PHYSICAL REVIEW A VOLUME 53, NUMBER 6 JUNE 1996

QED corrections to O(a’mc?) fine-structure splittings in helium
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O(a’mc®) QED corrections to the fine structure of helium are presented. They are expressed in the form of
expectation values of nonrelativistic operators. Self-energy corrections of second order are derived rigorously.
Others are obtained phenomenologica]y1050-29476)08205-4

PACS numbss): 31.30.Jv

[. INTRODUCTION covariant gauge. Furthermore, the single-particle propagators
inside radiative loops are expressed in terms of Feynman
There has been much effort made over past two decadggopagators and those outside the loops are projected into
to test higher-order QED effects in one- or two-body boundpositive and negative energy operators. That means nonradi-
states such as hydrogen, positronium, and muonium. A lot c&tive loops may be understood in three-dimensional space
theoretical progress has been made in understanding higherhile radiative loops are described four dimensionally,
order QED effects in these systefdd. Since the theoretical Wwhich do not have to be understood in three-dimensional
derivation ofO(a®mc?) QED and relativistic corrections to space. The difficulty to derive such closed formulas in an
fine structure in helium accomplished by Douglas and Krollexplicitly covariant formalism is that the pair and no-pair
[2] and the numerical calculation by Dalég], there has effects from exchange diagrams are treated on equal footing
been little theoretical progress in investigation of higher-while only the no-pair part in a diagram causes nonperturba-
order QED effects in helium until recently. One of the rea-tive Coulomb binding on transverse photon exchanged. In a
sons is due to being unable to solve the Sdhnger equation three-dimensional times-order formalism, such effects are
for helium accurately. This situation changed after the dratreated differently. The no-pair propagators are treated non-
matic development in the search for an extremely accuratgerturbatively while the pair propagators are expanded per-
nonrelativistic wave function of two electrons, made byturbatively. To orde®mc?, the only possible QED correc-
Drake [4]. In addition, past and recent experimeffs-7]  tion of off-leading order would come from recoil correction
provide an excellent opportunity to test uncalculated QEDIO the vertex modification of second order. Douglas and
and relativistic corrections of one order beyond that of Dou-Kroll [2] showed phenomenologically that the correction
glas and Kroll's terms. Although three-body corrections arecancels out between two vertex diagrams in which an addi-
still beyond reach both experimentally and theoretically, ational crossed or uncrossed Coulomb photon is included due
large number of two-body terms can be tested. In particularto the recoil correction. They concluded their rigorous analy-
a two-body QED correction of off-leading order has not beersis on this correction by stating that “the detailed demonstra-
tested in any bound-state system due to insufficient expertion that all terms which might conceivably contribute to
mental accuracy. A typical such term is the vertex or vacuun®rder e®mc? fine structure in fact do not do so has not been
polarization correction of off-leading order, which is of order completed.” Although the analysis in Reff8] showed that
a’m2c2/M for two distinct particles or’mc2 for positro-  NO new nonrelativistic energy correction of ordetmc? is
nium. A test of such terms would be of interest since this isfound other than those obtained phenomenologically, it is
the very nature of bound-state systems in view of the factlear thatO(a®mc?) relativistic energy corrections can be
that a given Feynman diagram contributing to the anomalougbtained using these formulas, together with more formulas
magnetic moment of a free electron has only one orderinvolving pairs outside the radiative loops. In particular, the
However, these two-body terms are sensitive to experimer(a®mc?) self-energy Lamb shift in a two-body system,
of fine-structure splittings in helium. Some of these termssimilar to those in the one-body system obtained by Karplus,
contribute a few kHz or more individually to the fine- Klein, and Schwingef9] and by Baranger, Bethe, and Feyn-
structure splittings while the current experimental error isman [10], may be calculated using these formulas.
only 3 kHz [7]. The need to calculate these corrections isO(a®mc?) vertex corrections arising from the relativistic
clear. On the other hand, a modern numerical technique denomentum region can also be obtained with these formulas.
veloped by Draké4] for high precision calculation makes it These corrections contribute only states in positronium
possible to evaluate all corrections up to the order of interesand singlet states in helium in the form of the expectation
with high precision and to obtain very accurate theoreticavalue of the delta function. However, the main focus in this

numbers. paper is the QED corrections to tf¥ a’mc?) fine-structure
In a recent rigorous analysis of QED corrections of off- splittings of helium.
leading order in bound-state systefi@3, a number of fully In our previous papefrll], we derived a number of for-

relativistic formulas in closed form were presented. The cruimulas for energy levels in helium and carried out a deriva-
cial idea to derive these formulas is to use the mixed gaugéion of nonrelativistic ~ operators  contributing to
in which the electron-electron interactions are described ifD(a’Inamc) fine-structure splittings in helium. We also ob-
Coulomb gauge while radiative interactions are expressed itainedO(a’mc?) corrections to the splittings in the nonrel-
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ativistic approximation, arising from exchange diagrams. Incontains a correction of lowest order. This correction de-
this paper, we present our analysis on @fx'mc?) QED  serves a rigorous treatment more than any other radiative
corrections to the ftriplet splittings, arising from the self- correction since it is the only one contributing to the Lamb
energy and vertex corrections, and vacuum polarization corshift of lowest order arising from both the anomalous mag-
rections. netic moment and the charge density modification. The low-
est order of the charge density modification due to vertex

Il. SELF-ENERGY CORRECTIONS corrections isa’mc®. Hence, we analyze the self-energy

Self-energy corrections to tf@(a'mc?) fine structure of correction of second order first.

7 . . . .
helium arise from a number of diagrams. The most notable ForO(a. mc?) fmg structure |n_heI|um, d|agrgms respon-
one is the self-energy correction of second order, which congiPl€ for this correction are no-pair and one-pair graphs. The

tributes to the Lamb shift of lowest order. This correction isformula to describe the no-pair diagram is presented in Ref.
the most difficult one to calculate to higher order because it8] and is given by

_ —ie? [ dg
ABssy jon= (277)4 Zrio

1
O.a. 0
X<¢C(pl’p2)|y171ylE_QO_H(pl_q)_s(pz)_~%2+(p2)lc»%2+(p2)+i5yla|¢6(pl’p2)>' (1)

& is the eigenfunction in the Coulomb ladder approximationthe magnetic moment terddE(M) and the shift correction

defined in Refs[12] and[2]. 4, is defined by AE(L). The magnetic moment term is defined by
1 — M
o oy L[4, HP) AEM:iJ dz(2z—2)m 3
,g+(p):§(1+ 6(p)), (M)= 54— | dz2z-2m(dd ol b, @

. . . whereM is the magnetic moment rator and i fin
The no pair here means no pair on the electron’s line where ereM is the magnetic moment operator and is defined by

there is no radiative loop since the pairs inside the radiative = 12— 112= @, .[p, ,11°]

loop are already included in the above formula through the

single-particle Feynman operators. As pointed out by Erick- =—a;-[p1,Vi]— a1-[P1, %o (P Lo (P2)].
son and Yenni¢l3], direct expansion of the propagator in a 4)
power series in the Coulomb potential does not lead in a

straightforward way to an expansion in powersafThey  Note thate, is used. Performing integration over the param-
developed a systematic technique to do expansion in POWeLSerz. we obtain

of a. Here we extend their method to obtain the self-energy

corrections to theO(a’mc®) triplet splittings in helium. a — —M

Comparing our no-pair self-energy formula for helium with AE(M)= z<¢c|m| ¢e)=AEy+AE., )
theirs for hydrogen, we find that the mechanical momentum

IT is defined by where

1 2 2 2 2 27 FL AEVZ%«@:“’?“T[pl’vl]|¢0>

for helium. For fine structure of order’mc?, the calculation

is greatly simplified and is very similar to theirs for the split- _ —Za ﬁf % . _

ting between hydrogeniP states. The simplification comes ~ 272 2m) K2 (#e(P1.P2)| 71Kl de(Pr=ki,P2))
from two facts. First, no contributions arise from relativistic

momentum region. To lowest order, they correspond to hy- 6)

drogenic terms obtained by Karplus, Klein, and Schwingerand
[9] and by Baranger, Bethe, and Feynnjdafl] coming from
two potentials. The next-to-leading orderimc®. To order

a'mc?, the contributions arise from up to three potentials in AEF%(%H&H' [P1, %4 (P %4 (P2)]| dc)
nonrelativistic momentum region. Furthermore, only spin-

dependent terms contribute to the triplet splittings. A large a A, [dk

number of spin-independent terms may be dropped. In par- = 222 2m k7<¢c(p1,p2)|y1~ k| pe(p1—Kk,patk)).

ticular, all but two corrections give no contribution. These
two corrections are relativistic wave function corrections to (7)
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HereA,= a/27 is the anomalous magnetic moment of low- —Za A, [ dk, )
est order. The above two terms can also be obtained phenomAEy(a’) = oz WJ I (do(P1,p2)|[PF+[P1—Kq/?]
enologically. Keeping spin-dependent terms up to order

a'mc”, we find Xioy - (prXky)|do(P1—K1.P2)). (10)
(yik) 1i (poxky) Upon performing a Fourier transform, we obtain
Y1-Ky)=— 101 (P1 XKy
m
NN —— mC2< 2 pol5 - (11X Py o).
1 , . ki v P1®o 3 1 (F1XP1)|Po
+m[Pall_kﬂ ]|0'1~(p1><k1)—%. (11

(8)  This single-electron term reduces to

To the lowest orden®’mc?, the energy correction in coordi- AE (o) — Z%a'mc? _ 13 | 12
nate space is via)==—g5 3 1n2/> (12
5 Za’mc? 1 for hydrogen. At first sight, it does not seem to agree with
AEy(e) = (¢ol2md(ry) + E‘rl'(rlx P1)| #o)- that of Erickson and Yennigl3]. However, one needs to

(9 calculate the correction of second order due to wave-function
perturbation in order to compare with their result since the
To ordera’mc?, the external potential correction to the fine- correction they obtained is fully relativistic due to relativistic
structure splittings is given by wave function modification tdE(M). Similarly, we find

2

1
——5[p5+|p2+k|2liay- (p1XK)

1
(7 k)“ﬁ"’l (p1><k)+ 3[P1+|p1 K|2Jioy- (py X k)— 2m am

k? 1 , 1
+ W'Ul'(plx K)— mpz'(pz"‘ K)ioy-(p1xXk)+ Wo'l'(plx K)o+ (p2XK). (13

To the lowest order®mc?, the energy correction due to electron-electron Coulomb potential is

AE(a®)=—

¢ 1
(ol2md(r)+ r_30'1'(r><p1)|¢0>- (14

For the fine-structure splittings of orde’mc?, we get

a A, . . .
AE(a’)= > 216m4J k2<¢’o (P1,P2)|2[pT+ pi—K[?li oy - (P1XK) —2p,- (P2t K)i o+ (p1 X K) +KZi 0y - (py X K)

+[p5+|patk[Fioy- (prXK)+2071- (p1XK) 02 (P2 X K) [ do(pr—K,po+K)). (15
Fourier transforming it yields

. a'mc 2 8(r) 1 3
AE (a’)= 167 <¢0| 307" (rXpl)p1+127T 2 o1 (rXpy)— 1301 P102- P2~ 50-1-{r><[a-2~(rsz)]pl}|¢0>.

(16)

For the fine-structure splittings of orde'mc?, the total contribution of the magnetic moment corrections reads

Za mc2 r Za'me r,
AE(M)=— (pidolo1- 3><p1 |¢0>_T<p2¢o|0'2' r_3><p2 | o)
ry 2
a'mé( r r
+2 167 (p1dol207 - r_3><p1 | o)+ dol1275(r) 0y - r_2><p1

1 3
~ 7301 P102- P2 r_sﬂ'l'{rx[ﬂ'z'("sz)]pl}|¢0>}- (17)
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Now we proceed to the shift correction. This correction is P(z,u)=—-2(1-z%)u(1-u)+(1-2z)+z(1—z)(1—u)
defined as

+7%(1—u)? (22)
a (1 o d4k — and
AE<L>=EfOolzf0 dKf (i), (18) N 3
where Here
I =1+t st 4. (19 NR_ p_f p_%
L=l leem s Tl H™=2m 2m+2m+V1+V2+|c+Wo . (29

These shift kernels are given by
The numerator has a structure of

1 1 1 1.1
_ _ 52y53m2 271 v a
=812t | ot g Mpallp, (G L[~ IO, 10] ) = (dclpa- [V + o Pl o).
I ,=—4z(1— Z)Hﬂi[nﬁ-,]][]£| |=, Approximating the wave functiog. by nonrelativistic wave
D b'D function ¢, and following the procedure in Refl3] we
1 1 11 obtain the shift correction of lowest order as
— _A72(1—7) — v —||—
=~ 4212 g WL LI MGG 4a°mc L, 1
AE(L)=—3 In(Za)" "+ 7 (bolZ8(r1)— 8(r)| ¢o)
I 8311'[ 1[1'[”]7[]1 (20
L= oz == MIs7- -
D D 2(Ex—Eop)
+2 (E;—Eg)n (Z;W K #nlpal po)?| -
For the operators of lowest order, the correction becomes "
26
o _ (26)
AE(L)= ;fo dufo dzR(z,u){g[IT- [~ T1°,1][ ), Including the corresponding terms due to radiative correc-

(21) tions on the other electron line, and combining the magnetic
and shift corrections with the binding correction from single

where transverse photon exchange, we obtain
|
5. 4a’mc 5
AE(a®)=—5— || 7572 = BINLS2) + 5 ($olZ8(r1) + Z8(r2) = 28(r)] o) + 212 ol 81)] o)
a®mcé@ Z z 1
Y an <¢o|r—30'1'(r1><p1)+r—sa'z'(r2><p1)_r—zﬂl'(rXPl)Wo), 27
1 2

where8(nLS,Z) is the Bethe logarithmi14]. This result agrees with that of Arakl5] and Suchef12]. The procedure used
here may be considered to be equivalent to an extension of the method of Baranger, Bethe, and Fe§hfoaa more
rigorous calculation discussed by Sucher in his thgk2.

The shift correction to the fine-structure splittings of ordémc?® due to relativistic wave-function corrections is found to
be

11
AE(L)=-2Za'mc|In(Za) 2= B'(NLSZ)+ 52/(Bol8(r) oy | o)

i
— XPs1
N

11 r
+4a7mcz<zl—|n2)<¢o|5(r)0'1' r_2><p1 | d0), (29

whereB’(nLS,Z) is defined as
(¢olo1-p1P1- |n[2(Ho_Wo)/(Za)zm][Vlapl]O'l'p1|¢o>
(¢olor-p1p1-[V1,p1]o7-Pa| do)

similar to the Bethe logarithifil4]. The first line in the above correction is single-electron type and reproduces the hydrogenic
result of Erickson and Yenniel3] when reducing to a hydrogenic system. Here, we dropped théehm of the two-electron
type since it cancels a similar term from the no-pair single transverse photon exdddamgEurthermore, we assume the

B'(nLSZ)= (29
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nonperturbative Coulomb binding between the two electrons cancels out. In fact, the two-electron binding due to self-energy
corrections is

. (30

a® (Za)’m (Za)’m
3. U'plpllnm[lmpl]a'pl + U'plPZInW[ICvPZ]U'pl

The two-electron binding correction due to the no-pair single[I1, ,IT][I1”,I1]= —2[p;,V1+ %, (P2 %24 (P2) 1[P1. V1
transverse photon exchanged is given by

+ Z2+ (P Z24(P2) ], (36)
a® (Za)’m
T3\ P1y|Ing—lc.P1|.P2{o-P1). (31  which is also spin independent to lowest order. Similarly, the
ar HO WO

numerator structures iAE,, AEy4, and AE; all become

If In(Ho—W) is approximated by some average value, ther?p?” indepe_ndent. A pos_sible contr_ibution comes frpm the
we see a cancellation between the above two corrections. ANift correctionAE(L) defined by Erickson and Yennie for
similar cancellation is obtained between vertex correctiofydrogen[13]. To lowest order, the shift correction corre-
and double transverse photon exchanged. The above corred20Nds to nonperturbative Coulomb binding appearing in the
tions to the triplet splitings of ordea’mc arising from  form of the Inx term and the Bethe logarithm. One of the
self-energy modification of second order are obtained rigorhigher-order terms is due to a nonrelativistic Hamiltonian
ously using Erickson and Yennie’s technique. Now let usmodification to the lowest-order shift correction. It is given
compare the rigorous calculation with a phenomenologicapy — ) L

one. In phenomenological treatment, the magnetic moment a —

correctiopn is identical %0 that in the above riggrous calcula- AE(LTH)= ﬁfo udufo dzP(z,u)(¢o|[pl,V1]K

tion. The only difference is in the shift correction. Previ-

ously, it was found by FrencHL6] that X[—H?ed,pl]lqﬁ(,), (37

5
In\=In(2A) — 5 (32 where

P(z,u)=—2(1+z—Z2)u(l-u)+(2—2)—(1—2)*(1—u)
where\ is a fictitious photon mass amlis the lower cutoff. )
The factor 5/6 arises from 11/243/8 where 11/24 and 3/8 —2(1-2)(1-u)

come from the shift and magnetic moment corrections, reé\nd the reduced zero component of the four-dimensional me-
spectively. Therefore, we found that if P

11 chanical momentum is
In\=In(2A) - =7 (33 2 =2m+Wy—V;—E(py) —Vo— I (38)

is used in the phenomenological treatment, then the phenor111c-J lowest order. Since 1

enological approximation is accurate both for the Lamb shift ) _52 2 1

of lowest order and for the fine-structure splittings of order (GollP1 Val [Va,Pullbo)=Z%a <<éO'r‘l‘(l 8,0 o),

a’mc®. Thus, the above number may also be a good ap-

proximation in the vertex calculation to be analyzed later 5 1

phenomenologically. (@ollpr.lcl-[e,palldo) = a*( ol al bo),
Now let us check out if there is any other correction con-

tributing to the fine-structure splittings of helium. First, we Mor

look at the magnetic moment correcti?dE(M). One pos- (bollp1,Vi]-[lc,p1llpo) = —Za’2<¢0|r—g'r—g| o),

sible correction arises from shifting the self-energy loop vari- 1

ablesqy and q integrations forly. A typical numerator (39
structure is we obtain
[P1.-[p1.MII=[@1-p1.[P1,-[P1.Vi+IcIll. (39
2a’'mc? L, 2P
Although the numerator is spin dependent, the matrix ele- ~ AE(L—H)=———In(Za) <¢>o|r—4(1—5|10)
ment AE(M —p) becomes spin independent after being 1
sandwiched between wave functions. Another potential cor- 72 ryr
rection comes from\E(M —M), which has the numerator + r_4(1_ 5|Zo)—22r—3-r—3
structure 2 !
r, r 2
[ar-p1,VitIcl[ay-p1,Vitic] _ZZr_s'r_3+r_4|¢o> (40)
2
=[p1,Vit+lc]l-[p1,Vitlcl, €5

for Ina terms. These corrections correspond to two potentials
which becomes spin independent. The termAf(a) have inside the self-energy loop, which cannot be described phe-
the numerator structure nomenologically.
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Another group of infrared logarithmic corrections to the the nominal order of the two-external-potential self-energy
O(a’'mdc) triplet energy levels comes fromE(L—p) de-  correction isa’'mc? as shown above, th®(a®mdc®) contri-
fined by Erickson and Yennie. They arise from numeratordution arises from the relativistic momentum region. There-
containing one potential and four momenta. A typical nu-fore, the nonrelativistic operator is the delta function. For
merator structure is hydrogen, this correction was calculated by Karplus, Klein,

and Schwingef9] and by Baranger, Bethe, and Feynman
[10], and was recalculated by Erickson and Yer{dig] in a
(#olp1-([P1,-[P1,V11D)p1l Po) more systematic approach. For helium, they become

1
— 615
12am <¢°|Z5(r1)r§| do) 4D AE=47Z25mc(1+ 25— 1In2){ o] 8(r 1) + 8(r )| o).
for AE(L2—p), which then becomes 49
We have reproduced this by using our self-energy formula
1 1 and Erickson and Yennie’s technique with the help of com-
AE(L2—p)=2a'mEIN(Za) X ¢o|Z8(r1)—Z+Z(ry)— puter algebra, which is particularly suitable for the calcula-
M r2 tion of corrections from the relativistic momentum region. If
1 we assume 1/is proportional toZ, the above term is the
—¢d(r) =] ¢o), (42)  total O(Z°a®mc?) QED correction since all other terms in
r self-energy and vertex corrections contain no external poten-
tial. That means no corrections due to the single external
potential, which can only lead to the nonrelativistic approxi-
mation. Moreover, all other QED corrections of order
a®mc® are of actual ordeZ3a®mc®. No single potential
term leads to n@(Z*a®mc?) QED correction, which is in
contrast to exchange corrections.
, Now we proceed to the calculation of other self-energy
+Z§(r2)g—c 6(r)r—2| o), (43 diagrams. Obviously, self-energy corrections of sixth order
contribute to the triplet splittings and are readily obtained as

wherec is some constant to be determined. Similarly,

AE(L1-p)=- ga7m02|n(2a)72<¢>o|25(r1)r£z
1

wherec’ is some constant. In total, they become
4

o
AE=—2—

Ag( ol 01 - |po)  (46)

r
6 1 r_3><P1

AE(L— p)——a 'mIn(Za) 2(¢O|za(r1) 2+25(r2)—2

2 due to electron-electron Coulomb interaction, and

1
—(C+C’)5(r)r—z|<;/>o>- (44) ,

Za mc2
AEy=2——F—A¢(¢o| 07"

r
Therefore, no more spin-dependent correction is found. Al- _prl |$0) @7
though the above correction comes from a single potential
inside the self-energy loop, it cannot be obtained in a phefrom the external potential. Here
nomenological treatment. This shows the difference between
phenomenological and rigorous calculations even for a single Ag=1.176 alm)®
potential diagram. One interesting result is the
0(Z%a®mc®) QED correction to the Lamb shift of helium, is the anomalous magnetic moment of sixth ord&7].
which is the leading term of order®mc®. They come from Double self-energy correction to the interelectron Coulomb

the self-energy correction with two external potentials. Sincepotential is given by

a de do dk
AEcre= o f “omi —omi k2<¢c(p1,p2)|[51+(p11 €)+S,,(p2.€e)]

X YIAYSK) YA K [S1+ (P1—K, €= @) + Sy (po K, €= @) ]| de(Pr—K,p2+K))

@ [Ay\2 [ dk
Zﬁ(ﬁ) J?Z(‘f)c(pl’pz)l'yl'kYZ'k|¢c(pl_krp2+k)>1 (48

which is of higher orderr®mc®. Double self-energy correction to the nucleon-electron Coulomb potential is given by
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AEVRZZ

Za\2( de dk; dk,
52 mk_ik_§<¢c(plap2)|

X[Sy1(P1,€)+So4 (P2, € 1YIA YKL YIASY —K)[S1+(P1—K1,€) + S (P2tK, €)1 e(P1—K1),(P2+K2))

ZCY 2 Az 2 dkl dk2
-2 52 \2m fk_ik_§<¢c(plip2)|7’1'k172'k2|d’c(p1_k1!(p2+k2)>i (49)

which is of higher orden'®mc?.

The above single-potential and double-potential self-energy corrections are analyzed using Erickson and Yennie’s tech-
nique. The double-potential correctidvE(L —H) covers all possible contributions due to the external potential. However,
only the diagram in which two interelectron potentials are inside the radiative loop on the electron line 1 while no pair is on
the other electron line is analyzed using Erickson and Yennie's technique. In another diagram, the two Coulomb potentials are
inside the radiative loop while a pair appears on the second electron line. The corresponding correction is given by

AE. [ @ |?-ie? [ d'q dkdk
Feer™| 277 (ZT)qulﬁk_k_

1

X , 990N, (p,+k . - .
(Bela PNV e (P M) B T o g o (pp)— 75, (pa)l o 72 (po) 710

-1
X -
E—qgo—H(p1—k—0q)—E(p2) —E(p2+ k) —E(py+k+K")+id

1
X - — 7 . @
E—do—H(pr—K—K —q)—6(pat K+K')— L, (pat K+K )¢ Zpy (Pat k+K ) F+io 1t

X|pe(pr—k—K’,pa+k+k")). (50

This correction contributes to th@(«®mc?) Lamb shift arising from the relativistic momentum region. To ordémdc?, it is

spin independent. When one of the two Coulomb potentials is outside the radiative loop, the corresponding correction is given
by

AEcpuc=2 i)zﬁfﬂ%d—k'w (D1P2) o 714 (P1— k) A (k)

271_2 (277)4 q2+|5 k2 k/2 c\M1,M2 2m~ 1+ 1 2 2

0. a0 1
YLV IE gy H(p,—k— )~ E(Py) — E(P,+K)— E(Pt K+ K ) 118
X 7 ! N~ Yla_/\l—(pl_k)a%é+(p2+k/)7(1)7?7(1)

E—qo—H(p;—k—k'—q)—E(pa+k+k’')+ié

1 1
><—qo—H(|01—k—0|)—E(|01—k)+i<‘5 E—go—H(p1—k—k"—q)—E(p1) —E(p1—k) —E(p2+k')+ié
~1 1

X Ylam+ E—qo—H(pl—k—k’—q)—E(p2+k+k’)+i571“ [ pe(p1—Ki P2t k+kK")), (51)

where the external potentials and some higher-order corrections are neglected. The factor of 2 comes from a correction due to
a similar diagram. Direct application of Erickson and Yennie's method to calculate this correction does not seem to be

straightforward. Instead, the correction is treated phenomenologically. In phenomenological treatment, the correction is given
by
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a \? de do do’ dk dk’ , o
AEcgrxc= Py j—277i “omi — 27 FW(‘ﬁc(pl,p2)|[51+(p1,E)+Sz+(p2,€)][31(P1_k €~ o) y1A10(K)

+ 93N 1K) S1(p1— K 6= ') ]Sy (P2t K, €~ 0)[Sy4 (p1—k—K',e—w—w')
+ S (p2tk+k',e—w—w')][d(p—k—k',p,+k+k"))

a \2 A, (dk [ dk’ , , )
272 WJ Ff F<¢c(p1,p2)|[/\17(p1—k )v1-K+ v KAy (pr—k')]

X Ao (P2 +K)[he(pr—k=K',pa+k+k")), (52

where we have neglected higher-order terms in the last line. Taking the FW transformation, we obtain

2 ’
A, [ dk [ dk o , , ,
| | oz otpr ol K iy (K] oy =K' k), (53

AECRXC:_(E

which is spin independent and therefore gives no contribution to the fine-structure splittings as one might expect.

A self-energy correction coupled with a single transverse photon exchanged causes an energy-level shift of nominal order
a’'mc?. In particular, the diagram in which a pair is on the electron line outside the self-energy loop is found to contribute to
the fine-structure splittings. The correction is given by

a —ie? d‘qg do dk 1 i
AE*+:EZ(2W)4J o?+ié —2mi o717 75 2m\ Pe(PrP2)|arAs-(pr=K)

1 1 )
Xw_E(pl)—E(pl—k)+i57/2%?2—qo—H(pl—k—q)—E(pl—k)+i571“a|2
i 1 :
B N R e [ SR [ TR AL
0. a0 1
KV IE gy H(py—k— ) 8(pa t K)— Zp: (Pt K)o 2o+ (Pp+ K) 416 2
i 0 a0 1
Fe (MY I e T k=) — (P2 — 71 (Pa)le . (pp) 16 722
1 i
M E— o e(p1K)—8(P2)— 71 (P1—K.Po)l o7~ 1 (p1—K,pp) +16 2
1 1

O.a_ 0 i
+7'1717/1—qO—H(pl—q)—E(pl)Jri57/1“/&1’('31)%“2—w—E(pl)—E(pl—k)Jri‘5

4 1
+a - — -
“2E+w—e(p)—e(PatK) = L1 (Pr.Po+ K)o L+ (P1 P+ K) +16

1 )
X O.a_0 , _ . A B |
MYV IE Y 5o H(p1—0)—e(Pa+K) = Zor (Pt K)o Zas (Pt k) +16 Vet 1= (PU@

1 )

+ 0. a_ 0 : _ i aA 7 i

VB go H(py- Q) 8(P2)~ Z: (Pa)le Zar (P 10 1 i (PU
y 1

Ews(pr K~ 5P~ 71+ (Pr—KP2)lo 7+ (P Kpp) 116

| pe(pr—k,pa+K)). (54)

A rigorous calculation of the above correction seems to require an extension of Erickson and Yennie's method. However, since
its nominal order isx’'mc?, a phenomenological treatment is used. The energy correction including zero, one, and two pairs
is phenomenologically given by
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a \? de do do’ dk dk’
AEcgrxT= 572 j—ZWi " omi — 27 Fw12_k12+i5<¢c(p11p2)|[sl+(plve)+SZ+(p21E)]

X[a}S1(p1—k' €= ") YIA19(K) Sa(pot Kk, e— ) ab+ ¥IA19(K) S (P — K, e— ) &) abSy(po+ k' e—w)]
X[S1+(p1—k—k',e—w—0')+ S, (patktk’ e—w—w')][p(pr—k—k',pa+k+k'))

2
- %) [ [ S toctps palat 7 (oK)

1

X : : /, . OA 1ok

E—K —e(pr—K)— (P2 — 71~ (P1—K 1p)1e 7+ - (pr—K py) "1 1K)
X ! (Pt k)

E—K —e(pi—K—K )= (P +K)— 7, 1 (p1—K—K .+ K1, 7, (pr—K—K' prk) 2+ (Per e

. 1

+ab v +k’ . ; - ; - ~73A 10K

o P e () =e(py 7K1 = 7 (P pr K e 7 (prpp k) T4

1

X
E-Kk'—&(p1—K)—e(patk+k') =2, (p1—K,p+ K+ k)2, . (pr—k,pptk+k)

) 1 .
X L1 (pr—K)ad+ 5—ad Ay (p1—K") ¥3A10(k)

2m
1 , .
K a(pi K=K —s(pa K= 71 1 (P K=K pp KT 75 1 (py— k=K py k) 2+ (P22
1 1 .
am 2 P K ) B o (5 K s (prpa KT 7oy (prapa k) YA 0 0A L

1
—e(p1—K')—e(p2) = 21 (p1—K',p) L4 4 (P1—K',P2)

N :
X(pr=kart g 7Pk g

1
X YIA10(K) Ap— (pa+K) ab+ 5—abA,_(pat+k') YIA 1K)

2m
1
MEK —e(py—K)— (Pt KT K~ 7+ (1Pt KT K)o 75+ (PPt KT K)
X 714 (pr—K)akl bl pr—k—K',pytk+k"), (55

where infinite Coulomb binding effects are included. The first two terms come from no-pair diagrams and are of nominal order
o®mc. The last two terms arising from one-pair diagrams are of nominal erdic® and are dropped. The third and fourth

terms also come from one-pair diagrams and contribute t@{e mc?) fine-structure splittings. Two two-pair terms become

zero after integration over the energy variables. Taking the Foldy-Wouthyson transformation and eliminating the transverse
indices, we obtain

AEcrxT=

o dk dk’
o2 8m3f 2 k’2<¢0(p1’p2)| 2i0y- (p1XK)+2p; - k’ ioy- (k xk)

+01-koy-K'|po(pr—k—k',pp+k+k")). (56)

Performing a Fourier transform and doubling it to include theThis correction involves three photons and comes from a
vertex correction due to the other electron, we get single-pair diagram in which the pair and self-energy loop
a’mc are on the same electron line. Comparing the phenomeno-

r
AEcrxT= —2W<¢0|01~ r—4><p1 logical and rigorous results, we find no difference between
phenomenological and rigorous calculations of fine-structure
r r splittings in helium arising from self-energy corrections of
+ 01 305 3l do)- (57) o :
r r second order. This implies that phenomenological calcula-
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tions of other self-energy corrections may be accurate to the Ill. VERTEX MODIFICATIONS

order of interest since their nominal orders are higher. The

lowest-order self-energy correction arises from two sources, A rigorous calculation of vertex corrections seems to re-
the magnetic moment terdE(M) and the shift correction dUiré an extension of Erickson and Yennie's techniflL@
AE(L). AE(M) gives the fine-structure splittings of lowest for self-energy corrections to the vertex problem, and to use

) . . the no-pair formulas presented in RE8] as well as the pair
order while AE(L) only contributes to the Lamb shift of formulas. However, we treat the vertex corrections phenom-

Ipwest order. Thg Igading order of th.e shift correction. to theenologically based on a expectation that the difference be-
fine-structure splittings isx’mc?, which can be obtained tyeen rigorous and phenomenological results is not great. In
phenomenologically. The magnetic moment term has theact, we have shown that phenomenological and rigorous re-
same form for a relativistic wave function in both phenom-sults for the self-energy correction of second order are the
enological and rigorous calculations. However, the calculasame for the fine-structure splittings and differ only for the

tion of O(a’mc?) triplet energy levels requires a rigorous triplet energy corrections. The vertex correction of second

treatment as we demonstrated above fer ferms. order is given by
a de do dk 0 i
AETRZWJ’ o —2m 02—KeFiA (hc(P1,P2)[[S1+(P1€) +Sp (P26) 1Y A 1i(K) [ Sy 4 (P1— ke~ w)

+S,4 (P2t ke—w)][¢e(p1—K,p2+K)). (58
Integrating over the energy variabéeand incorporating the infinite Coulomb binding effects, we find

dk 1

@ do .
_ 0 ) i
e e S e e e e e e e

. 1
+al , — A1k —k,pa+k)). 59
“2E+ 0 s~ e(pat K~ 7o (s pa T Ko 7o (py ) 4 (| (P kot K) 59

The correction is divided into two parts. The magnetic moment correction becomes
@ Azf dk K 1 i
~ 22 2m) 2k PPl K T, 7 (p ko) o 7 (pr kP 2
. 1
+(1|2 o2 192
E—k—e(py) —e(p2+k) =2, 1 (P1,p2+K) 2 4 (P1,P2

AErR(M)

Tig Arklepi—kipotk)) (60

after integration ovet. We expand the propagator nonrelativistically up to ord&nc?. Taking the FW transformation, we
obtain

v @ Ay odk i AH;  (AHp?] o AH,  (AHR)?]
AETR=5 25 W((ﬁo(pl,pz)lsl I+~ +—z |RetRy 1t — —+— 72— 1l Po(P1—K,p2+k))

:AE5+AE6+AE7, (61)

where
Si=(a1y1-k), (62)
Ry =(ab), (63)
AleE_Hrec(pl_kypz)r (64)

and
AHZZE_Hrerj(plyp2+k)- (65)

AE; is of nominal ordera®mc? and is given by

o AZ dk i pi
ABs=5> %J —512{(P1.P2) 2SRy be(p1—K,p2+K)), (69
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where
i p1+|pl_ |2 1 .
S1:_‘7101 k+ —82_0101 k+ am2 o p101[k (p1—k)—ioy- (p1xXk)] (67)
and
i1 i i pi 2 1
Rzzﬁ(zl)z"‘o'zﬂ'z'k) 8m 3(4p2+2p2 k+k )_ (2p2 k+k? )020'2 p.— 16ma(4p2+6p2 k+3k? )02‘72
1 i
+W[[0'2'p2702],vz] (69)

accurate up to ordex’mc®. To lowest order, we find

5

I3 1
-2 ) <¢0|201'

“ 8w
+r_30'l'r0'2'r_r_30'1'0'2+?5(r)0'1'0'2|¢0>1 (69)

5 r
AErgr(a”)= 371
where the magnetic moment of the other electron is included. For the fine-structure splittings ok ori®r we have

AEs(a’)=AEy+AE. (70)
The first term involving an external potential is found to be

Za'mc® r
AEy=2 8 (¢olor- 302 —§|¢> (71)

This comes from a three-photon diagram. The second term coming from the single potential is given by

a

AE= > 216m4f k2<¢0(p1= P2)|—2p;-koy-proy-k+[2p;- p2+2k2+p2+|p2+k|2 2(p1+p2)- k+3p1

+|p1—k[Zli o1+ (p1XK) —[p+2|p1—K|?]oy - ko k— 0y - (p1XK) 0+ (1 X K) | ho(p1— K =K', pat K+K')).

(72)
Performing a Fourier transform and including the vertex correction from the second electron, we arrive at
a’m r r r 5 r )
AE= 2 <¢0|20'1 3 XP1|p1-P2t24m(r) oy r_2><p1 +20- r_3><p1 p2t4oy- r_3><p1 P1
6 o 9 P | 3
T 30U TN P1o2Pit 301 T0-TP1— 307-P102- Pyt r_501'{"><[02' (rXp1)1p1}l do)- (73

AEg is of nominal ordera®mc?. Douglas and Kroll showed that the total contribution frarB is zero for the fine-structure
splittings of ordera®m¢? although individual terms are noAE- is given by

o AZ

dk . . ) .
AE7ZW ﬁf W<¢0(P1,p2)|SI1(AH1)2Rlz+ RL(AH)2Sy| dpo(p1—K,pa+K)). (74)

Further calculation leads to

a

A, (dk 1 .
AE7:WWJ F(d’o(pl,pzﬂa[lﬁ—|p1—k|2][|pz+k|2—p%][2|01'(p2><k)+0'1'k02'k]
—4[p%—|p1—k|2][V2,i0'1~(pZXk)]—Z{[pf—|p1—k|2],[lc,i0'1-(p2><k)]}|¢o(p1—k,p2+k)>

— AE+AE,+AE,, (75)
whereAE is found to be
@ \2 A, [dk ,
ﬁ) 17,;4] a{B0(P1.P[PE~ [pr—KIZI[KE+ 2P, KI[2i 01 (P2 X K) + 0y -k K]l Py — kP k).

(76)

o
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Fourier transforming it and including the correction from the vertex on the second electron line, we obtain

7

a’'mc? r r r
AE=2—7— (#0201 | 3 XP2|P1- P2t 2,3 P201- (P1XP2) =601 | 5 X[1-(r-py)P2]pe
r s 13 . r o
—12mé(r)oy-| 2 %Py |¢0>+<p1¢o|r—30'1'r0’2'r+|0'1'r—§(20'2_30'1'”)‘p2|¢0> : (77)

The external potential term reduces to

7

r2 r
AEv:_ < doloy 3><p1 3 r-pi— Xr_s [ o). (78)
2 2
The interelectron Coulomb term becomes
a’'mc r
AE.=2 8 (¢oloy- 2 7P1 | o). (79

For the charge-density correction, the nonperturbative binding cancels the corresponding part in double transverse photon
exchange correction. If we use

| | m 11
T
then we find
1
AESR=2a mcz( In2><q/>0|4§(r)(r1 — X Ppp|+58(r) 201 Foy-T|do). (80

Similar to self-energy corrections, the vertex modification of sixth order also contributes to the fine-structure splittings to
the order of interest. The correction is given by

1 R A7
AESR=—a mCZA6<¢o|0'1( Pl) 2r3(0'1'0'2_30'1'r0'2'r)+?5(r)01'0'2|¢o>- (81)

In addition, the double vertex correction is given by

dk
AErge= —zf 27 w2 _k2+|5<¢c(P1-pz)|71 1i(K)

X Z ! Z — Yo
E-—w—e(p1—K)—&(p2) =% 1 (P1—K,p) 24 (P1—K,p2) +i6

X ! A1 (K)] e
E+w—e(p)—e(PatK)— L4+ (P1,Pot K)o 2o (Pr, ot k)16 101 ¢

(—K)+ YA 5(—K)

pi—k,p2tk)). (82

Only the magnetic moment contributes to the fine-structure splittings of aréerc®>. After integration over the energy
variablew, the magnetic moment correction then becomes

a A2 ) 1 )
AEtpe=—5—=|5=| =¢ , 17K , 72k
TR T 5 Zm) 2k (BelPrP)l e K e e o T ki)l 7 (P Kipa) 272

) 1 )
+ayy,-k a1v1-K| de(p1—k,pat+k)), (83

E—k—e(p1) —e(p2+k) =24+ (P1,P2+K) 24 4 (P1,P2+K)

whereA=A,+A,+ Ag. Only the double vertex diagrams, when one vertex is of second order and the other of fourth order,
contribute and the correction is

a®m 1 R 8
AErge= WA4<¢0|F§(0'1' 0,= 3010, 1)— ?5”)0'1' 03| bo). (84)

whereA ,= —0.328(a/7)? is the magnetic moment of fourth order. Although the recoil correction of the double second-order
vertex contributes individually, the total is zero.
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The vertex modification coupled with an additional Coulomb photon exchanged between the two electrons contributes to
the fine-structure splittings of order'mc®. The correction is

a \? de do do’ dk dk’
o2 J 2_k2+i5W<¢’c(p1ap2)|[sl+(p1,€)+Sz+(p21€)]

ABrRcc= — 27 =27 27 o

X[Si(p1 =K' 6= 0") YA 1i(K) @5 Sy(pot K, €= ) + YA 1i(K)Si(p1 — K, e~ 0)Sy(po+ k' 6~ w') ah]
X[S1:(pr—k—K' e~ w—0')+S,, (Pt k+k' e~ 0—0")]|de(pr—k—kK',pp+k+k")). (85)
Integrating overe, we get
1
E+w—g(py)—e(py+k)+id

1
E+w—e(p;—k')—e(p+k+k')+ié

sy ap %1 (P2HK)

a \? dw dk dk’

AErrxc=2 2.2 f k2+i5W<¢c(plap2)|
1

~ —w—E(p) —E(p+k)+is

1 ’ 0 ’
- —w—E(pl—k’)—E(pl—k—k')-‘ri5A17(p1_k )}YlAli(k”(ﬁc(pl_k_k 1p2+k+k)>1 (86)

by (pptk) Z14(pr—K')

where the factor 2 corresponds to the diagrams in which the exchanged Coulomb photon is after the vertex. One of the four
terms above corresponds to a no-pair diagram and is already included in the previous vertex corrections. Another term
corresponding to a two-pair diagram becomes zero after integratiorwovEne other two terms are due to one-pair diagrams

and contribute to the fine-structure splittings of ordémdc? only through the magnetic moment. After integration ower

they reduce to

a \2 A, (dkdk’ .
AEtrgxc= 272 erwwc(m,pzﬂ ay %o (P2tK)

1
X —
E—k—e(p1)—e(p2tK)— 4 1 (P1,P2t K 24 4 (P1,p21+K)

1
E—k—e(p1—K')—e(patK+K') =2, 1 (p1—=K',po+ K+ k") 2 (pr—K',po+k+k')

Ay (p1—Kk")

+abA,-(pptk)

X %1 (p1—K') |aiyr Kl de(pr—k—K’,po+k+k)), (87)

where we have included the infinite Coulomb effects. Since the correction is of nominaldrdef, the propagators can be
approximated by the photon momentlmThen, the correction reduces to

dk dk’

a \2—A ) )
AEtrxc= ﬁ) 4—mzzfFW<¢C(p1,p2)|a'2[Al_(p1—k’),%”2+(p2+k)

+ 711 (p1= k') Ao (Pt K) ] y1-K| de(pr—k =K', pp+ k+K)). (88)
The first term is of order®mc? and is therefore dropped. Taking the FW transformation leads to

2 A, [ dk dk’ , , ,
AEtgxc= 5.2 Wfﬁﬁ(‘ﬁo(pl:pzﬂﬂ'rkﬂzk |po(p1—k—k',patk+k")). (89

Performing Fourier transform, we arrive at

a’'mc? r r
AETRXC:_2W<¢O|0—1'I._3‘T2'r_3|¢0>y (90

where the factor 2 comes from the diagrams where the vertex is on the second electron line.

One more correction comes from vertex modification coupled with another transverse photon exchanged. The correction is
given by
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a \? de do do’ dk dk’
AEtrxT= 252 f—27ri "o —2mi w2_k2+i5w/2_k12+i5<¢C(pl1p2)|[sl+(plie)+SZ+(p216)]

X[ Sy(pr—k')YIA 1i(K) abSy(po+K) ab+ yIA 1i(K) Sy(py—K) e} ahSy(po+ k') a]
X[S14(pr—k—k' e—w—0')+ S, (prtk+k’ e~ w—w')]|dpe(pr—k—K',pot+k+k')). (91)

The no-pair term is of ordex®mc® and is therefore neglected. The two-pair correction is found to be

A, ( dk dk’ E—k'—&(p1) —e(pa+k+k’)
AErpyr= 2(277) f

j ! i
2k 2kr<¢c(plap2)| a2A2 (p2+k)a2 E—k— k'—s(pl)—s(p2+k+k )alAlf(pl k )al

E—k'—e(pi—k—k')—e(py)

]
+aAy (p1— k)“lE k—k'—e(py—k—k')—e(p2)

abAy_ (Pt K)ablpo(pr—k—k',potk+k)). (92

To ordera’mc?, the above two terms cancel each other. The one-pair correction is given by

AETR><T
| @ 21 do do’ dk dk’ " ad
T\ 242 ﬁJ’ “omi —2mi wz_k2+i5w/2_k/2+i5<¢c(pllp2)|a2 2 (P2t K)ay
! N7 k'
“Et ot e(pn et KTk~ 7, (pr.pat KT Ko7, (prpp ki k) 1181 1 (P10
y 1
E+tow—e(pi—kK')—e(pa+k+k') =2, (p1—K',po+K+Kk")I .21 (p1—K',po+k+k')+id
. 1
X OA'k+ V7 -k’ 7 7 5% 7 52 7 F
Y0 e (P e K s (pa)— 74 (Pr K P2l o 72 (1 K ) 16
X ¥IA 1:(K) !
[ E-w—o'—e(p1—k=K')—e(pz) = 4 s (p1—k—=K',p2)lc 2+ (P1—k—=K',pp) +i6
_ o 1
X ayAy_(Pat+K)ah+al # -k’ ; ; , ; — ; .
- (Pztk)azt oy Za (P =K B ) e () — 71 (pr—K Pl 72 - (p1—K i) +10
1

i ]
Xk (Pet ) g k) —e(pa KK )= 7o (=K s F K+ K)o 71 (=K P K+ K ) 415

X YIA1i(K) + abA,_ (py+k)ah

1
O .
“E¥wto o) s(pot KTK)~ 711 (Pr et KT KT, Zs (P ppt ki k) #1611
! z k)a)
BV s(pr K~ (o KTK)~ 71 (P Kpa T KT KNI 70 (P Kippt ki k) ris 1+ (P
1 .
OA & — J
) B e e () 7 (Kbl 7y Ko i PO
! jA k’ i
XE_“’_w,_S(pl k=K —e(p)— 7+ (P~ K=K .p)lc 7 (py—k—K',py) +16 "2 2 (Pt k) a
1 ) .
0 . ] ! |
i e R ()~ Zs - (Pr KPa) o 7+ (pyKopy 152 2 (PeT i)
1

“Et o —e(pr—K)—s(Pat KT K~ Ly (Py—Kipot K+ K)o 7, (1~ Kt KK F16
X Z1.(pr—K) | de(py—k =K'yt k+k")), (93
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where the infinite Coulomb binding is included. Integrating over the energy varialbdeslw’ and keeping only the magnetic
moment terms of lowest order, we obtain

a )2 Azfdkdk’

AErpcr= et | @ 10z (be(Prp2)ah L1, (pr=K) ayyr-KabAo (po+K)ah+ ah vk 21 (pi—k)

27°

X alabAy_(pytk')ah|de(pr—k—k',potk+k')). (94)

Further reduction leads to

a \2—A, [ dk dk’ _ .
AErgut= 22 am® ?2-k—,z(¢o(p1,p2)|la'1-(p1><k)—p1-k ioy- (k' xk)
+"'1'[310'2‘k_p1'|2'0'1'|2'0'2‘k|¢0(Pl_k_k/,pzﬁLkﬁLk’))- (99
|
Fourier transforming it and including the correction from the a do dk )
vertex on the second electron line, we obtain 9vc(P1,P2, €)= ﬁf mﬁ[—ﬂc(k )1(p1—K,p2
a7mC2 r +k,€_(1)),
AETRXT:_2W<¢O|20’1' r_4><p1
5 ( )= _Z“fdkl[ M(k)1S; (py€)
oo tldo. 96) Gvvi(PrP2. €)= 5 7 | L1l S; (P2.€

X p(p1—Ky,p2,€),
No more vertex correction is found phenomenologically. To
conclude our analysis on vertex corrections, we note that we a dw dk
would not be surprised to see more terms coming out from a gyt¥(P1,P2.€) = WJ o 02— K2t 5
rigorous calculation. Differing from self-energy corrections,
there are recoil linear terms in the vertex corrections. We Xailaizl//(pl—k,pﬁ K,e—w), (97
have shown previously that these linear terms cancel out to
ordera®mc? [8]. It is likely that they may show up to order \yhere
a’mc and might be different from phenomenological terms.

[—Tc(k*)]

Therefore, a rigorous evaluation of the vertex corrections of 20 2(1-2)k?
second order is the most needed one in a more accurate HC(kZ):__f dz21-2z)In|1- ———| (99
analysis of QED effects on th®@(a’mc?) fine structure of m m

helium. ) o ) i
is the vacuum polarization function. For the fine-structure

splittings of orderO(a’mdc?), the contribution comes from
IV. VACUUM POLARIZATION the nonrelativistick momentum region and therefore the

Vacuum polarization corrections of lowest order ariseVacuum polarization function may be expanded nonrelativis-
from the nonrelativistic momentum region in terms of mo-fically and is given by
mentum of the exchanged photon. The corresponding non- 5
relativistic operator is a simple delta function and is spin IT,(K2)= gk_[i+ 14l
independent. Relativistic wave-function corrections lead to ¢ mm?|15 162
spin-dependent terms of orde¥mc?, which contribute to

the triplet splittings of helium. Vacuum polarization correc- This is very different from the QED effect due to the vacuum
tions of fourth order are of nominal orde®’mc” with the  polarization correction to two-photon exchange where the
delta function operator. Vacuum polarization corrections ofcontribution comes solely from the relativisticregion[18].

sixth order are of nominal order’'mc” and are expressed in Due to the interelectron Coulomb potential, the energy cor-
the form of the expectation value of the spin-independentection is

delta function operator, and therefore give no contribution to

the triplet splittings. Terms arising from vacuum polarization a de do dk

corrections to two-photon exchange are also of nominal or- AEVC=—;J —— ——— 5 {(b(P1,P2)|[S1: (P1€)
der a®mc®. However, they come from the relativistic mo- 2m°) —2mi —2mi K

T (99)

mentum region. The corresponding operator is also the delta +S54 (P26) [~ (kA [ Sy 4 (p1— ke~ )
function. Spin-dependent terms are of ordétmc®. The
vacuum polarization corrections contributing to the + S, (Pt ke—w)][¢c(pr—k,po+k)). (100

O(a’mdc) fine-structure splittings of helium come from the
following operators: After reduction, we find
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a? dk
AEvcsz’ F<¢c(plyp2)|k2|¢c(p1_k=p2+k)>-
(101
To lowest order, we get
5 4a°mc?
AEyc(e®)= 15 (0l 6(r)| po)- (102

For the fine-structure splittings of ordet’'mc?, we obtain

2a’'mc
5 <¢o|5(r)0'1'

AEvc(a7)= - |¢o>-

(103

r
— X
r2 P1

The correction due to the external potential is given by

~Za [ de dk
AEVV: j

Ty Tﬂ.ik_§<¢c(plvp2)|[sl+(plf)
+S,, (p26) I[ —e(kD) 1S5 M (p2€)[ Sy (p1—Kq€)
+S,,(p26€)]| pe(P1—K1,p2)), (109

which may be reduced to

_ —Za?
AEVV_WJ dky(@c(P1,P2) || dc(P1—K1,P2)).
(105

To lowest order

—4Za°

5 mc?
AEy(«a ):21—5<¢0|5(r1)|¢0>a (106)
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AEVT:WJ’ —2mi — 2 wz—k2+i5<¢0(pl,p2)
X|[Sp4(Pr€)+ Sy (p26) [~ TTe(k?) )
X[S1+(p1—ke—w)+ Sy (prtke—w)]
X|he(p1—K,p2+K)),

(110

which is of nominal orderx’mc®. Reduction yields

4 r
AEyr(a’)=— a7m02<¢0|§ o(ryoy- r_zx P1

T
+5(I’)r—201-l’0'2~l’|¢0>. (111)

Unlike self-energy and vertex corrections, vacuum polariza-
tion corrections seem to be better understood. It is likely that
the vacuum polarization corrections analyzed in this section
may be the full correction to the fine-structure splittings of

ordera’md?.

V. RESULTS AND CONCLUSIONS

In previous sections, we have deriv€l{a’'mc®) QED
corrections to the fine-structure splittings of helium in the
nonrelativistic approximation. We expect no contribution
from the relativistic momentum region. From the number of
potential points of view, the relativistic correction can arise
from only two potentials that correspond to a nonrelativistic
operator scaled by A]. On the other hand, the spin-

where the factor 2 corresponds to the vacuum polarization ofependent relativistic contribution must come from a nonrel-

V,. For the fine-structure splittings of ordefmc?, we ob-
tain

Za'mc?
5 (ol 8(r1) 0y -

AEy(a’)=2

| o).
(107)

ry
= XP1
5]

ativistic operator scaled by r®, which contradicts the above
result. The absence of ultraviolet logarithmic terms also
shows no relativistic contribution.

In summary, we have obtained nonrelativistic operators
arising from QED corrections to th@(a’'mc®) fine-
structure splittings of helium. The contributions from self-
energy corrections are given by Ed47), (28), (46), (47),

One interesting result could be the corresponding correctioand(57). The vertex corrections are given by E¢gl), (73),
to the Lamb shift of hydrogen. Including spin-independent(77), (78), (79), (80), (81), (84), (90), and (96). The total

terms, the correction becomes

, Z8a'mc 1
AEy(a ):T<¢o|5(r1)g[0'1'(r1><p1)_1]|¢o>
(109
or
. Z%'m¢c 1\
AEy(a@ )_W 1-5 [j(j+1)—s(s+1)
—1(1+1)—1]. (109

contribution due to vacuum polarization correction is

Za'mc r 1
AEyacuun= 2T<¢0|5(r1) (S r_ixpl _I’T |¢0>
1 1
A7 02 Eg LX — 5 i
a’'m <¢0|5 (roy- 2 %P1 (f)5r2
1 " oa
+5(r)r7crl«raz-r|¢o>, (112

For the 2P,,, state, the correction is-0.27 kHz. Although where we have included spin-independent terms. The above
the number is too small, it is a part of the whole picture ofcorrection is the total energy-level shift of ordefmc® due

the O(a’mc?) Lamb shift of hydrogen.

to vacuum polarization. Especially interesting here is that the

The correction associated with a transverse photon isorrection together with the well-known vacuum polarization

given by

terms of lowest order provides a bridge between the nonrel-
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ativistic variational calculation and the relativistic many- a’'mc i
body perturbation calculation. One may calculate triplet en- AEm:W(D%(i’dr—a o110y Pa| o),
ergy levels of heliumlike ions using the two totally different
methods. The two methods may be checked against each
other for moderat&Z ions. For lowZ atoms or ions, the 3a’md? i o
variational method may be favored while the relativistic AE16=—T(piqbolﬁal-r02'rr~p2|¢o>,
method is expected to be superior in higrsystems. How-
ever, such a check cannot be made in this paper until numeri-
cal calculation using the variational method is finished by 1
Yan and Drake for heliumlike ions. AE17=9a7m02<¢o|5(f)r—zal'fﬂ'z‘f|¢o>-
Regrouping all terms and combining like terms, we ex-
press them explicitly in terms of the numbers of photons
involved. From the two-photon processes, we have One approximation made here is to replaceHy{ W) in
two-electron terms by some average value, which leads to a
ldo), (113 ca_ncellation among the two-elec_tron_terms. A precise calcu-
lation of the exact Bethe logarithmic type terms needs a
more rigorous treatment of vertex corrections of second or-
o, der. As one observes, a humber of operators here are the
In(Za)~*=B'(nSLZ) same as some of Douglas and Kroll, whose expectation val-
ues have been calculated numerically by Yan with high pre-

Za m02

AE=— <p1¢o|0'1

ry
SXpl
ry

AE,=—2Za'mc?

31 ry cision [19]. AE;, AEs, AEg, AE;4, and AE;3 have the

+ 120 (Gl 8(r1) - EXpl | Bo), same operators &8, Eg, E 3, E14, andE;g, respectively.

AE; and AE, correspond toEg. AE;s and AE; match

a’mc® r E.,. AE; contributes 3.2 and 6.4 kHz tey; and v,,, re-
AE3:?<P§¢0|¢H' 3XP1|bo), spectively.AE; contributes— 10.7 and 4 kHz. This may be

the largest one of the electron-electron type in the above
two-photon correctionsAE s+ AE ¢ gives 4.6 and—1.9
[ o), kHz. AE, gives possibly the largest contribution of the order
of interest. However, the final number depends on the nu-
merical calculation of the Bethe logarithm. Since the above
| o) terms come from two-photon diagrams, they are of next-to-
leading order. The above two-body terms have never been
tested in a two-body system. It would be interesting to see
their high-precision test in helium. It could provide one of
P1- P2l bo). the most accurate tests in bound-state QED physics. From
three-photon diagrams, we obtain

7
AE,=— W(piqsowl'

r
— X
r3 P2

29 r
AEs= a7mc2<€—12ln2><¢0|5(f)0'1‘ 2 XP1

7

a’'mc r
AE6:_W<¢O|0'1' r_3><p1

AE _017mC2 r
[ <¢0|r—3~p10'1-(p1><p2)|¢0>, " Za7mc2<¢ | ‘, ) "
18~ - (PolO1| 3 XP1||P0)s
3a mc2 r 4 rr2
AEg= (ol o1 - 5><[r-(r-p1)p2]p1 | o),
mé 1 3B 140)
a'm 19= (b0l O71" r-P1l@o
AE9:_W(¢o|r_30'1'p10'2'p2|¢0>1 4ar
a’'md Za'mc? ) r,
AEyg=— —%=— 167 (ol 30'1 P102- P1| do), AE,o= y (¢olioy- ngﬂg | o),
3a7mC2
AEp=——2—(¢dl 501 {rx[ o5 (rXpz)1pa}| ¢o), Za7mc2 ry,
AEy=—7— <¢o|0'1 : r_3| bo),
2
3a’'mc? 1
AE12=W<¢O|r—50'1~{rX[0'2~(I’Xpl)]p1}|d>0),
a7m
AEzz— <¢0|01 302 3|¢0>- (114

15a'mc?
A|513—T<p1¢’0|—§0'1 ro,-t| o),

OperatorsAE;q, AE,;, and AE,, correspond tcE,, Ej,
AE _30‘ m02<¢ |1 o FF Do | o), and Eg, respectively, of Douglas and Kroll. The correction
14 of;3 @111 P12 P Po due to four-photon diagrams is given by
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tracted. The calculations of the triplePZsplittings in heli-
| b)), umlike ions, carried out in a nonperturbative scheme such as

RMBPT, are reported in Ref22]. However, they acknowl-

edged that the QED corrections were taken from a perturba-
| o), tive calculation 23] that takes only Araki and Sucher’s terms
of ordera®mc? into account. It is important to note the split-
tings, not the spin average energy level of the triplettate.
Only the splittings can provide a QED test of ordefmc?
because the triplet energy levels of lower-ordémc? have
not been calculated yet. Even if the QED calculation in
RMBPT could be done for the triplet splittings, there would
still be a challenge to compare with our high-order QED
corrections, which may only consist of 1/10 000 of the total
All operators arising from four-photon diagrams are Breitnonperturbative corrections. As pointed out in R&0] the
operators. The total correction ofAE;, AE, (non- accuracy of their QED results faf < 18 is affected by
logarithmic part, AE;, AE,, AEs, AEg, AEg, AE;;, severe numerical cancellations in their method for calculat-
AEq 3, AE 5, AE 7, AE g, AE,, AE,,, AEss, AE,,, and  ing electron self-energies. A more realistic comparison could
AE,g is Avg;=—7.2 kHz andAv,,=4.0 kHz. Numerical be made in moderaté ions. The corrections presented here
calculation of the other terms is in progress by Yan andprovide an excellent test for high-precision variational calcu-
Drake. The estimate of those uncalculated numerid@ks  lation, which is superior to the many-body perturbation cal-
cluding logarithmic termysis expected to be less than 5 kHz. culation for low Z atoms because the variational approach
The Bethe logarithm presented here is spin dependent arfths the advantage that the nonrelativistic wave function of
different from the normal one, which already has been diffi-helium can be obtained with high precision.
cult to calculate accurately for many years. Therefore, the In conclusion, we have presented an analysis on
new Bethe logarithm could be the biggest challenge for nuO(a’mc?) QED corrections to the fine-structure splittings of
merical calculation. helium. The result is expressed in terms of expectation val-

Since the Douglas and Kroll's work in 1974, there hasues of nonrelativistic operators similar in form to those of

been very active study of QED effects in many-body atomicDouglas and Kroll, and is a correction not only for helium
systems in the framework of relativistic many-body pertur-but also for positronium. The final numbers for positronium
bation theorRMBPT) [20]. It would be interesting to com- can be obtained easily by sandwiching the nonrelativistic
pare our perturbative results with those obtained in RMBPToperators presented here between nonrelativistic wave func-
First, we need to compare the advantages in our perturbativtions of positronium. However, only the vacuum polarization
calculation and the nonperturbative calculation in RMBPT.correction to the hydrogeR levels is close in magnitude to
Our perturbative scheme is developed mainly for [Bvat-  the current experimental errors. Corrections in positronium
oms or helium in particular. The dominant physics here isare of ordera’mc® and therefore are far too small to be
nonrelativistic effects. All relativistic and QED corrections meaningful. This shows that helium is a better candidate than
are calculated perturbatively to a given order. In this way awo-body systemgequivalent corrections in hydrogen and
very high precision can be obtained to the order of interestnuonium are of ordes’m/M, too smal) in a high precision
due to an extremely high precision variational calculation oftest of the two-body terms analyzed here. This is conceivable
nonrelativistic effects. Since all corrections are obtained in &ince the 2P helium levels have a lifetime about 100 times
power series of, theoretical uncertainty can be estimated toof that of the 2 hydrogen levels due to the fact that the
a given order. On the other hand, RMBPT takes advantage afiplet P state decays to the triple§ state instead of the
the fact that relativistic effects dominate in the binding en-ground state. Although many of the corrections are obtained
ergy of highZ ions. A relativistic solution of the Dirac type is phenomenologically, we expect them to account for a major
a good starting point. Therefore, the corresponding calculapart of QED effects to the order of interest. Partial justifica-
tion is nonperturbative for a given dynamic kernel arisingtion of phenomenological treatment has been made by rigor-
from a Feynman diagram. Although self-energy and vacuunous calculation of self-energy corrections of second order.
polarization have been calculated in RMBPT, it is not clearwe found that phenomenological treatment leads to the same
how much contribute to order®mc?, a®mc?, anda’'mc®in  result as the rigorous one for the self-energy corrections of
the case of lowZ atoms such as helium. Note that the termssecond order. Full justification, one way or another, requires
of ordera’mc? are only 1/10 000 of the leading QED terms. a rigorous calculation of one-loop vertex corrections. The
Since the QED corrections obtained in RMBPT are not anaQED corrections of second order perturbed with the Breit
lytical, they have to be expressed in terms of powera af corrections contribute to the fine-structure splittings to the
order to make a comparison. For example, Mohr calculatedrder interest. They were presented in our previous paper
numerically the self-energy correction of second order to th¢11] in the form of expectation values of nonrelativistic op-
hydrogenic Lamb shiff21] expressed in terms of power se- erators of second order. One more piece for a complete pic-
ries of a. Alternatively, one may subtract the lower-order ture of theO(a’mdc?) fine-structure splittings of helium is
perturbative corrections from the nonperturbative result obeorrections from the relativistic momentum region arising
tained in RMBPT. To compare with the corrections pre-from exchange diagrams, which will be presented elsewhere.
sented here, Araki and Sucher’s terms of ord@mc®> and  These corrections are of special interest in view of the fact
Douglas and Kroll's terms of ordee®mc? must be sub- that they may be the first corrections of off-leading order

AE23: Za4mC2A6<¢0| gy

ry
—=XPy
r

AEy=—2a"mcAg(po| o -

' X

3 P1
4 1

AE 5= — a®mc(A A4+ Ag){ ol — _2r3(0'1' 1 p)

. 47
_30'1'“7'2'r)+?5(r)0'1'02|¢0>- (119
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arising from the relativistic momentum region ever to be ACKNOWLEDGMENTS
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