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Kinetics of photon correlation functions under the time-dependent quadratic Hamiltonian
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The dynamic decoupling of the correlation function hierarchy under the general quadratic Hamiltonian is
exploited to extend the results obtained for coherent pumping and squeezing il R&losedc-number
dynamic equations are given explicitly for three- and four-operator averages, for an arfptregyor mixed
initial state of the field. At this level an independentumber constant of motion appears, related to two-
photon correlation properties of the initial state. Extension to higher correlation functions is straightforward.

PACS numbes): 42.50.Dv, 42.65.Ky, 03.65.Bz

In a recent pap€rl] we considered the dynamics associ- and experimental relevance, such as squeezing phenomena

ated with the general, time-dependent, quadratic Hamiltoniaf2,8] and quantum-mechanical phase problg¢hs].
([a,a']=1, Schrainger picture Even though a rather complete theoretical picture emerges
from such studies, the practical tools for dealing with the
kinetics of arbitrary initial states still appear as rather cum-
H(t)=fl(t)aTa+fz(t)a"a*+f§(t)aa+f3(t)aT+f§(t)a bersome in so faryas they rely uItimatEIr;/ on the exact solu-
( tion of the full quantum problem. The main purpose of this
paper is therefore to show that results similar to those of Ref.
and used the fact that the class of observables referred to &k] can be obtainedlsofor higher correlation function§.e.,
Gaussian observablédynamical variables involving at most depending on expectation values of three or more operators
two operators, a') is dynamically closed under this Hamil- a, a') associated with arbitrary initial states. The complete
tonian in order to derive exact, closeehumber Hamiltonian  solution of the full quantum problem is again avoided. As a
equations of motion for parameters which describe cohereriesult of the noninteracting character id{t), one obtains
pumping and squeezing of arbitraggure or mixed initial closed sets of-number differential equations for parameters
states of the system. The coherent content of the state #hich completely describe functions pertaining to succesive
determined by the expectation value of the annihilation op<correlation levels. From the lower two levels the results of
eratora and driven by the lineaf; terms of the Hamiltonian, [1] are recovered. Additional-number constants of motion
while squeezing effects, driven by the “two-photorf,  appear within the higher correlation levels. They correspond
terms, can be absorbed in a time-dependent change of scdfeinvariant, irreducible, many-body correlation structures in
implemented by means of a Bogolyubov transformationthe time evolution of an arbitrary, given initial state.
which mixesa anda’. Note thatf,(t) is real so thati(t) is A particular development, which in fact goes back to the
Hermitian. The procedure adopted in Rf] thus makes use Work of Lewis and Riesenfelf5] but has been actively pur-
of the specialin fact, Gaussiancharacter oH(t) to avoid  sued in recent yeai¥,8] and is of relevance in the present
having to obtain a complete solution of the full quantumcontext, concerns the existence and the role played by the
problem in order to determine the exact dynamics of theso-calledinvariant operators and their relation to coherent
restricted class of Gaussian observables. The crucial point Bates and squeezifg]. It is worth stressing that the hierar-
that this dynamics is independent of correlation amplitudeghical constants of motion appearing in the present approach
of higher order. This “self-truncation” of a Bogolynbov- arec-number objects whose value is in each case determined
Born-Green-Kirkwood-Yvon hierarchy can be imediately by specific many-body correlation propertiesthe adopted
understood when one takes notice of the noninteracting chairitial state While their existence may be ultimately traced
acter ofH(t), from a many-bodyor field theoretical point ~ to invariant operators ofi(t), their irreducibility is (and
of view. An additional byproduct of this fact is moreover the remaing a property of the quantum state under consider-
existence of @-number constant of motion in the time evo- ation. Thus, while, e.g., one can express general invariant
lution of the Gaussian observables. It is associated with theperators in terms of a small number bésic invariants
eigenvalues of the extended one-body density matrix, reflecftwo, in the present case of a one-dimensional sys{&h
ing the possible incoherence and/or many-boson correlatiofRo corresponding limitation applies to the number of inde-
properties of the particular quantum state under consideendent, nontriviat-number constants of motion present in
ation, at the level of one-boson observables. the time evolution of a fully general initial state.

The literature available on the dynamics of the quantum The simplest way to derive the equations of motion is to
linear oscillator with time-dependent parameters is quite rictswitch to the Heisemberg picture through the unitary evolu-
and extensivg2—8|. This is a soluble quantum problem for tion operatoriwe use units in whicth =1)
which solutions obtained within the context of several dis-
tinct formulations can now be foun8,5]. Interest in this .
problem hinges to a large extent on its relation to a variety of U(t,00=T exp—i f dt'H(t"), 2
characteristically quantum phenomena of current theoretical 0
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whereT exp denotes a time-ordered exponential. The statevhereB,, are objects analogous #,, with the operators
representative is now time independent and will be takera, ,a/, replaced byb,b’, see Eq.(6). These equations can
with full generality as a density operatér describing the now be integrated independently of the field quadratures, and
initial state of the system. We are interested in mean valuei is easy to verify that they support a constant of motion
of normal ordered products of creation anch annihilation  C, given by

operatorgdnow in the Heisenberg picture

Ann(O=Tr (@],(1)M(@y(t))"F]=A* (1). 3
it (@) @H(D)F]=Aan(t) ® wherev corresponds to the constant defined in R&f. Full

Note that while theA,(t) are in general complex numbers, contact with the results of this reference can be achieved by
the “diagonal” mean values\,, are real. The time depen- introducing the real variables

Cy=(Bi1+35)°—[Bol*=(v+3)?, 8

dence of these objects is readily obtained from the Heisem- T
berg equations of motion. It is determined by the first-order Q= VBy1+3+ReByy,
equations,
ImB,,
dAnd(t) P= . 9)

g = THIHK(®D, @i a®)IFL @) B+ 1+ Re By

In the above expressiol(t) is the Hamiltonian(1) writ-  As shown in[1], Q corresponds to the mean-square devia-
ten in terms of the Heisemberg picture operatorstion of the quadratureA;o+Aq1)/+2. Rewriting Eqs(7) in
ay(t),al,(t). Due to the special form of this Hamiltonian, terms ofQ andP, and taking the constant of moti@y into
the commutator which appears {4) can be expressed in account, one obtains Eq§l7) of Ref. [1], which are the
normal ordered form as a sum of terms each of which in-canonical equations of thenumber effective Hamiltonian
volves at mosin+n creation-annihilation operators, so that

the time derivative ofA,(t) appears as a function of  N>=3[fi(t)—2 Ref5(1)]P?+3[f1(t)+2 Ref»(1)]Q?

Apq(t) with p+g=<m+n. Taking into account the real char-

2
acter of A,,, this gives a total number ofn{+n)?+1 +[f(t)—2 Re‘z(t)]w+2 Imf,(t)PQ.
coupled first-order equations in order to fully determine the 8Q
kinetics of A, (t). (10)

This general situation will now be first confronted with
that of Ref.[1], where one has two independent pairs of real Extending the use of Eq4) to higher correlation func-
first-order equations, in addition to a constant of motion, intions is, of course, straightforward. The kinetics of mean
order to deal with the case+q<2. Equation(4) gives, in  values of three operatofge., p+q=3) requires eventually

this case, the consideration of a closed set of two complour rea)
equations involving3z andB,, which can be written in the
dAgy form
! [f1A01+ 2f2A 0+ 3],
dB
an == 3[f1(DBost 205(1)B1],
—p =~ 2ilf1A0t fa(2A1r+ 1)+ fAoul,
dB},
| — = — * * *
dA; P [f1(t)BI— 415 (1) B+ 2f5(1)Bogl. (1)

at i[2F3 Aga— 2 2A20+ T3 Agr— F3A10]- ) _ _ _—
These equations follow from E4) using the definition$6).

i . . . . Their canonical character can be made explicit by intoducing
The first of these equations describes in closed form the timg. (complex variables

development of the usual field quadratures, proportional to
Ap1=Aqg. They lead directly to Eq9414) of Ref.[1] when
one takes the quadratures themselvegasonical variables Z,=—,;
[9]. Furthermore, if we define the shifted creation- V3
annihilation operatorb,b™ as

w,=B7, (12

in terms of which Egs(11) can be obtained in the complex

b=ay—Ax; b'=al,—A, (6)  canonical form{10]
the remaining two equation$) lead to i%: (9_h3 i%: (9_h3
dt = 9z5’ dt w3y’
.dBo, : - .
I = 2[f1(1)Bgat+ fo(1)(2By;+1)], where the effective-number Hamiltoniarhs is

ha=f1(1)(3]25]2— [Wy|?) + 3V3[ fo()W5 Z5 + 5 (1) Wp2,]
=gi =2 (0Bg~ 11 (1B, ™ —2[f5 (WS 2+ f (W2, (13
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The kinetics of four operator averagése., p+q=4) re-

quires two complex equations and one real additional equa-

tion (or five additional real equatiopsvhich read

B04

dt

*
Bis

"at

=4[ f1(1)Boat 2f,(1) Byt 3f (1) Boal,

2f1(t) B+ 2f 5(1)Bgs— 6f5(1)* (Bt Byy),
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Since they involveB,, and B;;, these equations are not
closed, but must be supplemented by Ed@s. The full set of
equations can, however, be simplified through the introduc-
tion of variables which combine two- and four-operator av-

Fano factor

FIG. 1. Strobe view of the trajectory of the dispersi@ragainst
erages: the Fano factor7 for a thermal initial state withlB=3. The time
B 5 1 interval between flashes is 0.£ £ f,=1). See the text for Hamil-
04 22 i i
W, =B+ 5532; 2= Us= 7+ B+ Z)- tonian parameters and other details.

as it generates periodic solutions. Note that the coherent
pumping terms involving 3(t) do not appear in Eqg10),

(11), and(15). These equations, together with the first equa-
tion in Eqg. (5), are integrated numerically with standard
methods and with initial conditions appropriate to the
adopted initial state of the field. As an example of a mixed
initial state we use a thermal distribution of photons de-

Note thatz, andw, are complex, buty, is real. In terms of

these variables, and using Ed3), Egs. (14) lead to the
closed set of equations,

dz,
kg

gr = A fDzat (W] )

q scribed by the density operator
w,
id—t“=—2f1(t)w4+4f2(t)zj;—12f;u4, .
Fp=2 [n)(1—e #e "(nl,
du n=0
7 =2 oW 5 (W], (15)

where the|n)’s are the usual eigenvectors afa (Fock
. . I . ... state$, which gives
It is now easy to identify in these equations an additional % 9
constant of motion involving up to four operator averages. It

-B
is given by the expressidref. Eq. (8)] ©

Cy=3U5—[wy|*+ |24 (16) 2eB_a=28 1
. . Uy(0)=———=p3 +7
This constant corresponds to a two-photon correlation prop- (1-e77) 4
erty which is invariant under the quadratic Hamiltonidn o o .

for arbitrary f;(t). As was the case with Eq$7), it can be and zero for the initial values of the remaining variables.
used to eliminate one real variable reducing E@S) to a set  Note thatF 5 is a Gaussian density in the sense of R&f.

of four real equations. The question whether they can be Figure 1 shows a parametric plot, fg#=3, of the time

obtained(after a suitable change of variables the canoni- evolution of the variabl€ against the so-called Fano factor,
cal equations of some effectivenumber Hamiltonian is,

however, in this case considerably more involved and not

particularly relevant for our purposes. We therefore do not
consider this question here.

In order to illustrate the use of the present approach wevhich serves to compare the quadratic number dispersion of
evaluate the time evolution of some typical two-photon cor-the current state with the Poissonian standard. The full peri-
relation functions for the example of the parametric oscilla-odic orbit is shown in the figure. The motion of the repre-
tor treated in Refl1]. Expressing the correlation functions in sentative point time reverses itself at the extremes of the
terms of the variables appearing in the differential equationsrajectory, near the lower leftinitial state and upper right
is a straightforward algebraic exercise. In the examplegorners of the figure. This particular feature is a consequence
below we take in Eq.(1) f;= const =1 as the unit of the even character of the initial state under time reversal.
of energy and use fy(t)=0.3 exp(-0.7it) and Moreover, since, unlike, Q is independent off;(t), a
f3(t)=0.5 exp(-0.7it). We choose this particular frequency change in the frequency of this object will destroy the peri-

((a'a)?)—(a'a)
(a'a) '

—
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, (a'a'aa)
6.0 g°= W
5.0

usually employed to characterize photon bunching and/or an-
tibunching properties. The two curves shown correspond, re-
— thermal 1 spectively, to the same initial conditions used for Fig. 1 and
Fockn=2 - to a pure Fock state with=2. The periodicity and time-
1 reflection properties of the solutions, for the adopted Hamil-
tonian parameters, are clearly displayed here.
We mention finally that the-number equations of motion
at the level of the Gaussian approximatiom., at the level
of the treatment of Refi1] and of Egs.(5) of the present
papel have recently been considered as a tool for investigat-
00,9 200 200 %00 80.0 ing a “semiquantal” regime of nonlinear Hamiltonian dy-
time namics[11]. In contrast to the situation considered here, in
that wider context the-number dynamics for the Gaussian
FIG. 2. Time dependence of the bunching and/or antibunchingparameters has an approximate character which corresponds
parameteig? for a thermal initial state with3=3 (solid line) and  to a mean-field approximation of the Hartree-Bogolyubov
for a Fock initial state witm=2 (dashed ling The Hamiltonian  type. Quantum corrections to this approximation for the
parameters are the same as for Fig. 1. more general problem have been obtained in the form of
collision integrals with memory effects and studied in Refs.
[12] and[13]. In this last reference, Hamiltonian aspects of
the collisionalc-number dynamics are discussed.

&
o

[anti] bunching
w
=

n
=)

1.0

odicity of .7 but not ofQ. Recall that the value d for the
Fock vacuurn=0) is 1/y/2~0.7071.

As a second example, Fig. 2 shows plots against time of S.-W. Tsai was supported by Conselho Nacional de De-
the correlation function senvolvimento Ciertfico e Tecnolgico (CNPq, Brazil.
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