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The behavior of light clocks which undergo constant acceleration in flat space-time is considered. Time
dilation, the Doppler shift, and clock synchronization are shown to be different from that of comoving unac-
celerated clocks. These results are discussed in relation to the nature of time in accelerating systems.@S1050-
2947~96!01306-6#

PACS number~s!: 03.30.1p

I. INTRODUCTION

The time dilation of inertial clocks is a consequence of the
postulates of special relativity. This is a property of space
time and therefore not dependent on any particular clock
mechanism. In general, the period of an accelerating clockis
dependent on acceleration. This is a result of the influence
that acceleration has on the clock dynamics and is perhaps
best illustrated using a pendulum clock.

Nevertheless, it seems reasonable to assume that a unique
underlying structure of time exists for accelerating systems,
independent of these dynamical effects. The standard as-
sumption about this nature of time is that it is unaffected by
acceleration@1#. In other words, the rate at which an accel-
erated clock ticks is equal to that of a comoving unacceler-
ated clock. This assumption, which is in addition to those of
special relativity, is denoted ACP for the accelerated-clock
principle @2#.

As an example of the consequences of the ACP, consider
a grid of spatially separated clocks which is synchronized in
an inertial frameS and is then accelerated into another iner-
tial frame S8, while the clocks maintain their distance of
separation in frameS. The ACP predicts that these clocks
are no longer synchronized inS8 although they remain syn-
chronized to an observer inS @3#.

Alternate clock hypotheses and their effects are discussed
by Mainwaring and Stedman@2#. However their discussion is
limited to a comparison of the infinitesimal time interval of
an accelerating clock with the corresponding infinitesimal
time interval of a comoving inertial clock. Effects which are
either quadratic in these time intervals or depend on the size
of the clock are overlooked when only infinitesimal time
intervals are considered.

A fundamental limit on the ACP is described by Mash-
hoon @4#. He argues that deviations from the predictions of
the ACP will be manifest for length and time scales which
are comparable to the acceleration scale of the observer.

The purpose of this work is to consider a time structure
different from that given by the ACP. If this is to be clock
independent then a study of clock dynamics will most likely
not be fruitful in formulating a new hypothesis. Similarly, in
any experimental verification of this structure, the effect that
acceleration has on the dynamics of a particular clock
mechanism must either be negligible or neutralized.

As an example, consider a clock made from a mass and
spring. As the spring is stretched by the acceleration, the

nonlinearities in the spring constant will effect the period.
Such effects, which are not uniform even among similar
clocks, will have to be calibrated and removed from the con-
sideration of the structure of time.

Note, however, that in describing the behavior of clocks
in special relativity no recourse is made to dynamics. The
nature of time is found using a light clock, which is kine-
matic in nature and relies directly on the postulates of the
theory for its mechanism.

In a similar manner, a study of an accelerating light clock
could yield the structure of time in accelerating systems.
Here, this assumption will be applied separately to linear and
circular motion.

Before embarking on this program it is worth considering
how the results of the calculation can be confirmed experi-
mentally. The justification for time dilation comes from a
comparison of the decay rates of stationary and moving par-
ticles. Also, the Doppler shift is used in Mo¨ssbauer spectros-
copy to compare the rates of nuclear clocks in both linear
and circular motion. Therefore both time dilation and the
Doppler shift need to be examined.

II. LINEAR MOTION

To facilitate the time dilation calculation, a simple model
of the light clock is chosen. In the inertial frame in which the
clock is initially at rest, denoted by the unprimed frame, the
clock consists of a source separated from a plane mirror by a
distanceL0 . An emitted pulse of light returns to the source
in a timeDT52L0 /c which results in one tick of the clock.

This light clock is then accelerated at a constant ratea
and acquires speedv, as seen in the unprimed frame. It is in
this frame that the properties of the light clock are deter-
mined. To facilitate the calculation,aL0 /c

2 andv/c are con-
sidered small and the period is calculated as a power series
expansion in these parameters.

A. Time dilation

1. Vertical light clock

This clock is now accelerated in a direction perpendicular
to the light ray of the inertial light clock described above.
Such a clock is called a vertical light clock. In addition, a
spherical light pulse is sent from the source to the mirror so
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that some fraction of the emitted pulse returns to the source,
which is displaced from its original position due to the ac-
celeration.

The relation between the periodDT as seen in this inertial
frame and the proper periodDT8 of the accelerating clock is
derived closely following the standard time dilation calcula-
tion of a light clock in special relativity@5#.

In this derivation it is assumed that the angle of incidence
is equal to the angle of reflection for a ray of light which
reflects from a mirror which is accelerating in a direction
tangential to its surface. Such a result is true for a mirror
which moves at an arbitrary but constant speed tangentially
to its surface@6#. Experimental verification of this assump-
tion to orderv2/c2, under conditions of centripetal accelera-
tion of magnitude 43103 m/sec2, has been obtained@7#.

Consider now the case where the accelerating clock has
no initial velocity. That is, att50 a pulse is emitted and the
initial speed of the clock is zero. The trajectory of the ray
which is emitted from and received by the source is triangu-
lar in nature, the hypotenuse of which has a base of length
a(DT)2/4, and a heightL0 . The equation which determines
the transit time is then given by

cDT52$@a~DT!2/4#21L0
2%1/2. ~1!

Changing to the dimensionless parameterw5cDT/2L0 , us-
ing a power series expansion in the parametera2L0

2/c4, and
then rewriting the result in terms ofDT yields

DT5
2L0
c F11

a2L0
2

2c4
1 •••G . ~2!

In this calculation the constraint 2aL0 /c
2,1 is needed in

order to obtain a real value forDT.
In the following calculations only terms up to those pro-

portional toc23 will be maintained. To this approximation,
the timeDT, observed in the instantaneously comoving in-
ertial frame of the accelerating clock is the same as that
measured in the rest frame of the unaccelerated clock. This
period is assumed to be the time registered by the accelerat-
ing clock DT8. Such a result appears to be consistent with
the ACP. However this is deceiving since the period of an
accelerating clock, as viewed from the unprimed frame, does
not agree with the predictions of the ACP when the clock has
an initial velocity, as is now discussed.

Next, consider these events of emission and reception of
the pulse in the unprimed frame, when the clock has an in-
stantaneous initial velocityv. Again the trajectory of the ray
which is emitted from and received by the source is triangu-
lar in nature. However now the hypotenuse has a base of
lengthvDT/21a(DT)2/4 while the height is againL0 . The
equation which determines the transit time is then given by,

cDT52$@vDT/21a~DT!2/4#21L0
2%1/2. ~3!

Again, changing to the dimensionless parameter
w5cDT/2L0 , using a power series expansion in the param-
etersaL0 /c

2 and v/c, and rewriting the result in terms of
DT yields

DT'DT8F11
avDT8

2c2
1

v2

2c2G , ~4!

whereDT852L0 /c. As before, only terms up toc23 have
been maintained.

2. Horizontal light clock

A horizontal light clock is one in which the acceleration is
in a direction parallel to the light ray of the inertial light
clock described above. The round trip transit time for this
configuration is now calculated assuming an initial velocity
v ~the case with zero initial velocity is given by this result
with v50).

The relevant assumptions, approximations, and definitions
of the previous subsection are maintained. However in this
case an additional assumption, about the separation of the
source and mirror, is needed. There are two prominent
choices: the proper separation of these clock components is
maintained during acceleration or their separation in the in-
ertial frameS is maintained. Only the former choice is con-
sidered here.

In frameS, acceleration of the light clock, in which the
proper length between the components is maintained, re-
quires that the acceleration be different for the source and
mirror by a factor ofa/(12aL0 /c

2), whereL0 is the proper
distance between the components@8#. However, since it is
assumed thataL0 /c

2 is small, the correction due to the spa-
tial dependence of the acceleration is of higher order in the
power series expansion for the period and is neglected. In
this approximation, the acceleration of both components ap-
pears to be the same in frameS.

There is also a conceptual problem in defining proper
length for an object accelerating in this manner@9#. Simul-
taneously in frameS, different parts of the accelerating ob-
ject move at different speeds. This issue will be dealt with by
approximating the length of the accelerating object with that
of a comoving but unaccelerated object.

Let the constant acceleration vector point in the direction
from the source to the mirror. The transit time of the pulse
from the source to the mirrorTout is then given by

cTout'L0~12v2/c2!1/21vTout1
a~Tout!

2

2
. ~5!

The return transit timeTreturn is given by

L0@12~v1aTout!
2/c2#1/22cTreturn

'~v1aTout!Treturn1
a~Treturn!

2

2
. ~6!

Changing to the dimensionless parameterswout
5cTout/2L0 andwreturn5cTreturn/2L0 in the appropriate equa-
tions above, using a power series expansion in the param-
etersaL0 /c

2 andv/c, and then rewriting the result in terms
of Tout andTreturn yields

DT5Tout1Treturn'DT8F12
aL0
2c2

1
3avDT8

4c2
1

v2

2c2G ,
~7!
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whereDT852L0 /c, is the period registered in the frame of
the accelerating vertical clock. Note that the periods of the
horizontal and vertical light clocks differ, in the instanta-
neously comoving inertial frame (v50), by the term propor-
tional toaL0/2c

2.

B. Doppler shift

Next, consider the Doppler shift, which will be calculated
following the standard derivation used in special relativity
@10#. However, in the case to be studied here, an electromag-
netic wave is emitted by an accelerating source.

Let the source accelerate either directly toward or away
from the receiver which is in an inertial frame. The source
and receiver are fixed with respect to the coordinate axes in
the primed and unprimed frames, respectively. Consider the
wavelength of an electromagnetic wave emitted by the
source, as seen in the unprimed frame. Also, in this frame let
the source emit a wavecrest at timeT1 and then emit the next
wavecrest at timeT2 , whereDT5T22T1 .

The wavelength is then determined as follows:cDT is the
distance a wavecrest moves whilevDT1a(DT)2/2 is the
distance the source moves before the next wavecrest is emit-
ted. The wavelength is thenl5(c7v7aDT/2)DT, where
the minus and plus signs correspond to the source approach-
ing or receding from the receiver, respectively.

Now DT is not the period of the wave as seen in the
inertial frame. It is the period of the accelerating clock as
seen in the inertial frame. For motion at constant speed the
period of the moving clock is related to its rest or proper
period via the time dilation formula.

Although it is not a harmonic wave, a given wavecrest of
this wave propagates at the phase velocity in a vacuum due
to the dispersion relationv5ck, wherek52p/l. To main-
tain this relation, the frequency receivedn for the wave
whose wavelength is defined above must obeyn5c/l or

n5
1

17v/c7aDT/2c

1

DT
. ~8!

The frequency of the clock in the primed frame is given
by n051/DT8, whereDT8 is the time interval between emis-
sion of consecutive wavecrests in the primed frame. To de-
termine the Doppler effect a relation between the clock pe-
riods in the two framesDT8 andDT is needed. The ACP
yields the relationDT5DT8g, whereg5@12(v/c)2#21/2,
while this relation for a light clock is given by Eq.~4!.

Consider first the Doppler shift using the ACP. Inserting
DT5DT8g and n051/DT8 into Eq. ~8! and expanding to
terms proportional toc22 yields

n'n0F16
v
c

1
v2

2c2G1
a

2c F711
2v
c

1
a

2n0c
G , ~9!

where the minus and plus signs correspond to the source
receding or approaching the receiver, respectively.

Next consider the Doppler shift using the result for the
accelerating vertical light clock. Insertion of Eq.~4! with the
substitutionn051/DT8 into Eq. ~8! and expanding to terms
proportional toc22 yields

n'n0F16
v
c

1
v2

2c2G1
a

2c F711
v
c

1
a

2n0c
G . ~10!

The first bracketed term in the two previous equations is the
Doppler shift given in special relativity while two of the
remaining terms are independent of both the frequency and
the size of the clock.

Note that in the Doppler relations the instantaneous veloc-
ity of the source isv5at. The receiver will measure a
wavecrest which is delayed by the transit time between the
source and receiver. The finite speed of propagation of the
wavecrest is accounted for by using the retarded time
t r5t2x/c in the expression for the instantaneous velocity.

C. Spatially separated clocks

The synchronization of spatially separated inertial clocks
is frame dependent. It is therefore of interest to study this
synchronization issue for accelerating light clocks.

Again, a simple clock model is chosen in which three
clocks, aligned in a linear array, are at rest in an inertial
frameS and then accelerate into another inertial frameS8.
The acceleration vector is in the direction parallel to the line
connecting the clocks. Initially, each clock is separated from
the next one by a distanceH. The master clock, located in
the middle, generates timing light pulses for the other clocks.
That is, reception of a light pulse from the master clock
triggers the generation of the light pulse which is then used
in the clock mechanism as described above.

Again there are two prominent choices for the accelera-
tion: the proper separation of the clocks is maintained during
acceleration or their separation in the inertial frameS is
maintained. The latter choice will be dealt with first.

Consider the clock behavior as seen from frameS, where
the clocks maintain their separation distanceH. After having
received a few pulses from the master clock, the clocks ac-
celerate simultaneously in frameS. Upon acquiring speed
they are no longer synchronized in frameS, since the trailing
clock receives a given pulse from the master clock before the
leading clock. After the acceleration has terminated, their
lack of synchronization in frameS is just that given in spe-
cial relativity by spatially separated clocks which are syn-
chronized in frameS8.

To better illustrate this, let the master clock emit a total of
N pulses. Also, once the clocks reach frameS8, let the time
spent there be long compared with the transit time of a pulse
from the master clock to the other clocks, before theNth
pulse is emitted.

Consider the time registered by each clock just before
receiving theNth pulse from the master clock. The trailing
and leading clocks have both registeredN21 ticks. How-
ever, the trailing clock receives theNth pulse before the
leading clock, as seen in frameS. In frameS8, on the other
hand, theNth pulse is received simultaneously by the front
and rear clocks and therefore, in this frame the clocks remain
synchronized.

In this discussion it has been assumed that, although their
separation in frameS8 is no longerH, the two end clocks
remain equidistant from the center clock. This is consistent
with the interpretation given in special relativity of the initial
and final clock configurations@11#.
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The same procedure can be carried out under the assump-
tion that the clocks maintain their proper separation during
the acceleration. However, the conclusion that the clocks
preserve their synchronization in frameS8, does not change.

III. CIRCULAR MOTION

Now consider a light clock which follows a circular tra-
jectory of radiusR with constant angular velocity. A clock
comparison is made with an identical clock in an inertial
frame at the center of the circle.

As an operational scheme for such a comparison, let a
spherical electromagnetic wave be emitted from the inertial
clock. The period of this wave is determined by the period of
the inertial clock. The issue to be addressed is how the pe-
riod of this wave compares with that of the period of the
rotating clock. If the periods coincide then, for an atomic or
nuclear clock, this result manifests itself in the absorption of
the electromagnetic wave. Since absorption is frame inde-
pendent the result does not depend on which frame the cal-
culation is performed in.

The clock comparison is now made in the frame of the
inertial clock. Let the light clocks be constructed as de-
scribed above. The period of the inertial clock is
DT52L0 /c. To calculate the period of the rotating clock a
spatial orientation for the rotating light clock must be cho-
sen. Let the source be a distanceR away from the axis of
rotation and the mirror be aligned along a line extending
from the center of the circle to the source, a distance
R2L0 away from the center of the circle, as shown in Fig. 1.

Consider consecutive spherical pulses emitted from the
inertial clock at the center of the circle. When the first pulse
reaches the source in the rotating clock, the rotating clock
emits its clock pulse which reflects from the mirror and re-
turns to the source. The next pulse from the inertial clock
arrives at the source in a timeDT52L0 /c. The time of
arrival of the pulse which was emitted from the rotating
clock back to the source is now shown to be different from
that of the arrival time of the second pulse from the inertial
clock.

However, an issue arises with regard to the angle of re-
flection of a light ray from the rotating mirror. By consider-
ing this mirror to be a transponder which emits a spherical
pulse upon reception of a pulse, the detailed knowledge of
the reflection mechanism can be avoided.

The periodDTrot of the rotating clock, as seen in the
inertial frame, is determined using Fig. 1. During the time
DTrot the source travels an arc lengthvDT rot5Ru. How-
ever, the light pulse travels a distance 2x, wherex is given
by

x25~R2L0!
21R222R~R2L0!cos~u/2!. ~11!

In the timeDTrot this pulse travels a distance 2x. Using this
relation to eliminatex from Eq. ~11! and using the above
relation foru in terms ofDTrot yields a nonlinear equation in
DTrot . This can be reduced to a quadratic equation with the
approximation thatv/c!1. The solution of this equation is

DTrot'DTF11
v2

2c2
2
aL0
2c2G , ~12!

where the centripetal acceleration is given bya5v2/R.
The first two terms of this result correspond to the trans-

verse Doppler shift. Note that the final term does depend on
the dimensions of the clock.

IV. EXPERIMENTAL VERIFICATION

Experimental consequences of the above predictions fall
easily into two types. One involves the decay rate for moving
particles while the other encompasses Doppler shift measure-
ments.

Consider the experimental evidence with regard to the
predictions of Sec. II B. Here the largest modification to the
standard Doppler shift is given bya/2c. In Mössbauer ex-
periments, the frequency of the clock is typically 431018 Hz
with a half maximum full resonance width of about 33106

Hz. In most applications of this technique, any observable
frequency shift is a small fraction, typically 1/200, of the
resonance width. This requires a linear acceleration greater
than 1013 m/s2 to detect this new term.

Commercial devices can have accelerations of the order
10 m/s2 @12#. Lattice vibrations on the other hand generate
periodic motion of the nuclear clock with accelerations of
order 1017m/sec2. However, since the lifetime of the excited
state in this case is long compared with the period of oscil-
lation, effects linear in velocity and acceleration cancel@13#.

A more promising technique is that used by Vessotet al.
@14# in which an atomic clock on the surface of the earth is
compared with one in free fall. The maser clock frequency is
of the order 109 Hz with a bandwidth of the order 1 Hz@15#.
The precision of the experiment allows a measurement of a
frequency shiftDn/n'2310215. The modified term in the
Doppler shift accounts for a shiftDn/n5a/(2cn)'10217.

However, since such an experiment is done in curved
space time, any extrapolation of the results to flat space time
requires additional assumptions. Nevertheless, the advantage

FIG. 1. A light clock moving in a circle as viewed from an
inertial frame. The trajectory of the pulse of light is shown by the
arrows.
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of using a smaller clock frequency to detect this term is
apparent.

The second type of experiment involves particle decay. In
a linearly accelerating system this has not, to my knowledge,
been directly tested. However, consider the time dilation of
muons as they fall toward the earth. Again, additional as-
sumptions are necessary to apply the flat space-time result of
Eq. ~4! to the curved space time of this example. Indepen-
dent of such assumptions, the precision of experiments
which measure this muon decay is still insufficient to verify
the acceleration dependent term in Eq.~4!.

Next consider the predictions of Eq.~12! for circular mo-
tion. TheaL0/2c

2 term depends on the interpretation given
to L0 . For an atomic or nuclear clock, letL0 be of order the
size of the atom or nucleus.

The transverse Doppler shift has been measured@16# for
circular motion using the Mo¨ssbauer effect to a precision of
431022 for b5v/c'1026. The aL0/2c

2 term, however,
contributes an effect given byb2L0 /R'10228.

Time dilation has been measured for muons in a circular
orbit @17# to a precision of 231023. Here, theaL0/2c

2 term
contributes an effect given approximately byL0 /R'10216.

Therefore the available experimental evidence is insuffi-
cient to rule out the acceleration dependent terms in Eqs.~4!,
~9!, ~10!, and~12!.

V. DISCUSSION

It is interesting to note the similarities between the results
obtained in the above calculations and related work on ac-
celerating systems. Thea/c anda2/(n0c

2) terms in the Dop-
pler shift, given in Eqs.~9! and ~10!, are a consequence of
both the ACP and the light-clock model. Terms proportional
to these have been calculated for the frequency of a light
wave as seen by an acceleratingreceiverusing the ACP@18#.

However, it should be pointed out that this shift, for light
reflecting from an accelerating mirror, is an issue different
from that of the Doppler shift discussed above. The former
frequency shift is determined by the transit time of a
wavecrest to and from the moving mirror@19#.

Also, in calculating the period of the accelerating light
clock, the constraint 2aL0 /c

2,1 is necessary to obtain a
real value forDT @see Eq.~2!#. It is interesting to note that
the proper length of an accelerating rod is limited by a simi-
lar constraint@20#. This constraint limits the period of the
clock, given byDT'2L0 /c, to DT,c/a.

The focus of this work has been on the effect of accelera-
tion on light clocks. In special relativity such a study is fun-

damental to the theory. Light clocks, which are kinematic in
nature, predict a time structure in which all clocks, indepen-
dent of mechanism, exhibit time dilation.

Yet this connection is severed in the ACP. The kinematic
consequences described here for light clocks are not those
allowed for a clock in the ACP. If clocks, governed by dy-
namics such as atomic and nuclear clocks, do obey the ACP
then there must be at least two times: dynamic and kinematic
~or light-clock! time.

However since the period of the vertical light clock, given
in Eq. ~4!, differs from that predicted by the ACP in the term
which is quadratic in the period, one might argue that by
choosing a light clock whose size is arbitrarily small, the
results of the ACP can be reproduced.

Nevertheless, using the above approximations, two ef-
fects, which differ from the predictions of the ACP, remain.
First, the Doppler shift in Eq.~10! has a term in it,av/2c2,
which is different from the corresponding term in the Dop-
pler shift prediction of the ACP, given in Eq.~9!, by a factor
of 1/2. This term is independent of clock size. Second, the
ACP predicts that spatially separated clocks, synchronized in
one inertial frame, do not remain synchronized when they
are accelerated into a new inertial frame. It was shown in
Sec. II C that spatially separated light clocks, which are syn-
chronized in one inertial frame, maintain their synchroniza-
tion after accelerating into another inertial frame. The con-
sequences of this result have been considered before@21#.

The spatial extent of the light clock, whose acceleration is
along the direction of the light ray, also influences the rate at
which it ticks. This is true for both for the horizontal light
clock @see Eq.~7!# and the light clock in circular motion@see
Eq. ~12!#. Although a small clock~e.g., nuclear! can again be
chosen so that these effects are negligible, the implication is
that a clock of larger size~e.g., biological! would age at a
different rate. This also contradicts the ACP, which predicts
that the clock rate is independent of the clock size. These
results then cast doubt on the original premise of this work
which was that the study of light clocks would lead to a
unique structure of time in accelerating systems.

The relationship between kinematics and dynamics in ac-
celerating systems will be resolved only when predictions,
such as those above, are tested with clocks whose mecha-
nism is determined by dynamics~with the stipulation given
in the introduction regarding the effects of acceleration!.
Such experiments will influence both our understanding of
the nature of time in accelerating systems and of the theory
of general relativity via the equivalence principle.
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