis, i.e., wherk;=(0,0k;), kj;»=(0,0k;;-). The corresponding one-dimensional equations for ground-state density-matrix

elements can be derived in the same manner as for the three-dimensiona#Eg4.9. Using the in term$2.21) and(2.22),
one arrives at

KK'K

RQQ 'Q

i ; R K ’. "N—(_1\Q E iy a—iQgirt "oemeyoir
&t-l—lwegr-l-lwpp, pQ(G,G ,p,p) ( 1) GQ(],J )e 1 (K G G’ G ,G ) )

1 '
xf dxPg (X)pl, (G",G"; p+i(kx—kj),p +hi(kx—kj:))
-1

K K K _ o
+ "5 [S.(K.K',KiG,G",G";].i")pk(G.G";p.p’ +7ikjj )

Q -Q
+s_(K,K’,R;G,G',G";j,j')pg',(G",G';p—ﬁk”,,p')]] (4.10
and
2 oeet K(G,G’1s.u)=(— 1)@ (1.1 VexiTi(ky; - 5— 0 )] 2(— 1)K expriuk
ot Tloee + —oon pQ(G.G s, u) = (= 1) eq(")exliky - s—Qj)]) 2(=1)% = expliukj; )
(kwRSS (K T «
Xk (KU)R K";G,G";G",G";j,j")+ , =
“ QQ Q -Q Q
X [exp —iukj;/2)S, (K,K',K;G,G',G";],i") dare
+exp(iuk”,/2)S_(K,K’,I2;G,G’,G";j,j’)56,,,6,] pg’,(G",GW;S,U),
(4.1
where
K X K\(X K K
KK K ” . Q (i) (" 1
QQQ(K :G,G";G",G";j,j")=(-1) (Q 0 0)<Q o Q)(r ARG +HiAL L)
X S(X,K',K;H,H";G",G";}.j")BE, 1(K,X,K';G,G';H,H"). (4.12
[
V. CONCLUSION matrix elements in a spherical tensor basis and a spherical

It has seen that atomic recoil can be included in the equ r_larmonlc\_(KQ_(n), It is covariant with respect o rotation.
tions for ground- and excited-states density-matrix element he contrlbutlon_to_ the in term from a given d|rec_t|or_1 of
when fields drive the transition between electronic-statePONtaneous emissiondepends on the momentum distribu-
manifolds. In this article we have focused on the effects ofio" of the excited states populations and internal coherences
recoil associated with spontaneous emission. Since the ifirough the factorpQ (H,H";p+#kn,p’+#Akn). Covari-
term (2.19 is a tensor product of the excited-state density-ance is established by the coupling of spatta@nter-of-mass
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momentaand internalmagnetic quantum numbers, total an- Kapitza-Dirac scattering, wave-matter interference, atomic
gular momentadegrees of freedom. This coupling can lead Talbot effect, GSE, or MGE. When the atom-field interaction
to Faraday rotation of a probe field's polarization vectortime is smaller than inverse frequency transitiog; one
when the probe field passes through an atomic be@@n- ¢4, yse the Raman-Nath approximation and omit the second
sidered for aG=0—H=1 transition in Ref.[29]) or an  {erivatives in Eqs(4.8, 4.1, greatly simplifying the equa-
atomic vapor that is also driven by a pump fiéinsidered  ions, For example, if the spatial or temporal envelope func-
for a G= 3—~H= 3 transition in Ref[9]). Equation(4.5  tions and amplitudes of the incident traveling wave electric
allows one to generalize these results to arbitrary manifoldsig|gs coincide with one another and if the coherences
which we plan to present in a future paper. p&(G,G';s,u) for G#G’ can be neglected, one can use the
The density-matrix elements appearing in the mastefyethod of Ref[3] to solve Egs(4.8, 4.12. An important
equations(3.9, 4.5, 4.8 are functions of three-dimensional oyample where the field requirements can be met is the scat-
vector quantities. For collinear radiation fields these €QUafering of atoms by a standing wave figlésonance Kapitza-
tions can be reduced to ones in which the density-matrityyac effect 10-14). Using this technique one can calculate
elements are functions of one-dimensional variables, with all,o total momentum distribution of the scattered particles
dependence on transverse momerga, ;) or transverse EG[G]pg(G,G;p,p), as well as the momentum distribution
dinates ¢, ,u,) eliminated[see Eqs(4.10, 4.1}]. The : ; ; ;
coor up) el 1See ' associated with the various ground-state multipoles.
price one pays for this redqcﬂqn is that E¢£.10, 4.1) are Finally, we would like to point out that, in adiabatically
no longer rotationally covariant; under rotation, the moment&yjiminating the optical coherences and excited-state density-
or coordinates would be rotated outside of the reduced ongsatrix elements. we neglect recoil shifts in the resonance
dimensional subspace. When the contribution from the ifyenominators of,the rhs of Eq&.7, 4.3. These recoil shifts
term is included, the multipolepg no longer are tensor can pe responsible for RIR when pump and probe fields are
quantities; their properties with respect to rotation no longeggjiinear[7]. To consider RIR for this case one needs to start

obey simple transformation properties. from the exact master equatiof@&4).

Two representations, momentunp-p’” and “coordi-
nate” “s—u,” have been used in this article. The momentum
representation is convenient for steady-state problems, such ACKNOWLEDGMENTS
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