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The generalization of the highly accurate exponential variational expansion in the relative coordinates
r 32, r 31, and r 21 is presented for the computation of bound states with arbitrary values of the total angular
momentumL and space parityp for three-body nonrelativistic systems with arbitrary particle masses. For all
matrix elements explicit analytical formulas are presented which have relatively simple structures and contain
L andp as parameters.
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I. INTRODUCTION

In the present work we consider the bound state spectra of
three-body nonrelativistic systems consisting of three point
particles. Letm1 , m2 , andm3 be the masses of the first,
second and third particles, respectively. When two of the
masses are significantly greater than the third mass, e.g.,
min(m1,m2)@m3, the adiabatic approximation can be applied
to reduce the initial problem to the one-body two-center
problem @1#. Such a one-body problem can be solved, in
principle, with very high accuracy@2# and, moreover, for the
two-center Coulomb problem even the analytical solution
can be found@2#.

Recently, a number of highly accurate results have been
published for Coulomb three-body systems with one infinite
mass, e.g., for the He atom, H2, Li 1, and other ions~see,
e.g., @3–13#!. These include calculations for theS(L50),
P(L51), D(L52), andF(L53) bound states in such sys-
tems. However, in the general case when all three particle
masses are comparable with each other the achieved progress
is quite modest. All highly accurate numerical results for
such three-body systems have been obtained only for the
ground and lowest ‘‘vibrationally’’ (n<2) and ‘‘rotation-
ally’’ ( L<1) excited states. Only a few years ago the first
highly accurate variational calculations were made for the
ground states in muonic molecular ions withL52 @14#. The
further generalization for the calculation of the bound states
with L>3 presents a number of difficulties.

Briefly, our present goal is to propose a highly accurate
variational expansion to compute the bound states in three-
body systems withL>0, whereL is the total angular mo-
mentum. Actually, to solve this problem we need to find
appropriate formulas for the matrix elements. Note, that such
rotationally and vibrationally excited bound states can be
found only in the three-body Coulomb systems. This means
that the Coulomb three-body systems are the main interest
for the present work. However, we do not wish to restrict our
present study to the consideration of only Coulomb three-
body systems, since the generalization of the proposed ap-
proach to non-Coulomb potentials is relatively simple.

Most highly accurate calculations for the bound states of
the three-body systems are carried out in the so-called rela-
tive coordinates which are determined for the three-body sys-
tem in the following way: Letr1 , r2 , andr3 be the position
vectors of the first, second, and third particles, respectively.
Instead ofr i ( i51,2,3) let us introduce the three scalar rela-
tive coordinatesr 31, r 32, and r 21, determined by the rela-
tions ~see, e.g.,@15#!

r i j5ur i j u5ur i2r j u, ~1!

where i51,2,3; j (Þ i )51,2,3, (i j ) 5 ~32!, ~31!, ~21!, and
r i j5r j i @16#. These three, always non-negative, coordinates
coincide with the interparticle distances, but they are not
independent, since, e.g.,ur 322r 31u<r 21<r 321r 31. How-
ever, there are the three so-called perimetric coordinates
ui5

1
2(r i j1r ik2r jk), where iÞ jÞk51,2,3, which are al-

ways non-negative and independent. It can be easily shown
that 0<ui,1` for i51,2,3 and r i j5ui1uj , where i
Þ j51,2,3 @15#. In the present study we shall use the varia-
tional expansion in the relative coordinates.

To illustrate briefly the accuracy achieved in modern
highly accurate calculations for the three-body systems
~bound states! we note the following: By applying the varia-
tional expansions in the relative (r 32, r 31, andr 21) or peri-
metric (u1 , u2 , and u3) coordinates the accuracy
'1310210 or even'1310212 atomic units~a.u.! has been
achieved in recent calculations of the ground and lowest ex-
cited boundS(L50), P(L51), D(L52), andF(L53)
states@17# in the two-electron atoms and ions, i.e., for the
three-body systems with one infinite mass~see, e.g.,@3–10#!.
For the lowest bound excited states in the Ps2, Mu2, H2

ions, ppm, ddm, and other muonic molecular ions and for
so-called exotic systems the best accuracy is also approxi-
mately 1028210212 a.u.~see, e.g.,@18–24#!. However, most
of these results were obtained only forS(L50)2 and
P(L51)2 states in such systems. The first variational re-
sults for the boundD(L52) states in theddm, ttm, and
dtm ions were computed by our group@14# ~see also@23#!.

In all our earlier calculations the trial variational expres-
sion for the wave functionCLM has the form@22–25#

CLM5(
i51

N

Cic i ,LM5(
i51

N

(
l 15e

L

CiYLM
l 1 ,l 2~r31,r32!exp~2a i r 322b i r 312g i r 21!, ~2!
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where l 11l 25L1e and e50 or 1. The first choice ofe
corresponds to the natural space parityp5(21)L, @26#
while the second choice represents states with the unnatural
space parityp5(21)L11. In Eq. ~2! the coefficientsCi are
the linear or variational parameters which are found by solv-
ing the secular problem. In all our previous highly accurate
calculations the nonlinear parameters$a i ,b i ,g i%
( i51,2, . . . ,N) have been generated in a quasirandom man-
ner from the three real intervals, i.e.,a iP@A1 ,A2#, b i
P@B1 ,B2#, g iP@G1 ,G2# ~for more details see, e.g.,@24#!.
Such a choice of the nonlinear parameters was used success-
fully for highly accurate calculations in many systems, in-
cluding quite a few very complicated cases, e.g., the so-
called weakly bound~or prethreshold! states, the nuclear
three-body systems and many others. From our results for
D(L52) states in muonic molecular ions it follows that a
similar quasirandom procedure can be applied also to the
case withL>3. In Eq.~2! the functionsYLM

l 1 ,l 2(r31,r32) are
the so-called bipolar~or Schwartz@27#! harmonics. Their
explicit form is

YLM
l 1 ,l 2~r31,r32!5r 31

l 1r 32
l 2YLM

l 1 ,l 2~n31,n32!

5r 31
l 1r 32

l 2 (
m1 ,m2

Cl 1m1 ,l 2m2

LM

3Yl 1m1
~n31!Yl 2m2

~n32!, ~3!

whereni j5r i j /r i j andCl 1m1 ,l 2m2

LM are the Clebsch-Gordan

coefficients andYl m(n) are the usual spherical harmonics.
The exponential variational expansion, Eq.~2!, was used

previously to compute the bound states withL50, 1, and 2
in the three-body systems with comparable masses~see, e.g.,
@23# and references therein!. The related Hylleraas expansion
was applied to the bound states in such systems withL50
andL51 ~see, e.g.,@18–21#!. Moreover, the variational re-
sults for bound states withL>3 for systems with three com-
parable masses, e.g., for thettm muonic molecular ion, can-
not be found in the modern literature. In contrast with this
the boundedness of thettm ion in this state was shown non-
variationally many years ago@28#. Likewise, at the present
time the so-called mass threshold values for bound states
with L>3 cannot be determined numerically. Actually now,
there is only an approximate formula@29# which predicts the
threshold masses for the bound states withL>3 in the sym-
metric Coulomb three-body systems. However, the accuracy
of such predictions is often unknown. Another well known
problem which can be solved in the near future is the deter-
mination of the resonance states withL>2 in the muonic
molecular ions and other exotic systems. Also, there are a
number of other three-body problems for which the highly
accurate determination of the energy levels and the appropri-
ate wave functions for the bound states withL>3 is needed
for their solution.

It should be mentioned that a method which can be used,
in principle, to determine a bound state with arbitraryL in
the relative coordinatesr 31, r 32, and r 21 was proposed by
Bhatia and Temkin@30,31#. In @30,31# the integration over
the three angular variables~actually the Euler angles of the
system@16#! had been made before the integration over the

three radial variables~relative coordinates!. Such a semisepa-
ration of the angular and radial variables was very fruitful
and has been used in all recent works related to this problem.
To compute the bound states withL>1 they proposed to use
the matrix elements of finite rotations@i.e., the
DM ,K
L,6 (w,Q,c) functions of three Euler angles for the three-

body system# as the angular parts of the wave functions
@30,31#.

At about the same time Schwartz@27# proposed the use of
the bipolar harmonicsYLM

l 1 ,l 2(r31,r32), Eq. ~3!. Calais and
Löwdin @32# calculated the overlap matrix element for the
functions with the bipolar harmonics. However, closed for-
mulas for all matrix elements in the case of the two-electron
problem were obtained by Drake@33#. Efros @34# applied
only bipolar harmonics of special kinds such as
YLM

l 1 ,L2l 1(r31,r32) andYLM
l 1 ,L2l 111(r31,r32). This enabled

him to achieve a significant simplification in comparison
with @33#. However, final closed formulas for the matrix el-
ements were not given@34#.

Our present goal is to generalize the highly accurate ex-
ponential variational expansion, Eq.~2!, in the relative coor-
dinatesr 31, r 32, andr 21 to the case of bound states of three-
body systems with arbitrary values of the angular momentum
L and space parityp. To do this, the following variational
ansatz is used:

CLM5(
i51

N

Cic i ,LM

5(
i51

N

CiYLM
l 1 ,l 2~r31,r32!f i~r 32,r 31,r 21!, ~4!

where the coefficientsCi are the linear~variational! param-
eters and the ‘‘angular functions’’YLM

l 1 ,l 2(r31,r32) are
Schwartz’s bipolar harmonics. In the present work we apply
the same relation between the superscriptsl 1 and l 2 as
mentioned above@34#, namely, l 25L2l 11e, where
e50 for states with the space parityp5(21)L ~natural par-
ity! and e51 for states with the space parityp5(21)L11

~unnatural parity!. In Eq. ~4! we suppose that the valuel 1
and, therefore the valuel 2(l 25L1e2l 1) are determined
from the index number of the basis functioni by use of the
relation l 15mod(i ,L11), where the notation mod(a,b)
stands for the remainder of the integer divisiona/b. This
relation has been used in our previous works related with
P(L51) andD(L52) bound states~see@23#!.

The radial basis functions in Eq.~4!, $f i(r 32,r 31,r 21)%,
depend only on the three radial variablesr 31, r 32, and
r 21. They can be chosen in various forms. The three follow-
ing sets of radial basis functions are well known and widely
used in various applications: the so-called exponential ex-
pansion in the relative coordinates

f i~r 32,r 31,r 21!5exp~2a i r 322b i r 312g i r 21!, ~5!

the Hylleraas expansion

f i~r 32,r 31,r 21!5r 32
n1,i r 31

n2,i r 21
n3,iexp~2ar 322br 312gr 21!,

~6!
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where the constantsa, b, andg do not depend uponi , and
the variational expansion in three-dimensional gaussoids in
the relative coordinates

f i~r 32,r 31,r 21!5exp~2a i r 32
2 2b i r 31

2 2g i r 21
2 !. ~7!

The exponential variational expansion, Eq.~4!, with the
radial basis functions in the form of Eq.~5!, has been used
successfully in various atomic, ionic, muonic molecules, and
nuclear three-body bound states calculations~see, e.g.,@22–
25,29,35,36#!. The Hylleraas expansion, Eq.~6!, was applied
to the cases of the He-like atoms and ions, exotic systems
and muonic molecules~see, e.g.,@10–13,18–21,37#!. The
three-dimensional gaussoids expansion, Eq.~7!, is of specific
interest @38#, since it can be easy generalized to the
N -body nonrelativistic system@39#. The main reason is that
the appropriate analytical formulas for the matrix elements
containN as a parameter@39#. At the present time these
formulas have been applied to find lower and upper energy
estimates for the boundS states (L50) in various three-,
four-, and five-body systems~see, e.g.,@40,41#!. However,
the successful generalization of the last approach to bound
states withL>1 has not been developed.

The approach proposed in the present work was initially
used for the variational exponential expansion, Eq.~2!. How-
ever, later we understood that it is possible to write all for-
mulas for the matrix elements in the form which can be
easily changed to the general case of Eq.~4! with the differ-
ent radial basis functionsf i from Eqs.~5!–~7!. Briefly, we
can say that the method presented here can be used for
highly accurate calculations of bound states in three-body
nonrelativistic systems with arbitrary values of the angular
momentumL and space parityp.

II. GENERAL STRUCTURE OF THE MATRIX
ELEMENTS

As is well known the solution of the Schro¨dinger equation
(H2E)F50 may be reduced to the equivalent variational
problem, i.e., to minimize the energy functional

E5
^CuHuC&

^CuC&
5

^CuTuC&1^CuVuC&

^CuC&
. ~8!

Here and belowH5T1V is the Hamiltonian,T is the ki-
netic energy, andV is the potential energy. The variational
problem, Eq.~8!, can be rewritten in the form of the follow-
ing eigenvalue problem:

(
n851

N

~Hn,n82ESn,n8!Cn85 (
n851

N

~Tn,n81Vn,n82ESn,n8!Cn8

50, ~9!

wheren51,2, . . . ,N, andN is the number of basis functions
used. The appropriate matrix elementsSn,n8, Vn,n8, and
Tn,n8 are

Sn,n85^cn,LMuSucn8,LM&,

Vn,n85^cn,LMuVucn8,LM&, ~10!

Tn,n85^cn,LMuTucn8,LM&.

Each of these matrix elements can be presented in the
general form in terms of the basis functions given in Eq.~2!,

An,n85^cn,LMuAucn8,LM&5E dtYLM
l 1 ,l 2~r31,r32!exp~2anr 322bnr 312gnr 21!

3AY
LM

l 18 ,l 28~r31,r32!exp~2an8r 322bn8r 312gn8r 21!, ~11!

whereA is the generalized notation for an operator which
depends on the three scalar relative coordinatesr 31, r 32,
andr 21 as well as on the three angular variables. We choose
the Euler anglesV5(w,Q,c) as the three independent an-
gular variables. In the present study our choice of the three
Euler anglesV5(w,Q,c) coincides with that in previous
works @22,34#. These angles determine the orientation of the
coordinate system rigidly related with the triangle formed by
the three particles, relative to the outside space. In this case
the elementary volumedt takes the form~more details can
be found in@33,34#!

dt5r 32r 31r 21dr32dr31dr21dV, ~12!

where the elementary angular volumedV is

dV5sinQdQdcdf. ~13!

Now, it can be shown that the integration over the angular
variables (w,Q,c) can be separated from the integration
over the three radial (r 32,r 31,r 21) ones but not vice versa.
This means that by integrating Eq.~10! first over the angular
variables (w,Q,c) we obtain an expression which depends
upon only the three scalar radial variablesr 32,r 31,r 21.
Moreover, this expression is a polynomial in these three rela-
tive coordinates. Then this polynomial must be integrated
over these radial variablesr 32, r 31, andr 21.

First consider the case when the operatorA in Eq. ~11!
does not contain any differential operator. In this case the
appropriate angular integral takes the form
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W
l 1 ,l 2 ;l 18 ,l 28
L

~r 32,r 31,r 21!5E
V
dVYLM

l 1 ,l 2~r31,r32!YLM

l 18 ,l 28~r31,r32!, ~14!

where the notation*V designates the integration over the three angular variables (w,Q,c) ~i.e., over the Euler angles of the
three-body system!. An explicit expression forW

l 1 ,l 2 ;l 18 ,l 28
L

(r 32,r 31,r 21) was found by Drake@33#,

W
l 1 ,l 2 ;l 18 ,l 28
L

~r 32,r 31,r 21!5
1

2
~21!Lr 31

l 11l 18r
32
l 21l 28A~2l 111!~2l 1811!~2l 211!~2l 2811!

3 (
l5lmin

lmax

~21!l~2l11!S l 1 l 18 l

0 0 0
D S l 2 l 28 l

0 0 0
D H l 18 l 28 L

l 2 l 1 l
J Pl~x!, ~15!

wherex5r31•r32/r 31r 32. The notation (0
a
0
b
0
c) denotes the Wigner 3-j symbol withm150,m250,m350 @42#. $d

a
e
b
f
c% is the 6-j

symbol @42#. In Eq. ~15! thePl(x) are the Legendre polynomials. Since

x5
r31•r32
r 31r 32

5
r 31
2 1r 32

2 2r 21
2

2r 31r 32
~16!

andPl(x)5(n50
l bn,lx

n, we transform this expression to the form

W
l 1 ,l 2 ;l 18 ,l 28
L

~r 32,r 31,r 21!5
1

2
~21!LA~2l 111!~2l 1811!~2l 211!~2l 2811!

3 (
l5lmin

lmax

~21!l~2l11!S l 1 l 18 l

0 0 0
D S l 2 l 28 l

0 0 0
D H l 18 l 28 L

l 2 l 1 l
J

3 (
n50

l
bn,l
2n H (

k50

n

Cn
kF (

m50

k

Ck
m~21!mr 32

2k22m2n1l 21l 28r
31
n22k1l 11l 18r 21

2mG J , ~17!

where theCn
k are the binominal coefficients, i.e.,Cn

k5n!/(n2k)!k!. Note that the coefficientsbn,l can be easily found from
the recursion relation~see, e.g.,@43#!

Pl~x!5
~2l21!xPl21~x!2~l21!Pl22~x!

l
~18!

with the initial conditionsP0(x)51 andP1(x)5x. Otherwise, these coefficientsbn,l can be obtained from the well known
formula for the Legendre polynomials@43#

Pl~x!5
1

2l(
k50

Fl2G
~21!k~2l22k!!

k! ~l2k!! ~l22k!!
xl22k ~19!

where@•••# denotes the integer part of a number. Thus we have shown that the angular integralW
l 1 ,l 2 ;l 18 ,l 28
L

(r 32,r 31,r 21) is

a polynomial in the three radial variablesr 32, r 31, andr 21.
Note that, sincel 11l 25L1e and l 181l 285L1e we can reduce the total number of independent indexes to be four for

each angular integral, i.e.,W
l 1 ,l 2 ;l 18 ,l 28
L

(r 32,r 31,r 21)5W
l 1 ,l 18
L,e

(r 32,r 31,r 21). Then Eq.~14! takes another form

W
l 1 ,l 18
L,e

~r 32,r 31,r 21!5
1

2
~21!LA~2l 111!~2l 1811!~2l 211!~2l 2811!

3 (
l5lmin

lmax

~21!l~2l11!S l 1 l 18 l

0 0 0
D S l 2 l 28 l

0 0 0
D H l 18 l 28 L

l 2 l 1 l
J

3 (
n50

l
bn,l
2n H (

k50

n

Cn
kF (

m50

k

Ck
m~21!mr 32

2k22m2n1L1er 31
n22k1L1er 21

2mG J , ~20!

wherel 25L1e2l 1 and l 285L1e2l 18 .
To simplify our formulas further we introduce the operatorB

l 1 ,l 18
L,e

by the following relation:
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W
l 1 ,l 18
L,e

~r 32,r 31,r 21!5
1

2
~21!LA~2l 111!~2l 1811!~2l 211!~2l 2811!

3 (
l5lmin

lmax

~21!l~2l11!S l 1 l 18 l

0 0 0
D S l 2 l 28 l

0 0 0
D H l 18 l 28 L

l 2 l 1 l
J

3 (
n50

l
bn,l
2n H (

k50

n

Cn
kF (

m50

k

Ck
m~21!mdn1 ,2k22m2n1L1edn2 ,n22k1L1edn3 ,mG J r 32n1r 31n2r 21n3

5B
l 1 ,l 18
L,e

r 32
n1r 31

n2r 21
n3 . ~21!

It should be noted that~1! the operatorB
l 1 ,l 18
L,e

does not

depend on the radial variables and~2! this operator contains
the total angular momentumL and space parityp ~or e) as
parameters. It can be shown that in the case when the opera-
tor A contains differential operators on the radial variables
r 32, r 31, and r 21 the angular matrix element
W
l 1 ,l 18
L,e

(r 32,r 31,r 21) is exactly the same as described above

in Eqs.~20! and~21!. The difference appears only when this
operatorA contains differential operators on the angular
variables. In this case the respective matrix elements are rep-
resented as the sum of a few different members, which con-

tain the polynomialW
l 1 ,l 18
L,e

(r 32,r 31,r 21) as well as the two

additional polynomials~see below! W
l 1 ,l 1811
L,e

(r 32,r 31,r 21)

andW
l 1 ,l 1821
L,e

(r 32,r 31,r 21). The explicit expressions can be

easily found from the general formulas Eqs.~17!, ~20!, and
~21! given above. It should be mentioned that the differential
operators on the angular variables@and, therefore, the poly-
nomialsW

l 1 ,l 1811
L,e

(r 32,r 31,r 21) andWl 1 ,l 1821
L,e

(r 32,r 31,r 21)#

are found only in the kinetic energy.
In conclusion let us determine the so-called basic radial

integral

F~n1 ,n2 ,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!5E E E dr32dr31dr21r 32

n1r 31
n2r 21

n3exp~2Xi j
~1!r 322Xi j

~2!r 312Xi j
~3!r 21!, ~22!

whereXi j
(k) (k51,2,3) are real numbers. By introducing the three perimetric coordinatesu1 ,u2 ,u3 @24# we find the following

analytical expression for this integral:

F~n1 ,n2 ,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!5 (

k150

n1

(
k250

n2

(
k350

n3

Cn1

k1Cn2

k2Cn3

k3
m1!m2!m3!

~Xi j
~1!1Xi j

~2!!m311~Xi j
~1!1Xi j

~3!!m211~Xi j
~2!1Xi j

~3!!m111 , ~23!

wherem15k11k2 , m25k11n22k3, andm35n11n22k12k2 . The functionF(n1 ,n2 ,n3 ;Xi j
(1) ,Xi j

(2) ,Xi j
(3)) determined in

the last equations plays a very important role in the further development.

III. MATRIX ELEMENTS OF THE OVERLAP MATRIX AND THE POTENTIAL

In this section explicit expressions for the matrix elements of the overlap matrixSi j and the potential energy matrixV i j are
derived. First, consider the overlap matrixSi j . The explicit expression for the appropriate integral is

Si j5^c i ,LMuc j ,LM&5E E E E
V
dVdr32dr31dr21r 32r 31r 21YLM

l 1 ,l 2~r31,r32!YLM

l 18 ,l 28~r31,r32!exp@2~a i1a j !r 322~b i1b j !r 31

2~g i1g j !r 21#. ~24!

After the integration over the angular variables this expression takes the form

Si j5^c i ,LMuc j ,LM&5E E E dr32dr31dr21r 32r 31r 21Wl 1 ,l 18
L,e

~r 32,r 31,r 21!exp~2Xi j
~1!r 322Xi j

~2!r 312Xi j
~3!r 21!, ~25!

whereXi j
(1)5a i1a j , Xi j

(2)5b i1b j , andXi j
(3)5g i1g j . By applying the operatorBl 1 ,l 18

L,e
determined above in Eq.~21! we can

rewrite this expression in the form

Si j5B
l 1 ,l 18
L,e

Si j5B
l 1 ,l 18
L

F~n111,n211,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!. ~26!
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We shall call the matrix elementSi j in the left side of this equation as the complete matrix element, while theSi j matrix
element in the right-hand side of this equation can be called as the elementary matrix element. The elementary matrix element
for the overlap matrix has the form

Si j5F~n111,n211,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!, ~27!

where the functionF ~the basic radial integral! has been determined in Eq.~22!. In Eqs.~25!–~27! and everywhere below
Xi j
(1)5a i1a j , Xi j

(2)5b i1b j , andXi j
(3)5g i1g j .

Now consider the matrix elements of the potential energy. According to our assumption made above the potential energy in
the general case is represented as a sum of the three scalar interaction potentials, i.e.,

V5V32~r 32!1V31~r 31!1V21~r 21!. ~28!

Therefore, the potential energy matrix elementV i j takes the form

V i j5B
l 1 ,l 18
L,e

Vi j5B
l 1 ,l 18
L

$@V32~r 32!# i j1@V31~r 31!# i j1@V21~r 21!# i j %. ~29!

In the case of the Coulomb potential whereV5( (nk)qnqkr nk
21 @where (nk)5(21), (31), and~32!# the appropriate elemen-

tary matrix elementVi j is

Vi j5q3q2F~n1 ,n211,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1q3q1F~n111,n2 ,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!

1q2q1F~n111,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!. ~30!

In the case of an exponential potentialV5( (nk)Ankexp(2ankrnk) the elementary matrix elementVi j has the form

Vi j5A32F~n111,n211,n311;Xi j
~1!1a32,Xi j

~2! ,Xi j
~3!!1A31F~n111,n211,n311;Xi j

~1! ,Xi j
~2!1a31,Xi j

~3!!

1A21F~n111,n211,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!1a21!, ~31!

where the notationXi j
(q) has been introduced above. For a Yukawa-type potentialV5( (nk)Ankexp(2ankrnk)rnk

21 the expression
for Vi j can be written as

Vi j5A32F~n1 ,n211,n311;Xi j
~1!1a32,Xi j

~2! ,Xi j
~3!!1A31F~n111,n2 ,n311;Xi j

~1! ,Xi j
~2!1a31,Xi j

~3!!

1A21F~n111,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!1a21!. ~32!

In the same manner it is easy to produce similar formulas for potentials which are represented as the sum of gaussoids,
harmonic oscillator potentials, spherical potential holes, etc. Here, we do not wish to discuss these problems and obtain now
formulas for the matrix elements of the kinetic energy.

IV. MATRIX ELEMENTS OF THE KINETIC ENERGY

The kinetic energy operatorT for an arbitrary three-body
system in Cartesian coordinates is

T52
1

2m1
“1

22
1

2m2
“2

22
1

2m3
“3

2 , ~33!

wherem1 , m2 , andm3 are the particle masses. In the rela-
tive coordinatesr 31, r 32, and r 21 the operatorT has the
form @44#

T52
1

2m32
“32

2 2
1

2m31
“31

2 2
1

2m21
“21

2 2
1

m3
“32•“31

2
1

m2
“32•“122

1

m1
“21“•31, ~34!

wheremkn
215mk

211mn
21 , k51,2,3, andn(Þk)51,2,3. By

introducing the definitions Tkn521/2mkn“kn
2 , and

Tkn,kn8521/mk“kn•“kn8 we write the kinetic energy opera-
tor T in the form

T5T321T311T211T32,311T32,121T31,21. ~35!

As is well known the gradient operator“can be written as
a sum of its normal and planar components@45#

“kn5nkn
]

]r kn
1

1

r kn
“Vkn

5nkn
]

]r kn
2ı•

1

r kn
@nkn3L kn~Vkn!#, ~36!

wherenkn5r kn /r kn , and for the normal and planar compo-
nents the following equality

nkn•“Vkn
5nkn•@nkn3L kn~Vkn!#50 ~37!
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holds. In this section~as well as above! we assume that the
metric in the relative coordinatesr 32, r 31, andr 21 is deter-
mined by the following scalar product

^f1~r 32,r 31,r 21!uf2~r 32,r 31,r 21!&

5E E E f1~r 32,r 31,r 21!f2~r 32,r 31,r 21!

3r 32r 31r 21dr32dr31dr21. ~38!

In terms of this metric we can rewrite the formula for the
gradient operator“kn in the relative coordinates to the form
@45#

“kn5r knpkn1
1

r kn
“Vkn

, ~39!

where thepkn operator is the so-called quasimomentum op-
erator in the relative coordinates

pkn5
1

r kn

]

]r kn
. ~40!

It is easy to show that the operator (2ı)•pkn is a self-adjoint
operator in terms of the metric defined above. According to
this definition the expression for the“kn

2 operator takes the
form

“kn
2 5pknr kn

2 pkn1
1

r kn
2 “Vkn

2 5
]2

]r kn
2 1

2

r kn

]

]r kn
1

1

r kn
2 “Vkn

2 .

~41!

It is well known ~see, e.g.,@34#! that

“kn
2
YLM

l 1 ,l 2~r31,r32!50 ~42!

for (kn) 5 ~32!, ~31!, and~21!. This means that the equality

“kn
2 @YLM

l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#52@“knYLM
l 1 ,l 2~r31,r32!#•@“knf~r 32,r 31,r 21!#

1YLM
l 1 ,l 2~r31,r32!@“kn

2 f~r 32,r 31,r 21!# ~43!

must be obeyed for an arbitrary scalar functionf(r 32,r 31,r 21) of the three relative coordinates. Likewise, for an arbitrary
scalar functionf of the three scalar variablesr 32, r 31, andr 21 the following equation

“Vkn

m f~r 32,r 31,r 21!50 ~44!

holds form51,2,3, . . . and (kn)5~32!,~31!,~21!. Therefore, the previous equation can be rewritten in the form

“kn
2 @YLM

l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#52S ]

]r kn
YLM

l 1 ,l 2~r31,r32! D S ]

]r kn
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!F S ]2

]r kn
2 1

2

r kn

]

]r kn
Df~r 32,r 31,r 21!G . ~45!

Now, by applying the last equations we easily find analytical expressions for theTkn521/2mkn“kn
2 matrix elements. These

formulas can be also written in the form

@Tkn# i j5B
l 1 ,l 18
L,e

@Tkn# i j , ~46!

where (i j )5~32!,~31!,~21! and the appropriate elementary matrix elements@T32# i j , @T31# i j , and@T21# i j are

@T32# i j52
1

2m32
a j
2Si j1

l 211

m32
a j K c i ,LMU 1r 32Uc j ,LM L

52
1

2m32
a j
2F~n111,n211,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!1
l 211

m32
a jF~n111,n211,n3 ;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!, ~47!

@T31# i j52
1

2m31
b j
2Si j1

l 111

m31
b j K c i ,LMU 1r 31Uc j ,LM L

52
1

2m31
b j
2F~n111,n211,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!1
l 111

m31
b jF~n111,n2 ,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!, ~48!
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@T21# i j52
1

2m21
g j
2Si j1

1

m21
g j K c i ,LMU 1r 21Uc j ,LM L

52
1

2m21
g j
2F~n111,n211,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!1
1

m21
g jF~n1 ,n211,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!, ~49!

whereSi j is the respective elementary matrix element for the overlap matrix Eq.~27!. Note, also that the matrix elements
^c i ,LMu1/r knuc j ,LM&, @(kn) 5 ~32!, ~31!, and~21!# include the appropriate elementary matrix element of the Coulomb potential
energy.

Now, consider the three remaining matrix elements in the kinetic energy@T31,32# i j , @T21,31# i j , and @T32,12# i j . To derive
analytical formulas for the matrix element@T31,32# i j we use the well known relation@34#

“31•“32@YLM
l 1 ,l 2~r31,r32!#50. ~50!

This relation holds, sincel 11l 25L1e. Therefore, in the appropriate matrix element we find

“31•“32@YLM
l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#5@“31YLM

l 1 ,l 2~r31,r32!•“32f~r 32,r 31,r 21!#1@“32YLM
l 1 ,l 2~r31,r32!#

3@“31f~r 32,r 31,r 21!#1YLM
l 1 ,l 2~r31,r32!“31•“32@f~r 32,r 31,r 21!#

5@r32•“31YLM
l 1 ,l 2~r31,r32!#S 1

r 32

]

]r 32
f~r 32,r 31,r 21! D

1@r31•“32YLM
l 1 ,l 2~r31,r32!#S 1

r 31

]

]r 31
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!

r31•r32
r 31r 32

S ]2

]r 31]r 32
f~r 32,r 31,r 21! D . ~51!

To simplify this expression we apply the two following relations~see, e.g.,@34#!:

r31•“32YLM
l 1 ,l 2~r31,r32!5A~ l 2 ,l 1!YLM

l 111,l 221
~r31,r32!, ~52!

r32•“31YLM
l 1 ,l 2~r31,r32!5A~ l 1 ,l 2!YLM

l 121,l 211
~r31,r32!, ~53!

where the factorA(l 1 ,l 2) equals

A~ l 1 ,l 2!5A~ l 12e!~ l 2112e!~2l 111!

~2l 213!
. ~54!

Thus we find for“31•“32@YLM
l 1 ,l 2(r31,r32)f(r 32,r 31,r 21)# the following expression:

“31•“32@YLM
l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#5A~ l 1 ,l 2!YLM

l 121,l 211
~r31,r32!S 1

r 32

]

]r 32
f~r 32,r 31,r 21! D

1A~ l 2 ,l 1!YLM
l 111,l 221

~r31,r32!S 1

r 31

]

]r 31
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!

r 31
2 1r 32

2 2r 21
2

2r 31r 32
S ]2

]r 31]r 32
f~r 32,r 31,r 21! D . ~55!

Finally, the expression for the@T31,32# i j matrix element takes the form

@T31,32# i j5
a j

m3
B
l 1 ,l 1821
L,e

A~ l 18 ,l 28!F~n1 ,n211,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1

b j

m3
B
l 1 ,l 1811
L,e

A~ l 28 ,l 18!F~n111,n2 ,n3

11;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!2

a jb j

2m3
B
l 1 ,l 18
L,e

@F~n1 ,n212,n311;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1F~n112,n2 ,n311;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!

2F~n1 ,n2 ,n313;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!#. ~56!

3860 53ALEXEI M. FROLOV AND VEDENE H. SMITH, JR.



To calculate the @T31,21# i j matrix element (@T31,21# i j52 1/m1“31•“21) we transform the expression for
“31•“21@YLM

l 1 ,l 2(r31,r32)f(r 32,r 31,r 21)# in an analogous manner and find

“31•“21@YLM
l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#5@“31YLM

l 1 ,l 2~r31,r32!•“21f~r 32,r 31,r 21!#

1YLM
l 1 ,l 2~r31,r32!“31•“21@f~r 32,r 31,r 21!#

5@r21•“31YLM
l 1 ,l 2~r31,r32!#S 1

r 21

]

]r 21
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!

r31•r21
r 31r 21

S ]2

]r 31]r 21
f~r 32,r 31,r 21! D . ~57!

Sincer215r312r32 and

r31•“31YLM
l 1 ,l 2~r31,r32!5l 1YLM

l 1 ,l 2~r31,r32!, ~58!

r32•“32YLM
l 1 ,l 2~r31,r32!5l 2YLM

l 1 ,l 2~r31,r32!, ~59!

we find the following formula

“31•“21@YLM
l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#52A~ l 1 ,l 2!YLM

l 121,l 211
~r31,r32!S 1

r 21

]

]r 21
f~r 32,r 31,r 21! D

1l 1YLM
l 1 ,l 2~r31,r32!S 1

r 21

]

]r 21
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!

r 31
2 1r 21

2 2r 32
2

2r 31r 21
S ]2

]r 31]r 21
f~r 32,r 31,r 21! D . ~60!

The analogous expression for“32•“12@YLM
l 1 ,l 2(r31,r32)f(r 32,r 31,r 21)# can be found in a very similar form~all interme-

diate details have been omitted, since they are exactly the same as given above!:

“32•“12@YLM
l 1 ,l 2~r31,r32!f~r 32,r 31,r 21!#52A~ l 2 ,l 1!YLM

l 111,l 221
~r31,r32!S 1

r 21

]

]r 21
f~r 32,r 31,r 21! D

1l 2YLM
l 1 ,l 2~r31,r32!S 1

r 21

]

]r 21
f~r 32,r 31,r 21! D

1YLM
l 1 ,l 2~r31,r32!

r 32
2 1r 21

2 2r 31
2

2r 32r 21
S ]2

]r 32]r 21
f~r 32,r 31,r 21! D . ~61!

Now, for the@T31,21# i j and @T32,12# i j matrix elements we obtain the expressions

@T31,21# i j52
g j

m1
B
l 1 ,l 1821
L,e

A~ l 18 ,l 28!F~n111,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1

g j

m1
B
l 1 ,l 18
L,e

l 18F~n111,n212,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!

2
b jg j

2m1
B
l 1 ,l 18
L,e

@F~n112,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1F~n111,n2 ,n312;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!

2F~n113,n2 ,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!#, ~62!

@T32,12# i j52
g j

m2
B
l 1 ,l 1811
L,e

A~ l 28 ,l 18!F~n111,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1

g j

m2
B
l 1 ,l 18
L,e

l 28F~n111,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!

2
a jg j

2m2
B
l 1 ,l 18
L,e

@F~n112,n211,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!1F~n1 ,n211,n312;Xi j

~1! ,Xi j
~2! ,Xi j

~3!!

2F~n1 ,n213,n3 ;Xi j
~1! ,Xi j

~2! ,Xi j
~3!!#. ~63!
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Now by applying these analytical formulas for the matrix
elements given in Secs. II–IV we can calculate all matrix
elements which are needed to solve the eigenvalue problem,
Eq. ~9!. These formulas contain the total angular momentum
L and the space parityp ~or e) as parameters. Thus, now it
is possible to determine the bound states with arbitraryL and
p in the nonrelativistic three-body systems which consist of
three point particles with massesm1 , m2 , and m3 and
where the interaction potential can be written as a sum of
two-body central and scalar potentials. It should be men-
tioned here that the given formulas can be used directly only
for nonsymmetrical systems. Their modification to the case
of the symmetrical systems is considered in the next section.

V. CASE OF IDENTICAL PARTICLES

Consider now the case when the three-body system con-
tains two identical particles. Without loss of generality sup-
pose that the first and second particles in the considered sym-
metric three-body system are the identical ones. Therefore,
the relation P̂21FLM5FLM must be obeyed for the exact
wave function. HereP̂21 is the permutation operator~par-
ticles 1 and 2!, i.e., P̂21

2 51. This means that the exact wave
function FLM is an eigenfunction for the operator
t̂2151/A2(16 P̂21) with eigenvalue 0 or 1, sincet̂21

2 5 t̂21.
Therefore, the trial variational function for a symmetric sys-
temCLM must be also found in the form

CLM5 t̂21cLM5
1

A2
~16 P̂21!cLM , ~64!

where the functioncLM is the nonsymmetrical coordinate
function written in the form of Eq.~4!. Let A be a fully
symmetric operator, i.e., it does not change when theP̂21

permutation is applied, i.e.,AP̂215 P̂21A. Then in this case
we can write the formula for the (i j ) matrix elements ofA

^CLM ,i uAuCLM , j&5^cLM ,i uAucLM , j&6^P̂21cLM ,i uAucLM , j&,
~65!

where the symmetric and nonsymmetric trial functions
CLM andcLM are represented in the forms

uCLM&5(
i51

N

Ci uCLM ,i&5
1

A2(i51

N

Ci~16 P̂21!ucLM ,i&;

ucLM&5(
i51

N

ci ucLM ,i&, ~66!

respectively. The first matrix element is calculated in the
same manner as for nonsymmetric systems. Indeed, we write
for the first matrix element in the right-hand side of Eq.~65!

^cLM ,i uAucLM , j&

5^a i ,b i ,g i ,l 1~ i !,l 2~ i !;L,M ,euAuL,M ,e;

l 1~ j !,l 2~ j !,a j ,b j ,g j&. ~67!

Actually, in this equation the values of
l 1( j ),l 2( j ),a j ,b j ,g j and l 1( i ),l 2( i ),a i ,b i ,g i are the

so-called entrance parameters to compute this matrix ele-
ment. The values ofL,M ,e can be called as the outside
parameters.

To calculate the second term we use the following rela-
tion for theYLM

l 2 ,l 1(r31,r32) functions

P̂21YLM
l 1 ,l 2~r31,r32!5~21!eYLM

l 2 ,l 1~r31,r32!, ~68!

wheree50 or 1, and the relation for the exponentials of the
relative coordinates

P̂21exp~2a i r 322b i r 312g i r 21!

5exp~2b i r 322a i r 312g i r 21!. ~69!

Finally, we have for the second term in the right-hand side of
Eq. ~65!,

^P̂21cLM ,i uAucLM , j&5~21!e^b i ,a i ,g i ,l 2~ i !,l 1~ i !;

L,M ,euAuL,M ,e;l 1~ j !,l 2~ j !,

a j ,b j ,g j&; ~70!

in other words to compute the second term in Eq.~65! we
need to permute only the four entrance parameters and repeat
the procedure as for the nonsymmetrical matrix element.
Thus, we can calculate all matrix elements which are needed
to solve the appropriate eigenvalue problem for an arbitrary
symmetric three-body nonrelativistic system with arbitrary
values ofL andp ~or e). The more complicated case when
all three particles are identical requires separate consider-
ation. However, such a situation seems to be actual only in
some nuclear three-body problems.

VI. CASE OF THE ADIABATIC THREE-BODY SYSTEMS

The case mentioned above when two of the masses are
significantly greater than the third mass~the so-called adia-
batic systems! requires a separate investigation. Without loss
of generality we suppose thatm1'm2@m3 and that the in-
teraction potential betweeni and j particles is a Coulomb
potential, i.e.,Vi j (r i j )5qjqi /r i j . Moreover, the variational
expansions, Eqs.~2! and ~4!, have a very slow rate of con-
vergence only whenq2q1.0. Actually, this means@46# that
the variational expansion Eq.~4! cannot be applied for
highly accurate calculations in three-body systems such as
m1m1e2 and H2

1 ~the so-called adiabatic systems!. This
problem was studied in our work@46# and briefly the result
can be formulated as follows. To compute with high accu-
racy the bound states in three-body systems, including adia-
batic systems, we proposed@46# to use the so-called univer-
sal variational three-body expansion, which takes the form

CLM5(
i51

N

Cic i ,LM

5(
i51

N

(
l 5e

L

CiYLM
l 1 ,l 2~r31,r32!

3exp~2a i r 322b i r 312g i r 21!

3exp~ ıd i r 321ıei r 311ıf i r 21!, ~71!
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where theCi ( i51,2, . . . ,N) are the linear~variational! pa-
rameters, which can be found by solving the secular equa-
tion. The real exponents$a i ,b i ,g i ,d i ,ei , f i%, where
i51,2, . . . ,N, are the nonlinear parameters which are gen-
erated in a quasirandom manner from the six real intervals.
The angular functionsYLM

l 1 ,l 2(r31,r32) are the bipolar har-
monics.

It has been shown that this universal variational expansion
can be applied successfully@in contrast with the expansion
~2!# to compute the bound state spectra in arbitrary three-
body nonrelativistic systems~for more details and numerical
results see@46#!, including the mentioned adiabatic systems.
However, it is clear that all formulas for the matrix elements
presented above hold for the universal variational expansion,
Eq. ~71!, as well, i.e., when complex nonlinear parameters
are used.

VII. CONCLUSION

A variational procedure is proposed to carry out highly
accurate variational calculations for the all of the bound
states in a three-body nonrelativistic system with arbitrary

masses. In the present work we considered only the case
when the interaction potential is represented as the sum of
two-body central and scalar interaction potentials. The gen-
eralization to more general interaction potentials can be
made in an analogous way. The presented formulas for all
matrix elements contain the total angular momentaL and the
space parityp ~or e) as parameters. This means that a bound
state with arbitrary values ofL andp in the nonrelativistic
three-body systems can be calculated in terms of this highly
accurate approach. It should be mentioned that these formu-
las include also the case of unnatural space parity. The pre-
sented method is relatively simple and logically closed. It
can be used also for other radial basis functions in the rela-
tive coordinatesr 32, r 32, and r 21. We hope that this ap-
proach will motivate further computational activities for
bound states with arbitraryL andp for the various three-
body systems.
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@34# V.D. Efros, Zh. Éksp. Teor. Fiz.90, 10 ~1986! @Sov. Phys.

JETP63, 5 ~1986!#.
@35# A.M. Frolov and V.H. Smith, Jr., Phys. Rev. C51, 423~1995!.

53 3863BOUND STATES WITH ARBITRARY ANGULAR MOMENTA IN . . .



@36# L.M. Delves and T. Kalotas, Aust. J. Phys.21, 1 ~1968!.
@37# B.P. Carter, Phys. Rev.141, 863 ~1966!.
@38# R.H. Dalitz and D.W. Downs, Phys. Rev.111, 967 ~1958!.
@39# N.N. Kolesnikov and V.I. Tarasov, Yad. Fiz.35, 609 ~1982!

@Sov. J. Nucl. Phys.35, 354 ~1982!#.
@40# A.M. Frolov, S.I. Kryuchkov, and V.H. Smith, Jr., Phys. Rev.

51, 4514~1995!.
@41# N.N. Kolesnikov, P.P. Zakharov, V.A. Kopylov, and V.I.

Tarasov, Yad. Fiz.40, 1373 ~1984! @Sov. J. Nucl. Phys.40,
872 ~1984!#.

@42# A.R. Edmonds,Angular Momentum in Quantum Mechanics
~Princeton University Press, Princeton, 1957!.

@43# P.K. Suetin,Klassicheskie Ortogonal’nye Polynomy@Classical

Orthogonal Polynomials# ~Nauka, Moscow, 1976! ~in Rus-
sian!.

@44# The three relative scalar coordinatesr 32, r 31, and r 21 do not
change when the three-body system moves or rotates as a
whole, i.e., these coordinates are invariant to the translation
and rotations of this system. This means that the translations of
the center of mass separate in these coordinates automatically.
In particular, we can suppose that the center of mass is at rest.

@45# D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,
Kvantovaya Teoriya Uglovogo Momenta@Quantum Theory of
Angular Momentum# ~Nauka, Moscow, 1975! ~in Russian!.

@46# A.M. Frolov and V.H. Smith, Jr., J. Phys. B28, L449 ~1995!.

3864 53ALEXEI M. FROLOV AND VEDENE H. SMITH, JR.


