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Bound states with arbitrary angular momenta in nonrelativistic three-body systems
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The generalization of the highly accurate exponential variational expansion in the relative coordinates
ra», ray, andr,, is presented for the computation of bound states with arbitrary values of the total angular
momentumL and space parityr for three-body nonrelativistic systems with arbitrary particle masses. For all
matrix elements explicit analytical formulas are presented which have relatively simple structures and contain
L and as parameters.

PACS numbg(s): 31.15.Pf, 31.25:v, 36.10—k

I. INTRODUCTION Most highly accurate calculations for the bound states of

the three-body systems are carried out in the so-called rela-

In the present work we consider the bound state spectra Qe coordinates which are determined for the three-body sys-
three-body nonrelativistic systems consisting of three pointem in the following way: Let;, r,, andrs be the position

particles. Letm;, m;, andmg be the masses of the first, vectors of the first, second, and third particles, respectively.
second and third particles, respectively. When two of thenstead ofr; (i=1,2,3) let us introduce the three scalar rela-
masses are significantly greater than the third mass, e.give coordinatess;, rs,, andr,q, determined by the rela-
min(my, ,my,)>my, the adiabatic approximation can be appliedtions (see, e.g.[15])
to reduce the initial problem to the one-body two-center f=[r | =|r—r] )
problem[1]. Such a one-body problem can be solved, in EERA Lol
principle, with very high accurady?] and, moreover, for the wherei=1,2,3; j(#i)=1,2,3, {j) = (32, (31, (21), and
two-center Coulomb problem even the analytical solutionr;j=r;; [16]. These three, always non-negative, coordinates
can be found2]. coincide with the interparticle distances, but they are not
Recently, a number of highly accurate results have beeidependent, since, e.g|rsp—raq|<ry=<rz+rs. How-
published for Coulomb three-body systems with one infiniteever, there are the three so-called perimetric coordinates
mass, e.g., for the He atom, H Li *, and other iongsee, ui=%(rij+rik—rjk), where i #j#k=1,2,3, which are al-
e.g.,[3-13)). These include calculations for tH&(L=0), ways non-negative and independent. It can be easily shown
P(L=1), D(L=2), andF(L=3) bound states in such sys- that O<su;<+ for i=1,2,3 andr;=u;+u;, wherei
tems. However, in the general case when all three particlej=1,2,3[15]. In the present study we shall use the varia-
masses are comparable with each other the achieved progrdszal expansion in the relative coordinates.
is quite modest. All highly accurate numerical results for To illustrate briefly the accuracy achieved in modern
such three-body systems have been obtained only for thighly accurate calculations for the three-body systems
ground and lowest “vibrationally” ¢<2) and “rotation- (bound statgswe note the following: By applying the varia-
ally” (L=1) excited states. Only a few years ago the firsttional expansions in the relative 4, rs;, andr,;) or peri-
highly accurate variational calculations were made for themetric (u;, u,, and uz) coordinates the accuracy

ground states in muonic molecular ions witk-2 [14]. The ~ ~1x10 % or even~1x 102 atomic units(a.u) has been
further generalization for the calculation of the bound stateschieved in recent calculations of the ground and lowest ex-
with L=3 presents a number of difficulties. cited boundS(L=0), P(L=1), D(L=2), andF(L=3)

Briefly, our present goal is to propose a highly accuratestates[17] in the two-electron atoms and ions, i.e., for the
variational expansion to compute the bound states in threghree-body systems with one infinite madsse, e.g.[3—-10]).
body systems witi. =0, whereL is the total angular mo- For the lowest bound excited states in the P$1u~, H™
mentum. Actually, to solve this problem we need to findions, ppu, ddu, and other muonic molecular ions and for
appropriate formulas for the matrix elements. Note, that suclso-called exotic systems the best accuracy is also approxi-
rotationally and vibrationally excited bound states can bemately 10 8—10 % a.u.(see, e.g[18—24). However, most
found only in the three-body Coulomb systems. This meansf these results were obtained only f&L=0)— and
that the Coulomb three-body systems are the main intere®(L=1)— states in such systems. The first variational re-
for the present work. However, we do not wish to restrict oursults for the bound(L=2) states in theddu, ttu, and
present study to the consideration of only Coulomb threedtu ions were computed by our grolip4] (see alsd23)).
body systems, since the generalization of the proposed ap- In all our earlier calculations the trial variational expres-

proach to non-Coulomb potentials is relatively simple. sion for the wave functionW,, has the forn{22-25
|
N N L
PN
Viu= iZl Cithim= i21 P2 Ci/lw 2(rapra)exp— air = Bir 31— ¥il 20), (2
= =1/1=¢€
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where/1+/,=L+¢€ ande=0 or 1. The first choice ot three radial variablegelative coordinatés Such a semisepa-
corresponds to the natural space parity=(—1)t, [26] ration of the angular and radial variables was very fruitful
while the second choice represents states with the unnaturahd has been used in all recent works related to this problem.
space parityr=(—1)""1. In Eq. (2) the coefficientsC; are  To compute the bound states witk=1 they proposed to use
the linear or variational parameters which are found by solvthe matrix elements of finite rotationdli.e., the
ing the secular problem. In all our previous highly accurateDk,l"i(gp,,z,/;) functions of three Euler angles for the three-
calculations the nonlinear parameters{a;,B;,vi} body systemh as the angular parts of the wave functions
(i=1,2,...N) have been generated in a quasirandom manf30,31].
ner from the three real intervals, i.eq;e[A1,A5], Bi At about the same time Schwalfi@7] proposed the use of
€[B1,B2], 7i€[Gy1,G;] (for more details see, e.d24]).  the bipolar harmonics;//L/Ml’/z(rgl,rgz), Eq. (3). Calais and
Such a choice of the nonlinear parameters was used succesgdin [32] calculated the overlap matrix element for the
fully for highly accurate calculations in many systems, in-fynctions with the bipolar harmonics. However, closed for-
cluding quite a few very complicated cases, e.g., the Somy|as for all matrix elements in the case of the two-electron
called weakly bound(or prethreshold states, the nuclear proplem were obtained by Drak@3]. Efros [34] applied
g‘Zie'gc)’dyt styste_ms and ma”BI’ otr|1ers_. Fro_;nf Ollur re?ﬁltf fQnly bipolar harmonics of special kinds such as
=2) states in muonic molecular ions it follows that a ,,71.L.-71 gyl 1L=/1+1 :
similar quasirandom procedure can be applied also to th LM (rs1.rsp) and 77,y (rs1.r'sp). This enabled

. /s im to achieve a significant simplification in comparison
case withL =3. In Eq.(2) the functionsy/ ;" *(ra1,rsp) @€ it [33]. However, final closed formulas for the matrix el-
the so-called bipolafor Schwartz[27]) harmonics. Their  ements were not givefs4].

explicit form is Our present goal is to generalize the highly accurate ex-
, ponential variational expansion, E@), in the relative coor-
(’%/,/L/N}'/Z(rgl,rgz): ré/llré/zzé/;(,vll'/z(ne,l,n?,z) dinatesrs;, rgp, andr,; to the case of bound states of three-
body systems with arbitrary values of the angular momentum
— /12 2 cLM L and space parityr. To do this, the following variational
31132 e Y am oM, ansatz is used:
XY/ m (N30 Y/ m,(N32), () N

‘I'LM:izl Cithim
— LM -
wheren;;=rj;/rjj andC/ %, ., are the Clebsch-Gordan N
coefficients andr ,,(n) are the usual spherical harmonics. _ o, 140 2
The exponential variational expansion, Eg), was used _Z'l CiZ/im *(ranr) di(rsaranfa), (4
previously to compute the bound states witk0, 1, and 2

in the three-body systems with comparable masses, €.9., where the coefficient; are the linearvariationa) param-
[23] and references thergiriThe related Hylleraas expansion eters and the “angular functions’f%L/Nll’/z(r31,r32) are

was applied to the bound states in such systems kvt L .
o - Schwartz’s bipolar harmonics. In the present work we apply
andL=1 (see, e.9.[]18-21]). Moreover, the variational re- . o .
| : the same relation between the superscrip{sand /', as
sults for bound states with=3 for systems with three com- : P
mentioned above[34], namely, /,=L—/1+€, where

parable masses, e.g., for tttee muonic molecular ion, can- =~ . X %
; , . ._e=0 for states with the space parity=(—1)" (natural par-
not be found in the modern literature. In contrast with th'sity) ande=1 for states with the space parity=(—1)-*2

the boundedness of thiew ion in this state was shown non- (unnatural parity. In Eq. (4) we suppose that the valué,
variationally many years agi®8]. Likewise, at the present nd, therefore the valué,(/,=L +¢— ;) are determined

time the so-called mass threshold values for bound stat >om the index number of the basis functiomy use of the
with L=3 cannot be determined numerically. Actually now, . , Dy
relation /;=mod(,L+1), where the notation mod(b)

(hrechold masses fo the bound sates Wit n he sym. SIS for the remainder of the integer ivisiafb. This
metric Coulomb three-body systems. However, the accurac lation has been used in our previous works related with
of such predictions is often unknown. Another well known (L=1) andD(L_=2) bognd s_tate$see[23]).
problem which can be solved in the near future is the deter- The radial basis functions n Ed4), {¢i(r32,r31,r2])},
mination of the resonance states wltk=2 in the muonic depend only on the thrge raQ|aI variableg;, s, and
molecular ions and other exotic systems. Also, there are b1 They can .be cho'sen In various forms. The three fo.llow-
number of other three-body problems for which the highlyIng sets of radlal ba5|_s fu_nctpns are well known and V.V'dEIy
accurate determination of the energy levels and the approprﬂsed_ In-various ap_phcatlons_. the so-called exponential ex-
ate wave functions for the bound states witk 3 is needed Panston in the relative coordinates
for their solution.

It should be mentioned that a method which can be used, birsa,Ta1,F20) =€XP(— @il o= Bifa1= vir21), (5
in principle, to determine a bound state with arbitraryn i
the relative coordinatess;, rs,, andr,; was proposed by the Hylleraas expansion
Bhatia and Temkirf30,31]. In [30,3] the integration over e
the three angular variabléactually the Euler angles of the  &i(r32,131,720) =1 35T 32T )3 €Xp(— @l go— Bra;— ¥ 21),
system[16]) had been made before the integration over the (6)
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where the constants, 3, andy do not depend upon and Il. GENERAL STRUCTURE OF THE MATRIX
the variational expansion in three-dimensional gaussoids in ELEMENTS

the relative coordinates As is well known the solution of the Schiimger equation

bi(FazoPar,l o) =X — it 2= Bir2— yir2).  (7)  (H—E)®=0 may be reduced to the equivalent variational
problem, i.e., to minimize the energy functional

The exponential variational expansion, Eg), with the
radial basis functions in the form of E¢5), has been used (WIH|P) (P|T|V)+(¥|V|V¥)
successfully in various atomic, ionic, muonic molecules, and - (¥|¥) - (¥|W) : ®
nuclear three-body bound states calculatitses, e.g.[22—
25,29,35,39). The Hylleraas expansion, E(), was applied  Here and belowH=T+V is the HamiltonianT is the ki-
to the cases of the He-like atoms and ions, exotic systemgetic energy, and/ is the potential energy. The variational

and muonic molecule¢see, e.g.[10-13,18-21,3]. The  roplem, Eq(8), can be rewritten in the form of the follow-
three-dimensional gaussoids expansion, (£).is of specific  jng eigenvalue problem:

interest [38], since it can be easy generalized to the

./J"-body nonrelativistic systeff89]. The main reason is that N N
the appropriate analytical formulas for the matrix elements > (Hnn —ESyn)Chi = > (Tyn+Vin —ES, ) Chr
contain./" as a parametei39]. At the present time these n’'=1 n=1 ' '

formulas have been applied to find lower and upper energy
estimates for the boun8 states [ =0) in various three-,
four-, and five-body systemisee, e.g.[40,41]). However,

=0, €)

the successful generalization of the last approach to boun\gherenzl,z, - - N, andN is the number of basis functions
g PP used. The appropriate matrix elemers,, V,,, and

states withL=1 has not been developed. T ., are
The approach proposed in the present work was initially’ ™"’
used for the variational exponential expansion, y. How-

ever, later we understood that it is possible to write all for- Son = (Wneml Sl L),

mulas for the matrix elements in the form which can be

easily changed to the general case of @y with the differ- Vi =l VI im) (10)
ent radial basis functiong; from Egs.(5)—(7). Briefly, we

can say that the method presented here can be used for Ton =(Cnml TI¥n Lm)-

highly accurate calculations of bound states in three-body
nonrelativistic systems with arbitrary values of the angular Each of these matrix elements can be presented in the
momentumL and space parityr. general form in terms of the basis functions given in &,

o, 1.0
An,n’:<¢n,LM|A|¢n’,LM>:JdT:?’Lml 2(ra1,r 3 €XP( — @nl 32~ Bl 31~ ¥nl 20)

e
XA'(//LNJ[ 2(r31,l’32)eXF(—an/rgz—ﬂn/r31— ’ynrr21), (11)

where A is the generalized notation for an operator which dQ=sin@dOdyde. (13
depends on the three scalar relative coordinatgs rs,,

andr,; as well as on the three angular variables. We choose

the Euler angle€)=(¢,0,y) as the three independent an- Now, it can be shown that the integration over the angular
gular variables. In the present study our choice of the thregariables ¢,®,4) can be separated from the integration
Euler anglesQ)=(¢,0,4) coincides with that in previous over the three radialrg,,rs;,r,;) ones but not vice versa.
works[22,34]. These angles determine the orientation of theThis means that by integrating EG.0) first over the angular
coordinate system rigidly related with the triangle formed byvariables ¢,0,) we obtain an expression which depends
the three particles, relative to the outside space. In this casgoon only the three scalar radial variableg,,rs;,ro;.

the elementary volumer takes the form(more details can  Moreover, this expression is a polynomial in these three rela-

be found in[33,34) tive coordinates. Then this polynomial must be integrated
over these radial variables,, rs;, andr,;.
d7=1T 350 30 1A 301 31d 11D, (12 First consider the case when the operatom Eq. (11)

does not contain any differential operator. In this case the
where the elementary angular volurd® is appropriate angular integral takes the form
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L PN o1 s
W/lv/z;/iv/é(rSZ!erer):deQ}//LMl 2([’31,1'32)}///“\/'1 4(raq,r30), (14

where the notatiorf , designates the integration over the three angular variaklgd,@) (i.e., over the Euler angles of the
three-body systemAn explicit expression foklvb1 /il (32,31, 1) was found by Drak¢33],
"1 200 12

1
W Tsafsata) =5 (Dbt s 2/ 2/ F D2/t D2 3 D)

\ 4 " 7 ! o1 '
Zmax 71 /1 N[ L M4 /L
A
. mln( 1) (2)\+1) 0 0 0) 0 0 /2 /1 N P)\(X)a (15)

wherex=rg;-r3,/r31r 5. The notation §55) denotes the Wigner B-symbol withm;=0,m,=0,m;=0 [42]. {35} is the 6
symbol[42]. In Eq. (15) the P,(x) are the Legendre polynomials. Since

2 .2 _ .2
_Tarfgp T3ptrg=ry 16)
M31r32 2r31r3p

and Px(x)zi’g:Obn,Ax“, we transform this expression to the form

1
wh (r32,r31,r21)=§ (—D"N(2/1+1)(2/1+1)(2/+1)(2/ 5+ 1)

AT
/S N 2y N[ 4L
o 0 o/lo 0o 0|/ /1 A

k
2k 2m—n+/5+/ 5 n=2k+/1+/7_2m
Z_ ch(—1)m o, 12

max

X Z (—1)M2N+1)
A b n
S [z ct

n=0

] : 17

where theCﬁ are the binominal coefficients, i.e(:,ﬁ=n!/(n—k)!k!. Note that the coefficientb, , can be easily found from
the recursion relatiofisee, e.g.[43])

P (%)= (2)\_1)XP)\71(X3\_()\_1)P}\72(X) 18

with the initial conditionsPy(x)=1 andP,(x)=x. Otherwise, these coefficienlts , can be obtained from the well known
formula for the Legendre polynomialg3]

>

[7 —1)%(2x—2k)!

1 -
PA(0= 53 2, k,()\ ooz (19

where[ - - - ] denotes the integer part of a number. Thus we have shown that the angular iwé%]r/%l,/, ,1(a2,r31,721) IS
2 A

a polynomial in the three radial variables,, r3;, andr,;.
Note that, since’;+/,=L+¢€ and/;+/5=L+ e we can reduce the total number of independent indexes to be four for

each angular integral, i.e\lvbl'/2;/1‘/é(r32,r31,r21):Wb;f'/i(raz,rgl,rzg. Then Eq.(14) takes another form

€ 1 7! di
Wb'l,/i(rsz-rslarzl)zi (~DN@/+ D)2/ +1)(2/,+1)(2/5+1)

A , ’ ' ' 2
max Sl N[ 2y N[/ 7y L
v E (—l)}‘(Z)\-i—l) 1 1 2 2 ’1 ’2
N=NXmin O 0 0 0 0 /2 /1 A
N b n k
XHZO 2nn)\ [ kzo Clr(m[mzzo C 1)m 2k—2m— n+L+ergl 2k+L+er§mH (20)

where/,=L+e—/, and/,=L+e—/7.
To simplify our formulas further we introduce the opera&j‘f/, by the following relation:
'
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€ 1 2 ! "
Wb;y/i(r321r3lar21):§ (=121 +1)(2/1+1)(2/ 3+ 1)(2/5+1)

A Z 4 % ' ' ’
max Iy Ly N[ O x) 71 /5L
_ 1)\

N n k
P\
: k m Ny Ny n
X EO on kzo Cn zo Ck(_ 1)m5n1,2k—2m—n+L+55n2,n—2k+L+e5n3,m r3ér3irzi
n= = m=

L € nl n2 n3
=B/ /,r32r31r21 (21

It should be noted thatl) the operat0|B L does not  tain the polynomialvvb’f/,(rgz,r31,r21) as well as the two

depend on the radial variables af] this operator contains  zqditional polynom|als(see below W/ o /o 1(Faa,T 31,7 20)
the total angular momentuin and space parityr (or €) as

parameters. It can be shown that in the case when the operﬁUdW/ - 1(rs2,T31,721). The explicit expressions can be
tor A contains differential operators on the radial variableseasily found from the general formulas Eq$7), (20), and
s, s, and rp; the angular matrix element (21) given above. It should be mentioned that the differential
Wb /,(r32,r31,r21) is exactly the same as described aboveoperators on the angular varlab[emd therefore the poly-

in Eqs (20) and(21). The difference appears only when this nomlaIsW/ /,+1(r32,r31,r21) and\W /’ 1(Fs2,F31,72)]
operator A contains differential operators on the angularare found only in the kinetic energy.

variables. In this case the respective matrix elements are rep- In conclusion let us determine the so-called basic radial
resented as the sum of a few different members, which conintegral

F(ny,Nny,Ng; X(l) X7 Xi(f‘>)=f f fdr32dr31dr21rg§rgirgiexp(—Xi(jl)rgz—Xi(jz)r31—xi(j3)r21), (22)

whereXi(jk) (k=1,2,3) are real numbers. By introducing the three perimetric coordingtes ,u; [24] we find the following
analytical expression for this integral:

ny no n3

mq!m,Img!
F(ny,no,ng; X(H XP xF=3 ¥ > clclce ,
( 151125113970 1 ) Ko k20 k20 Ny n, nS(XI(Jl)+XI(IZ))m3+l(XI(Jl)+XI(]?’))szrl(XI(JZ)+XI(]3))m1+l

(23

wheremy =k +k,, my=Kk;+n,—ks, andmg=n;+n,—k;—k,. The functionF(ny,n,,ng; XM, X? X)) determined in
the last equations plays a very important role in the further development.
lll. MATRIX ELEMENTS OF THE OVERLAP MATRIX AND THE POTENTIAL

In this section explicit expressions for the matrix elements of the overlap n&trand the potential energy matrik; are
derived. First, consider the overlap matBx. The explicit expression for the appropriate integral is

O PN
Su:(lﬂi,LMWj,LM):fffjﬂdﬂdrszdrsldrzlrszrsllef/uﬁ Aran s Zw" 2(ranrz)exd — (ei+a))rs—(B8i+ Bj)ra

—(yityral (24

After the integration over the angular variables this expression takes the form

L,e
SJ:<¢i,LM|¢j,LM>:J f fdr32dr31dr21r32r31r21W/11/1(r32,r31,r21)exr(—xi(j1>r32—xi(j2)r31—Xi(f)rn), (25

whereXi(jl) aitaj, Xi'=Bi+Bj, andX =1v;+ ;. By applying the operatdis/ ’ determined above in E21) we can
rewrite this expressmn in the form

L, L
sjzs/;/isjz /\ /,F(n1+1n2+1n3+1 XM X2 (). (26)
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We shall call the matrix elemerg; in the left side of this equation as the complete matrix element, whileSthenatrix
element in the right-hand side of this equation can be called as the elementary matrix element. The elementary matrix element
for the overlap matrix has the form
Sj=F(ni+1n,+ 10+ ;X0 X2 X)), (27)

where the functiorF (the basic radial integrahas been determined in E(2). In Egs.(25—(27) and everywhere below
XP=ai+a;, XP=p+p;, andXP=y+y.

Now consider the matrix elements of the potential energy. According to our assumption made above the potential energy in
the general case is represented as a sum of the three scalar interaction potentials, i.e.,

V'=V3y(I32) +Va1(r31) +Vau(ra). (28
Therefore, the potential energy matrix elemefjt takes the form
V=B, V=B, [Vadtad i+ [Vairan Ji + [Varlr20 i} (29

In the case of the Coulomb potential whafe Emk)qnqkr;kl [where ik)=(21), (31), and32)] the appropriate elemen-
tary matrix elemenv;; is

Vij=0as0,F(ng,ny+1n3+1; x(H

(D X2 X3+ ga0mF (N +1ny,ng+1;XH X2, X))

+020:F (g + 10+ 1ng; X X2 X(). (30)

In the case of an exponential potenfitd = 10 AneXp(— andni) the elementary matrix element; has the form

X))+ AgiF (ng+Lnp+1ng+ XY X2 + ey, X(Y)

Vij=AgF (ng+ Lo+ 1ng+ 1X P+ agy, X2 i

ij X
+AuF (N + 1N+ 1ng+ XD X X3+ aryy), (31)

where the notatiorxi(j“) has been introduced above. For a Yukawa-type potevitial nyA,eXp(— oznkrnk)r,;k1 the expression
for Vj; can be written as

Vij=AgF (g, Np+ 1ng+ LiX(Y + g XIP X)) + AgiF (ng+1ng,ng+ 1X0D X7 + ez X))

+AuF (N + 10+ 1ng XY X X + argy). (32
In the same manner it is easy to produce similar formulas for potentials which are represented as the sum of gaussoids,

harmonic oscillator potentials, spherical potential holes, etc. Here, we do not wish to discuss these problems and obtain now
formulas for the matrix elements of the kinetic energy.

IV. MATRIX ELEMENTS OF THE KINETIC ENERGY where py =m *+m;*, k=123, andn(#k)=1,2,3. By
. . - . _ 2
The kinetic energy operatdr for an arbitrary three-body ntroducing the  definitions Ty,=—1/2u,Vi,, and

system in Cartesian coordinates is Tinkn =~ 1/m V- Vi We write the kinetic energy opera-
tor T in the form

T=Tap+ T+ Tor+ Tap a1t Taz 0t Taa 21 (395

1 1 1
T=—5_Vi-5 -Vi-5 V3, (33 . . .
2my 2m, 2m; As is well known the gradient operatSrcan be written as
a sum of its normal and planar componets]
wherem;, m,, andms are the particle masses. In the rela- d 1
tive coordinates 1, rz,, andr,, the operatorT has the Vin="kn +—ngn
arkn Mkn
form [44]
d 1
=Ngn— — 1 — [Mn X Ln(Qin) 1, (36)
arkn kn
1 _, 1 1 _, 1
== 2,u32V32 213 1V31 2M21V21_ m_3V32'V31 wheren,,=ry,/r«n, and for the normal and planar compo-

nents the following equality

- m_2V32’V12_ m_lV21V'31' (34 Nn Vo, = Mkn* [MknX Lkn(Qkn) ]=0 (37)
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holds. In this sectiorfas well as abovyewe assume that the 1 9
metric in the relative coordinates,, r;;, andr,, is deter- pkn:r_ o (40
mined by the following scalar product kn 77 kn

(h1(T32,F 31,720 | Da(F32,F 31,7 20) It is easy to show that the operator () - pi, iS a self-adjoint

operator in terms of the metric defined above. According to
this definition the expression for tHéZ, operator takes the

:fff¢1(r32,r31,r21)¢2(r32,r31,r21)

form
X ¥ g0l g9l 910 30131057 38
32! 31' 21 32d 314721 ( ) Vz_ , V2 - (92 2 J 1V2
In terms of this metric we can rewrite the formula for the ¥ kn~ PknlknPin™ 12 Y ar2, * Ten M i * 2, Qn
gradient operatoV , in the relative coordinates to the form (41)
[45]
1 It is well known (see, e.g.[34]) that
Vin=TknPrnt — Vo, (39 it
kn an// LM 2(r31,r32) 0 (42)
where thep,,, operator is the so-called quasimomentum op-
erator in the relative coordinates for (kn) = (32), (31), and(21). This means that the equality
|
o 1 o 1
Vﬁn[f/uv% 2(ra1,r3) d(rap,ra1,r201=2[VinZ " 2(ra1,r32) 1 [ Vind(r 32,1 31,7 20) ]
+ 2 1T [ Vi (T2 31, 20)] (43)

must be obeyed for an arbitrary scalar functig(rs,,rs;,r»1) of the three relative coordinates. Likewise, for an arbitrary
scalar functiong of the three scalar variables,, ri;, andr,, the following equation

ngn¢(r32.r31,f21):0 (44)

holds form=1,2,3 ... and kn)=(32),(31),(21). Therefore, the previous equation can be rewritten in the form

Jd
n[/LM 2(r31,r32)¢(r32,r31,r2])] 2 7|_M 2(r31,r32))( ¢(r32,r31,r21)>

#? 2 9
( +— )¢(r32,r31,r21) (45)

ﬂrkn F'kn Ok

"’Q?/L' (r31,r32)

Now, by applying the last equations we easily find analytical expressions fahtre— 1/2u,,V 2, matrix elements. These
formulas can be also written in the form

[Tindi =B [ Tkl (46)

where j)=(32),(31),(21) and the appropriate elementary matrix eleméits];;, [Tsq]ij, and[T,q];; are

1 /2+1
[TBﬂlj - JSiJ 3o ‘/’| LM l/’] LM
1 7o+l
z—ﬂazF(nl+ln2+ln3+l X X2 X)) + - ajF(ng+1n+1ng; X X2 X3, (47)
o — ﬁ23+/1+1/3<¢ “ly >
St 2uz 1T gy TT\ Mgy [T

1 /1+1
== 5= BF(n+ Lno+ Lng+ LX X{P X + ——=BiF (g + 10 ng+ LXH XP LX), (48)
M31 M31



3860 ALEXEI M. FROLOV AND VEDENE H. SMITH, JR. 53

1 1
[TZJJU ‘}/]SJ <(//I LM ’lr/jj LM>
— 1 (2) y(3) 1 (1) (3)
= 2[u, 7JF(nl+ln2+ln3+1 XIJ ’Xll ,X )+N—2171F(n1,n2+1,n3+1 XIJ 7XIJ ,X ), (49)

where§;; is the respective elementary matrix element for the overlap matrixZ#. Note, also that the matrix elements
(i iml Ll 5 m)» [(kn) = (32), (31), and(21)] include the appropriate elementary matrix element of the Coulomb potential
energy.

Now, consider the three remaining matrix elements in the kinetic enfelrgyslij , [ T21,31lij, @and[Tgz 10lij . To derive
analytical formulas for the matrix elemefil s, 55li; we use the well known relatiof84]

Vi1 Vg /._M %(ray,r3p)]=0. (50)

This relation holds, sinc&’;+/»,=L+ €. Therefore, in the appropriate matrix element we find

Vi Vsz[f/LM (r31,r3) P(ran,rar,r)]= [Vslf/LM (rag,r32)- V32¢(r32,r31,r21)]+[V32/LM 2(r31,r32)]

X[V310(r32,r31,r0) |+ /L 7 /2(r31,r32)V31-V32[¢(r32,r31,r21)]

_ gy 172 19
=[rax Vo " 2(ran, s ]| — d(r32,r31,727)
I3z drap

1 9
P
+ra Va2 'y 2(r31ar32)](r_31ar_31¢(r32'r31’r21))

+///L (r311r32) rr;z(&d’(r%rrﬂ!rﬂ))- (5
To simplify this expression we apply the two following relatioisge, e.g.[34]):
ray Vaz/LM 21,1 = A2/ DY (2T (g ra), (52
F3p: V317 M (1 gy, a0) = A7 17D Y TV () E), (53
where the factoA(/,,/,) equals
N \/(/1 e)( /(22+/21+3e))(2/ ) 54

Thus we find forV 5, V32[j%//L/M1"/2(r31,r32) &(rap,r31,r27) ] the following expression:

/s /l 1/,+1 1 0
Vi 32[”/ ‘v A(ra,ra) d(ra,ran,ro)]=A (71,7 %) 7\ (r31,rs) EE‘b(rsz:ralarzD

/1+1/2 1

1 9
+A( 2. DY, (rag,r 32)(_(9r_¢(r32 r31,r21))

2 .2 .2
r3try—ro

1 &
T 7w A d(r32,M31,721) |- (55

2r3fgp | dr3pdrg;
Finally, the expression for thieT 3, 3.];; matrix element takes the form
a" L,e o o IB L,e o o1
[Tapsdij= B/ /- AL RN ng+1ng+1; xf,1>,x§,2>,x<3>) 1 B/ P A5/ DF(N 10,0,
aiB;j
+1;X( X2 X))~ 5y B/ S[F(nnp+2n5+1; X XP X +F(ng+2n,, 03+ 1X(H X2 XEY)
—F(n1,n,n3+ 31 X X1, (56)
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To calculate the [Tsy21];; matrix element [T3y.4]ij=— 1/m;V3,-Vy) we transform the expression for
Vi 2][0/ v 2(r31,r32)¢(r32,r31,r2])] in an analogous manner and find

o, 1, o, 1,
Vo Vol 2(r31,r32)¢(r32,r31,r21)]=[V3l%LM1 2(ra,r30) - Vo1(rap,ran,ron)]

R
+ Y (a3 Ve Vol d(ra,ra1,r 20 ]

=[r21-V3Lj///1'/2(r31 rs)] ii¢(r32 r31,721)
LM ' o1 drp e

! F31-T21
oyl ( la9,la1,f ) (57)
Yiw s 32) Fadl o1 0r313r21¢( 32,731,721
Sincer,=r3;—rz and
P P
a1 Ve ' 2(ra1fed =717 " *(ra1.rs2), (59
PN PR
Fao Vo /i 2(ra1.f3) =727\ *(ra1.r32), (59
we find the following formula
/s 10+ 1 9
Vi sz[/LM (r31. 130 D (o, Ma1, 20 1= = A/ 1.7 Y r31,r32) T —— P(I'32,T31,21)

1 4
+/1,‘;//|_M (r31-r32) L, ¢(r32,r31,r21))

2
r5tr5—r5

2
( ¢(r32,r31,r2])). (60)

i
+ "1 2(rgq,r30)
7 LM Ir 3100 91

2r3qf 9

The analogous expression 8, Vli(%L/ﬁ'/z(r3l,r39 ¢(rs»,r31,r21)] can be found in a very similar forr@all interme-
diate details have been omitted, since they are exactly the same as giveit above

/s /14151 1 9
Vi 12[/LM (r31,r3) @(raz,ran,ra)]=—A /21/1)/ (r31,r3) GE‘f’(rsz:ralarzD

0
Or,r_21¢(r32-r311r21))

a4
+/2"'//L|VJ|- 2(I’3l,l’32) r_

2 ,.2 .2 2
rstrs.—r J
P 3217217 31
+ 2w A(ra,ra) (

(7r32(9r21¢(r32’r31’r21))' (61)

2r 30 51

Now, for the[ T3, »4li; and[ T3, 15li; mMatrix elements we obtain the expressions

Yi L,e ’ Yi L,e ’
[T?’leﬂ”:_m_JlB/l/i AL HF( L0+ Lng; X X X)) + mle/l/’ IR+ 10+ 205X XP XP)
_BigLe [F(ni+2n+1ng: XY X XP) +F(ng+ 10,0+ 2;X00 X2 X))
Zm//'(l 2 IR ] (ng+1n3,n3 ij
—F(ng+3nz,ng; X X2 X, (62)
Vi Vi oL, ,
[T32,13”-=—m—125 1A/ DR+ g+ Lng XY XE X + mJZB/:’/i/ F(ni+1n,+1ng; XY, X2 X(¥)
Qi
_2_sz/ /,[F(n1+2n2+1n3 XM X2 XY+ F(ng,ng+Lng+ 20 X2 X))

—F(ng,ny+3ng; X X X1, (63
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Now by applying these analytical formulas for the matrix so-called entrance parameters to compute this matrix ele-
elements given in Secs. II-1IV we can calculate all matrixment. The values of.,M,e can be called as the outside
elements which are needed to solve the eigenvalue problemparameters.

Eq. (9). These formulas contain the total angular momentum To calculate the second term we use the following rela-
L and the space parity (or €) as parameters. Thus, now it tion for theZ/L/,\,.z'/l(fsl,fsz) functions
is possible to determine the bound states with arbittaand '
ar in the nonrelativistic three-body systems which consist of '521{//L/|\/|1’/2(r31'r32):(_ 1)51&(’&/1“31&2’ (69)
three point particles with masses;, m,, and m; and
where the interaction potential can be written as a sum ofvheree=0 or 1, and the relation for the exponentials of the
two-body central and scalar potentials. It should be menrelative coordinates
tioned here that the given formulas can be used directly only ~
for nonsymmetrical systems. Their modification to the case Poexp(— a;ir 30— Bif 31— Vil 21)
of the symmetrical systems is considered in the next section.
=exp(— Bil 2~ ail 31~ ¥if 21). (69

V. CASE OF IDENTICAL PARTICLES Finally, we have for the second term in the right-hand side of

Consider now the case when the three-body system cora- (69),
tains two identical particles. Without loss of generality sup- A B . P
pose that the first and second particles in the considered sym- (Paatbim il Alim )= (=D Bi i, v,/ 2(i),/1(1);

metric three-body system are the identical ones. Therefore, L,M,€lAILM,e71(i).7 (i),
the relationPy,® y=® y must be obeyed for the exact
wave function. HereP,, is the permutation operatgpar- aj.By.v); (70)

ticles. 1and?2 i.(_e., Pglzl._This means that the exact wave in other words to compute the second term in E&f) we
function @y, is gn §|genfunct|on for FheA Operator peeq to permute only the four entrance parameters and repeat
t21= 12(1= P,y with eigenvalue 0 or 1, sinc,=tx.  the procedure as for the nonsymmetrical matrix element.
Therefore, the trial variational function for a symmetric sys-Thus, we can calculate all matrix elements which are needed
tem Wy must be also found in the form to solve the appropriate eigenvalue problem for an arbitrary
symmetric three-body nonrelativistic system with arbitrary
values ofL and# (or €). The more complicated case when

all three particles are identical requires separate consider-
ation. However, such a situation seems to be actual only in
where the functiony, ,, is the nonsymmetrical coordinate some nuclear three-body problems.

function written in the form of Eq(4). Let A be a fully

symmetric operator, i.e., it does not change when Rhe VI. CASE OF THE ADIABATIC THREE-BODY SYSTEMS
permutation is applied, i.eAP,;=P,;A. Then in this case
we can write the formula for thej() matrix elements oA

n 1 “
\I}LM:tZl'//LM:E(li P)¥im, (64)

The case mentioned above when two of the masses are
significantly greater than the third magbke so-called adia-
_ N _ _ - _ _ batic systempsrequires a separate investigation. Without loss
<‘I’LM,||A|\I’LM,J>—<¢LM,||A|wLM,J>i<P21¢LM,||A|l/fLM,16>51) of generality we suppose that, ~m,>m, and that the in-
teraction potential betweenand j particles is a Coulomb
where the symmetric and nonsymmetric trial functionspotential, i.e.,Vj;(ri;)=q;q;/r;; . Moreover, the variational
W, v andyy y are represented in the forms expansions, Eqg2) and (4), have a very slow rate of con-
vergence only when,q;>0. Actually, this mean$46] that
1 N . the variational expansion Edq4) cannot be applied for
[Wm)=2 Cil¥im)= 72 Ci(1=Po)lgm,i); highly accurate calculations in three-body systems such as
=t 2i=1 w"ute” and Hj (the so-called adiabatic systemghis
N problem was studied in our woild6] and briefly the result
_ . ‘ can be formulated as follows. To compute with high accu-
i) izl Cil o) (66) racy the bound states in three-body systems, including adia-
batic systems, we proposgd6] to use the so-called univer-
respectively. The first matrix element is calculated in thesal variational three-body expansion, which takes the form
same manner as for nonsymmetric systems. Indeed, we write
for the first matrix element in the right-hand side of EgpH)

N

N
‘I’LMIEI Cithim

(bimilAldm )
DN ) N L
:<ai YIBi v Yi ,/1('),/2('),'—,,\/',€|A|L,M,€, :izl /Z Ci‘;//L/N}’/Z(rSl,rsz)
/1(1),/2(1),051,,3],’)’]> (67) TLoTE
Xe — — . —v.r
Actually, in  this equation the values of X ailaz Bir s~ vil2)

71(0):72()),aj,B;,y; and 74(i),75(1),a;,B;,v; are the X exXp(16ir 3o+ 161 31+ 1f 1 57), (71
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where theC; (i=1,2,... N) are the lineafvariationa) pa- masses. In the present work we considered only the case
rameters, which can be found by solving the secular equavhen the interaction potential is represented as the sum of
tion. The real exponents{«;,B;,vi,d € .fi}, where two-body central and scalar interaction potentials. The gen-
i=1,2,...N, are the nonlinear parameters which are gen<eralization to more general interaction potentials can be
erated in a quasirandom manner from the six real intervalgnade in an analogous way. The presented formulas for all
The angular fUﬂCtiOﬂ?f/L/hﬂl'/z(fsl.fsz) are the bipolar har- matrix elements contain the total angular momdngnd the
monics. space parityr (or €) as parameters. This means that a bound

It has been shown that this universal variational expansio§tate with arbitrary values df and 7 in the nonrelativistic
can be applied successfullin contrast with the expansion three-body systems can be calculateq in terms of this highly
(2)] to compute the bound state spectra in arbitrary three@ccurate approach. It should be mentioned that t.hese formu-
body nonrelativistic system@or more details and numerical las include also the case of unnatural space parity. The pre-
results se¢46]), including the mentioned adiabatic systems.Sented method is relatively simple and logically closed. It
However, it is clear that all formulas for the matrix elementscan be used also for other radial basis functions in the rela-
presented above hold for the universal variational expansiofive coordinates's,, rs,, andry;. We hope that this ap-

are used. bound states with arbitrarly and = for the various three-

body systems.

VII. CONCLUSION
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