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The dynamic decoupling of the correlation function hierarchy under the general quadratic Hamiltonian is
exploited to extend the results obtained for coherent pumping and squeezing in Ref.@1#. Closedc-number
dynamic equations are given explicitly for three- and four-operator averages, for an arbitrary~pure or mixed!
initial state of the field. At this level an independentc-number constant of motion appears, related to two-
photon correlation properties of the initial state. Extension to higher correlation functions is straightforward.

PACS number~s!: 42.50.Dv, 42.65.Ky, 03.65.Bz

In a recent paper@1# we considered the dynamics associ-
ated with the general, time-dependent, quadratic Hamiltonian
(@a,a†#51, Schrödinger picture!

H~ t !5 f 1~ t !a
†a1 f 2~ t !a

†a†1 f 2* ~ t !aa1 f 3~ t !a
†1 f 3* ~ t !a

~1!

and used the fact that the class of observables referred to as
Gaussian observables~dynamical variables involving at most
two operatorsa, a†) is dynamically closed under this Hamil-
tonian in order to derive exact, closedc-number Hamiltonian
equations of motion for parameters which describe coherent
pumping and squeezing of arbitrary~pure or mixed! initial
states of the system. The coherent content of the state is
determined by the expectation value of the annihilation op-
eratora and driven by the linearf 3 terms of the Hamiltonian,
while squeezing effects, driven by the ‘‘two-photon’’f 2
terms, can be absorbed in a time-dependent change of scale
implemented by means of a Bogolyubov transformation
which mixesa anda†. Note thatf 1(t) is real so thatH(t) is
Hermitian. The procedure adopted in Ref.@1# thus makes use
of the special~in fact, Gaussian! character ofH(t) to avoid
having to obtain a complete solution of the full quantum
problem in order to determine the exact dynamics of the
restricted class of Gaussian observables. The crucial point is
that this dynamics is independent of correlation amplitudes
of higher order. This ‘‘self-truncation’’ of a Bogolynbov-
Born-Green-Kirkwood-Yvon hierarchy can be imediately
understood when one takes notice of the noninteracting char-
acter ofH(t), from a many-body~or field theoretical! point
of view. An additional byproduct of this fact is moreover the
existence of ac-number constant of motion in the time evo-
lution of the Gaussian observables. It is associated with the
eigenvalues of the extended one-body density matrix, reflect-
ing the possible incoherence and/or many-boson correlation
properties of the particular quantum state under consider-
ation, at the level of one-boson observables.

The literature available on the dynamics of the quantum
linear oscillator with time-dependent parameters is quite rich
and extensive@2–8#. This is a soluble quantum problem for
which solutions obtained within the context of several dis-
tinct formulations can now be found@3,5#. Interest in this
problem hinges to a large extent on its relation to a variety of
characteristically quantum phenomena of current theoretical

and experimental relevance, such as squeezing phenomena
@2,8# and quantum-mechanical phase problems@4,5#.

Even though a rather complete theoretical picture emerges
from such studies, the practical tools for dealing with the
kinetics of arbitrary initial states still appear as rather cum-
bersome in so far as they rely ultimately on the exact solu-
tion of the full quantum problem. The main purpose of this
paper is therefore to show that results similar to those of Ref.
@1# can be obtainedalso for higher correlation functions~i.e.,
depending on expectation values of three or more operators
a, a†) associated with arbitrary initial states. The complete
solution of the full quantum problem is again avoided. As a
result of the noninteracting character ofH(t), one obtains
closed sets ofc-number differential equations for parameters
which completely describe functions pertaining to succesive
correlation levels. From the lower two levels the results of
@1# are recovered. Additionalc-number constants of motion
appear within the higher correlation levels. They correspond
to invariant, irreducible, many-body correlation structures in
the time evolution of an arbitrary, given initial state.

A particular development, which in fact goes back to the
work of Lewis and Riesenfeld@6# but has been actively pur-
sued in recent years@7,8# and is of relevance in the present
context, concerns the existence and the role played by the
so-calledinvariant operators, and their relation to coherent
states and squeezing@8#. It is worth stressing that the hierar-
chical constants of motion appearing in the present approach
arec-number objects whose value is in each case determined
by specific many-body correlation propertiesof the adopted
initial state. While their existence may be ultimately traced
to invariant operators ofH(t), their irreducibility is ~and
remains! a property of the quantum state under consider-
ation. Thus, while, e.g., one can express general invariant
operators in terms of a small number ofbasic invariants
~two, in the present case of a one-dimensional system! @8#,
no corresponding limitation applies to the number of inde-
pendent, nontrivialc-number constants of motion present in
the time evolution of a fully general initial state.

The simplest way to derive the equations of motion is to
switch to the Heisemberg picture through the unitary evolu-
tion operator~we use units in which\51)

U~ t,0!5T exp2 i E
0

t

dt8H~ t8!, ~2!
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whereT exp denotes a time-ordered exponential. The state
representative is now time independent and will be taken
with full generality as a density operatorF describing the
initial state of the system. We are interested in mean values
of normal ordered products ofm creation andn annihilation
operators~now in the Heisenberg picture!,

Amn~ t ![Tr@„aH
† ~ t !…m„aH~ t !…nF#5Anm* ~ t !. ~3!

Note that while theAmn(t) are in general complex numbers,
the ‘‘diagonal’’ mean valuesAnn are real. The time depen-
dence of these objects is readily obtained from the Heisem-
berg equations of motion. It is determined by the first-order
equations,

dAmn~ t !

dt
5 i Tr$@HH~ t !,„aH

† ~ t !…m„aH~ t !…n#F%. ~4!

In the above expression,HH(t) is the Hamiltonian~1! writ-
ten in terms of the Heisemberg picture operators
aH(t),aH

† (t). Due to the special form of this Hamiltonian,
the commutator which appears in~4! can be expressed in
normal ordered form as a sum of terms each of which in-
volves at mostm1n creation-annihilation operators, so that
the time derivative ofAmn(t) appears as a function of
Apq(t) with p1q<m1n. Taking into account the real char-
acter of Ann , this gives a total number of (m1n)211
coupled first-order equations in order to fully determine the
kinetics ofAmn(t).

This general situation will now be first confronted with
that of Ref.@1#, where one has two independent pairs of real
first-order equations, in addition to a constant of motion, in
order to deal with the casep1q<2. Equation~4! gives, in
this case,

dA01
dt

52 i @ f 1A0112 f 2A101 f 3#,

dA02
dt

522i @ f 1A021 f 2~2A1111!1 f 3A01#,

dA11
dt

5 i @2 f 2*A0222 f 2A201 f 3*A012 f 3A10#. ~5!

The first of these equations describes in closed form the time
development of the usual field quadratures, proportional to
A016A10. They lead directly to Eqs.~14! of Ref. @1# when
one takes the quadratures themselves as~canonical! variables
@9#. Furthermore, if we define the shifted creation-
annihilation operatorsb,b† as

b5aH2A01; b†5aH
† 2A10, ~6!

the remaining two equations~5! lead to

i
dB02
dt

52@ f 1~ t !B021 f 2~ t !~2B1111!#,

i
dB11
dt

52@ f 2~ t !B02* 2 f 2* ~ t !B02#, ~7!

whereBpq are objects analogous toApq with the operators
aH ,aH

† replaced byb,b†, see Eq.~6!. These equations can
now be integrated independently of the field quadratures, and
it is easy to verify that they support a constant of motion
C2 given by

C25~B111
1
2 !22uB02u2[~n1 1

2 !2, ~8!

wheren corresponds to the constant defined in Ref.@1#. Full
contact with the results of this reference can be achieved by
introducing the real variables

Q5AB111
1
21ReB02,

P5
ImB02

AB111
1
21ReB02

. ~9!

As shown in@1#, Q corresponds to the mean-square devia-
tion of the quadrature (A101A01)/A2. Rewriting Eqs.~7! in
terms ofQ andP, and taking the constant of motionC2 into
account, one obtains Eqs.~17! of Ref. @1#, which are the
canonical equations of thec-number effective Hamiltonian

h25
1
2 @ f 1~ t !22 Ref 2~ t !#P

21 1
2 @ f 1~ t !12 Ref 2~ t !#Q

2

1@ f 1~ t !22 Ref 2~ t !#
~2n11!2

8Q2 12 Imf 2~ t !PQ.

~10!

Extending the use of Eq.~4! to higher correlation func-
tions is, of course, straightforward. The kinetics of mean
values of three operators~i.e., p1q53) requires eventually
the consideration of a closed set of two complex~four real!
equations involvingB03 andB12, which can be written in the
form

i
dB03
dt

53@ f 1~ t !B0312 f 2~ t !B12#,

i
dB12*

dt
52@ f 1~ t !B12* 24 f 2* ~ t !B1212 f 2~ t !B03* #. ~11!

These equations follow from Eq.~4! using the definitions~6!.
Their canonical character can be made explicit by intoducing
the ~complex! variables

z2[
B03

A3
; w2[B12* ~12!

in terms of which Eqs.~11! can be obtained in the complex
canonical form@10#

i
dz2
dt

5
]h3
]z2*

; i
dw2

dt
5

]h3
]w2*

,

where the effectivec-number Hamiltonianh3 is

h35 f 1~ t !~3uz2u22uw2u2!13A3@ f 2~ t !w2* z2*1 f 2* ~ t !w2z2#

22@ f 2* ~ t !w2*
21 f 2~ t !w2

2#. ~13!
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The kinetics of four operator averages~i.e., p1q54) re-
quires two complex equations and one real additional equa-
tion ~or five additional real equations! which read

i
dB04
dt

54@ f 1~ t !B0412 f 2~ t !B1313 f 2~ t !B02#,

i
dB13*

dt
522 f 1~ t !B13* 12 f 2~ t !B04* 26 f 2~ t !* ~B221B11!,

i
dB22
dt

54 f 2~ t !B13* 12 f 2~ t !B02* 24 f 2* ~ t !B1322 f 2* ~ t !B02* .

~14!

Since they involveB02 and B11, these equations are not
closed, but must be supplemented by Eqs.~7!. The full set of
equations can, however, be simplified through the introduc-
tion of variables which combine two- and four-operator av-
erages:

w4[B13* 1
3

2
B02* ; z4[

B04

2
; u4[SB22

2
1B111

1

4D .
Note thatz4 andw4 are complex, butu4 is real. In terms of
these variables, and using Eqs.~7!, Eqs. ~14! lead to the
closed set of equations,

i
dz4
dt

54@ f 1~ t !z41 f 2~ t !w4* #,

i
dw4

dt
522 f 1~ t !w414 f 2~ t !z4*212f 2* u4 ,

i
du4
dt

52@ f 2~ t !w42 f 2* ~ t !w4* #. ~15!

It is now easy to identify in these equations an additional
constant of motion involving up to four operator averages. It
is given by the expression@cf. Eq. ~8!#

C453u4
22uw4u21uz4u2. ~16!

This constant corresponds to a two-photon correlation prop-
erty which is invariant under the quadratic Hamiltonian~1!
for arbitrary f i(t). As was the case with Eqs.~7!, it can be
used to eliminate one real variable reducing Eqs.~15! to a set
of four real equations. The question whether they can be
obtained~after a suitable change of variables! as the canoni-
cal equations of some effectivec-number Hamiltonian is,
however, in this case considerably more involved and not
particularly relevant for our purposes. We therefore do not
consider this question here.

In order to illustrate the use of the present approach we
evaluate the time evolution of some typical two-photon cor-
relation functions for the example of the parametric oscilla-
tor treated in Ref.@1#. Expressing the correlation functions in
terms of the variables appearing in the differential equations
is a straightforward algebraic exercise. In the examples
below we take in Eq.~1! f 15 const 51 as the unit
of energy and use f 2(t)50.3 exp(20.7i t ) and
f 3(t)50.5 exp(20.7i t ). We choose this particular frequency

as it generates periodic solutions. Note that the coherent
pumping terms involvingf 3(t) do not appear in Eqs.~10!,
~11!, and~15!. These equations, together with the first equa-
tion in Eq. ~5!, are integrated numerically with standard
methods and with initial conditions appropriate to the
adopted initial state of the field. As an example of a mixed
initial state we use a thermal distribution of photons de-
scribed by the density operator

Fb5 (
n50

`

un&~12e2b!e2bn^nu,

where theun& ’s are the usual eigenvectors ofa†a ~Fock
states!, which gives

n5
e2b

12e2b , Q~0!5An1 1
2 ,

u4~0!5
2e2b2e22b

~12e2b!3
1
1

4

and zero for the initial values of the remaining variables.
Note thatFb is a Gaussian density in the sense of Ref.@1#.

Figure 1 shows a parametric plot, forb53, of the time
evolution of the variableQ against the so-called Fano factor,

F [
^~a†a!2&2^a†a&2

^a†a&
,

which serves to compare the quadratic number dispersion of
the current state with the Poissonian standard. The full peri-
odic orbit is shown in the figure. The motion of the repre-
sentative point time reverses itself at the extremes of the
trajectory, near the lower left~initial state! and upper right
corners of the figure. This particular feature is a consequence
of the even character of the initial state under time reversal.
Moreover, since, unlikeF , Q is independent off 3(t), a
change in the frequency of this object will destroy the peri-

FIG. 1. Strobe view of the trajectory of the dispersionQ against
the Fano factorF for a thermal initial state withb53. The time
interval between flashes is 0.1 (\5 f 151). See the text for Hamil-
tonian parameters and other details.
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odicity of F but not ofQ. Recall that the value ofQ for the
Fock vacuumun50& is 1/A2'0.7071.

As a second example, Fig. 2 shows plots against time of
the correlation function

g2[
^a†a†aa&

^a†a&2

usually employed to characterize photon bunching and/or an-
tibunching properties. The two curves shown correspond, re-
spectively, to the same initial conditions used for Fig. 1 and
to a pure Fock state withn52. The periodicity and time-
reflection properties of the solutions, for the adopted Hamil-
tonian parameters, are clearly displayed here.

We mention finally that thec-number equations of motion
at the level of the Gaussian approximation@i.e., at the level
of the treatment of Ref.@1# and of Eqs.~5! of the present
paper# have recently been considered as a tool for investigat-
ing a ‘‘semiquantal’’ regime of nonlinear Hamiltonian dy-
namics@11#. In contrast to the situation considered here, in
that wider context thec-number dynamics for the Gaussian
parameters has an approximate character which corresponds
to a mean-field approximation of the Hartree-Bogolyubov
type. Quantum corrections to this approximation for the
more general problem have been obtained in the form of
collision integrals with memory effects and studied in Refs.
@12# and @13#. In this last reference, Hamiltonian aspects of
the collisionalc-number dynamics are discussed.
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FIG. 2. Time dependence of the bunching and/or antibunching
parameterg2 for a thermal initial state withb53 ~solid line! and
for a Fock initial state withn52 ~dashed line!. The Hamiltonian
parameters are the same as for Fig. 1.
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