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O(a7mc2) QED corrections to the fine structure of helium are presented. They are expressed in the form of
expectation values of nonrelativistic operators. Self-energy corrections of second order are derived rigorously.
Others are obtained phenomenologically.@S1050-2947~96!08205-4#

PACS number~s!: 31.30.Jv

I. INTRODUCTION

There has been much effort made over past two decades
to test higher-order QED effects in one- or two-body bound
states such as hydrogen, positronium, and muonium. A lot of
theoretical progress has been made in understanding higher-
order QED effects in these systems@1#. Since the theoretical
derivation ofO(a6mc2) QED and relativistic corrections to
fine structure in helium accomplished by Douglas and Kroll
@2# and the numerical calculation by Daley@3#, there has
been little theoretical progress in investigation of higher-
order QED effects in helium until recently. One of the rea-
sons is due to being unable to solve the Schro¨dinger equation
for helium accurately. This situation changed after the dra-
matic development in the search for an extremely accurate
nonrelativistic wave function of two electrons, made by
Drake @4#. In addition, past and recent experiments@5–7#
provide an excellent opportunity to test uncalculated QED
and relativistic corrections of one order beyond that of Dou-
glas and Kroll’s terms. Although three-body corrections are
still beyond reach both experimentally and theoretically, a
large number of two-body terms can be tested. In particular,
a two-body QED correction of off-leading order has not been
tested in any bound-state system due to insufficient experi-
mental accuracy. A typical such term is the vertex or vacuum
polarization correction of off-leading order, which is of order
a7m2c2/M for two distinct particles ora7mc2 for positro-
nium. A test of such terms would be of interest since this is
the very nature of bound-state systems in view of the fact
that a given Feynman diagram contributing to the anomalous
magnetic moment of a free electron has only one order.
However, these two-body terms are sensitive to experiment
of fine-structure splittings in helium. Some of these terms
contribute a few kHz or more individually to the fine-
structure splittings while the current experimental error is
only 3 kHz @7#. The need to calculate these corrections is
clear. On the other hand, a modern numerical technique de-
veloped by Drake@4# for high precision calculation makes it
possible to evaluate all corrections up to the order of interest
with high precision and to obtain very accurate theoretical
numbers.

In a recent rigorous analysis of QED corrections of off-
leading order in bound-state systems@8#, a number of fully
relativistic formulas in closed form were presented. The cru-
cial idea to derive these formulas is to use the mixed gauge
in which the electron-electron interactions are described in
Coulomb gauge while radiative interactions are expressed in

covariant gauge. Furthermore, the single-particle propagators
inside radiative loops are expressed in terms of Feynman
propagators and those outside the loops are projected into
positive and negative energy operators. That means nonradi-
ative loops may be understood in three-dimensional space
while radiative loops are described four dimensionally,
which do not have to be understood in three-dimensional
space. The difficulty to derive such closed formulas in an
explicitly covariant formalism is that the pair and no-pair
effects from exchange diagrams are treated on equal footing
while only the no-pair part in a diagram causes nonperturba-
tive Coulomb binding on transverse photon exchanged. In a
three-dimensional times-order formalism, such effects are
treated differently. The no-pair propagators are treated non-
perturbatively while the pair propagators are expanded per-
turbatively. To ordera6mc2, the only possible QED correc-
tion of off-leading order would come from recoil correction
to the vertex modification of second order. Douglas and
Kroll @2# showed phenomenologically that the correction
cancels out between two vertex diagrams in which an addi-
tional crossed or uncrossed Coulomb photon is included due
to the recoil correction. They concluded their rigorous analy-
sis on this correction by stating that ‘‘the detailed demonstra-
tion that all terms which might conceivably contribute to
ordera6mc2 fine structure in fact do not do so has not been
completed.’’ Although the analysis in Ref.@8# showed that
no new nonrelativistic energy correction of ordera6mc2 is
found other than those obtained phenomenologically, it is
clear thatO(a6mc2) relativistic energy corrections can be
obtained using these formulas, together with more formulas
involving pairs outside the radiative loops. In particular, the
O(a6mc2) self-energy Lamb shift in a two-body system,
similar to those in the one-body system obtained by Karplus,
Klein, and Schwinger@9# and by Baranger, Bethe, and Feyn-
man @10#, may be calculated using these formulas.
O(a6mc2) vertex corrections arising from the relativistic
momentum region can also be obtained with these formulas.
These corrections contribute only toS states in positronium
and singlet states in helium in the form of the expectation
value of the delta function. However, the main focus in this
paper is the QED corrections to theO(a7mc2) fine-structure
splittings of helium.

In our previous paper@11#, we derived a number of for-
mulas for energy levels in helium and carried out a deriva-
tion of nonrelativistic operators contributing to
O(a7lnamc2) fine-structure splittings in helium. We also ob-
tainedO(a7mc2) corrections to the splittings in the nonrel-
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ativistic approximation, arising from exchange diagrams. In
this paper, we present our analysis on theO(a7mc2) QED
corrections to the triplet splittings, arising from the self-
energy and vertex corrections, and vacuum polarization cor-
rections.

II. SELF-ENERGY CORRECTIONS

Self-energy corrections to theO(a7mc2) fine structure of
helium arise from a number of diagrams. The most notable
one is the self-energy correction of second order, which con-
tributes to the Lamb shift of lowest order. This correction is
the most difficult one to calculate to higher order because it

contains a correction of lowest order. This correction de-
serves a rigorous treatment more than any other radiative
correction since it is the only one contributing to the Lamb
shift of lowest order arising from both the anomalous mag-
netic moment and the charge density modification. The low-
est order of the charge density modification due to vertex
corrections isa7mc2. Hence, we analyze the self-energy
correction of second order first.

ForO(a7mc2) fine structure in helium, diagrams respon-
sible for this correction are no-pair and one-pair graphs. The
formula to describe the no-pair diagram is presented in Ref.
@8# and is given by

DES(
n50
` Cn5

2 ie2

~2p!4
E d4q

q21 id

3^fc~p1 ,p2!ug1
0g1

ag1
0 1

E2q02H~p12q!2«~p2!2L21~p2!I cL21~p2!1 id
g1aufc~p1 ,p2!&. ~1!

fc is the eigenfunction in the Coulomb ladder approximation
defined in Refs.@12# and @2#. L1 is defined by

L1~p!5
1

2 S 11
H~p!

e~p! D .
The no pair here means no pair on the electron’s line where
there is no radiative loop since the pairs inside the radiative
loop are already included in the above formula through the
single-particle Feynman operators. As pointed out by Erick-
son and Yennie@13#, direct expansion of the propagator in a
power series in the Coulomb potential does not lead in a
straightforward way to an expansion in powers ofa. They
developed a systematic technique to do expansion in powers
of a. Here we extend their method to obtain the self-energy
corrections to theO(a7mc2) triplet splittings in helium.
Comparing our no-pair self-energy formula for helium with
theirs for hydrogen, we find that the mechanical momentum
P is defined by

Pm5@E2V12«~p2!2L21~p2!I cL21~p2!,p1# ~2!

for helium. For fine structure of ordera7mc2, the calculation
is greatly simplified and is very similar to theirs for the split-
ting between hydrogenicP states. The simplification comes
from two facts. First, no contributions arise from relativistic
momentum region. To lowest order, they correspond to hy-
drogenic terms obtained by Karplus, Klein, and Schwinger
@9# and by Baranger, Bethe, and Feynman@10# coming from
two potentials. The next-to-leading order isa8mc2. To order
a7mc2, the contributions arise from up to three potentials in
nonrelativistic momentum region. Furthermore, only spin-
dependent terms contribute to the triplet splittings. A large
number of spin-independent terms may be dropped. In par-
ticular, all but two corrections give no contribution. These
two corrections are relativistic wave function corrections to

the magnetic moment termDE(M ) and the shift correction
DE(L). The magnetic moment term is defined by

DE~M !5
a

4pE0
1

dz~2z22!m^f̄cu
M

m2ufc&, ~3!

whereM is the magnetic moment operator and is defined by

M5P” 22P25a1•@p1 ,P
0#

52a1•@p1 ,V1#2 a1•@p1 ,L21~p2!I cL21~p2!#.

~4!

Note thatf̄c is used. Performing integration over the param-
eterz, we obtain

DE~M !5
a

2p
^f̄cu

2M

2m
ufc&5DEV1DEc , ~5!

where

DEV5
a

4pm
^fcug1

0a1•@p1 ,V1#ufc&

5
2Za

2p2

D2

2mE dk1
k1
2 ^fc~p1 ,p2!ug1•k1ufc~p12k1 ,p2!&

~6!

and

DEc5
a

4pm
^fcug1

0a1•@p1 ,L21~p2!I cL21~p2!#ufc&

5
a

2p2

D2

2mE dk

k2
^fc~p1 ,p2!ug1•kufc~p12k,p21k!&.

~7!
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HereD25a/2p is the anomalous magnetic moment of low-
est order. The above two terms can also be obtained phenom-
enologically. Keeping spin-dependent terms up to order
a7mc2, we find

^g1•k1&52
1

m
is1•~p13k1!

1
1

4m3 @p1
21up12k1u2# is1•~p13k1!2

k1
2

2m
.

~8!

To the lowest ordera5mc2, the energy correction in coordi-
nate space is

DEV~a5!5
Za5mc2

4p
^f0u2pd~r1!1

1

r 1
3 s1•~r13p1!uf0&.

~9!

To ordera7mc2, the external potential correction to the fine-
structure splittings is given by

DEV~a7!5
2Za

2p2

D2

8m4E dk1
k1
2 ^f0~p1 ,p2!u@p1

21up12k1u2#

3 is1•~p13k1!uf0~p12k1 ,p2!&. ~10!

Upon performing a Fourier transform, we obtain

DEV~a7!52
Za7mc2

8p
^p1

2f0u
1

r 1
3 s1•~r13p1!uf0&.

~11!

This single-electron term reduces to

DEV~a7!52
Z6a7mc2

80pn3 S 12
13

12n2D s• l ~12!

for hydrogen. At first sight, it does not seem to agree with
that of Erickson and Yennie@13#. However, one needs to
calculate the correction of second order due to wave-function
perturbation in order to compare with their result since the
correction they obtained is fully relativistic due to relativistic
wave function modification toDE(M ). Similarly, we find

^g1•k&52
1

m
is1•~p13k!1

1

4m3 @p1
21up12ku2# is1•~p13k!2

k2

2m
1

1

8m3 @p2
21up21ku2# is1•~p13k!

1
k2

8m3 is1•~p13k!2
1

4m3p2•~p21k!is1•~p13k!1
1

4m3 s1•~p13k!s2•~p23k!. ~13!

To the lowest ordera5mc2, the energy correction due to electron-electron Coulomb potential is

DEc~a5!52
a5mc2

4p
^f0u2pd~r !1

1

r 3
s1•~r3p1!uf0&. ~14!

For the fine-structure splittings of ordera7mc2, we get

DEc~a7!5
a

2p2

D2

16m4E dk

k2
^f0~p1 ,p2!u2@p1

21up12ku2# is1•~p13k!22p2•~p21k!is1•~p13k!1k2is1•~p13k!

1@p2
21up21ku2# is1•~p13k!12s1•~p13k!s2•~p23k!uf0~p12k,p21k!&. ~15!

Fourier transforming it yields

DEc~a7!5
a7mc2

16p
^f0u

2

r 3
s1•~r3p1!p1

2112p
d~r !

r 2
s1•~r3p1!2

1

r 3
s1•p1s2•p22

3

r 5
s1•$r3@s2•~r3p2!#p1%uf0&.

~16!

For the fine-structure splittings of ordera7mc2, the total contribution of the magnetic moment corrections reads

DE~M !52
Za7mc2

8p
^p1

2f0us1•S r1r 13 3p1D uf0&2
Za7mc2

8p
^p2

2f0us2•S r2r 23 3p2D uf0&

12
a7mc2

16p H ^p1
2f0u2s1•S rr 3 3p1D uf0&1^f0u12pd~r !s1•S rr 2 3p1D

2
1

r 3
s1•p1s2•p22

3

r 5
s1•$r3@s2•~r3p2!#p1%uf0&J . ~17!
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Now we proceed to the shift correction. This correction is
defined as

DE~L !5
a

4pE0
1

dzE
0

`

dKE d4k

p2i
^f̄cuI Lufc&, ~18!

where

I L5I L11I L21I L31I L4 . ~19!

These shift kernels are given by

I L158~12z2!z3m2E
0

1

dl2
1

Dl
Pn

1

Dl
@Pn,P” #

1

Dl
2uu

1

Dl
,

I L2524z~12z!Pm

1

D
@Pm,P” #

1

D
uu
1

D2 ,

I L3524z2~12z!
1

D
P” n

1

D
@Pn,P” #

1

D
uu
1

D
,

I L4528z3
1

D
Pn

1

D
@Pn,P” #

1

D2 . ~20!

For the operators of lowest order, the correction becomes

DE~L !5
a

pE0
1

duE
0

1

dzP~z,u!^fcuP•

1

D
@2P0,P#ufc&,

~21!

where

P~z,u!522~12z2!u~12u!1~12z!1z~12z!~12u!

1z2~12u!2 ~22!

and

D5zm21u~12z!HNR. ~23!

Here

HNR52mF p122m1
p2
2

2m
1V11V21I c1W0G . ~24!

The numerator has a structure of

^fcuP•@2P0,P#ufc&5^fcup1•@V11I c ,p1#ufc&.
~25!

Approximating the wave functionfc by nonrelativistic wave
function f0 and following the procedure in Ref.@13# we
obtain the shift correction of lowest order as

DE~L !5
4a5mc2

3 H F ln~Za!221
11

24G ^f0uZd~r1!2d~r !uf0&

1(
n

~En2E0!lnU2~En2E0!

~Za!2m Uz^fnup1uf0& z2J .
~26!

Including the corresponding terms due to radiative correc-
tions on the other electron line, and combining the magnetic
and shift corrections with the binding correction from single
transverse photon exchange, we obtain

DE~a5!5
4a5mc2

3 H F ln 1

~Za!22 2b~nLS,Z!1
5

6G^f0uZd~r1!1Zd~r2!22d~r !uf0&12ln2^f0ud~r !uf0&J
1

a5mc2

4p
^f0u

Z

r 1
3 s1•~r13p1!1

Z

r 2
3 s2•~r23p1!2

1

r 3
s1•~r3p1!uf0&, ~27!

whereb(nLS,Z) is the Bethe logarithm@14#. This result agrees with that of Araki@15# and Sucher@12#. The procedure used
here may be considered to be equivalent to an extension of the method of Baranger, Bethe, and Feynman@10# for a more
rigorous calculation discussed by Sucher in his thesis@12#.

The shift correction to the fine-structure splittings of ordera7mc2 due to relativistic wave-function corrections is found to
be

DE~L !522Za7mc2F ln~Za!222b8~nLS,Z!1
11

24G^f0ud~r1!s1•S r1r 12 3p1D uf0&

14a7mc2S 11242 ln2D ^f0ud~r !s1•S rr 2 3p1D uf0&, ~28!

whereb8(nLS,Z) is defined as

b8~nLS,Z!5
^f0us1•p1p1• ln@2~H02W0!/~Za!2m#@V1 ,p1#s1•p1uf0&

^f0us1•p1p1•@V1 ,p1#s1•p1uf0&
~29!

similar to the Bethe logarithm@14#. The first line in the above correction is single-electron type and reproduces the hydrogenic
result of Erickson and Yennie@13# when reducing to a hydrogenic system. Here, we dropped the lna term of the two-electron
type since it cancels a similar term from the no-pair single transverse photon exchange@11#. Furthermore, we assume the
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nonperturbative Coulomb binding between the two electrons cancels out. In fact, the two-electron binding due to self-energy
corrections is

a5

3p F K s•p1p1ln
~Za!2m

H02W0
@ I c ,p1#s•p1L 1 K s•p1p2ln

~Za!2m

H02W0
@ I c ,p2#s•p1L G . ~30!

The two-electron binding correction due to the no-pair single
transverse photon exchanged is given by

2
a5

3p K s•p1H F ln~Za!2m

H02W0
I c ,p1G ,p2J s•p1L . ~31!

If ln(H02W0) is approximated by some average value, then
we see a cancellation between the above two corrections. A
similar cancellation is obtained between vertex correction
and double transverse photon exchanged. The above correc-
tions to the triplet splittings of ordera7mc2 arising from
self-energy modification of second order are obtained rigor-
ously using Erickson and Yennie’s technique. Now let us
compare the rigorous calculation with a phenomenological
one. In phenomenological treatment, the magnetic moment
correction is identical to that in the above rigorous calcula-
tion. The only difference is in the shift correction. Previ-
ously, it was found by French@16# that

lnl5 ln~2A!2
5

6
, ~32!

wherel is a fictitious photon mass andA is the lower cutoff.
The factor 5/6 arises from 11/2413/8 where 11/24 and 3/8
come from the shift and magnetic moment corrections, re-
spectively. Therefore, we found that if

lnl5 ln~2A!2
11

24
~33!

is used in the phenomenological treatment, then the phenom-
enological approximation is accurate both for the Lamb shift
of lowest order and for the fine-structure splittings of order
a7mc2. Thus, the above number may also be a good ap-
proximation in the vertex calculation to be analyzed later
phenomenologically.

Now let us check out if there is any other correction con-
tributing to the fine-structure splittings of helium. First, we
look at the magnetic moment correctionDE(M ). One pos-
sible correction arises from shifting the self-energy loop vari-
ables q0 and q integrations forI M. A typical numerator
structure is

†p1 ,•@p1 ,M #‡5@a1•p1 ,†p1 ,•@p1 ,V11I c#‡#. ~34!

Although the numerator is spin dependent, the matrix ele-
ment DE(M2p) becomes spin independent after being
sandwiched between wave functions. Another potential cor-
rection comes fromDE(M2M ), which has the numerator
structure

@a1•p1 ,V11I c#@a1•p1 ,V11I c#

5@p1 ,V11I c#•@p1 ,V11I c#, ~35!

which becomes spin independent. The terms inDE(a) have
the numerator structure

@Pn ,P#@Pn,P#522@p1 ,V11L21~p2!I cL21~p2!#@p1 ,V1

1L21~p2!I cL21~p2!#, ~36!

which is also spin independent to lowest order. Similarly, the
numerator structures inDEb , DEd , and DEf all become
spin independent. A possible contribution comes from the
shift correctionDE(L) defined by Erickson and Yennie for
hydrogen@13#. To lowest order, the shift correction corre-
sponds to nonperturbative Coulomb binding appearing in the
form of the lna term and the Bethe logarithm. One of the
higher-order terms is due to a nonrelativistic Hamiltonian
modification to the lowest-order shift correction. It is given
by

DE~L2H !5
2a

pmE0
1

uduE
0

1

dzP̄~z,u!^f0u@p1 ,V1#
1

D

3@2P red
0 ,p1#uf0&, ~37!

where

P̄~z,u!522~11z2z2!u~12u!1~22z!2~12z!2~12u!

2z~12z!~12u!2

and the reduced zero component of the four-dimensional me-
chanical momentum is

P red
0 52m1W02V12E~p2!2V22I c ~38!

to lowest order. Since

^f0u@p1 ,V1#•@V1 ,p1#uf0&5Z2a2^f0u
1

r 1
4 ~12d l10!uf0&,

^f0u@p1 ,I c#•@ I c ,p1#uf0&5a2^f0u
1

r 4
uf0&,

^f0u@p1 ,V1#•@ I c ,p1#uf0&52Za2^f0u
r1
r 1
3•
r

r 3
uf0&,

~39!

we obtain

DE~L2H !5
2a7mc2

3p
ln~Za!22^f0u

Z2

r 1
4 ~12d l10!

1
Z2

r 2
4 ~12d l20!22Z

r1
r 1
3•
r

r 3

22Z
r2
r 2
3•
r

r 3
1

2

r 4
uf0& ~40!

for lna terms. These corrections correspond to two potentials
inside the self-energy loop, which cannot be described phe-
nomenologically.
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Another group of infrared logarithmic corrections to the
O(a7mc2) triplet energy levels comes fromDE(L2p) de-
fined by Erickson and Yennie. They arise from numerators
containing one potential and four momenta. A typical nu-
merator structure is

^f0up1•~†p1 ,•@p1 ,V1#‡!p1uf0&

5212a6m5^f0uZd~r1!
1

r 1
2uf0& ~41!

for DE(L22p), which then becomes

DE~L22p!52a7mc2ln~Za!22^f0uZd~r1!
1

r 1
2 1Zd~r2!

1

r 2
2

2cd~r !
1

r 2
uf0&, ~42!

wherec is some constant to be determined. Similarly,

DE~L12p!52
4

5
a7mc2ln~Za!22^f0uZd~r1!

1

r 1
2

1Zd~r2!
1

r 2
2 2c8d~r !

1

r 2
uf0&, ~43!

wherec8 is some constant. In total, they become

DE~L2p!5
6

5
a7mc2ln~Za!22^f0uZd~r1!

1

r 1
2 1Zd~r2!

1

r 2
2

2~c1c8!d~r !
1

r 2
uf0&. ~44!

Therefore, no more spin-dependent correction is found. Al-
though the above correction comes from a single potential
inside the self-energy loop, it cannot be obtained in a phe-
nomenological treatment. This shows the difference between
phenomenological and rigorous calculations even for a single
potential diagram. One interesting result is the
O(Z5a6mc2) QED correction to the Lamb shift of helium,
which is the leading term of ordera6mc2. They come from
the self-energy correction with two external potentials. Since

the nominal order of the two-external-potential self-energy
correction isa7mc2 as shown above, theO(a6mc2) contri-
bution arises from the relativistic momentum region. There-
fore, the nonrelativistic operator is the delta function. For
hydrogen, this correction was calculated by Karplus, Klein,
and Schwinger@9# and by Baranger, Bethe, and Feynman
@10#, and was recalculated by Erickson and Yennie@13# in a
more systematic approach. For helium, they become

DE54pZ2a6mc2~11 11
1282 1

2 ln2!^f0ud~r1!1d~r2!uf0&.
~45!

We have reproduced this by using our self-energy formula
and Erickson and Yennie’s technique with the help of com-
puter algebra, which is particularly suitable for the calcula-
tion of corrections from the relativistic momentum region. If
we assume 1/r is proportional toZ, the above term is the
total O(Z5a6mc2) QED correction since all other terms in
self-energy and vertex corrections contain no external poten-
tial. That means no corrections due to the single external
potential, which can only lead to the nonrelativistic approxi-
mation. Moreover, all other QED corrections of order
a6mc2 are of actual orderZ3a6mc2. No single potential
term leads to noO(Z4a6mc2) QED correction, which is in
contrast to exchange corrections.

Now we proceed to the calculation of other self-energy
diagrams. Obviously, self-energy corrections of sixth order
contribute to the triplet splittings and are readily obtained as

DEc522
a4mc2

2
D6^f0us1•S rr 3 3p1D uf0& ~46!

due to electron-electron Coulomb interaction, and

DEV52
Za4mc2

2
D6^f0us1•S r1r 13 3p1D uf0& ~47!

from the external potential. Here

D651.176~a/p!3

is the anomalous magnetic moment of sixth order@17#.
Double self-energy correction to the interelectron Coulomb
potential is given by

DECR25
a

2p2E de

22p i

dv

22p i

dk

k2
^fc~p1 ,p2!u@S11~p1 ,e!1S21~p2 ,e!#

3g1
0L10

M~k!g2
0L20

M~k!@S11~p12k,e2v!1S21~p21k,e2v!#ufc~p12k,p21k!&

5
a

2p2 S D2

2mD 2E dk

k2
^fc~p1 ,p2!ug1•kg2•kufc~p12k,p21k!&, ~48!

which is of higher ordera8mc2. Double self-energy correction to the nucleon-electron Coulomb potential is given by
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DEVR25S Za

2p2D 2E de

22p i

dk1
k1
2

dk2
k2
2 ^fc~p1 ,p2!u

3@S11~p1 ,e!1S21~p2 ,e!#g1
0L10

M~k1!g2
0L20

M~2k2!@S11~p12k1 ,e!1S21~p21k,e!#ufc~p12k1!,~p21k2!&

522S Za

2p2D 2S D2

2mD 2E dk1
k1
2

dk2
k2
2 ^fc~p1 ,p2!ug1•k1g2•k2ufc~p12k1 ,~p21k2!&, ~49!

which is of higher ordera10mc2.
The above single-potential and double-potential self-energy corrections are analyzed using Erickson and Yennie’s tech-

nique. The double-potential correctionDE(L2H) covers all possible contributions due to the external potential. However,
only the diagram in which two interelectron potentials are inside the radiative loop on the electron line 1 while no pair is on
the other electron line is analyzed using Erickson and Yennie’s technique. In another diagram, the two Coulomb potentials are
inside the radiative loop while a pair appears on the second electron line. The corresponding correction is given by

DECCR5S a

2p2D 2 2 ie2

~2p!4
E d4q

q21 id

dk

k2
dk8

k82

3^fc~p1 ,p2!ug1
0g1

ag1
0L22~p21k!

1

E2q02H~p12q!2«~p2!2L21~p2!I cL21~p2!1 id

3
21

E2q02H~p12k2q!2E~p2!2E~p21k!2E~p21k1k8!1 id

3
1

E2q02H~p12k2k82q!2«~p21k1k8!2L21~p21k1k8!I cL21~p21k1k8!1 id
g1a

3ufc~p12k2k8,p21k1k8!&. ~50!

This correction contributes to theO(a6mc2) Lamb shift arising from the relativistic momentum region. To ordera7mc2, it is
spin independent. When one of the two Coulomb potentials is outside the radiative loop, the corresponding correction is given
by

DECR3C52S a

2p2D 2 2 ie2

~2p!4
E d4q

q21 id

dk

k2
dk8

k82
^fc~p1 ,p2!u

1

2m
L11~p12k!L22~p21k8!

3g1
0g1

ag1
0 1

E2q02H~p12k2q!2E~p2!2E~p21k!2E~p21k1k8!1 id

3
1

E2q02H~p12k2k82q!2E~p21k1k8!1 id
g1a2L12~p12k!L21~p21k8!g1

0g1
ag1

0

3
1

2q02H~p12k2q!2E~p12k!1 id

1

E2q02H~p12k2k82q!2E~p1!2E~p12k!2E~p21k8!1 id

3Fg1a

21

2m
1

1

E2q02H~p12k2k82q!2E~p21k1k8!1 id
g1aG ufc~p12kk8 ,p21k1k8!&, ~51!

where the external potentials and some higher-order corrections are neglected. The factor of 2 comes from a correction due to
a similar diagram. Direct application of Erickson and Yennie’s method to calculate this correction does not seem to be
straightforward. Instead, the correction is treated phenomenologically. In phenomenological treatment, the correction is given
by
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DECR3C5S a

2p2D 2E de

22p i

dv

22p i

dv8

22p i

dk

k2
dk8

k82
^fc~p1 ,p2!u@S11~p1 ,e!1S21~p2 ,e!#@S1~p12k8,e2v8!g1

0L10~k!

1g1
0L10~k8!S1~p12k8,e2v8!#S2~p21k,e2v!@S11~p12k2k8,e2v2v8!

1S21~p21k1k8,e2v2v8!#ufc~p12k2k8,p21k1k8!&

5S a

2p2D 2 D2

4m2E dk

k2E dk8

k82
^fc~p1 ,p2!u@L12~p12k8!g1•k1g1•k8L12~p12k8!#

3L21~p21k!ufc~p12k2k8,p21k1k8!&, ~52!

where we have neglected higher-order terms in the last line. Taking the FW transformation, we obtain

DECR3C52S a

2p D 2 D2

4m3E dk

k2E dk8

k82
^f0~p1 ,p2!uk•k81 is1•~k3k8!uf0~p12k2k8,p21k1k8!&, ~53!

which is spin independent and therefore gives no contribution to the fine-structure splittings as one might expect.
A self-energy correction coupled with a single transverse photon exchanged causes an energy-level shift of nominal order

a7mc2. In particular, the diagram in which a pair is on the electron line outside the self-energy loop is found to contribute to
the fine-structure splittings. The correction is given by

DE215
a

2p2

2 ie2

~2p!4
E d4q

q21 id

dv

22p i

dk

v22k21 id

1

2m
^fc~p1 ,p2!ua1

i L12~p12k!

3
1

v2E~p1!2E~p12k!1 id
g1
0g1

ag1
0 1

2q02H~p12k2q!2E~p12k!1 id
g1aa2

i

1a2
i 1

E1v2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!1 id
a1
i L12~p12k!

3g1
0g1

ag1
0 1

E2q02H~p12k2q!2«~p21k!2L21~p21k!I cL21~p21k!1 id
g1a

1a1
i L12~p12k!g1

0g1
ag1

0 1

E2v2q02H~p12k2q!2«~p2!2L21~p2!I cL21~p2!1 id
g1a

3
1

E2v2«~p12k!2«~p2!2L11~p12k,p2!I cL11~p12k,p2!1 id
a2
i

1g1
0g1

ag1
0 1

2q02H~p12q!2E~p1!1 id
g1aL12~p1!a1

i a2
i 1

2v2E~p1!2E~p12k!1 id

1a2
i 1

E1v2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!1 id

3g1
0g1

ag1
0 1

E1v2q02H~p12q!2«~p21k!2L21~p21k!I cL21~p21k!1 id
g1aL12~p1!a1

i

1g1
0g1

ag1
0 1

E2q02H~p12q!2«~p2!2L21~p2!I cL21~p2!1 id
g1aL12~p1!a1

i

3
1

E2v2«~p12k!2«~p2!2L11~p12k,p2!I cL11~p12k,p2!1 id
a2
i ufc~p12k,p21k!&. ~54!

A rigorous calculation of the above correction seems to require an extension of Erickson and Yennie’s method. However, since
its nominal order isa7mc2, a phenomenological treatment is used. The energy correction including zero, one, and two pairs
is phenomenologically given by
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DECR3T5S a

2p2D 2E de

22p i

dv

22p i

dv8

22p i

dk

k2
dk8

v822k821 id
^fc~p1 ,p2!u@S11~p1 ,e!1S21~p2 ,e!#

3@a1
j S1~p12k8,e2v8!g1

0L10~k!S2~p21k,e2v!a2
j 1g1
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j S2~p21k8,e2v8!#

3@S11~p12k2k8,e2v2v8!1S21~p21k1k8,e2v2v8!#ufc~p12k2k8,p21k1k8!&
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2p2D 2E dk

k2E dk8

2k8
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j
L11~p12k8!

3
1

E2k82«~p12k8!2«~p2!2L11~p12k8,p2!I cL11~p12k8,p2!
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0L10~k!

3
1
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j

1a2
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L21~p21k8!

1

E2k82«~p1!2«~p21k8!2L11~p1 ,p21k8!I cL11~p1 ,p21k8!
g1
0L10~k!

3
1

E2k82«~p12k!2«~p21k1k8!2L11~p12k,p21k1k8!I cL11~p12k,p21k1k8!

3L11~p12k!a1
j 1

1

2m
a1
j L12~p12k8!g1

0L10~k!

3
1

E2k82«~p12k2k8!2«~p21k!2L11~p12k2k8,p21k!I cL11~p12k2k8,p21k!
L21~p21k!a2

j

1
1

2m
a2
j
L21~p21k8!

1

E2k82«~p1!2«~p21k8!2L11~p1 ,p21k8!I cL11~p1 ,p21k8!
g1
0L10~k!L12

3~p12k!a1
j 1

1

2m
a1
j
L11~p12k8!

1

E2k82«~p12k8!2«~p2!2L11~p12k8,p2!I cL11~p12k8,p2!

3g1
0L10~k!L22~p21k!a2

j 1
1

2m
a2
j L22~p21k8!g1

0L10~k!

3
1

E2k82«~p12k!2«~p21k1k8!2L11~p1 ,p21k1k8!I cL11~p1 ,p21k1k8!

3L11~p12k!a1
j ufc~p12k2k8,p21k1k8!&, ~55!

where infinite Coulomb binding effects are included. The first two terms come from no-pair diagrams and are of nominal order
a8mc2. The last two terms arising from one-pair diagrams are of nominal ordera9mc2 and are dropped. The third and fourth
terms also come from one-pair diagrams and contribute to theO(a7mc2) fine-structure splittings. Two two-pair terms become
zero after integration over the energy variables. Taking the Foldy-Wouthyson transformation and eliminating the transverse
indices, we obtain

DECR3T5S a

2p2D 2 D2

8m3E dk

k2
dk8

k82
^f0~p1 ,p2!u22is1•~p13k!12p1• k̂8is1•~ k̂83k!

1s1•ks2•k8uf0~p12k2k8,p21k1k8!&. ~56!

Performing a Fourier transform and doubling it to include the
vertex correction due to the other electron, we get

DECR3T522
a7mc2

16p
^f0us1•S rr 4 3p1D

1s1•
r

r 3
s2•

r

r 3
uf0&. ~57!

This correction involves three photons and comes from a
single-pair diagram in which the pair and self-energy loop
are on the same electron line. Comparing the phenomeno-
logical and rigorous results, we find no difference between
phenomenological and rigorous calculations of fine-structure
splittings in helium arising from self-energy corrections of
second order. This implies that phenomenological calcula-
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tions of other self-energy corrections may be accurate to the
order of interest since their nominal orders are higher. The
lowest-order self-energy correction arises from two sources,
the magnetic moment termDE(M ) and the shift correction
DE(L). DE(M ) gives the fine-structure splittings of lowest
order whileDE(L) only contributes to the Lamb shift of
lowest order. The leading order of the shift correction to the
fine-structure splittings isa7mc2, which can be obtained
phenomenologically. The magnetic moment term has the
same form for a relativistic wave function in both phenom-
enological and rigorous calculations. However, the calcula-
tion of O(a7mc2) triplet energy levels requires a rigorous
treatment as we demonstrated above for lna terms.

III. VERTEX MODIFICATIONS

A rigorous calculation of vertex corrections seems to re-
quire an extension of Erickson and Yennie’s technique@13#
for self-energy corrections to the vertex problem, and to use
the no-pair formulas presented in Ref.@8# as well as the pair
formulas. However, we treat the vertex corrections phenom-
enologically based on a expectation that the difference be-
tween rigorous and phenomenological results is not great. In
fact, we have shown that phenomenological and rigorous re-
sults for the self-energy correction of second order are the
same for the fine-structure splittings and differ only for the
triplet energy corrections. The vertex correction of second
order is given by

DETR5
a

2p2E de

22p i

dv

22p i

dk

v22k21 iD
^fc~p1 ,p2!u@S11~p1e!1S21~p2e!#g1

0L1i~k!a2
i @S11~p12ke2v!

1S21~p21ke2v!#ufc~p12k,p21k!&. ~58!

Integrating over the energy variablee and incorporating the infinite Coulomb binding effects, we find

DETR5
a

2p2E dv

22p i

dk

v22k21 id
^fc~p1 ,p2!ug1

0L1i~k!
1

E2v2«~p12k!2«~p2!2L11~p12k,p2!I cL11~p12k,p2!
a2
i

1a2
i 1

E1v2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!
g1
0L1i~k!ufc~p12k,p21k!&. ~59!

The correction is divided into two parts. The magnetic moment correction becomes

DETR~M !5
a

2p2

D2

2mE dk

2k
^fc~p1 ,p2!ua1

i g1•k
1

E2k2«~p12k!2«~p2!2L11~p12k,p2!I cL11~p12k,p2!
a2
i

1a2
i 1

E2k2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!
a1
i g1•kufc~p12k,p21k!& ~60!

after integration overv. We expand the propagator nonrelativistically up to ordera7mc2. Taking the FW transformation, we
obtain

DETR
M 5

a

2p2

D2

2mE dk

22k2
^f0~p1 ,p2!uS1

i F11
DH1

k
1

~DH1!
2

k2 GR2
i 1R2

i F11
DH2

k
1

~DH2!
2

k2 GS1i uf0~p12k,p21k!&

5DE51DE61DE7, ~61!

where

S1
i 5^a1

i g1•k&, ~62!

R2
i 5^a2

i &, ~63!

DH15E2H red~p12k,p2!, ~64!

and

DH25E2H red~p1 ,p21k!. ~65!

DE5 is of nominal ordera
5mc2 and is given by

DE55
a

2p2

D2

2mE dk

22k2
^~p1 ,p2!u2S1

i R2
i ufc~p12k,p21k!&, ~66!
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where

S1
i 52s1

i s1•k1
p1
21up12ku2

8m2 s1
i s1•k1

1

4m2 s1•p1s1
i @k•~p12k!2 is1•~p13k!# ~67!

and

R2
i 5

1

2m
~2p2

i 1s2
i s2•k!2

p2
i

8m3 ~4p2
212p2•k1k2!2

1

8m3 ~2p2•k1k2!s2
i s2•p22

1

16m3 ~4p2
216p2•k13k2!s2

i s2•k

1
1

4m2 †@s2•p2 ,s2
i #,V2‡ ~68!

accurate up to ordera7mc2. To lowest order, we find

DETR~a5!522
a5mc2

8p
^f0u2s1•S rr 3 3p1D1

3

r 3
s1• r̂s2• r̂2

1

r 3
s1•s21

8p

3
d~r !s1•s2uf0&, ~69!

where the magnetic moment of the other electron is included. For the fine-structure splittings of ordera7mc2, we have

DE5~a7!5DEV1DE. ~70!

The first term involving an external potential is found to be

DEV52
Za7mc2

8p
^f0us1•

r

r 3
s2•

r2
r 2
3uf&. ~71!

This comes from a three-photon diagram. The second term coming from the single potential is given by

DE5
a

2p2

D2

16m4E dk

k2
^f0~p1 ,p2!u22p1•ks1•p1s2•k1@2p1•p212k21p2

21up21ku222~p11p2!•k13p1
2

1up12ku2# is1•~p13k!2@p1
212up12ku2#s1•ks2•k2s1•~p13k!s2•~p13k!uf0~p12k2k8,p21k1k8!&.

~72!

Performing a Fourier transform and including the vertex correction from the second electron, we arrive at

DE52
a7mc2

32p
^f0u2s1•S rr 3 3p1Dp1•p2124pd~r !s1•S rr 2 3p1D12s1•S rr 3 3p1D p2214s1•S rr 3 3p1D p12

1
6

r 3
s1• r̂ r̂•p1s2•p11

9

r 3
s1• r̂s2• r̂p1

22
1

r 3
s1•p1s2•p11

3

r 5
s1•$r3@s2•~r3p1!#p1%uf0&. ~73!

DE6 is of nominal ordera
6mc2. Douglas and Kroll showed that the total contribution fromDE6 is zero for the fine-structure

splittings of ordera6mc2 although individual terms are not.DE7 is given by

DE75
a

2p2

D2

2mE dk

22k4
^f0~p1 ,p2!uS1

i ~DH1!
2R2

i 1R2
i ~DH2!

2S1
i uf0~p12k,p21k!&. ~74!

Further calculation leads to

DE75
a

2p2

D2

16m3E dk

k4
^f0~p1 ,p2!u

1

m
@p1

22up12ku2#@ up21ku22p2
2#@2is1•~p23k!1s1•ks2•k#

24@p1
22up12ku2#@V2 ,is1•~p23k!#22$@p1

22up12ku2#,@ I c ,is1•~p23k!#%uf0~p12k,p21k!&

5DE1DEV1DEc , ~75!

whereDE is found to be

DE5S a

2p2D 2 D2

16m4E dk

k4
^f0~p1 ,p2!u@p1

22up12ku2#@k212p2•k#@2is1•~p23k!1s1•ks2•k#uf0~p12k,p21k!&.

~76!
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Fourier transforming it and including the correction from the vertex on the second electron line, we obtain

DE52
a7mc2

16p H ^f0u2s1•S rr 3 3p2Dp1•p212
r

r 3
•p2s1•~p13p2!26s1•F rr 5 3@r•~r•p1!p2#p2G

212pd~r !s1•S rr 2 3p1D uf0&1^p1
2f0u

3

r 3
s1• r̂s2• r̂1 is1•

r

r 3
~2s223s1• r̂ r̂ !•p2uf0&J . ~77!

The external potential term reduces to

DEV522
Za7mc2

8p
^f0us1•S r2rr 23 3p1D 2s1•S r2r 23 3

r

r 3D r•p12 is1•S r2r 23 3
r

r 3D uf0&. ~78!

The interelectron Coulomb term becomes

DEc52
a7mc2

8p
^f0us1•S rr 4 3p1D uf0&. ~79!

For the charge-density correction, the nonperturbative binding cancels the corresponding part in double transverse photon
exchange correction. If we use

ln
m

l
5 ln

m

2A
1
11

24
,

then we find

DETR
C 52a7mc2S 11242 ln2D ^f0u4d~r !s1•S rr 2 3p1D15d~r !

1

r 2
s1• r̂s2• r̂ uf0&. ~80!

Similar to self-energy corrections, the vertex modification of sixth order also contributes to the fine-structure splittings to
the order of interest. The correction is given by

DETR
6 52a4mc2D6^f0us1•S rr 3 3p1D2

1

2r 3
~s1•s223s1• r̂s2• r̂ !1

4p

3
d~r !s1•s2uf0&. ~81!

In addition, the double vertex correction is given by

DETR25
a

2p2E dv

22p i

dk

v22k21 id
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1
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0L2i~2k!1g2
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3
1

E1v2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!1 id
g1
0L1i~k!ufc~p12k,p21k!&. ~82!

Only the magnetic moment contributes to the fine-structure splittings of ordera7mc2. After integration over the energy
variablev, the magnetic moment correction then becomes

DETR252
a

2p2 S D

2mD 2dk2k ^fc~p1 ,p2!ua1
i g1•k

1

E2k2«~p12k!2«~p2!2L11~p12k,p2!I cL11~p12k,p2!
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i g2•k

1a2
i g2•k

1

E2k2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!
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i g1•kufc~p12k,p21k!&, ~83!

whereD5D21D41D6 . Only the double vertex diagrams, when one vertex is of second order and the other of fourth order,
contribute and the correction is

DETR25
a5mc2

4p
D4^f0u

1

r 3
~s1•s223s1• r̂s2• r̂ !2

8p

3
d~r !s1•s2uf0&, ~84!

whereD4520.328(a/p)2 is the magnetic moment of fourth order. Although the recoil correction of the double second-order
vertex contributes individually, the total is zero.
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The vertex modification coupled with an additional Coulomb photon exchanged between the two electrons contributes to
the fine-structure splittings of ordera7mc2. The correction is

DETR3C5S a

2p2D 2E de

22p i

dv

22p i
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22p i

dk
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Integrating overe, we get

DETR3C52S a
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1
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E1v2«~p12k8!2«~p21k1k8!1 id
L11~p12k8!

2
1

2v2E~p12k8!2E~p12k2k8!1 id
L12~p12k8!Gg1

0L1i~k!ufc~p12k2k8,p21k1k!&, ~86!

where the factor 2 corresponds to the diagrams in which the exchanged Coulomb photon is after the vertex. One of the four
terms above corresponds to a no-pair diagram and is already included in the previous vertex corrections. Another term
corresponding to a two-pair diagram becomes zero after integration overv. The other two terms are due to one-pair diagrams
and contribute to the fine-structure splittings of ordera7mc2 only through the magnetic moment. After integration overv,
they reduce to

DETR3C5S a

2p2D 2 D2

4m2E dk

k

dk8

k82
^fc~p1 ,p2!uFa2

i
L21~p21k!

3
1

E2k2«~p1!2«~p21k!2L11~p1 ,p21k!I cL11~p1 ,p21k!
L12~p12k8!

1a2
i L22~p21k!

1

E2k2«~p12k8!2«~p21k1k8!2L11~p12k8,p21k1k8!I cL11~p12k8,p21k1k8!

3L11~p12k8!Ga1
i g1•kufc~p12k2k8,p21k1k!&, ~87!

where we have included the infinite Coulomb effects. Since the correction is of nominal ordera7mc2, the propagators can be
approximated by the photon momentumk. Then, the correction reduces to

DETR3C5S a

2p2D 2 2D2

4m2 E dk

k2
dk8

k82
^fc~p1 ,p2!ua2

i @L12~p12k8!L21~p21k!

1L11~p12k8!L22~p21k!#a1
i g1•kufc~p12k2k8,p21k1k!&. ~88!

The first term is of ordera8mc2 and is therefore dropped. Taking the FW transformation leads to

DETR3C5S a

2p2D 2 D2

8m3E dk

k2
dk8

k82
^f0~p1 ,p2!us1•ks2•k8uf0~p12k2k8,p21k1k8!&. ~89!

Performing Fourier transform, we arrive at

DETR3C522
a7mc2

16p
^f0us1•

r

r 3
s2•

r

r 3
uf0&, ~90!

where the factor 2 comes from the diagrams where the vertex is on the second electron line.
One more correction comes from vertex modification coupled with another transverse photon exchanged. The correction is

given by
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22p i
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22p i

dv8
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j 1g1
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i #

3@S11~p12k2k8,e2v2v8!1S21~p21k1k8,e2v2v8!#ufc~p12k2k8,p21k1k8!&. ~91!

The no-pair term is of ordera8mc2 and is therefore neglected. The two-pair correction is found to be

DETR3T
22 52S a

2p2D 2 D2

8m3E dk
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dk8

2k8
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i
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j ufc~p12k2k8,p21k1k8!&. ~92!

To ordera7mc2, the above two terms cancel each other. The one-pair correction is given by
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a1
j
L11~p12k8!

3
1
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j
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1
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j 1

E1v2«~p12k8!2«~p21k1k8!2L11~p12k8,p21k1k8!I cL11~p12k8,p21k1k8!1 id

3g1
0L1i~k!1a2

j L22~p21k!a2
i

3
1
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0L1i~k!

3
1
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1
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where the infinite Coulomb binding is included. Integrating over the energy variablesv andv8 and keeping only the magnetic
moment terms of lowest order, we obtain

DETR3T5S a

2p2D 2 D2

8m2E dk

k2
dk8

k82
^fc~p1 ,p2!ua1

j
L11~p12k8!a1

i g1•ka2
i L22~p21k!a2

j 1a1
i g1•kL11~p12k!

3a1
j a2

j L22~p21k8!a2
i ufc~p12k2k8,p21k1k8!&. ~94!

Further reduction leads to

DETR3T5S a

2p2D 2 2D2

4m3 E dk

k2
dk8

k82
^f0~p1 ,p2!u is1•~p13k!2p1• k̂8is1•~ k̂83k!

1s1•p1s2•k2p1• k̂8s1• k̂8s2•kuf0~p12k2k8,p21k1k8!&. ~95!

Fourier transforming it and including the correction from the
vertex on the second electron line, we obtain

DETR3T522
a7mc2

32p
^f0u2s1•S rr 4 3p1D

2
5

r 4
s1• r̂s2• r̂ uf0&. ~96!

No more vertex correction is found phenomenologically. To
conclude our analysis on vertex corrections, we note that we
would not be surprised to see more terms coming out from a
rigorous calculation. Differing from self-energy corrections,
there are recoil linear terms in the vertex corrections. We
have shown previously that these linear terms cancel out to
ordera6mc2 @8#. It is likely that they may show up to order
a7mc2 and might be different from phenomenological terms.
Therefore, a rigorous evaluation of the vertex corrections of
second order is the most needed one in a more accurate
analysis of QED effects on theO(a7mc2) fine structure of
helium.

IV. VACUUM POLARIZATION

Vacuum polarization corrections of lowest order arise
from the nonrelativistic momentum region in terms of mo-
mentum of the exchanged photon. The corresponding non-
relativistic operator is a simple delta function and is spin
independent. Relativistic wave-function corrections lead to
spin-dependent terms of ordera7mc2, which contribute to
the triplet splittings of helium. Vacuum polarization correc-
tions of fourth order are of nominal ordera6mc2 with the
delta function operator. Vacuum polarization corrections of
sixth order are of nominal ordera7mc2 and are expressed in
the form of the expectation value of the spin-independent
delta function operator, and therefore give no contribution to
the triplet splittings. Terms arising from vacuum polarization
corrections to two-photon exchange are also of nominal or-
der a6mc2. However, they come from the relativistic mo-
mentum region. The corresponding operator is also the delta
function. Spin-dependent terms are of ordera8mc2. The
vacuum polarization corrections contributing to the
O(a7mc2) fine-structure splittings of helium come from the
following operators:

gVCc~p1 ,p2 ,e!5
a

2p2E dv

22p i

dk

k2
@2Pc~k

2!#c~p12k,p2

1k,e2v!,

gVVc~p1 ,p2 ,e!5
2Za

2p2 E dk1
k1
2 @2Pc~k

2!#S2
21~p2 ,e!

3c~p12k1 ,p2 ,e!,

gVTc~p1 ,p2 ,e!5
a

2p2E dv

22p i

dk

v22k21 id
@2Pc~k

2!#

3a1
i a2

i c~p12k,p21k,e2v!, ~97!

where

Pc~k
2!52

2a

p E dzz~12z!lnF12
z~12z!k2

m2 G ~98!

is the vacuum polarization function. For the fine-structure
splittings of orderO(a7mc2), the contribution comes from
the nonrelativistick momentum region and therefore the
vacuum polarization function may be expanded nonrelativis-
tically and is given by

Pc~k
2!5

a

p

k2

m2 F 1151
141

162

a

pG1•••. ~99!

This is very different from the QED effect due to the vacuum
polarization correction to two-photon exchange where the
contribution comes solely from the relativistick region@18#.
Due to the interelectron Coulomb potential, the energy cor-
rection is

DEVC5
a

2p2E de

22p i

dv

22p i

dk

k2
^fc~p1 ,p2!u@S11~p1e!

1S21~p2e!#@2Pc~k
2!#@S11~p12ke2v!

1S21~p21ke2v!#ufc~p12k,p21k!&. ~100!

After reduction, we find
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DEVC5
a2

30p3m2E dk

k2
^fc~p1 ,p2!uk2ufc~p12k,p21k!&.

~101!

To lowest order, we get

DEVC~a5!5
4a5mc2

15
^f0ud~r !uf0&. ~102!

For the fine-structure splittings of ordera7mc2, we obtain

DEVC~a7!52
2a7mc2

5
^f0ud~r !s1•S rr 2 3p1D uf0&.

~103!

The correction due to the external potential is given by

DEVV5
2Za

2p2 E de

22p i

dk1
k1
2 ^fc~p1 ,p2!u@S11~p1e!

1S21~p2e!#@2Pc~k1
2!#S2

21~p2e!@S11~p12k1e!

1S21~p2e!#ufc~p12k1 ,p2!&, ~104!

which may be reduced to

DEVV5
2Za2

30p3m2E dk1^fc~p1 ,p2!uufc~p12k1 ,p2!&.

~105!

To lowest order

DEVV~a5!52
24Za5mc2

15
^f0ud~r1!uf0&, ~106!

where the factor 2 corresponds to the vacuum polarization on
V2 . For the fine-structure splittings of ordera7mc2, we ob-
tain

DEVV~a7!52
Za7mc2

5
^f0ud~r1!s1•S r1r 12 3p1D uf0&.

~107!

One interesting result could be the corresponding correction
to the Lamb shift of hydrogen. Including spin-independent
terms, the correction becomes

DEVV~a7!5
Z6a7mc2

5
^f0ud~r1!

1

r 1
2 @s1•~r13p1!21#uf0&

~108!

or

DEVV~a7!5
Z6a7mc2

45pn3 S 12
1

n2D @ j ~ j11!2s~s11!

2 l ~ l11!21#. ~109!

For the 2P1/2 state, the correction is20.27 kHz. Although
the number is too small, it is a part of the whole picture of
theO(a7mc2) Lamb shift of hydrogen.

The correction associated with a transverse photon is
given by

DEVT5
a

2p2E de

22p i

dv

22p i

dk

v22k21 id
^fc~p1 ,p2!

3u@S11~p1e!1S21~p2e!#@2Pc~k
2!#a1

i a2
i

3@S11~p12ke2v!1S21~p21ke2v!#

3ufc~p12k,p21k!&, ~110!

which is of nominal ordera7mc2. Reduction yields

DEVT~a7!52a7mc2^f0u
4

5
d~r !s1•S rr 2 3p1D

1d~r !
1

r 2
s1• r̂s2• r̂ uf0&. ~111!

Unlike self-energy and vertex corrections, vacuum polariza-
tion corrections seem to be better understood. It is likely that
the vacuum polarization corrections analyzed in this section
may be the full correction to the fine-structure splittings of
ordera7mc2.

V. RESULTS AND CONCLUSIONS

In previous sections, we have derivedO(a7mc2) QED
corrections to the fine-structure splittings of helium in the
nonrelativistic approximation. We expect no contribution
from the relativistic momentum region. From the number of
potential points of view, the relativistic correction can arise
from only two potentials that correspond to a nonrelativistic
operator scaled by 1/r 4. On the other hand, the spin-
dependent relativistic contribution must come from a nonrel-
ativistic operator scaled by 1/r 5, which contradicts the above
result. The absence of ultraviolet logarithmic terms also
shows no relativistic contribution.

In summary, we have obtained nonrelativistic operators
arising from QED corrections to theO(a7mc2) fine-
structure splittings of helium. The contributions from self-
energy corrections are given by Eqs.~17!, ~28!, ~46!, ~47!,
and~57!. The vertex corrections are given by Eqs.~71!, ~73!,
~77!, ~78!, ~79!, ~80!, ~81!, ~84!, ~90!, and ~96!. The total
contribution due to vacuum polarization correction is

DEvacuum52
Za7mc2

5
^f0ud~r1!Fs1•S r1r 12 3p1D 2

1

r 1
2G uf0&

2a7mc2^f0u
6

5
d~r !s1•S rr 2 3p1D 2d~r !

2

5r 2

1d~r !
1

r 2
s1• r̂s2• r̂ uf0&, ~112!

where we have included spin-independent terms. The above
correction is the total energy-level shift of ordera7mc2 due
to vacuum polarization. Especially interesting here is that the
correction together with the well-known vacuum polarization
terms of lowest order provides a bridge between the nonrel-
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ativistic variational calculation and the relativistic many-
body perturbation calculation. One may calculate triplet en-
ergy levels of heliumlike ions using the two totally different
methods. The two methods may be checked against each
other for moderateZ ions. For lowZ atoms or ions, the
variational method may be favored while the relativistic
method is expected to be superior in highZ systems. How-
ever, such a check cannot be made in this paper until numeri-
cal calculation using the variational method is finished by
Yan and Drake for heliumlike ions.

Regrouping all terms and combining like terms, we ex-
press them explicitly in terms of the numbers of photons
involved. From the two-photon processes, we have

DE152
Za7mc2

4p
^p1

2f0us1•S r1r 13 3p1D uf0&, ~113!

DE2522Za7mc2F ln~Za!222b8~nSL,Z!

1
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120G^f0ud~r1!s1•S r1r 12 3p1D uf0&,
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2p
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^p1

2f0us1•S rr 3 3p2D uf0&,
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DE652
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a7mc2

4p
^f0u

r

r 3
•p1s1•~p13p2!uf0&,

DE85
3a7mc2

4p
^f0us1•F rr 5 3@r•~r•p1!p2#p1G uf0&,

DE952
a7mc2

8p
^f0u

1

r 3
s1•p1s2•p2uf0&,
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a7mc2

16p
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1

r 3
s1•p1s2•p1uf0&,

DE1152
3a7mc2

8p
^f0u

1

r 5
s1•$r3@s2•~r3p2!#p1%uf0&,

DE125
3a7mc2

16p
^f0u

1

r 5
s1•$r3@s2•~r3p1!#p1%uf0&,

DE135
15a7mc2

16p
^p1

2f0u
1

r 3
s1• r̂s2• r̂ uf0&,

DE145
3a7mc2

8p
^f0u

1

r 3
s1• r̂ r̂•p1s2•p1uf0&,

DE155
a7mc2

4p
^p1

2f0u
i

r 3
s1•rs2•p2uf0&,

DE1652
3a7mc2

8p
^p1

2f0u
i

r 3
s1• r̂s2• r̂ r•p2uf0&,

DE1759a7mc2^f0ud~r !
1

r 2
s1• r̂s2• r̂ uf0&.

One approximation made here is to replace ln(H02W0) in
two-electron terms by some average value, which leads to a
cancellation among the two-electron terms. A precise calcu-
lation of the exact Bethe logarithmic type terms needs a
more rigorous treatment of vertex corrections of second or-
der. As one observes, a number of operators here are the
same as some of Douglas and Kroll, whose expectation val-
ues have been calculated numerically by Yan with high pre-
cision @19#. DE1 , DE5 , DE9 , DE11, and DE13 have the
same operators asE1 , E9 , E13, E14, andE10, respectively.
DE3 and DE4 correspond toE8 . DE15 and DE16 match
E12. DE1 contributes 3.2 and 6.4 kHz ton01 and n12, re-
spectively.DE13 contributes210.7 and 4 kHz. This may be
the largest one of the electron-electron type in the above
two-photon corrections.DE151DE16 gives 4.6 and21.9
kHz.DE2 gives possibly the largest contribution of the order
of interest. However, the final number depends on the nu-
merical calculation of the Bethe logarithm. Since the above
terms come from two-photon diagrams, they are of next-to-
leading order. The above two-body terms have never been
tested in a two-body system. It would be interesting to see
their high-precision test in helium. It could provide one of
the most accurate tests in bound-state QED physics. From
three-photon diagrams, we obtain

DE1852
Za7mc2

4p
^f0us1•S r2rr 23 3p1D uf0&,

DE195
Za7mc2

4p
^f0us1•S r2r 23 3

r

r 3D r•p1uf0&,

DE205
Za7mc2

4p
^f0u is1•S r2r 23 3

r

r 3D uf0&,

DE215
Za7mc2

4p
^f0us1•

r

r 3
s2•

r2
r 2
3uf0&,

DE225
a7mc2

16p
^f0us1•

r

r 3
s2•

r

r 3
uf0&. ~114!

OperatorsDE19, DE21, andDE22 correspond toE2 , E3 ,
andE5 , respectively, of Douglas and Kroll. The correction
due to four-photon diagrams is given by
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DE235Za4mc2D6^f0us1•S r1r 13 3p1D uf0&,

DE24522a4mc2D6^f0us1•S rr 3 3p1D uf0&,

DE2552a4mc2~D2D41D6!^f0u2
1

2r 3
~s1•s2

23s1• r̂s2• r̂ !1
4p

3
d~r !s1•s2uf0&. ~115!

All operators arising from four-photon diagrams are Breit
operators. The total correction ofDE1 , DE2 ~non-
logarithmic part!, DE3 , DE4 , DE5 , DE6 , DE9 , DE11,
DE13, DE15, DE17, DE19, DE21, DE22, DE23, DE24, and
DE25 is Dn01527.2 kHz andDn1254.0 kHz. Numerical
calculation of the other terms is in progress by Yan and
Drake. The estimate of those uncalculated numerically~ex-
cluding logarithmic terms! is expected to be less than 5 kHz.
The Bethe logarithm presented here is spin dependent and
different from the normal one, which already has been diffi-
cult to calculate accurately for many years. Therefore, the
new Bethe logarithm could be the biggest challenge for nu-
merical calculation.

Since the Douglas and Kroll’s work in 1974, there has
been very active study of QED effects in many-body atomic
systems in the framework of relativistic many-body pertur-
bation theory~RMBPT! @20#. It would be interesting to com-
pare our perturbative results with those obtained in RMBPT.
First, we need to compare the advantages in our perturbative
calculation and the nonperturbative calculation in RMBPT.
Our perturbative scheme is developed mainly for lowZ at-
oms or helium in particular. The dominant physics here is
nonrelativistic effects. All relativistic and QED corrections
are calculated perturbatively to a given order. In this way a
very high precision can be obtained to the order of interest
due to an extremely high precision variational calculation of
nonrelativistic effects. Since all corrections are obtained in a
power series ofa, theoretical uncertainty can be estimated to
a given order. On the other hand, RMBPT takes advantage of
the fact that relativistic effects dominate in the binding en-
ergy of highZ ions. A relativistic solution of the Dirac type is
a good starting point. Therefore, the corresponding calcula-
tion is nonperturbative for a given dynamic kernel arising
from a Feynman diagram. Although self-energy and vacuum
polarization have been calculated in RMBPT, it is not clear
how much contribute to ordera5mc2, a6mc2, anda7mc2 in
the case of lowZ atoms such as helium. Note that the terms
of ordera7mc2 are only 1/10 000 of the leading QED terms.
Since the QED corrections obtained in RMBPT are not ana-
lytical, they have to be expressed in terms of powers ofa in
order to make a comparison. For example, Mohr calculated
numerically the self-energy correction of second order to the
hydrogenic Lamb shift@21# expressed in terms of power se-
ries of a. Alternatively, one may subtract the lower-order
perturbative corrections from the nonperturbative result ob-
tained in RMBPT. To compare with the corrections pre-
sented here, Araki and Sucher’s terms of ordera5mc2 and
Douglas and Kroll’s terms of ordera6mc2 must be sub-

tracted. The calculations of the triplet 2P splittings in heli-
umlike ions, carried out in a nonperturbative scheme such as
RMBPT, are reported in Ref.@22#. However, they acknowl-
edged that the QED corrections were taken from a perturba-
tive calculation@23# that takes only Araki and Sucher’s terms
of ordera5mc2 into account. It is important to note the split-
tings, not the spin average energy level of the tripletP state.
Only the splittings can provide a QED test of ordera7mc2

because the triplet energy levels of lower-ordera6mc2 have
not been calculated yet. Even if the QED calculation in
RMBPT could be done for the triplet splittings, there would
still be a challenge to compare with our high-order QED
corrections, which may only consist of 1/10 000 of the total
nonperturbative corrections. As pointed out in Ref.@20# the
accuracy of their QED results forZ , 18 is affected by
severe numerical cancellations in their method for calculat-
ing electron self-energies. A more realistic comparison could
be made in moderateZ ions. The corrections presented here
provide an excellent test for high-precision variational calcu-
lation, which is superior to the many-body perturbation cal-
culation for low Z atoms because the variational approach
has the advantage that the nonrelativistic wave function of
helium can be obtained with high precision.

In conclusion, we have presented an analysis on
O(a7mc2) QED corrections to the fine-structure splittings of
helium. The result is expressed in terms of expectation val-
ues of nonrelativistic operators similar in form to those of
Douglas and Kroll, and is a correction not only for helium
but also for positronium. The final numbers for positronium
can be obtained easily by sandwiching the nonrelativistic
operators presented here between nonrelativistic wave func-
tions of positronium. However, only the vacuum polarization
correction to the hydrogenP levels is close in magnitude to
the current experimental errors. Corrections in positronium
are of ordera7mc2 and therefore are far too small to be
meaningful. This shows that helium is a better candidate than
two-body systems~equivalent corrections in hydrogen and
muonium are of ordera7m/M , too small! in a high precision
test of the two-body terms analyzed here. This is conceivable
since the 23P helium levels have a lifetime about 100 times
of that of the 2P hydrogen levels due to the fact that the
triplet P state decays to the tripletS state instead of the
ground state. Although many of the corrections are obtained
phenomenologically, we expect them to account for a major
part of QED effects to the order of interest. Partial justifica-
tion of phenomenological treatment has been made by rigor-
ous calculation of self-energy corrections of second order.
We found that phenomenological treatment leads to the same
result as the rigorous one for the self-energy corrections of
second order. Full justification, one way or another, requires
a rigorous calculation of one-loop vertex corrections. The
QED corrections of second order perturbed with the Breit
corrections contribute to the fine-structure splittings to the
order interest. They were presented in our previous paper
@11# in the form of expectation values of nonrelativistic op-
erators of second order. One more piece for a complete pic-
ture of theO(a7mc2) fine-structure splittings of helium is
corrections from the relativistic momentum region arising
from exchange diagrams, which will be presented elsewhere.
These corrections are of special interest in view of the fact
that they may be the first corrections of off-leading order
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arising from the relativistic momentum region ever to be
tested in any one-, two-, or three-body system. Note that
similar corrections due to self-energy modification in the
one-body system are of ordera8mc2, which are the correc-
tions of ordera2 relative to those of Karplus, Klein, and
Schwinger@9# and Baranger, Bethe, and Feynman@10#. The
off-leading-order terms in two-body systems are of order
a7m/M . Precise comparison with experiment cannot be
made until all theoretical numbers ofO(a7mc2) QED ef-
fects in helium fine structure are obtained numerically, which
is in progress by Yan and Drake.
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