PHYSICAL REVIEW A

ATOMIC, MOLECULAR, AND OPTICAL PHYSICS

THIRD SERIES, VOLUME 53, NUMBER 1 JANUARY 1996

ARTICLES

Circular quantum billiard with a singular magnetic flux line

S. M. Reimannt M. Brack,® A. G. Magner? J. Blaschke} M. V. N. Murthy?
Ynstitute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
2Institute for Nuclear Research, 252028 Prospekt Nauki 47, Kiev-28, Ukraine
3Institute of Mathematical Sciences, Madras 600 113, India
(Received 31 July 1995; revised manuscript received 7 Septembey 1995

We discuss the application of Gutzwiller’'s semiclassical theory to a circular billiard with a singular magnetic
flux line added at its center. The Aharonov-Bohm effect manifests itself through the cancellation of periodic
orbits for particular flux strengths. Diffraction phenomena affect the gross-shell structure of the level density
and require corrections of higher orderfin The full quantization of the level spectrum, however, is much less
affected.

PACS numbse(s): 03.65.Sq, 03.65.Bz, 71.20.Ad, 73.20.Dx

I. INTRODUCTION mally, the derivation of Eq(1.1) is based upon a semiclas-
sical approximation to the single-particle propagator, origi-
Periodic orbit theory(POT) relates oscillations in the nally proposed by van Vleck in 192%] and rederived by
guantum level density of a given Hamiltonian to the periodicGutzwiller [2] from Feynman’s path integral, and makes use
orbits in the corresponding classical system. The foundationsf the method of stationary phases. In the form proposed by
of POT are closely related to the semiclassical quantizatioutzwiller, the trace formula is only applicable if all in-
introduced by Bohr and Sommerfeld in the early days ofyolved periodic orbits are isolated in phase space. It has
quantum mechanics. Classical chaos, however, was the régrerefore been particularly successful in its applications to
son for the failure of the semiclassical quantization of theclassically chaotic systentsee Ref[3] for a review, and

helium atom, and Einsteifi] was the first to point out that fjnaly made the semiclassical quantization of the helium

the old Bohr-Sommerfeld quantization rules do not apply Oatom possiblé6]. The drawback of the method is that it fails
classical chaotic motion. The first answer to this puzzle cam

. . ; r tems which hav nerate famili f nonisolat
in 1971, when Gutzwiller presented his famous trace for Of Systems ch have degenerate families of nonisolated

: D . : ‘periodic orbits, such as typically occur in integrable systems.
mula, which relates the oscillations in the level density to the'D ypicaly 9 y

iod " d stabilit les in th Il Using a multiple-reflection expansion of the time-
PEriods, actions, and stability angles in the sum over afl ¢ aS|’ndependent Green'’s function and again employing the prin-
sical periodic orbit§2—4]. In its simplest form, when all

i . ) . . ciple of stationary phases, Balian and BIdcH derived in
periodic orbits are isolated in phase space, this trace formulf972 a trace formula for cavities with ideally reflecting walls

reads of arbitrary shape. Explicit results were given for a spherical
cavity in three dimensions, which recently became famous in
S9(E)= iz Tero cos( SedE) _ UPOI). the context of metal cluster physid8]. In Refs.[9,10]
mh 50 \/|de(|v|PO—|)| h 2 Gutzwiller's approach was generalized tategrable sys-

(1.)  tems, explicitly taking into account the degeneracy of the
classical motion in a given potential. A generalization of the

Each periodic orbitlabeled “PO”) contributes an oscillating  Gutzwiller theory to systems which exhibit continuous sym-
term whose phase is the action integB(E) along the metries has been derived by Creagh and Littlejfth.
periodic orbit. The amplitude is a slowly varying function of  In the present work, we investigate a two-dimensional
the energy and depends on the orbit stability and the periodircular billiard with a singular magnetic flux line, using the
Tppo Of the primitive periodic orbit(“PPO”); Mpg is the  extended Gutzwiller method of Reff9,10]. After a short
(2n—2)-dimensional stability matrix( is the number of derivation in Sec. Il of the semiclassical level density in the
degrees of freedonThe Maslov indexrpgis an integer and  circular billiard—which has been discussed before in the lit-
depends on the topological features of the dynamics. Foreraturg12,13—we show in Sec. Il that a singular magnetic
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flux line at the center of the disk leads to drastic modifica-
tions of the quantum level density. We demonstrate that in
the lowest-order POT the effect of the flux line can be de-
N

scribed by the addition of the Aharonov-Bol#B) phase to
the classical action. However, novel diffraction effects arise @11 G,11) 4,1,1)
which modify the gross-shell structure dramatically, although o ” o
they have only little effect on the fully quantized spectrum.

We understand them as AB scattering of a plane wWavi
but their quantitative inclusion in the POT necessitates cor-

o
<

rections of higher order in Planck’s constant This is, as
yet, an unexplored territory.

The most ambitious use of the semiclassical approach is (5,2,1) (7.2,1) (7,3,1)
to identify the individual quantum energies. Summing over
sufficiently many periodic orbits in the trace formula, the
guantum levels should appear as singularities in the Ieveg
density. It is well known, however, that the full quantization
can only be reached in a few exceptional cases. Very ofte
one has to deal with severe convergence problems that oft
can be overcome only by a substantial reordering of the pe-
riodic orbit sum or by folding it with a suitable averaging -
function. Formulating a quantization condition in terms of 0(E)=(1-VEy/E)/4E,, (2.3
the dynamical function[15], the semiclassical estimate of ) N _ )
ing Bogomolny’s method17], the quantization of the circu- €Nergy unitto=7%22mr. Theoscillating part 5g(E) of the
lar billiard was addressed in Refd8,19. We show in Sec. level density is the key quantity which the POT relates to the
IV that a full quantization can be obtained from the tracePeriodic orbits of nonzero length in the corresponding clas-
formula by Gaussian averaging it over a width which isSical system. _ _ -
smaller than the Spacing of the quantum |eve|s1 and summing The classical dynamICS of a circular billiard fO"OWS el-
over a sufficiently large number of periodic orbits. Numeri- €mentary geometry, and due to momentum conservation the
cally, this leads to exactly the same eigenvalues as thBotion of the particle is determined only by its direction and
Einstein-Brillouin-Keller (EBK) quantization[20,21]. This  Position. The periodic orbits for the circular billiard are the
result is far from being trivial, since priori one would regular polygons shown in Fig. 1. Each of these orpitsan

expect an agreement of the POT energy levels with EBKoe characterized by three integer numbegs: (a,b,n),
only to lowest order irf. wheren is the number of fundamental periodsis the num-

ber of turning points at the boundary during one period, and

b measures how many times the trajectory encircles the cen-

ter during the fundamental period. Therefore the winding

numberw around the origin of the disk is given iy=bn,
Before investigating the effects of a magnetic flux line onand we have the additional condition thet 1 fora=2 and

the level density, we first discuss the simple case of the cirb<1 a for a>2. The lengthL 4 is then given by

cular billiard with radiusR [12,13,19. In the present work,

we show that its level density can as well be derived from Ls=2anRsingg, (2.4)

Gutzwiller's semiclassical approximation to the Green's

function[2,4]. This yields exactly the same trace formula as

is obtained by the methods of Balian and BIdd2] or by If the angleg ; (as displayed in Fig. 1 for the square orbit

Belrry and T?bfo{13,22,23. ith di . as an exampleis a rational multiple ofr, the orbit closes
_'ngeneral, for a ql_,lantum_ sy_stem with discrete e'genener[:')eriodicaIIy aftera reflections. For irrational multiples of
giese; the level densityg(E) is given by the sum of Diraé

. 7, however, the orbit continuously hits the boundary at dif-

functions ferent points. With an increasing number of turns around the
origin, its trajectory fills a ring-shaped area between its caus-

g(E)= 2 S(E—¢)), (2.1) tic and the boundary. Such an orbit is never repeated, so that

i it has an infinite period7,25] and can be omitted from the

trace formula.

where the sum over includes the degeneracies. It is com- In Fig. 2 we illustrate for the examplg=(3,1,1) how

mon knowledge that the level densifyE) can be split into  any given orbit can be rotated within the boundary without

O

FIG. 1. Periodic orbits in the circular billiard. The straight-line
olygons are labeled by the ind@x= (a,b,n), wheren is the num-
er of fundamental periods is the number of reflections at the
boundary during one period, afdmeasures how many times the
ath encircles the center per period. For a periodic orbit, the angle
=bm/a is a rational multiple ofr.

Il. CLASSICAL PERIODIC ORBITS AND THE LEVEL
DENSITY IN THE CIRCULAR BILLIARD

wherez=bm/a andR is the radius of the disk.

a smooth and an oscillating part: changing its length and thus its classical action. Due to this
circular symmetry, we haveegeneratefamilies of orbits.
9(E)=9(E)+ 6g(E). (2.2 Therefore Gutzwiller’'s trace formul#l.1), valid only for

isolated orbits, does not apply. However, for the present two-
For the circular billiard, themoothpartg(E) is known ana- dimensional case, we can still use Gutzwiller’'s semiclassical
lytically [24] to be Green’s functiorf2—4]
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cillations, when the point at which such an orbit intersects
itself is varied in the radial direction.

For the circular billiard we arrive at the following trace
formula:

i T 3

2 :
5gSC(E)=—mIm§[;, f,B eX[{hSB—IO'ﬁE—lT

X f dr| Z5(p't;r"E)| Y2, 2.7

FIG. 2. The family of nonisolated orbits, shown for the triangle where the sum now runs over the set of distinct families

B=(3,1,1) as an example. Rotation of the periodic orbit within the'B(a’b’n) of periodic orbits for a given enerdy. The factor

boundary does not change the value of the classical action. B is the numbe_r of different orbitg of a given family passing
through the pointr. For a=2 (diameter orbit we have

fg=1 and fora>2 (all polygonsg we havef ;=2. This dif-
Gt I"E)=2m(27h)" 32 S, Ifﬁ(p’tﬁ;r”E)Il’z ference in the amplitudes for the diameter and the closed
all paths polygons comes from the fact that fae>2, at any pointr
we have two different orbits which are symmetric with re-
spect to the axi€0, r) (see Fig. L The integral in Eq(2.7)
is done exactly over the ring area between the circular
(2.5 boundary and the caustic of each orbit family and can, in
fact, be performed analytically.
In Ref. [10] it has been shown that, using the Hamilton-
acobi equations and a local coordinate systeqy)( in
hich x is directed along the orbit angis perpendicular to

i . w37
X exp %Sﬁ(r ,f ;E)—|,LLBE—|T,

where the summation goes oval classical trajectorieg,
and take its trace in configuration space to arrive at the lev

density: it, the Jacobian7, simplifies to
1 ) m\2( op..
5gsc(E)=—;'m Gsdr,r;E)d . (2.9 7[%:(_) (—,y,) . (2.9
/ P/ \ay")

In Eq. (2.5), ug is the Maslov indeX3,26] appropriate for — 1y o . ;
the Green's function, ang?(p'tr"E) is the Jacobi deter- The derivative ¢p,/dy")s determines the displacement of

) 0 . the final pointr in the direction of they axis due to the
mlnan: for the t,ragsformgtlon b'etween the'varlabl'pSt&') variation of the initial momentum projectiop, . This is a
and ("E). Sg(r’,r";E)= {p-dq is the classical action inte- characteristic of the stability of the corresponding orbit. In-

gral along the path from’ to r”. By taking the trace in Eq. troducing the angl@’, by p.,=p sind,, we have ford’ <1
(2.6), the integration over the area covered by the orbits, i.e. P y P P

the ring area between the circular boundary and their caustic, m2/ a6
takes account of the degeneracy of the orbits. For any given "’B:_(_S) (2.9
point r between the causticr ER.=R cospg) and the p\dy 8

boundary (=R), there exists a periodic orbit crossing this

point. Therefore, we have a continuum of periodic orbits  For cylindrical symmetry, the Jacobiaﬂé(é/&y”)ﬁ equals
B=p(a,b,n) of a given family filling the ring area between [9,10]

the caustic and the boundary, all of which have the same

values of the classical action. Hence, the act&ncorre- 96’ R sing
sponding to the family of orbit@ is constant and does not a—ff) :Zan(rz— RZ codo)’ (2.10
depend on the choice of the point and can therefore be Y'ig ¢

taken outside the trace integral.

Note that in the standard derivation of Gutzwiller’'s trace It now remains to determine the Maslov indey in Eq.
formula(1.1), the stationary phase approximation is used for(2.7). For each periodic orbi, this phase is determined by
the integrations in the directions perpendicular to the orbitsthe number of conjugate points along the pAtf8,26]. Any
which leads to the condition of periodicity. In the presentsimple conjugate point changes the valueogfby one unit
case, the actions and thus the phases are identically constantd thus gives a phase shift ef 7/2 in the level density.
in the above mentioned ring areas. The stationary phase apor all orbits, we have at each reflection from the boundary a
proximation can therefore not be used as it would lead tesimple turning point related to the sign change of the normal
diverging integrals. Instead, the trace integrals over these agomponent of the particle momentum and a caustic point in
eas can be done exactly, as discussed below. Still, it appeafse tangential direction to the boundary, leadinghto=2
as a reasonable approximation to restrict the sum ifE§.  per reflectionwhich gives an overall phase change-ofr as
to periodic orbits, since the contributions from nonperiodic in classical wave optigsiIn the interior of the billiard, there
closed orbits will essentially be canceled by rapid phase osare conjugate points along the caugsbown by the dashed
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line in Fig. 2 of each orbit. We finally obtain the following

analytical trace formula for the oscillating part of the level 5 0=0.50 | Vool
density: 1} b ha ‘n,‘ il fa
| f r‘ { Al ) \\ f
11 sin2p Or YWY ATV IR
B \ ! !
SgelE)=— —— S f, i, 1} | |
Osd Eo VmkRp=Gom ? Jan B N ‘ ~, j !
(2.11
where 2} 0502
m 1!
T 37 0 0 - - 2 -
CDB:kLB—?)anE—i-T. (2.12 o »

2
HereE is the energy of the particlé= 2mE/% the wave

number, and ; has been defined after EQ.7). In the over- «=0.00

all phased z, the termkL is the classical actiof; of the 2

orbit B8 in units of 4. Recently, Eq.(2.11) has also been 1

derived by Tatievsket al.[12], applying an extension of the 0

Balian-Bloch theory for cavities with a finite depth, and by -1

Creagh[13], using the method of Ref11]. )

To avoid convergence problems of the sum in Egll), . A

we average the level density over a finite energy interval. 0 10 20 30 40 50
This is similar in spirit to Balian and Bloc}¥], who gave the kR

energy a small imaginary part. The coarse graining of semi-
classical and quantum-mechanical level densities is by now a FIG. 3. Oscillating part of the level density in the Aharonov-
standard practice, and the ability of the trace formula to reBohm disk billiard with magnetic flux streng=0 (bottom), 0.25
produce the coarse-grained level density fairly accurately hagniddle), and 0.5(top). We have plottedsg(E) versuskR, Gauss-
been demonstrated for a large number of systéses, e.g., ian convoluted Withny.G and muItipI_ied by the norm factor _
Refs.[10,12,16). Here we convolute the semiclassical level 2¥(7EEq)" Dashed lines, coarse-grained quantum results; solid
density over the variabli with a Gaussian of width/R, lines, semiclassical results E@.7), correspondingly averaged.
which gives for each orbit3 an extra damping factor
exp(—¥2L5/4R?) in all terms of the periodic orbit sum Eq.
(2.11). This is equivalent to averaging the quantum level
densityE with a width 2y\EE,. integrable

_ For the circular billiard, the exact eigenenergigsare Again restricting the calculations to two dimensions, the
given, in umt_s oon_, by the sq_uared zeros of the cylindrical Lagrangian is given by
Bessel functions with integer indices=0,£1,+2,... . We
choose an averaging range=0.6 which corresponds to a 1 e
coarse graining of the level density that preserves its gross- L= EmVZJF EV'A, 3.1
shell structure. The lowest part of Fig. 3 shows both the
averaged quantum-mechanical and the semiclassifdt):  whereA denotes the vector potential, which in a symmetric

by Berry and RobniK27] for cases where the geometry of
the boundary causes chaotic dynamics, and by [@ats.
[28] for rectangular boundaries, where the system is pseudo-

their difference can hardly be recognized. gauge is given by29]
So far, our present investigation is nothing more than a
reduction of the well-known three-dimensional spherical bil- é [ -y
liard [7] to two dimensions, and altogether the results de- A= xZry2 &) (3.2

scribed above are not surprising. In the next section, how-
ever, we want to examine the influence of a pure gauge fieldnd ¢/2 is the flux through the solenoid. This corresponds

on the motion of the particle in quantum mechanics, ando a magnetic field which has as function singularity at
study the effect of length scales in the quantum-size regimenhe origin and is zero everywhere else:
We will demonstrate that the presence of a vector potential

yields characteristic differences between the classical and B=VXA=¢5?(r)e,. (3.3
quantal behavior, and discuss how these changes may be . _ o
included in the semiclassical level density. With Eqg. (3.2, the Lagrangian Eq3.1) in cylindrical coor-

dinates (, 6) simplifies to
lll. CIRCULAR AHARONOV-BOHM BILLIARD
o7 1 r2 272 e¢ .
In the following, we discuss the changes in the classical 2= Em(r +ree )+ﬁ 0. (3.4
and quantum dynamics of the charged point particle, when a
magnetic flux line is added at the origin of the disk andAs a consequence of the well-known Aharonov-Bohm effect
perpendicular to the-y-plane. The level statistics of the [14], the wave function of the particle acquires a flux-

so-called Aharonov-Bohm billiards have been investigatedlependent phase change upon rotation around the solenoid.
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For a nonzero fluxp, the particle is classically not allowed
to penetrate the flux line, because its energy would become

infinite. Forr # 0, the Lorentz force on the particle is always
zero and the classical equations of motion remain un- A “ A
changed. This can easily be seen from ), because the =050
interaction term due to the flux line in the Lagrangian is a ﬂ }\
total time derivative. The geometries of the classical orbits B 0=045
with a>2 in the configuration space therefore do not g ' A
change. The quantum spectrum, however, does depend on < o =040
the flux ¢. = A A

For integer values of the canonical angular momentum 3 b =035
A, the energy eigenvalues and wave functions are deter- 5 «=030
mined by solving the corresponding radial part of the Schro S . 0.=025
dinger equation, with the dimensionless flux strength g | A A~ 02020
a=ed/hc, 3 \ A ,

K 0.=0.15

B2l 149 9 LTI PR 3 )\,, ol
oml Ty o T ATt Vi=ely, (39 =0.
— W ———— 0=005

with Dirichlet boundary condition®;(R)=0. The quantity

(A — a)? can take fractional values, if we assume thatan }\

take a continuous range of values between 0 and 1. The \ Moo 0.=0.00
boundary condition together with the condition of normalis- o 2 4 6 8 10

ability of the quantal wave functions finally yield the energy Ly/R

eigenvalues as

FIG. 4. Fourier spectra of the quantum level densit(E),
with y= 0.4 and normalization as in Fig. 3, for the Aharonov-Bohm
circular billiard with various flux strengthsy. Note how for
a=0.25 all signals, except those of the half-diameter orbit and its
where  Jjx -~ o/(X|a—qf,n) =0. (3.6 harmonics, disappear due to the Aharonov-Bohm effect.

_ _ 2
&i=€|A—al,n= EoX[A —afn:

appear again. Their disappearancecat0.25 is a simple

We see that the presence Of the ﬂUX Iine in the Circulal’ bil-consequence of the Aharonov-Bohm effect, as we shall see
liard simply changes the order of the Bessel functions frompe|ow.

integer to fractiona[27]; the symmetrya—(1—a) in the Two other features are particularly noteworthy in Fig. 4.
quantum spectrum allows the restriction te a$0.5 . For  First, the peak at. =4R exists also fora>0, although the
integer flux «=0,1,2 ..., thequantum spectrum is unal- classical diameter orbit is forbidden, and undergoes the same

tered by the flux line. This is easily seen from the fact thatcancellation atv=0.25. Second, there appears a new signal
for any integer value of the angular momentum gets rede- gt =2R, corresponding to a “reflected” half-diameter orbit,
fined and the new set is isomorphic to the old one both inyith an amplitude that increases withup to «=0.5. Both
terms of the spectrum and eigenstates. This mapping, hovshenomena can be interpreted quantum mechanically. When
ever, has no classical analog since the classically allowef] wave hits the flux line, it is diffracted; part of it is reflected
angular momenta remain the same. and part is transmitted. Thus the two signald_at2R and

In the numerical computation, all zerd$, —,,n<100 of | =4R correspond to the reflected and the transmitted wave,
Jja-q|(X) are included. Figure 3 shows the oscillating levelrespectively. The fact that the=4R peak is suppressed at
density 5g(E) (solid lineg for a«=0.25 (middle) and for  4=0.25 is obviously due to the possibility of the wave to
a=0.5 (top), averaged and plotted in the same way as forhypass the flux line on either side: the two events pick up
a=0 at the bottom. Clearly, the gross-shell behavior underopposite phases, so that their contributions cancel exactly at
goes dramatic changes when the flux strengtis varied. «=0.25 as in the classical Aharonov-Bohm experiméror

In order to understand this behavior of the level density,,=0.25, the tiny signals at =4R and, hardly visible, at
let us now inspect the Fourier spectraduf( \/E) of the AB L=6R and &R are actually the higher harmonics with
disk which give us directly the lengths of the involved clas-n=2,3,4 of the reflected half-diameter orbit.
sical periodic orbits. The coarse graining wig=0.6 sup- The squared Fourier peaklaE2R in Fig. 4 as a function
presses all but the shortest orbits. In Fig. 4 we show thef « can be fitted by sif(7a) within the numerical accu-
(absolute Fourier amplitudes for different values of For  racy, as shown in Fig. 5. This is precisely the AB cross
a=0 (bottom) we have the spectrum of the simple disk bil- section for backward scattering: indeed, the gquantum-
liard; the visible signals correspond to the orbits with1  mechanical cross section for scattering of a plane wave
(lowest harmonics for a=2 (diametey, 3 (triangle, 4 by a singular magnetic flux is proportional to
(squarg, 5 (pentagoi For increasingx the height of these sir’(ma)/cog(6/2), whered is the scattering angld 4]. This
peaks is reduced, until at=0.25 virtually no trace is left of strongly supports our interpretation of the=2R peak for
the classical orbits with length=4R. For «>0.25 they «#0 as a simulated classical half-diametric orbit resulting
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Eqg. (3.7 it follows that the Aharonov-Bohm effect cancels

P all periodic orbits with a winding numbdrn=(2i +1)/4«
. o with integeri=0,1,2... .
3 R ;,/' It is interesting to note that, starting from a minimal in-
§§ oo 9/ clusion of the Aharonov-Bohm pha_se in the semicla}ssical
S ” S, EBK spectrum, Eq(3.7) can be obtained using the Poisson
§ = Vv ~ sin“(na) summation formula and then performing the integrations by
N rd the stationary phase methgske, e.g.[23]). For a cylinder,
e such investigations have already been carried out by
0 01 02 03 04 05 Bogachek and Gogad4&0], who obtained from the EBK
o spectrum a trace formula for a cylindrical confinement,

which is identical to the result of the Balian-Bloch theory
given in Ref.[12]. The results of Ref[30] anticipate the
more general theory of semiclassical quantization in inte-
grable systems given later by Berry and Tap22].

Note that our findings are substantiated by the isotropic

. . L ) two-dimensional harmonic oscillator with singular magnetic
from a reflection by the flux line. The quantitative amplitudesy,,, |ine for which the quantum-mechanical trace formula is
describing these diffraction phenomena in POT will appeaj,qwn analytically{31].

as quantum corrections of higher ordt_arﬁle. Diffraction effects similar to those discussed above can
Let us now interpret these results in terms of POT. As a5 pe found in a disk billiard with a concentric inner re-
consequence of the well-known Aharonov-Bohm effell,  o0(ing houndary with radiu®, in situations whereR; is
the wave function of a particle acquires a phasex2upon o mnaraple to or smaller than the de Broglie wavelength of
each rotation around the flux line. Classically, the anyoniGne harticle (The semiclassical trace formula for this system
gauge term does not affect the equations of motion. HOWp 5 heen derived by Tatievsét al. [12]; the nonconcentric
ever, the canonical angular momentym is changed 10 556 has been studied by Bohigasl. [32].) The semiclas-
Pyt af, so that the classical actid®y acquires as an extra gjcq) diffraction from circular hard-wall scatterers with finite
contribution the AB phase which here amounts 10gj,e has been investigated recently by Wirgsa] and Vat-
+2mabn, the sign depending on the orientation of the Oﬂ?lttay et al.[34], taking into account diffracted rays in addition
[27,28. To lowest order, we therefore expect that the orbits, 'the geometrical ones. Scattering resonances between two
Wlth a>2, wh.ose.geometry is not affected by the flux line, confocal hyperbolae were studied by Whel@5], and in
give the contribution Refs. [36,37 a discussion of then-disk scatterer can be
found, showing that POT approximates the energies and

FIG. 5. Quantum Fourier amplitudes of the reflected orbit of
length L z=2R in the Aharonov-Bohm disk as a function of flux
strengtha.

1 1 sin?e s widths of the scattering resonances to great accuracy. Pavloff
69sdE, )= E T=n fg—— and Schmit investigated diffraction effects in two-
o ymkR "5 Jan dimensional polygonal billiards and give an analytical trace

X 1/2[SiN(® 5+ 2mabn) formula accounting for the diffractive orbif88]. Finally, #
corrections to the Gutzwiller trace formula by means of an

+sin(®z—2mabn)] asymptotic power series have been discussed by Gaspard and
Alonso[39] for hyperbolic systems.

1 1 . sin®?g,

Eo JakR'p g Jan IV. FULL QUANTIZATION AND EBK THEORY

Xsin(® g)cog 2mabn). 3.7 So far, we have only discussed the application of POT to

the coarse-grained level density, which works equally well in

This corresponds to a “minimal inclusion” of the AB effect both nonintegrable and integrable systems, where a full
into the trace formula. In Ref31] a similar investigation quantization can only be reached in a few exceptional cases
was made for the nonintegrable im-Heiles potential, in  [3]. It is well known, however, that integrable systems can be
which the classical motion is chaotic at higher energies. Theuantized using the EBK methd@0]. We therefore now
treatment of the diametric orbit@a& 2) is less clear: classi- attempt a full quantization of the disk billiard, starting from
cally, they are forbidden since the linear canonical moment#&d. (2.11). We choose a very small averaging range
diverge at the origiri28], and the particle cannot penetrate y=0.02 which corresponds to an energy interval much
the flux line; wave mechanically, we expect diffraction. Fromsmaller than the shortest interval occurring between the low-
the behavior of the Fourier peaks bt=4R, however, we est 14 quantum levels. At the bottom of Fig. 6 we show the
conclude that the diametric orbi&2), which represents semiclassical result foe=0. Indeed, we obtain an almost
the transmitted wave, should also be added by the “minimaperfect quantizatiofithe maximum length of orbits included
AB inclusion” to the sum in Eq(3.7). here wasL ;=30 00R). The peaks are displaced with re-

Equation(3.7) now simply explains the disappearance of spect to the exact levelshown by small circles along the
all peaks in the Fourier spectrum which correspond to orbitenergy axig by about 2% for the lowest eigenvalue, and by
with winding numbemb=1: the two sine functions includ- fractions of a percent arourikdR~15. The exact degenera-
ing the opposite AB phases cancel exactlyvat0.25. From  cies(1 for A=0 and 2 forA # 0) are obtained with a signal-
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give, in fact,identical spectra. We have confirmed this nu-
0=0.50 merically by our calculations, which show that the relative

2 difference between the EBK and POT eigenvalues is smaller
i than 10 8, whereas the relative difference between EBK and
0 the exact quantum energies is of the order of 1Qo

R 10"2. The details of these numerical calculations are given
in the Appendix.
0=0.25 For the disk billiard including the magnetic flux line, the

l I n H I h EBK spectrum is modified, like the exact one, by subtracting
I\ | l l M ll ‘ Mln“ “lM the flux strengtha from the angular momentum. Using
R AR AL B bl the “minimal AB inclusion” Eq. (3.7) for §gs{ E,«), which
ignores all possible higher-order correctionsiinwe get the
0=0.00 results shown in Fig. 6 fow=0.25 (middle) and «=0.5
(top). The exact degeneracy far=0.25 is 1 for all levels
(except for accidental degeneragig®r «=0.5 it is 2. The

Ll EEEEE-

— b

g(E)
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their positions are of the same accuracy asder0. Some
small structures of alternating sign can be seendefrO
which do not correspond to eigenvalues; their height is much
smaller than unity and decreases with smaller averaging
widths. Fora=0.5, the period of these small peaks with one
kR given sign isar; in the chosen units this corresponds to the
period of the reflected half-diametric orbit whose contribu-
FIG. 6. Semiclassical total level density(E,a), as sum of tion to the trace formula we have ignored. It is expected that
g(E) in Eq. (2.3 and 89 in Eq. (3.7), for the Aharonov-Bohm the correct inclusion of the quantum corrections stemming
disk billiard, normalized and plotted as in Fig. 3, for three values offrom the diffraction effects will remove these structures. But
the magnetic flux strengt. The averaging width way=0.02;  even without these corrections, we obtain from E}7) a
orbits with maximum length 30 0B®were included in the sum of fairly good spectrum of comparable quality to that for
Eqg. (3.7). The small circles indicate the positions of the exact ¢=0.
guantum-mechanical eigenvalues. Our above discussion on possible differences between
EBK and POT eigenvalues may be further clarified by the
to-noise ratio better than 1000:(The three higher spikes following observation. If one starts from the EBK spectrum
correspond to accidental near degeneracies which cannot & the AB disk and performs a Fourier transform of the cor-
resolved withy=0.02) We get the same resyl21] also for ~ responding level density, one finds results very similar to
the three-dimensional spherical billiafd,9,10: the level those shown in Fig. 4 which contain a clear signal from the
positions are of the same quality as obtained in the EBKeflected diameter orbit. Thus the EBK level density does
method, and the exact degeneraciés+21 are obtained for ~contain a corresponding correction term. By Poisson re-
the states with orbital angular momentum[21]. summation of the EBK level density andpplying the
Berry and Tabor[22] have developed a semiclassical Saddle-point approximatigrone obtaing23,30 exactly our
theory which starts from EBK quantization and applies toPOT result quoted in Eq3.7), showing that alfi correction
systems with degenerate orbits. They derived a trace formuligrms are lost in the process of the saddle point approxima-
that is similar to the sum over periodic orbits obtained bytion. The simple disk billiard ¢=0) must be considered as
Gutzwiller and concluded that both methods, where they apa particularly fortunate case where no further eri@eyond
ply, should lead to equivalent results. This can be expected tthose inherent in the EBK approximatjoare introduced in
be trueto lowest order ir, but not necessarily beyond since the derivation of the trace formul&Similar fortunate cases
in both approaches, some higher-order terns are omitted ~ are the harmonic oscillator potentials, for which the POT
automatically when the saddle-point approximation is usedpectra even coincide analytically with the exact quantum-
to derive the trace formula. The equality of the two ap-mechanical spectrgQ].)
proaches was confirmed by a recent alternative generaliza-
tion of Gutzwiller’s theory for systems with continuous sym-
metries by Creagh and LittlejoHA1]; for integrable systems
without higher dynamical symmetries, such as the circular In summary, we have shown that the inclusion of a sin-
disk billiard, the trace formula of Berry and Tabor has, in- gular magnetic flux line in a circular billiard leads to signifi-
deed, been rederived in Rdfl1]. Moreover, the trace for- cant modifications of the coarse-grained quantum level den-
mula for the circular billiard, as well as for a cylindrical sity. The most dramatic changes can be interpreted as due to
billiard in three dimensions, can be obtained by Poissorthe Aharonov-Bohm effect and are incorporated into the
summation of the EBK energies, using again the method ofowest-order POT simply by adding the AB phase to the
stationary phases, and the resulting formulas are identicaction appearing in the trace formula, leading to 7).
[23,30. The diffraction effects caused by the flux line also modify
All this strongly suggests that the EBK quantization andthe gross-shell structure appreciably, but are less important
Gutzwiller’'s approach not only agree to lowest ordefiibut  for the full quantization of the spectrum. The Fourier com-
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V. SUMMARY AND CONCLUSIONS
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ponent corresponding to a particle reflected by the flux line 0
has an amplitude proportional to the AB backward scattering a) /—'i
amplitude, as was also found analytically for a two- i
dimensional harmonic oscillator potential with magnetic flux ,’\

line. The quantitative treatment of the diffraction effects 09112
within the POT necessitates the inclusion of higher-order
corrections ini. Summing over sufficiently long orbits, we
numerically obtain from Eq(3.7) a full quantization that is -110° ™ -~
identical to the EBK result, at least for the disk without flux Lm

line. We can therefore conclude that the extended Gutzwiller b) 0.6
theory, that of Balian and Blocf7], and that of Berry and i
Tabor[22] for the integrable case of the disk billiard are all

equivalent in giving exactly the spectrum obtained by the « j
EBK quantization. <
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APPENDIX: NUMERICAL EVLUATION

OF THE POT EIGENVALUES
FIG. 7. (a) DifferenceA between the EBK eigenvalug®K and

This appendix deals with the numerical determination ofP(L ). The dotted line is proportional th,,?. (b) The quantity
the “POT eigenvalueste.g., the peak positions of the POT AL2 seems to converge to a constant, showing the first term in
level density in the limit of a vanishing smoothing width P(L,) to be of the ordet ,?. (c) The L2 term is compensated;
v) in the case of the circular billiard without flux line. The plotting the remainder multiplied by againstL ;, shows that the
results show with high accuracy that the POT eigenvaluesext term is of the ordet,® (dotted ling. The spreading of the
are identical to those of the EBK quantization. The differ-data points is proportional tb,,*, as is expected.
ence between the two semiclassical methods is at least six

order_s of magnitude smaller than the semiclas_:sical eImor, €.y fit a simple function toP(L,), one can extrapolate
fche dlffe_re_nce to the exact quanturr_]-mec_hanlcal res_ult. _Th'?-’(L ) for L,—. In contrast to the method of taking the
is non-trivial, as we expect the sem|clas§|cal a_pprommatloniosi’t?on for g sufficiently largd, as an approximation to
to agree only up to the order of the semiclassical error. the position forL, =, this stratnégy gives control over the
convergence behavior. Furthermore, the accuracy is again
1. Determining the POT eigenvalues improved, as machine precision sets bounds on the maxi-

Even in integrable systems, the PO sum is in general ndhum L, that can practically be handled.
absolutely converging. The sum is therefore not well defined,
as it depends on the summation order. Standard practice to
overcome these convergence problems is a so-called
“smoothing” of the PO sum[16]. The method consists of
folding the PO sum with a “smoothing function” of width de
v. We use an equivalent approach which exploits the clos
analogy of the PO sum to discrete Fourier transformatio
[41]. We multiply the amplitudes of the PO sum with an
appropriate window functioW/(L), which is nonzero only
on[—Ln,L,]. HereL denotes the orbit length, henteg, is

2. POT eigenvalues of the circular billiard

Since we have no theoretical prediction for the depen-
nceP(L,,), we have to guess it by inspection. The data of
ig. 7 were calculated with a triangular window for the ei-
rbenvalue withA=1, n=1. Figure Ta) shows the difference

A between the EBK value anB(L,). The dotted line is
proportional toL;f. The diagram strongly suggests that the

the maximum orbit length taken into account. The equivalen{e_"Jldlng term OTA is of thez orderL.,”. This is confirmed n
smoothing widthy is proportional to 1/,,. This approach Fig. 7(b), showing thatAL?, converges to a constant. In Fig.

enables s to compensate most of the errors due to the ufl®) theL, term is compensated; plotting the remainder mul-
avoidable truncation of the infinite PO sum in our calcula-tiplied by LY, againstL,, shows that the next term is of the
tion, which improves the accuracy remarkably. We are interorder L. Higher-order terms inP(L,) cannot be ob-
ested in the peak positiors of the POT level density in the served. The spreading of the data is proportional;f,a, as
limit of vanishing smoothing, e.g., fdr,,—. We therefore is expected for the triangular windoj41]. These observa-
calculate the positionB(L ) for variousL . Ifitis possible  tions suggest fittind®(L,,) by the function
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TABLE |. Differences between some POT and EBK eigenvalues compared with the difference between
EBK and the exact quantum result.

A=0,n=1 A=0,n=2 A=1,n=1 A=2,n=1
|[EBK—POT 1.8x10°° 2.1x107° 3.2x107° 3.9x10°°
|[EBK—QM| 491072 2.2x1072 3.7x1072 3.5x1072

C3 |A|arcsif2|A|VEo/E)+2\E/Ey— A2
T (A1)

m :w(2n+|A|—1/2). (A2)

with three parameters; . All other investigated eigenvalues ) _ )
behave in the same way; using another window function! "€ quantum-mechanical eigenvalues are given by the zeros
changes mainly the behavior of the spreading of the data. Of the Bessel functions, as described in Sec. II. Both EBK
We calculated four POT eigenvalues, using a triangula@nd quantum-mechanical eigenvalues were calculated to an
window and a window function which is a triangle folded accuracy of 0.510"*. In Table | we compare the differ-
with a rectangle. Extrapolating,,— givesc, as an esti- €nces between some POT and EBK eigenvalues with the
mate for the difference between the POT and the EBK eigendifference between EBK and the exact quantum result.
values. This value is, within the numerical accuracy, inde- The EBK and the quantum-mechanical results are not
pendent of the chosen window function, as would beldentical. This is not surprising, since EBK is only an ap-
expected. The parameters that control the convergence bBroximation up to first order irk. As POT is another ap-
havior, ¢, andcs, do depend on the window function. The Proximation of the quantum-mechanical level density to first
results are listed in Table |I. order, we would expect the EBK and POT eigenvalues to
agree up to this accuracy only. But the typical error of the
semiclassical approximation is at least seven orders of mag-
nitude larger than the difference between POT and EBK,
which is smaller than the numerical accuracy for the POT
The EBK eigenvalues are givef20] by the roots eigenvalues. This strongly suggests that the two semiclassi-

. c
P(Lp)= e 40+ o+
Lm

3. Comparing POT, EBK, and quantum-mechanical
eigenvalues
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