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It is shown that an ideal beam splitter has a small probability of splitting a single photon into a pair of
secondary photons, conserving energy in the process. These nonlinear effects are a fundamental consequence
of the quantization of the field and are analogous to other nonlinear effects in QED, such as the scattering of
one photon by another.@S1050-2947~96!00706-8#

PACS number~s!: 42.50.Ct, 42.50.Ar, 03.65.Bz, 12.20.Fv

It is commonly assumed that a single photon incident
upon an ideal beam splitter must either be transmitted or
reflected@1#. It is shown here, however, that an ideal beam
splitter has a small probability of splitting a single photon
into a pair of secondary photons, conserving energy in the
process. These nonlinear effects are a fundamental conse-
quence of the quantization of the electromagnetic field and
are analogous to other nonlinear effects in QED, such as the
scattering of one photon by another. They are due to the
presence of theA2 term in the Hamiltonian and are not de-
pendent on any nonlinear properties of the material compris-
ing the beam splitter, unlike the situation in parametric
down-conversion@2–4#.

The origin of these effects can be most easily understood
by considering the case of a metallic beam splitter, which
will be analyzed in detail, after which some comments will
be made with regard to the analogous situation in dielectrics.
The valence electrons in a simple metal can be approximated
as free particles provided that their momenta are not too
large @5#. The low-frequency limit in which the photon mo-
menta are much smaller than the Fermi momentum of the
electrons~and the photon wavelengths are much larger than
the thickness of the beam splitter! will therefore be consid-
ered. Scattering and other sources of dissipation will be ig-
nored, in which case a metallic beam splitter can be modeled
as a large number of free electrons confined to a potential
well.

The beam splitter is assumed to have plane surfaces cor-
responding toz56a and to have infinite extent in thex and
y directions as illustrated in Fig. 1. Periodic boundary con-
ditions with period 2L will be applied in thex andy direc-
tions for the electrons and in thex, y, andz directions for the
photons. For simplicity, the initial photons will be assumed
to be incident on the beam splitter in thex-z plane at an
angle of 45°, with their polarizationê0 in the plane of inci-
dence as shown in the figure.

The Hamiltonian in the Coulomb gauge is given by
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as can be derived from the standard Lagrangian@6#. Here
index i labels the electrons in the beam splitter,ape

† creates
photons of wave vectorp and polarizationê, andA is the
quantized vector potential operator. The scalar potentialF

plays no role in the effects of interest here and can be ig-
nored. Treating the interaction between the field and the
electrons as a small perturbation gives the interaction Hamil-
tonian
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Lowest-order perturbation theory can be used if the beam
splitter is sufficiently thin that most of the photons are sim-
ply transmitted. In that case the total rateG2 at which the
two-photon splitting occurs is given by the usual second-
order perturbation theory
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whereum& andun& represent the intermediate and final states.
Diagram I of Fig. 2 corresponds to the absorption of an

incident photon with wave vectorp0 by the j–A term inH8,
after which a pair of photons with wave vectorsp1 andp2 are
emitted via theA2 term. The other five diagrams correspond
to equivalent processes leading to the same final state. Since
we want to consider the limit in which the properties of the
medium do not play a significant role, it will be assumed that
DE5E02Em is dominated by the energies of the photons
rather than that of the electrons; this is an excellent approxi-
mation for a metallic beam splitter, for example, where the
recoil energy due to the absorption of a photon is relatively
small. In that case

FIG. 1. Splitting of an incident photon by a thin metallic beam
splitter.
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where the subscripts I and II refer to the first two diagrams of
Fig. 2. The minus sign in Eq.~4! is essential to prevent
cancellation between diagrams I and II, since it will be found
that their matrix elements are equal in magnitude but oppo-
site in sign. Similar comments apply to the other pairs of
time-reversed diagrams in Fig. 2.

The boundary conditions atz56a quantize thez com-
ponent of the electron momenta, so that the distribution of
occupied electron states~in the limit of low temperature!
consists of a series of parallel, circular disks inside the Fermi
surface in momentum space as illustrated in Fig. 3. The in-
finite extent of the beam splitter in thex and y directions
ensures that momentum is conserved in those directions,

whereas it need not be conserved in thez direction. The
initial stateu0& can be written in the form@7#

u0&5 )
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Ck6up0 ,ê0&, ~5!

where

Ck15cne
ikxxeikyycosF ~n21/2!pz

a G ,
Ck25cne

ikxxeikyysinFnpz

a G ~6!

represent the solutions with even and odd parity inz. Heren
is a positive integer andcn is a normalization constant. An-
tisymmetrization of the wave function has no effect on the
results and can be ignored.

Because of the boundary conditions, it is necessary to
separate the gradient operator into two components parallel
and perpendicular to thez direction:

“5“z1“' . ~7!

First consider only the contribution of operator“z to dia-
gram I, in which the incident photon is absorbed via thej–A
term. Thez dependence of“z can induce transitions from a
C6 state to a higher-energy state of the opposite parity, as
required for an allowed dipole transition. This can only oc-
cur, however, if the higher-energy state is unoccupied as il-
lustrated by the upward arrow in Fig. 3.

The intermediate states in this case have the form

um&5Ck2 )kÞk1

Cku0&, ~8!

wherek1 andk2 are the initial and intermediate momenta of
an electron, respectively. The final state is then
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where the polarizationsê1 and ê2 of photons 1 and 2 need
not lie in the plane of incidence. The final electronic state
must be the same as the initial state in order to maintain
coherence; the probability of such events is greatly enhanced
by the fact that all of the electrons in the beam splitter can
then contribute coherently to the same final state.

It is then necessary to expand the momentum dependence
of theA2 term to first order in evaluating the matrix elements
from the intermediate to final state:

e2 i ~p1z1p2z!z512 i ~p1z1p2z!z1••• . ~10!

The constant term in this expansion cannot contribute to the
matrix element between two different states, so that the
lowest-order contribution is proportional topfz5p1z1p2z.
The product of the matrix elements can then be shown to be
proportional to

FIG. 2. Simplified diagrams for six processes leading to the
same final state. The absorption of a photon is represented by a
dashed line while emission is represented by a solid line. TheA2

term is responsible for the two-photon events while thej–A term
produces the single-photon events.

FIG. 3. Transitions from occupied to unoccupied energy levels
in momentum space as produced by the two components of the
gradient operator.
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where f L is a strongly peaked function~sinc function! in the
limit of largeL. Most of the contribution comes fromdn50,
wheredn5n22n1 andn1 andn2 are the values ofn for the
initial and intermediate states. Larger values ofdn will be
neglected, which limits the initial states to those near the
circumference of the disks in momentum space. The product
of the matrix elements for diagram II can be shown to be the
same as those of diagram I except for a minus sign, as men-
tioned above.

Now consider the contribution to diagram I from the op-
erator“' . This is limited to those states withinp0 of an edge
of a disk in momentum space, since the recoil from the ab-
sorption of a photon must carry the system from an occupied
to an unoccupied state as illustrated by the horizontal arrow
in Fig. 3. The matrix element from the initial state to the final
state is now proportional to the initial electron momentum
k1' perpendicular to thez axis. This reverses sign for dia-
gram II, since the recoil momentum will then be effective
only on the other side of the disk wherek1' has the opposite
sign. This sign reversal also cancels the change in sign ofDE
in Eq. ~4!, so that diagrams I and II once again interfere
constructively. The product of the matrix elements is similar
to that from the“z term, except thate0z(p1z1p2z) is re-
placed bye0xp0x.

The total two-photon transition rateG2 can be found by
integrating Eq.~3! over all possible final states of the two
secondary photons, which can be most easily accomplished
using a spherical coordinate system centered about
pf5p11p2 as illustrated in Fig. 4. The independent variables
are then the anglesu8 and f8, the length ofp1, and the

displacementDpz of pf from p0. Including the contributions
from all six diagrams gives the total probabilityP2 of a
two-photon event:
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HerecI is a dimensionless integral defined by
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while kF is the electron wave vector at the Fermi surface,lc
is the Compton wavelength of the electron, anda is the fine
structure constant. All of the photon wave vectors in Eq.~13!
are normalized to the magnitude ofp0.

The integral in Eq.~13! can be evaluated numerically us-
ing the Monte Carlo technique, which gives an approximate
value ofcI523.4. This is also a convenient way to include
experimental factors such as the limited solid angle sub-
tended by a pair of detectors. A silver beam splitter
~kF51.1931010/m! with a thickness of 10 nm givesP2
53310214.

The rateG1 at which photons polarized perpendicular to
the plane of incidence are simply reflected by the beam split-
ter in the usual way can also be calculated using the same
assumptions. In that case theA2 term annihilates an incident
photon and immediately emits a photon of the same fre-
quency into another direction. The results of that calculation
are in reasonable agreement with the experimentally ob-
served reflectivity of thin metallic films. The ratioR of the
number of photons that are split to the number that are sim-
ply reflected is given by

R5
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wherel0 is the wavelength of the incident photons. It can be
seen thatR is independent of the properties of the beam
splitter, including its thickness, for the conditions considered
here.R50.96310213 at a typical laser wavelength of 351
nm.

Although the probability of splitting a photon is relatively
small, coincidence measurements at low incident intensities

FIG. 4. Spherical coordinate system used to sum over the final
photon states.
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can minimize the accidental rate from fluorescence and other
effects. Counting rates on the order of one event per hour
should be achievable in experiments of this kind. This esti-
mate is based on Monte Carlo calculations corresponding to
an incident laser intensity of 2 mW with solid angles, detec-
tion efficiencies, and other experimental conditions typical of
those commonly used in two-photon correlation experiments.
The dark counting rates~noise! of commercially available
detectors are sufficiently low that there should be no diffi-
culty in observing such an effect using coincidence time win-
dows on the order of 100 ps, which are readily achievable.

The predicted spectrum of the secondary photons is
shown in Fig. 5 and is also independent of the properties of
the beam splitter. Two peaks corresponding to stationary
~saddle! points occur at photon energies ofE5\v0/ @4~161/
&!#.

Although momentum is not conserved in thez direction,
energy conservation still restricts the final momentum to the
specular direction for the case of single photons reflected in
the usual way~G1!. That does not occur, however, in the
two-photon case~G2!, where the additional degrees of free-
dom in the final momenta allow the secondary photons to be
emitted into all directions. Thus there is no phase-matching
condition analogous to that of parametric down-conversion.

The free-electron model used here is not suitable for di-
electric materials, where the~j•A!2 term can no longer be
neglected and tends to cancel theA2 term; this reflects the
fact that the electrons in a dielectric are bound and have a
more limited response to an external electric field. In the
limit of bound electrons, one is led instead to the conven-
tional theory@2# of parametric down-conversion in nonlinear
crystals, which is based on third-order perturbation theory
involving three allowed~dipole! transitions between bound
states. Since there are then three atomic states involved, at
least one of the transitions would have to be a ‘‘forbidden’’
transition between two states of the same parity if all of the

states had well-defined parity; this can be avoided only if
parity is destroyed by an asymmetry of the crystal lattice. In
addition, the factor of 1/DE can be enhanced if one or more
of the virtual states is near a resonance. Thus the usual non-
linear properties of such a material are dependent upon its
asymmetries and energy levels, unlike the situation consid-
ered here. It should be noted that second and third harmonic
generation at the surfaces of nonlinear materials have been
extensively investigated@8#.

Although the effects described here and parametric down-
conversion correspond to the opposite limits of free vice
bound electrons, there is an obvious similarity between the
two and they both produce correlated pairs of photons. The
main point of this paper is that nonlinear effects of this kind
are unavoidable when the field is quantized and that they
need not rely on any inherently nonlinear properties of the
material, as illustrated by Eq.~14!.

The nonclassical nature of the photon splitting is evident
from the fact that the corresponding classical model of free
electrons in a metal would only lead to Ohm’s law@9#, which
is strictly linear and cannot produce any subharmonics. The
essential difference between classical theories and the quan-
tum theory can be better understood by considering a classi-
cal theory involving a nonlinear~anharmonic! potentialU(x)
of the form

U~x!5c2x
21c3x

31••• , ~15!

wherec2 andc3 are arbitrary coefficients. The origin of such
a nonlinearity is not relevant here, but could involve the
Coulomb interaction between the electrons associated with
cooperative phenomena such as plasmons, for example. Re-
gardless of their origin, the nonlinear terms become negligi-
bly small in the limit of small displacements about the equi-
librium point, which will be the case if the external driving
field is sufficiently weak. In contrast, Eq.~14! shows that the
relative magnitude of the nonlinear quantum effects depends
only on the wavelength of the incident light and not its in-
tensity. It is interesting to note that a similar dependence on
the incident wavelength instead of the classically expected
intensity also occurs in the photoelectric effect, which led to
Einstein’s work on the nature of the photon. The fact that
nonlinear effects must vanish in the limit of low intensities in
the classical theory but not in the quantum theory is a re-
markable difference between the two theories, as has been
discussed previously@10#.

It is also interesting to note that noA2 term explicitly
appears in the Hamiltonian in a relativistic treatment of
QED. TheA2 term can be shown to arise in the nonrelativ-
istic limit of QED as a result of second-order processes cor-
responding to the creation and annihilation of virtual
electron-positron pairs. That is also the case for other non-
linear effects in QED, such as the scattering of one photon by
another@11#, and all of these nonlinear effects are a funda-
mental consequence of the quantization of the field.

The author is grateful to Jonathan Dowling, R. Vyas, and
S. Singh for their comments. This work was supported by the
Office of Naval Research.

FIG. 5. Spectrum of the secondary photons in arbitrary units.
E/\v0 is the energy of the photons normalized to that of the inci-
dent photon.
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