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We discuss the application of Gutzwiller’s semiclassical theory to a circular billiard with a singular magnetic
flux line added at its center. The Aharonov-Bohm effect manifests itself through the cancellation of periodic
orbits for particular flux strengths. Diffraction phenomena affect the gross-shell structure of the level density
and require corrections of higher order in\. The full quantization of the level spectrum, however, is much less
affected.

PACS number~s!: 03.65.Sq, 03.65.Bz, 71.20.Ad, 73.20.Dx

I. INTRODUCTION

Periodic orbit theory~POT! relates oscillations in the
quantum level density of a given Hamiltonian to the periodic
orbits in the corresponding classical system. The foundations
of POT are closely related to the semiclassical quantization
introduced by Bohr and Sommerfeld in the early days of
quantum mechanics. Classical chaos, however, was the rea-
son for the failure of the semiclassical quantization of the
helium atom, and Einstein@1# was the first to point out that
the old Bohr-Sommerfeld quantization rules do not apply to
classical chaotic motion. The first answer to this puzzle came
in 1971, when Gutzwiller presented his famous trace for-
mula, which relates the oscillations in the level density to the
periods, actions, and stability angles in the sum over all clas-
sical periodic orbits@2–4#. In its simplest form, when all
periodic orbits are isolated in phase space, this trace formula
reads
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Each periodic orbit~labeled ‘‘PO’’! contributes an oscillating
term whose phase is the action integralSPO(E) along the
periodic orbit. The amplitude is a slowly varying function of
the energy and depends on the orbit stability and the period
TPPO of the primitive periodic orbit~‘‘PPO’’ !; M̃PO is the
~2n22)-dimensional stability matrix (n is the number of
degrees of freedom!. The Maslov indexsPO is an integer and
depends on the topological features of the dynamics. For-

mally, the derivation of Eq.~1.1! is based upon a semiclas-
sical approximation to the single-particle propagator, origi-
nally proposed by van Vleck in 1928@5# and rederived by
Gutzwiller @2# from Feynman’s path integral, and makes use
of the method of stationary phases. In the form proposed by
Gutzwiller, the trace formula is only applicable if all in-
volved periodic orbits are isolated in phase space. It has
therefore been particularly successful in its applications to
classically chaotic systems~see Ref.@3# for a review!, and
finally made the semiclassical quantization of the helium
atom possible@6#. The drawback of the method is that it fails
for systems which have degenerate families of nonisolated
periodic orbits, such as typically occur in integrable systems.

Using a multiple-reflection expansion of the time-
independent Green’s function and again employing the prin-
ciple of stationary phases, Balian and Bloch@7# derived in
1972 a trace formula for cavities with ideally reflecting walls
of arbitrary shape. Explicit results were given for a spherical
cavity in three dimensions, which recently became famous in
the context of metal cluster physics@8#. In Refs. @9,10#
Gutzwiller’s approach was generalized tointegrable sys-
tems, explicitly taking into account the degeneracy of the
classical motion in a given potential. A generalization of the
Gutzwiller theory to systems which exhibit continuous sym-
metries has been derived by Creagh and Littlejohn@11#.

In the present work, we investigate a two-dimensional
circular billiard with a singular magnetic flux line, using the
extended Gutzwiller method of Refs.@9,10#. After a short
derivation in Sec. II of the semiclassical level density in the
circular billiard—which has been discussed before in the lit-
erature@12,13#—we show in Sec. III that a singular magnetic
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flux line at the center of the disk leads to drastic modifica-
tions of the quantum level density. We demonstrate that in
the lowest-order POT the effect of the flux line can be de-
scribed by the addition of the Aharonov-Bohm~AB! phase to
the classical action. However, novel diffraction effects arise
which modify the gross-shell structure dramatically, although
they have only little effect on the fully quantized spectrum.
We understand them as AB scattering of a plane wave@14#,
but their quantitative inclusion in the POT necessitates cor-
rections of higher order in Planck’s constant\. This is, as
yet, an unexplored territory.

The most ambitious use of the semiclassical approach is
to identify the individual quantum energies. Summing over
sufficiently many periodic orbits in the trace formula, the
quantum levels should appear as singularities in the level
density. It is well known, however, that the full quantization
can only be reached in a few exceptional cases. Very often,
one has to deal with severe convergence problems that often
can be overcome only by a substantial reordering of the pe-
riodic orbit sum or by folding it with a suitable averaging
function. Formulating a quantization condition in terms of
the dynamicalz function @15#, the semiclassical estimate of
quantum energies has also been discussed in Refs.@16#. Us-
ing Bogomolny’s method@17#, the quantization of the circu-
lar billiard was addressed in Refs.@18,19#. We show in Sec.
IV that a full quantization can be obtained from the trace
formula by Gaussian averaging it over a width which is
smaller than the spacing of the quantum levels, and summing
over a sufficiently large number of periodic orbits. Numeri-
cally, this leads to exactly the same eigenvalues as the
Einstein-Brillouin-Keller ~EBK! quantization@20,21#. This
result is far from being trivial, sincea priori one would
expect an agreement of the POT energy levels with EBK
only to lowest order in\.

II. CLASSICAL PERIODIC ORBITS AND THE LEVEL
DENSITY IN THE CIRCULAR BILLIARD

Before investigating the effects of a magnetic flux line on
the level density, we first discuss the simple case of the cir-
cular billiard with radiusR @12,13,19#. In the present work,
we show that its level density can as well be derived from
Gutzwiller’s semiclassical approximation to the Green’s
function @2,4#. This yields exactly the same trace formula as
is obtained by the methods of Balian and Bloch@12# or by
Berry and Tabor@13,22,23#.

In general, for a quantum system with discrete eigenener-
gies« i the level densityg(E) is given by the sum of Diracd
functions

g~E!5(
i

d~E2« i !, ~2.1!

where the sum overi includes the degeneracies. It is com-
mon knowledge that the level densityg(E) can be split into
a smooth and an oscillating part:

g~E!5g̃~E!1dg~E!. ~2.2!

For the circular billiard, thesmoothpart g̃(E) is known ana-
lytically @24# to be

g̃~E!5~12AE0 /E!/4E0 , ~2.3!

corresponding to the the familiar Weyl expansion, with the
energy unitE05\2/2mR2. Theoscillatingpartdg(E) of the
level density is the key quantity which the POT relates to the
periodic orbits of nonzero length in the corresponding clas-
sical system.

The classical dynamics of a circular billiard follows el-
ementary geometry, and due to momentum conservation the
motion of the particle is determined only by its direction and
position. The periodic orbits for the circular billiard are the
regular polygons shown in Fig. 1. Each of these orbitsb can
be characterized by three integer numbers:b5(a,b,n),
wheren is the number of fundamental periods,a is the num-
ber of turning points at the boundary during one period, and
b measures how many times the trajectory encircles the cen-
ter during the fundamental period. Therefore the winding
numberw around the origin of the disk is given byw5bn,
and we have the additional condition thatb51 for a52 and

b, 1
2 a for a.2. The lengthLb is then given by

Lb52anR sinwb , ~2.4!

wherewb5bp/a andR is the radius of the disk.
If the anglewb ~as displayed in Fig. 1 for the square orbit

as an example! is a rational multiple ofp, the orbit closes
periodically aftera reflections. For irrational multiples of
p, however, the orbit continuously hits the boundary at dif-
ferent points. With an increasing number of turns around the
origin, its trajectory fills a ring-shaped area between its caus-
tic and the boundary. Such an orbit is never repeated, so that
it has an infinite period@7,25# and can be omitted from the
trace formula.

In Fig. 2 we illustrate for the exampleb5(3,1,1) how
any given orbit can be rotated within the boundary without
changing its length and thus its classical action. Due to this
circular symmetry, we havedegeneratefamilies of orbits.
Therefore Gutzwiller’s trace formula~1.1!, valid only for
isolated orbits, does not apply. However, for the present two-
dimensional case, we can still use Gutzwiller’s semiclassical
Green’s function@2–4#

FIG. 1. Periodic orbits in the circular billiard. The straight-line
polygons are labeled by the indexb5(a,b,n), wheren is the num-
ber of fundamental periods,a is the number of reflections at the
boundary during one period, andb measures how many times the
path encircles the center per period. For a periodic orbit, the angle
f5bp/a is a rational multiple ofp.
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where the summation goes overall classical trajectoriesb,
and take its trace in configuration space to arrive at the level
density:

dgsc~E!52
1

p
ImE Gsc~r ,r ;E!d 2r . ~2.6!

In Eq. ~2.5!, mb is the Maslov index@3,26# appropriate for
the Green’s function, andJb(p8tb ;r 9E) is the Jacobi deter-
minant for the transformation between the variables (p8tb)

and (r 9E). Sb(r 8,r 9;E)5 Rp•dq is the classical action inte-
gral along the path fromr 8 to r 9. By taking the trace in Eq.
~2.6!, the integration over the area covered by the orbits, i.e.
the ring area between the circular boundary and their caustic,
takes account of the degeneracy of the orbits. For any given
point r between the caustic (r5Rc5R coswb) and the
boundary (r5R), there exists a periodic orbit crossing this
point. Therefore, we have a continuum of periodic orbits
b5b(a,b,n) of a given family filling the ring area between
the caustic and the boundary, all of which have the same
values of the classical action. Hence, the actionSb corre-
sponding to the family of orbitsb is constant and does not
depend on the choice of the pointr , and can therefore be
taken outside the trace integral.

Note that in the standard derivation of Gutzwiller’s trace
formula ~1.1!, the stationary phase approximation is used for
the integrations in the directions perpendicular to the orbits,
which leads to the condition of periodicity. In the present
case, the actions and thus the phases are identically constant
in the above mentioned ring areas. The stationary phase ap-
proximation can therefore not be used as it would lead to
diverging integrals. Instead, the trace integrals over these ar-
eas can be done exactly, as discussed below. Still, it appears
as a reasonable approximation to restrict the sum in Eq.~2.5!
to periodic orbits, since the contributions from nonperiodic
closed orbits will essentially be canceled by rapid phase os-

cillations, when the pointr at which such an orbit intersects
itself is varied in the radial direction.

For the circular billiard we arrive at the following trace
formula:

dgsc~E!52
2

~2p\!3/2
Im(

b
f b expF i\ Sb2 isb

p

2
2 i

3p

4 G
3E dr uJb~p8t;r 9E!u1/2, ~2.7!

where the sum now runs over the set of distinct families
b(a,b,n) of periodic orbits for a given energyE. The factor
f b is the number of different orbits of a given family passing
through the pointr . For a52 ~diameter orbit! we have
f b51 and fora.2 ~all polygons! we havef b52. This dif-
ference in the amplitudes for the diameter and the closed
polygons comes from the fact that fora.2, at any pointr
we have two different orbits which are symmetric with re-
spect to the axis~0, r ! ~see Fig. 1!. The integral in Eq.~2.7!
is done exactly over the ring area between the circular
boundary and the caustic of each orbit family and can, in
fact, be performed analytically.

In Ref. @10# it has been shown that, using the Hamilton-
Jacobi equations and a local coordinate system (x,y) in
which x is directed along the orbit andy is perpendicular to
it, the JacobianJb simplifies to

Jb5Smp D 2S ]py8

]y9
D

b

. ~2.8!

The derivative (]py8/]y9)b determines the displacement of
the final point r in the direction of they axis due to the
variation of the initial momentum projectionpy8 . This is a
characteristic of the stability of the corresponding orbit. In-
troducing the angleup8 by py85p sinup8 , we have forup8!1

Jb5
m2

p S ]up8

]y9
D

b

. ~2.9!

For cylindrical symmetry, the Jacobian (]up8/]y9)b equals
@9,10#

S ]up8

]y9
D

b

5
R sinw

2an~r 22R2 cos2w!
. ~2.10!

It now remains to determine the Maslov indexsb in Eq.
~2.7!. For each periodic orbitb, this phase is determined by
the number of conjugate points along the pathb @3,26#. Any
simple conjugate point changes the value ofsb by one unit
and thus gives a phase shift of2 p/2 in the level density.
For all orbits, we have at each reflection from the boundary a
simple turning point related to the sign change of the normal
component of the particle momentum and a caustic point in
the tangential direction to the boundary, leading toDs52
per reflection~which gives an overall phase change of2p as
in classical wave optics!. In the interior of the billiard, there
are conjugate points along the caustic~shown by the dashed

FIG. 2. The family of nonisolated orbits, shown for the triangle
b5(3,1,1) as an example. Rotation of the periodic orbit within the
boundary does not change the value of the classical action.
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line in Fig. 2! of each orbit. We finally obtain the following
analytical trace formula for the oscillating part of the level
density:

dgsc~E!5
1

E0

1

ApkR
(

b5~a,b,n!
f b

sin3/2wb

Aan
sinFb ,

~2.11!

where

Fb5kLb23an
p

2
1
3p

4
. ~2.12!

HereE is the energy of the particle,k5 A2mE/\ the wave
number, andf b has been defined after Eq.~2.7!. In the over-
all phaseFb , the termkLb is the classical actionSb of the
orbit b in units of \. Recently, Eq.~2.11! has also been
derived by Tatievskiet al. @12#, applying an extension of the
Balian-Bloch theory for cavities with a finite depth, and by
Creagh@13#, using the method of Ref.@11#.

To avoid convergence problems of the sum in Eq.~2.11!,
we average the level density over a finite energy interval.
This is similar in spirit to Balian and Bloch@7#, who gave the
energy a small imaginary part. The coarse graining of semi-
classical and quantum-mechanical level densities is by now a
standard practice, and the ability of the trace formula to re-
produce the coarse-grained level density fairly accurately has
been demonstrated for a large number of systems~see, e.g.,
Refs.@10,12,16#!. Here we convolute the semiclassical level
density over the variablek with a Gaussian of widthg/R,
which gives for each orbitb an extra damping factor
exp(2g2Lb

2/4R2) in all terms of the periodic orbit sum Eq.
~2.11!. This is equivalent to averaging the quantum level
densityE with a width 2gAEE0.

For the circular billiard, the exact eigenenergies« i are
given, in units ofE0 , by the squared zeros of the cylindrical
Bessel functions with integer indicesL50,61,62, . . . . We
choose an averaging rangeg50.6 which corresponds to a
coarse graining of the level density that preserves its gross-
shell structure. The lowest part of Fig. 3 shows both the
averaged quantum-mechanical and the semiclassicaldg(E):
their difference can hardly be recognized.

So far, our present investigation is nothing more than a
reduction of the well-known three-dimensional spherical bil-
liard @7# to two dimensions, and altogether the results de-
scribed above are not surprising. In the next section, how-
ever, we want to examine the influence of a pure gauge field
on the motion of the particle in quantum mechanics, and
study the effect of length scales in the quantum-size regime.
We will demonstrate that the presence of a vector potential
yields characteristic differences between the classical and
quantal behavior, and discuss how these changes may be
included in the semiclassical level density.

III. CIRCULAR AHARONOV-BOHM BILLIARD

In the following, we discuss the changes in the classical
and quantum dynamics of the charged point particle, when a
magnetic flux line is added at the origin of the disk and
perpendicular to thex-y-plane. The level statistics of the
so-called Aharonov-Bohm billiards have been investigated

by Berry and Robnik@27# for cases where the geometry of
the boundary causes chaotic dynamics, and by Dateet al.
@28# for rectangular boundaries, where the system is pseudo-
integrable.

Again restricting the calculations to two dimensions, the
Lagrangian is given by

L5
1

2
mv21

e

c
v•A, ~3.1!

whereA denotes the vector potential, which in a symmetric
gauge is given by@29#

A„r …5
f

2p S 2y

x21y2
ex1

x

x21y2
eyD , ~3.2!

andf/2p is the flux through the solenoid. This corresponds
to a magnetic fieldB which has ad function singularity at
the origin and is zero everywhere else:

B5¹3A5fd~2!~r !ez . ~3.3!

With Eq. ~3.2!, the Lagrangian Eq.~3.1! in cylindrical coor-
dinates (r ,u) simplifies to

L5
1

2
m~ ṙ 21r 2u̇2!1

ef

2pc
u̇. ~3.4!

As a consequence of the well-known Aharonov-Bohm effect
@14#, the wave function of the particle acquires a flux-
dependent phase change upon rotation around the solenoid.

FIG. 3. Oscillating part of the level density in the Aharonov-
Bohm disk billiard with magnetic flux strengtha50 ~bottom!, 0.25
~middle!, and 0.5~top!. We have plotteddg(E) versuskR, Gauss-
ian convoluted withg50.6 and multiplied by the norm factor
2g(pEE0)

1/2. Dashed lines, coarse-grained quantum results; solid
lines, semiclassical results Eq.~3.7!, correspondingly averaged.
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For a nonzero fluxf, the particle is classically not allowed
to penetrate the flux line, because its energy would become
infinite. ForrÞ0, the Lorentz force on the particle is always
zero and the classical equations of motion remain un-
changed. This can easily be seen from Eq.~3.4!, because the
interaction term due to the flux line in the Lagrangian is a
total time derivative. The geometries of the classical orbits
with a.2 in the configuration space therefore do not
change. The quantum spectrum, however, does depend on
the fluxf.

For integer values of the canonical angular momentum
L, the energy eigenvalues and wave functions are deter-
mined by solving the corresponding radial part of the Schro¨-
dinger equation, with the dimensionless flux strength
a5ef/hc,

\2

2m S 2
1

r

]

]r
r

]

]r
1

1

r 2
~L2a!2DC i5« iC i , ~3.5!

with Dirichlet boundary conditionsC i(R)50. The quantity
(L2a)2 can take fractional values, if we assume thata can
take a continuous range of values between 0 and 1. The
boundary condition together with the condition of normalis-
ability of the quantal wave functions finally yield the energy
eigenvalues as

« i5« uL2au,n5E0XuL2au,n
2 ,

where JuL2au~XuL2au,n!50. ~3.6!

We see that the presence of the flux line in the circular bil-
liard simply changes the order of the Bessel functions from
integer to fractional@27#; the symmetrya↔(1–a) in the
quantum spectrum allows the restriction to 0<a<0.5 . For
integer flux a50,1,2, . . . , the quantum spectrum is unal-
tered by the flux line. This is easily seen from the fact that
for any integer value ofa the angular momentum gets rede-
fined and the new set is isomorphic to the old one both in
terms of the spectrum and eigenstates. This mapping, how-
ever, has no classical analog since the classically allowed
angular momenta remain the same.

In the numerical computation, all zerosXuL2au,n<100 of
JuL2au(x) are included. Figure 3 shows the oscillating level
density dg(E) ~solid lines! for a50.25 ~middle! and for
a50.5 ~top!, averaged and plotted in the same way as for
a50 at the bottom. Clearly, the gross-shell behavior under-
goes dramatic changes when the flux strengtha is varied.

In order to understand this behavior of the level density,
let us now inspect the Fourier spectra ofdg(AE) of the AB
disk which give us directly the lengths of the involved clas-
sical periodic orbits. The coarse graining withg50.6 sup-
presses all but the shortest orbits. In Fig. 4 we show the
~absolute! Fourier amplitudes for different values ofa. For
a50 ~bottom! we have the spectrum of the simple disk bil-
liard; the visible signals correspond to the orbits withn51
~lowest harmonics! for a52 ~diameter!, 3 ~triangle!, 4
~square!, 5 ~pentagon!. For increasinga the height of these
peaks is reduced, until ata50.25 virtually no trace is left of
the classical orbits with lengthL>4R. For a.0.25 they

appear again. Their disappearance ata50.25 is a simple
consequence of the Aharonov-Bohm effect, as we shall see
below.

Two other features are particularly noteworthy in Fig. 4.
First, the peak atL54R exists also fora.0, although the
classical diameter orbit is forbidden, and undergoes the same
cancellation ata50.25. Second, there appears a new signal
atL52R, corresponding to a ‘‘reflected’’ half-diameter orbit,
with an amplitude that increases witha up toa50.5. Both
phenomena can be interpreted quantum mechanically. When
a wave hits the flux line, it is diffracted; part of it is reflected
and part is transmitted. Thus the two signals atL52R and
L54R correspond to the reflected and the transmitted wave,
respectively. The fact that theL54R peak is suppressed at
a50.25 is obviously due to the possibility of the wave to
bypass the flux line on either side: the two events pick up
opposite phases, so that their contributions cancel exactly at
a50.25 as in the classical Aharonov-Bohm experiment.~For
a50.25, the tiny signals atL54R and, hardly visible, at
L56R and 8R are actually the higher harmonics with
n52,3,4 of the reflected half-diameter orbit.!

The squared Fourier peak atL52R in Fig. 4 as a function
of a can be fitted by sin2(pa) within the numerical accu-
racy, as shown in Fig. 5. This is precisely the AB cross
section for backward scattering: indeed, the quantum-
mechanical cross section for scattering of a plane wave
by a singular magnetic flux is proportional to
sin2(pa)/cos2(u/2), whereu is the scattering angle@14#. This
strongly supports our interpretation of theL52R peak for
aÞ0 as a simulated classical half-diametric orbit resulting

FIG. 4. Fourier spectra of the quantum level densitydg(E),
with g50.4 and normalization as in Fig. 3, for the Aharonov-Bohm
circular billiard with various flux strengthsa. Note how for
a50.25 all signals, except those of the half-diameter orbit and its
harmonics, disappear due to the Aharonov-Bohm effect.
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from a reflection by the flux line. The quantitative amplitudes
describing these diffraction phenomena in POT will appear
as quantum corrections of higher order in\1/2.

Let us now interpret these results in terms of POT. As a
consequence of the well-known Aharonov-Bohm effect@14#,
the wave function of a particle acquires a phase 2pa upon
each rotation around the flux line. Classically, the anyonic
gauge term does not affect the equations of motion. How-
ever, the canonical angular momentumpu is changed to
pu1a\, so that the classical actionSb acquires as an extra
contribution the AB phase which here amounts to
62pabn, the sign depending on the orientation of the orbit
@27,28#. To lowest order, we therefore expect that the orbits
with a.2, whose geometry is not affected by the flux line,
give the contribution

dgsc~E,a!5
1

E0

1

ApkR
(
b

f b

sin3/2wb

Aan

31/2 @sin~Fb12pabn!

1sin~Fb22pabn!#

5
1

E0

1

ApkR
(
b

f b

sin3/2wb

Aan

3sin~Fb!cos~2pabn!. ~3.7!

This corresponds to a ‘‘minimal inclusion’’ of the AB effect
into the trace formula. In Ref.@31# a similar investigation
was made for the nonintegrable He´non-Heiles potential, in
which the classical motion is chaotic at higher energies. The
treatment of the diametric orbits (a52) is less clear: classi-
cally, they are forbidden since the linear canonical momenta
diverge at the origin@28#, and the particle cannot penetrate
the flux line; wave mechanically, we expect diffraction. From
the behavior of the Fourier peaks atL54R, however, we
conclude that the diametric orbit (a52!, which represents
the transmitted wave, should also be added by the ‘‘minimal
AB inclusion’’ to the sum in Eq.~3.7!.

Equation~3.7! now simply explains the disappearance of
all peaks in the Fourier spectrum which correspond to orbits
with winding numbernb51: the two sine functions includ-
ing the opposite AB phases cancel exactly ata50.25. From

Eq. ~3.7! it follows that the Aharonov-Bohm effect cancels
all periodic orbits with a winding numberbn5(2i11)/4a
with integeri50,1,2 . . . .

It is interesting to note that, starting from a minimal in-
clusion of the Aharonov-Bohm phase in the semiclassical
EBK spectrum, Eq.~3.7! can be obtained using the Poisson
summation formula and then performing the integrations by
the stationary phase method~see, e.g.,@23#!. For a cylinder,
such investigations have already been carried out by
Bogachek and Gogadze@30#, who obtained from the EBK
spectrum a trace formula for a cylindrical confinement,
which is identical to the result of the Balian-Bloch theory
given in Ref. @12#. The results of Ref.@30# anticipate the
more general theory of semiclassical quantization in inte-
grable systems given later by Berry and Tabor@22#.

Note that our findings are substantiated by the isotropic
two-dimensional harmonic oscillator with singular magnetic
flux line, for which the quantum-mechanical trace formula is
known analytically@31#.

Diffraction effects similar to those discussed above can
also be found in a disk billiard with a concentric inner re-
flecting boundary with radiusRi in situations whereRi is
comparable to or smaller than the de Broglie wavelength of
the particle.~The semiclassical trace formula for this system
has been derived by Tatievskiet al. @12#; the nonconcentric
case has been studied by Bohigaset al. @32#.! The semiclas-
sical diffraction from circular hard-wall scatterers with finite
size has been investigated recently by Wirzba@33# and Vat-
tay et al. @34#, taking into account diffracted rays in addition
to the geometrical ones. Scattering resonances between two
confocal hyperbolae were studied by Whelan@35#, and in
Refs. @36,37# a discussion of then-disk scatterer can be
found, showing that POT approximates the energies and
widths of the scattering resonances to great accuracy. Pavloff
and Schmit investigated diffraction effects in two-
dimensional polygonal billiards and give an analytical trace
formula accounting for the diffractive orbits@38#. Finally, \
corrections to the Gutzwiller trace formula by means of an
asymptotic power series have been discussed by Gaspard and
Alonso @39# for hyperbolic systems.

IV. FULL QUANTIZATION AND EBK THEORY

So far, we have only discussed the application of POT to
the coarse-grained level density, which works equally well in
both nonintegrable and integrable systems, where a full
quantization can only be reached in a few exceptional cases
@3#. It is well known, however, that integrable systems can be
quantized using the EBK method@20#. We therefore now
attempt a full quantization of the disk billiard, starting from
Eq. ~2.11!. We choose a very small averaging range
g50.02 which corresponds to an energy interval much
smaller than the shortest interval occurring between the low-
est 14 quantum levels. At the bottom of Fig. 6 we show the
semiclassical result fora50. Indeed, we obtain an almost
perfect quantization~the maximum length of orbits included
here wasLm530 000R). The peaks are displaced with re-
spect to the exact levels~shown by small circles along the
energy axis! by about 2% for the lowest eigenvalue, and by
fractions of a percent aroundkR'15. The exact degenera-
cies~1 for L50 and 2 forLÞ0! are obtained with a signal-

FIG. 5. Quantum Fourier amplitudes of the reflected orbit of
length Lb52R in the Aharonov-Bohm disk as a function of flux
strengtha.
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to-noise ratio better than 1000:1.~The three higher spikes
correspond to accidental near degeneracies which cannot be
resolved withg50.02.! We get the same result@21# also for
the three-dimensional spherical billiard@7,9,10#: the level
positions are of the same quality as obtained in the EBK
method, and the exact degeneracies 2L11 are obtained for
the states with orbital angular momentumL @21#.

Berry and Tabor@22# have developed a semiclassical
theory which starts from EBK quantization and applies to
systems with degenerate orbits. They derived a trace formula
that is similar to the sum over periodic orbits obtained by
Gutzwiller and concluded that both methods, where they ap-
ply, should lead to equivalent results. This can be expected to
be trueto lowest order in\, but not necessarily beyond since
in both approaches, some higher-order terms in\ are omitted
automatically when the saddle-point approximation is used
to derive the trace formula. The equality of the two ap-
proaches was confirmed by a recent alternative generaliza-
tion of Gutzwiller’s theory for systems with continuous sym-
metries by Creagh and Littlejohn@11#; for integrable systems
without higher dynamical symmetries, such as the circular
disk billiard, the trace formula of Berry and Tabor has, in-
deed, been rederived in Ref.@11#. Moreover, the trace for-
mula for the circular billiard, as well as for a cylindrical
billiard in three dimensions, can be obtained by Poisson
summation of the EBK energies, using again the method of
stationary phases, and the resulting formulas are identical
@23,30#.

All this strongly suggests that the EBK quantization and
Gutzwiller’s approach not only agree to lowest order in\ but

give, in fact, identical spectra. We have confirmed this nu-
merically by our calculations, which show that the relative
difference between the EBK and POT eigenvalues is smaller
than 1028, whereas the relative difference between EBK and
the exact quantum energies is of the order of 1021 to
1022. The details of these numerical calculations are given
in the Appendix.

For the disk billiard including the magnetic flux line, the
EBK spectrum is modified, like the exact one, by subtracting
the flux strengtha from the angular momentumL. Using
the ‘‘minimal AB inclusion’’ Eq. ~3.7! for dgsc(E,a), which
ignores all possible higher-order corrections in\, we get the
results shown in Fig. 6 fora50.25 ~middle! and a50.5
~top!. The exact degeneracy fora50.25 is 1 for all levels
~except for accidental degeneracies!, for a50.5 it is 2. The
heights of most peaks correspond to these degeneracies, and
their positions are of the same accuracy as fora50. Some
small structures of alternating sign can be seen foraÞ0
which do not correspond to eigenvalues; their height is much
smaller than unity and decreases with smaller averaging
widths. Fora50.5, the period of these small peaks with one
given sign isp; in the chosen units this corresponds to the
period of the reflected half-diametric orbit whose contribu-
tion to the trace formula we have ignored. It is expected that
the correct inclusion of the quantum corrections stemming
from the diffraction effects will remove these structures. But
even without these corrections, we obtain from Eq.~3.7! a
fairly good spectrum of comparable quality to that for
a50.

Our above discussion on possible differences between
EBK and POT eigenvalues may be further clarified by the
following observation. If one starts from the EBK spectrum
of the AB disk and performs a Fourier transform of the cor-
responding level density, one finds results very similar to
those shown in Fig. 4 which contain a clear signal from the
reflected diameter orbit. Thus the EBK level density does
contain a corresponding\ correction term. By Poisson re-
summation of the EBK level density andapplying the
saddle-point approximation, one obtains@23,30# exactly our
POT result quoted in Eq.~3.7!, showing that all\ correction
terms are lost in the process of the saddle point approxima-
tion. The simple disk billiard (a50) must be considered as
a particularly fortunate case where no further errors~beyond
those inherent in the EBK approximation! are introduced in
the derivation of the trace formula.~Similar fortunate cases
are the harmonic oscillator potentials, for which the POT
spectra even coincide analytically with the exact quantum-
mechanical spectra@40#.!

V. SUMMARY AND CONCLUSIONS

In summary, we have shown that the inclusion of a sin-
gular magnetic flux line in a circular billiard leads to signifi-
cant modifications of the coarse-grained quantum level den-
sity. The most dramatic changes can be interpreted as due to
the Aharonov-Bohm effect and are incorporated into the
lowest-order POT simply by adding the AB phase to the
action appearing in the trace formula, leading to Eq.~3.7!.
The diffraction effects caused by the flux line also modify
the gross-shell structure appreciably, but are less important
for the full quantization of the spectrum. The Fourier com-

FIG. 6. Semiclassical total level densitygsc(E,a), as sum of
g̃(E) in Eq. ~2.3! and dgsc in Eq. ~3.7!, for the Aharonov-Bohm
disk billiard, normalized and plotted as in Fig. 3, for three values of
the magnetic flux strengtha. The averaging width wasg50.02;
orbits with maximum length 30 000R were included in the sum of
Eq. ~3.7!. The small circles indicate the positions of the exact
quantum-mechanical eigenvalues.
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ponent corresponding to a particle reflected by the flux line
has an amplitude proportional to the AB backward scattering
amplitude, as was also found analytically for a two-
dimensional harmonic oscillator potential with magnetic flux
line. The quantitative treatment of the diffraction effects
within the POT necessitates the inclusion of higher-order
corrections in\. Summing over sufficiently long orbits, we
numerically obtain from Eq.~3.7! a full quantization that is
identical to the EBK result, at least for the disk without flux
line. We can therefore conclude that the extended Gutzwiller
theory, that of Balian and Bloch@7#, and that of Berry and
Tabor @22# for the integrable case of the disk billiard are all
equivalent in giving exactly the spectrum obtained by the
EBK quantization.
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APPENDIX: NUMERICAL EVLUATION
OF THE POT EIGENVALUES

This appendix deals with the numerical determination of
the ‘‘POT eigenvalues’’~e.g., the peak positions of the POT
level density in the limit of a vanishing smoothing width
g) in the case of the circular billiard without flux line. The
results show with high accuracy that the POT eigenvalues
are identical to those of the EBK quantization. The differ-
ence between the two semiclassical methods is at least six
orders of magnitude smaller than the semiclassical error, e.g.,
the difference to the exact quantum-mechanical result. This
is non-trivial, as we expect the semiclassical approximations
to agree only up to the order of the semiclassical error.

1. Determining the POT eigenvalues

Even in integrable systems, the PO sum is in general not
absolutely converging. The sum is therefore not well defined,
as it depends on the summation order. Standard practice to
overcome these convergence problems is a so-called
‘‘smoothing’’ of the PO sum@16#. The method consists of
folding the PO sum with a ‘‘smoothing function’’ of width
g. We use an equivalent approach which exploits the close
analogy of the PO sum to discrete Fourier transformation
@41#. We multiply the amplitudes of the PO sum with an
appropriate window functionW(L), which is nonzero only
on @2Lm ,Lm#. HereL denotes the orbit length, henceLm is
the maximum orbit length taken into account. The equivalent
smoothing widthg is proportional to 1/Lm . This approach
enables us to compensate most of the errors due to the un-
avoidable truncation of the infinite PO sum in our calcula-
tion, which improves the accuracy remarkably. We are inter-
ested in the peak positionsP of the POT level density in the
limit of vanishing smoothing, e.g., forLm→`. We therefore
calculate the positionsP(Lm) for variousLm . If it is possible

to fit a simple function toP(Lm), one can extrapolate
P(Lm) for Lm→`. In contrast to the method of taking the
position for a sufficiently largeLm as an approximation to
the position forLm5`, this strategy gives control over the
convergence behavior. Furthermore, the accuracy is again
improved, as machine precision sets bounds on the maxi-
mumLm that can practically be handled.

2. POT eigenvalues of the circular billiard

Since we have no theoretical prediction for the depen-
denceP(Lm), we have to guess it by inspection. The data of
Fig. 7 were calculated with a triangular window for the ei-
genvalue withL51, n51. Figure 7~a! shows the difference
D between the EBK value andP(Lm). The dotted line is
proportional toLm

22 . The diagram strongly suggests that the
leading term ofD is of the orderLm

22 . This is confirmed in
Fig. 7~b!, showing thatDLm

2 converges to a constant. In Fig.
7~c! theLm

2 term is compensated; plotting the remainder mul-
tiplied by Lm

3 againstLm shows that the next term is of the
order Lm

23 . Higher-order terms inP(Lm) cannot be ob-
served. The spreading of the data is proportional toLm

23 , as
is expected for the triangular window@41#. These observa-
tions suggest fittingP(Lm) by the function

FIG. 7. ~a! DifferenceD between the EBK eigenvalue«EBK and
P(Lm). The dotted line is proportional toLm

22 . ~b! The quantity
DLm

2 seems to converge to a constant, showing the first term in
P(Lm) to be of the orderLm

22 . ~c! The Lm
2 term is compensated;

plotting the remainder multiplied byLm
3 againstLm shows that the

next term is of the orderLm
23 ~dotted line!. The spreading of the

data points is proportional toLm
23 , as is expected.
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P̃~Lm!5« i
EBK1c11

c2
Lm
2 1

c3
Lm
3 , ~A1!

with three parametersci . All other investigated eigenvalues
behave in the same way; using another window function
changes mainly the behavior of the spreading of the data.

We calculated four POT eigenvalues, using a triangular
window and a window function which is a triangle folded
with a rectangle. ExtrapolatingLm→` gives c1 as an esti-
mate for the difference between the POT and the EBK eigen-
values. This value is, within the numerical accuracy, inde-
pendent of the chosen window function, as would be
expected. The parameters that control the convergence be-
havior, c2 andc3 , do depend on the window function. The
results are listed in Table I.

3. Comparing POT, EBK, and quantum-mechanical
eigenvalues

The EBK eigenvalues are given@20# by the roots
E5« i

EBK of the equation

uLuarcsin~2uLuAE0 /E!12AE/E02L2

5p~2n1uLu21/2!. ~A2!

The quantum-mechanical eigenvalues are given by the zeros
of the Bessel functions, as described in Sec. II. Both EBK
and quantum-mechanical eigenvalues were calculated to an
accuracy of 0.5310216. In Table I we compare the differ-
ences between some POT and EBK eigenvalues with the
difference between EBK and the exact quantum result.

The EBK and the quantum-mechanical results are not
identical. This is not surprising, since EBK is only an ap-
proximation up to first order in\. As POT is another ap-
proximation of the quantum-mechanical level density to first
order, we would expect the EBK and POT eigenvalues to
agree up to this accuracy only. But the typical error of the
semiclassical approximation is at least seven orders of mag-
nitude larger than the difference between POT and EBK,
which is smaller than the numerical accuracy for the POT
eigenvalues. This strongly suggests that the two semiclassi-
cal methods give exactly the same eigenvalues.
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