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We consider the interaction of a two-level atom with a squeezed vacuum, both in free space and in a cavity
of moderateQ. In the latter case, only vacuum modes coupled to the cavity are squeezed. In both cases we
calculate the following quantities for the fluorescent light fields: the second-order intensity correlation func-
tion g~2!~t!, the spectrum of squeezing, the coherent spectrum, and the spectrum obtained in a pump-probe
absorption measurement. Nonclassical behavior is discussed and comparison to an ordinary vacuum and
thermal fields is made.@S1050-2947~96!05105-0#

PACS number~s!: 42.50.Ar, 42.50.Dv

I. INTRODUCTION

In recent years, squeezed light sources have become
available in the laboratory and attention has turned to their
interaction with optical systems. In particular, much attention
has been directed at modifying the radiative properties of an
atom via interaction with a squeezed light. This began with
the seminal work of Gardiner@1#, who showed that the decay
rate of the atomic polarization quadratures was phase depen-
dent. Carmichael, Lane, and Walls@2# ~hereafter referred to
as CLW! considered resonance fluorescence when the atom
is immersed in a squeezed vacuum. They predicted that for
weak driving fields, independent of the relative phase be-
tween the driving field and the squeezed vacuum, the inco-
herent spectrum would narrow as the amount of squeezing
was increased. In the limit of strong squeezing, ad-function
spectrum would be obtained. For stronger driving fields, the
central peak of the Mollow spectrum could be broadened or
narrowed, depending on the relative phase between the
strong driving field and the squeezed vacuum. The photon
number distributionP(n) has been calculated by Jagatap and
Lawande@3#, showing phase-sensitive behavior for strong
fields.

It was realized early on that experiments would probably
require some sort of cavity system, as it is impractical to
squeeze all of the vacuum modes that interact with an atom.
Several theoretical calculations having to do with squeezing
only the cavity modes have been presented. Savage@4# has
calculated that for large Jaynes-Cummings couplingg and
strong excitation, the width of the Rabi sidebands could be
narrowed, but not below the natural linewidth. In a cavity of
moderateQ, Courty and Reynaud@5# found that one of the
Rabi sidebands could be suppressed for the proper detuning,
essentially turning off spontaneous emission from one of the
dressed states. Kennedy@6# has found similar behavior in the
many-atom case. Rice and Pedrotti@7# have considered an
extension of the work of CLW, again for an atom in a cavity
of moderateQ. They found that it was possible to squeeze
away the cavity enhancement part of the linewidth, but that
to obtain measurably subnatural linewidths, the fraction of
4p sr the cavity mode subtends must be significant. This
system has also been considered by Cirac@8#, who investi-
gated both the fluorescent spectrum and the steady-state

population inversion, as discussed by Savage and Lindberg
@9#. For very strong driving fields and finite-bandwidth
squeezed light centered on the Rabi sidebands, Parkins@10#,
and Cirac and Sanchez-Soto@11# have found narrowing of
one of the Rabi sidebands. Parkins, Zoller, and Carmichael
@12# have calculated the fluorescent spectrum of a strongly
coupled atom-cavity system, where the driving field is tuned
to the one-photon dressed state resonance and have predicted
narrowing. One notable example of a calculation in which
the atom interacts with only one mode that is squeezed is the
work of Vyas and Singh@13#, who considered resonance
fluorescence in the weak-field limit when the usual coherent
driving field was replaced by the squeezed output of an op-
tical parametric oscillator.

It is the purpose of this paper to discuss various aspects of
this problem that have not been addressed to date: the
second-order intensity correlation functiong~2!~t!, the spec-
trum of squeezing, the coherent spectrum, and the spectrum
obtained in a pump-probe absorption measurement. The lat-
ter has been considered in free space by Ritsch and Zoller
@14#, who have also included finite-bandwidth effects. We
calculate these quantities both for an atom completely em-
bedded in a squeezed vacuum, and also for an atom inside a
cavity, where the cavity modes are driven by a squeezed
vacuum, but the vacuum modes the atom couples directly to
~out the side of the cavity, for example! are ordinary vacu-
ums. We use this phrase fully realizing that there is nothing
ordinary about the vacuum in quantum mechanics, as it con-
tains a wealth of interesting phenomena. We use the term
simply to describe the case where none of the modes the
atom interacts with are squeezed. Comparisons to the case
when a thermal field replaces the squeezed field are made.
One purpose we have is to discuss when application of a
squeezed field does something interesting~i.e., nonclassical!,
and when the changes resulting from replacing the ordinary
vacuum with a squeezed field depend solely on the fact that
the input field has a nonzero photon occupation number, and
not on the special phase dependent properties of squeezed
light. In Sec. II we describe the two physical models under
study, and discuss the Bloch equations for each system. In
Secs. III and IV, we present the results for the second-order
intensity correlation functiong~2!~t! and coherent spectrum,
respectively. In Secs. V and VI, we discuss the pump-probe
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absorption spectrum and the spectrum of squeezing.
Throughout, comparisons to coherent and thermal fields will
be discussed, and we conclude in Sec. VII.

II. PHYSICAL MODELS

The first model, which we refer to as the squeezed-
vacuum ~SV! model, is shown in Fig. 1. It consists of a
two-level atom in free space, embedded in a squeezed
vacuum. The atom has a free-space lifetime ofg21, and in-
teracts with a driving field, characterized by the dimension-
less parameterY. The squeezed field is characterized as
usual by the parametersN andM . N of course is just the
mean photon number of the squeezed vacua, whereasM de-
scribes the phase-sensitive properties of the squeezed state.
For a coherent squeezed state, such as that produced by an
optical parametric oscillator,N andM satisfy the following
relation:

uM u5AN~N11!. ~1!

If one were to setM50 while retaining a nonzeroN, the
resulting model would be that of an atom embedded in a
thermal background. If a result is independent ofM , then
one would obtain the same result for a thermal field with the
same photon occupation number.

It was shown by CLW that this system was described by
the following Bloch equations on resonance:

^ṡx&52g~N2uM ucosf1 1
2 !^sx&1guM usinf^sy&,

~2!

^ṡy&52g~N1uM ucosf1 1
2 !^sy&1guM usinf^sx&

2~Y/& !^sz&, ~3!

^ṡz&52g~2N11!S ^sz&1
1

2N11D1~Y/& !^sy&, ~4!

with Y54&mEext/\. Herem is the~scalar! transition dipole
matrix element for the atom, andf is the relative phase
between the driving field and the squeezed vacua. Please
note that these equations differ from those of CLW in two
ways: our definition fors6 is half as large, and the phase
of our driving field is shifted byp/2. The conventions that

we use are consistent with those of Rice and Pedrotti. Im-
plicit in all of our calculations~as in those of CLW! is the
assumption that a small window of unsqueezed vacuum
modes exists to view the fluorescence from the atom, uncon-
taminated by a strong squeezed field, which could swamp the
fluorescence. The second model, which we refer to as the
cavity-squeezed~CS! model, is shown in Fig. 2. It is essen-
tially an extension of the SV model to make explicit the
‘‘window’’ through which the fluorescence is viewed. This is
provided for in the unsqueezed modes out the side of the
cavity, which we take to be an ordinary vacuum. The cavity
is characterized by its field decay ratek, and the coupling of
the atom to the cavity mode is described by the Jaynes-
Cummings coupling parameterg. In terms of cavity param-
eters that can be changed experimentally, these are defined in
the following manner:

g5m~v0 /\e0AL!1/2, ~5!

k5p/F tC , ~6!

whereA is the transverse area of the field mode,L is the
length of the cavity,F is the cavity finesse, andtC is the
round-trip cavity time. Rice and Pedrotti have shown that if
all of the atomic dynamics occur within the bandwidth of the
cavity @G~112C! and Rabi frequencyV!k, the bad-cavity
limit #, the system is described by the following Bloch equa-
tions:

^ṡx&52
G

2
@112C~112N22uM ucosf!#^sx&

1G~2CuM usinf!^sy&, ~7!

^ṡy&52
G

2
@112C~112N12uM ucosf!#^sy&

1G~2CuM usinf!^sx&2~Y/& !^sz&, ~8!

^ṡz&52G@112C~2N11!#S ^sz&1
1

112C~2N11! D
1~Y/& !^sy&, ~9!

whereG is the decay rate of the atom into modes other than
the privileged cavity mode~approximatelyg unless the cav-
ity subtends a large fraction of 4p sr!, and Y and C are
defined by

Y52&gE /kG, ~10!

FIG. 1. Two-level atom driven by a coherent fieldY, spontane-
ous emission rateg, immersed in a squeezed vacuum characterized
by M ,N. Hereafter referred to as the SV case.

FIG. 2. Two-level atom in an optical cavity, cavity loss ratek,
spontaneous emission rateG into noncavity modes, driven by a
coherent fieldY, with a squeezed vacuum characterized by anM ,N
incident on the output mirror. Hereafter referred to as the CS case.
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C5g2/kG. ~11!

Here,E is the dimensionless intracavity driving field

E52k~F /p!~v0 /\e0AL!1/2AT1eiu1Eext , ~12!

whereT1 and u1 are, respectively, the transmission coeffi-
cient and phase change at the mirror through which the co-
herent fieldEext is inserted. We consider an essentially
single-ended cavity, lettingT1 tend to zero andEext tend to
infinity. Again, Y is a scaled driving field, andC is just the
single-atom cooperativity parameter familiar from the optical
bistability literature. It is assumed here that the other field
injected into the cavity is squeezed, and that the bandwidth
of the squeezing is large compared to the cavity bandwidth.
We note that both systems are essentially the same, with
three different decay ratesgx , gy , andgz . The nonsqueezed
vacuum modes in the CS model lead to a limit on the size of
nonclassical effects. For example, the linewidth of the inco-
herent spectrum can only be made as narrow asG, which is
significantly less than the free-space rateg only when the
cavity mode encloses a large fraction of 4p sr.

These equations simplify greatly for two choices off: 0
andp/2. These are the cases of most interest to us, and then
both systems obey the following Bloch equations forf50,
where we have scaled time in units ofg in the SV case, and
G in the CS case:

^ṡx&52gx^sx&, ~13!

^ṡy&52gy^sy&2~Y/& !^sz&, ~14!

^ṡz&52gz~^sz&1d!1~Y/& !^sy&, ~15!

where for the SV case we have

gx5~N1M11/2!, ~16!

gy5~N2M11/2!, ~17!

gz5~2N11!, ~18!

d521/2, ~19!

and in the CS case we have

gx5
1
2 @112C~2N12M11!#, ~20!

gy5
1
2 @112C~2N22M11!#, ~21!

gz5@112C~2N11!#, ~22!

d52 1
2 ~112C!. ~23!

Results forf5p/2 are obtained simply by changing the sign
of M . The SV case can be recovered from the CS case by
letting G→g/2 and C→1/2. We note that in the strong
squeezing limit,M is approximated by

M5N1
1

2
2

1

8N
. ~24!

It is instructive to examine the eigenvalues of the Bloch
equations, as they play a large role in determining the results
presented here. They are

l152gx , ~25!

l252gy1gz/21V, ~26!

l252gy1gz/22V, ~27!

whereV5~1/2![(gy2gz)
222Y2] 1/2. We now turn our atten-

tion to photon statistics and spectra.

III. SECOND-ORDER INTENSITY CORRELATION
FUNCTION g„2…„t…

The second-order intensity correlation functiong~2!~t! is
defined as

g~2!~t !5
^s1~0!s1~t!s2~t!s2~0!&

^s1~0!s2~0!&2
, ~28!

where we have defined

s65sx6 isy , ~29!

which is the probability of detecting a photon at timet given
that one was detected at time 0, relative to that same prob-
ability for a field in a coherent state. In the steady state, we
may use the quantum regression theorem to evaluate the nec-
essary correlation functions, which then obey the Bloch
equations but with different initial conditions. The result is

g~2!~t !512exp$2~gy1gz!t%Fcosh~Vt!1
F

V
sinh~Vt!G ,

~30!

where

V5 1
2 @~gy2gz!

222Y2#1/2, ~31!

F5H gy2gz

2
1
&Y^sy&
112^sz&

J . ~32!

For weak fields~Y→0!, in the SV case, this result simplifies
to

g~2!~t !'12exp@2~2N11!t#, ~33!

independent ofM , i.e., it is the same for thermal fields and
squeezed fields. Similarly, in the CS case, we find

g~2!~t !'12exp$2@2N~112C!11#t%. ~34!

Plots of these are shown in Fig. 3. We see that of course
g~2!~0!50, as it must be for a single two-level atom, but that
g~2!~t! rapidly approaches unity, approaching it at a faster
rate as the squeezing is increased. This result makes sense if
we recall that the squeezed vacuum state is a state of nonzero
mean photon numberN. As the squeezing parameterN is
increased, the atom interacts with a larger amount of pho-
tons, and it takes a correspondingly shorter time to reexcite
the atom after an emission event. In the weak-field limit,
there is essentially no coherent field to provide a phase ref-
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erence, hence the result is the same for all phases of the
squeezed vacuum. The atom is predominantly in the ground
state, and the interaction with the squeezed vacuum produces
the same result as the thermal light of the same mean photon
number, and there is no phase-sensitive behavior. This is
similar to the behavior obtained by Vyas and Singh@13# for
an atom interacting with one broadband squeezed mode.

In the limit of large squeezing, in the SV case we have

g~2!~t !512exp$2Nt%Fcosh~VLSt!

1
1

@12Y2/~2N2!#1/2
sinh~VLSt!G , ~35!

where hereVLS5N[12Y2/N2] 1/2. Notice that the large
squeezing and weak coherent field limits do not commute.
Once moreg~2!~0!50 and the rise to unity is oscillatory in
nature, due to the Rabi oscillations of the atom. The ampli-
tude of the oscillations is reduced by the presence of a
squeezed vacuum, just as there would be if the atom were
interacting with a thermal, noisy reservoir. However,g~2!~t!
is sensitive to the phase of the squeezed vacuum, or more
precisely the relative phase between the squeezed vacuum
and the coherent field. Forf50, when the quiet quadrature

of the squeezed vacuum is in phase with the coherent driving
field, and hence in phase with the Rabi oscillations of the
atom, there is an increase in the amplitude of the oscillations
in g~2!~t! relative to the thermal light of the same mean pho-
ton number. For the opposite phasef5p/2 there is an en-
hancement in the suppression of the oscillations relative to
that of the thermal state. In both cases however, the oscilla-
tions are smaller than the case of an ordinary vacuum. This is
seen in the eigenvalues of the Bloch equations, as the pres-
ence of the squeezed vacuum increases the magnitude of the
real part, but reduces the magnitude of the imaginary part;
faster damping and smaller oscillation frequency. Once
again, increasing the squeezing washes out the oscillations,
as can be seen in Fig. 4. Essentially similar behavior is ob-
served for the CS case, although here the cavity enhance-
ment of spontaneous emission increases the decay rate.

IV. COHERENT SPECTRUM

The fluorescent spectrum is given by

I inc~v!5^s1~0!&~s2~0!&d~v2v0!

1
1

p
Re E

2`

`

^Ds1~t!Ds2~0!&

3exp@ i ~v2v0!t#dt. ~36!

The d function component is known as the coherent, Ray-
leigh, or elastic scattering spectrum; the second component is
the incoherent or inelastic scattering spectrum. We calculate
the intensity of the coherent spectrum as the driving field is
scanned across the central resonance frequency. This is de-
termined using steady states obtained from the Bloch equa-
tions,

^ṡx&52gx^sx&2D^sy&, ~37!

^ṡy&52gy^sy&2~Y/& !^sz&1D^sx&, ~38!

^ṡz&52gz~^sz&1d!1~Y/& !^sy&, ~39!

where we have included the detuning of the driving field
from the atomic resonance by an amountD, normalized to
the spontaneous emission rateg. The steady-state solution to
these equations is given by

^sx&ss5
2DdY

&

1

gxgy1D21
Y2

2

gx

gz

, ~40!

^sy&ss5
2gxdY

&

1

gxgy1D21
Y2

2

gx

gz

, ~41!

^sz&ss5
2d~gxgy1D2!

gxgy1D21
Y2

2

gx

gz

. ~42!

Hence the coherent spectrum can be given as

FIG. 3. Second-order intensity correlation functiong~2!~t! for
the SV case for weak fields.~a! For no squeezing~dash!, thermal
light ~dot-dash!, and squeezed vacuum~solid! with N51.0. ~b! For
N50.0 ~solid!, 0.2 ~small dash!, 1.0 ~large dash!, and 2.0~dot-
dash!. Recall the scaling of the time axist 5gt.
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I coh}
4gx

21D2

$4gxgy1D21Y2%2
. ~43!

A similar expression has been obtained by Ritsch and Zoller
@14# for the SV case, where they found that the coherent

spectrum was broadened by the presence of the squeezed
vacuum. Essentially, the coherent spectrum is phase indepen-
dent, and samples both the quiet and noisy quadratures. In
the CS case, the coherent spectrum is given in the weak-field
limit by

I coh}
11D2

$112C~114N!1D2%2
~44!

which exhibits the same broadening as the SV case, as
shown in Fig. 5.

V. PUMP-PROBE ABSORPTION SPECTRUM

Ritsch and Zoller@14# examined the absorption spectrum
of a weak probe field as it is scanned across the central
resonance, in the presence of a second pump field tuned to
resonance. They obtained essentially the same result as Gar-
diner @1# and CLW@2# obtained for the incoherent spectrum.
That is the separation of the usual Lorentzian spectrum into
two distinct components as the amount of squeezing is in-
creased; one that is narrowed and one which is broadened. In
the limit of large squeezing the width of the narrow compo-
nent can be made arbitrarily small. In the case of a two-level
atom in a cavity, the CS case, the pump-probe absorption
spectrum is given for weak pump fields by

FIG. 4. Second-order intensity correlation functiong~2!~t! for
the SV case for strong fields,Y510.0.~a! For no squeezing~solid!,
thermal light ~dot-dash!, and squeezed vacuum withN51.0 and
u50.0 ~small dash! andu5p/2 ~large dash!. ~b! Forf5p/2,N50.0
~solid!, 0.5~small dash!, 1.0~large dash!, and 2.0~dot-dash!. ~c! For
f50.0,N50.0 ~solid!, 0.5 ~small dash!, 1.0 ~large dash!, and 2.0
~dot-dash!. Recall the scaling of the time axist 5gt.

FIG. 5. Coherent spectrum for the CS case, for weak fields with
C51.0. ~a! N50 ~solid! andN52.0. ~dash!. ~b! Linewidth of the
coherent spectrum as a function ofN. Frequencies are in units of
G21.
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W~v!}H gx

gx
21v2 1

gy

gy
21v2 J . ~45!

Here we see that the spectrum splits into two components as
in the SV case, and we obtain essentially the same result as
that of the incoherent spectrum in the CS case@7#. Note that
the width of the spectrum cannot be made arbitrarily narrow,
as it is limited by the value ofG, the rate of spontaneous
emission into the unsqueezed modes. The cavity enhance-
ment of the linewidth,G~112C! can be reduced using a
squeezed vacuum, but is only subnatural if the cavity en-
closes a significant portion of 4p sr as was the case for the
incoherent spectrum. Once again this weak-field result is in-
dependent of the phase of the squeezed vacuum. This is ex-
hibited in Fig. 6. For thermal light of the same mean photon
number, there is only a broadening of the spectrum.

VI. SPECTRUM OF SQUEEZING

It is known that for weak coherent excitation, the fluores-
cence emitted from a two-level atom is squeezed, reflecting
nonclassical atomic polarization fluctuations@15,16#. The
quadraturep/2 out of phase with the driving field is
squeezed, and the quadrature in phase with the driving field
is unsqueezed. Here we investigate the spectrum of squeez-

ing for the SV and CS cases, in order to determine the effect
of a squeezed vacuum on nonclassical effects obtained with a
coherent field. The spectrum of squeezing is given by@16,17#

S~v,u!58hE
0

`

dt cos~vt!Re$~Ds1~0!Ds2~t!&

1e2iu^Ds1~0!Ds1~t!&%. ~46!

S~v,u! has a lower bound of21 and 0 represents the shot-
noise limit. Hereh is the combined collection and detection
efficiency. If one takes the limit ofY→0, the squeezing goes
away entirely, and the spectra of squeezing are a positive
narrow peak, and a positive broad peak, respectively. Chang-
ing the phase of the local oscillator relative to the phase of
the coherent field merely changes which quadrature is broad-
ened and which is narrowed. Summing these two spectra of
squeezing results in the incoherent spectrum containing a
narrowed and a broadened component@18#. These results can
be understood in terms of the two quadratures of the atom as
independent scatterers of squeezed noise~photons derived
from the squeezed vacuum! where each quadrature acts as a
bandpass filter of different linewidth. Changing the phase of
the squeezed vacuum merely alters the bandwidths of the
two quadratures. In the case of a thermal vacuum, the atom
would still scatter noise, but the spectrum of squeezing
would be independent of phase. Here, we see that the use of
a squeezed vacuum results in the destruction of a nonclassi-
cal feature present when the system interacts with normal
vacuum modes. In the CS case, one has the same qualitative
behavior; with the linewidth of the two spectra of squeezing
being given by the appropriategx andgy .

VII. CONCLUSIONS

We have calculated several quantities for a single two-
level atom immersed in a squeezed vacuum~SV model!, and
for an atom in a cavity that is driven by a coherent field as
well as a squeezed vacuum, but interacts with an ordinary
vacuum out the sides of the cavity~CS model!. We find that
the photon statistics of the fluorescent field exhibit photon
antibunching@g~2!~0!,1#, but that very rapidlyg~2!~t! ap-
proaches the value of unity. Indeed, for weak fields, the cor-
relation function is exactly the same as that of a thermal field
of the same mean photon number. For strong fields,g~2!~t!
exhibits phase-sensitive behavior as the phase of the squeez-
ing is varied relative to the phase of the coherent driving
field. Hence we see that in some respects a squeezed vacuum
is similar to noise. This is due to the fact that although there
are phase correlations for a squeezed vacuum, the average
value of the field is 0, but the average value of the intensity
is not. The coherent spectrum and pump-probe absorption
spectrum for the CS case is very similar to those obtained by
Ritsch and Zoller@14# for the SV case. The coherent spec-
trum is only broadened by the squeezed vacuum, and the
pump-probe absorption spectrum splits into a narrow and a
broad component. The width of this spectrum cannot be
made arbitrarily narrow, but is limited by the spontaneous
emission rate into unsqueezed modes. Finally, we have cal-
culated the spectrum of squeezing for the fluorescent light,
and have found that interaction with a squeezed vacuum can
completely destroy the squeezing in the fluorescent light.

FIG. 6. Pump-probe absorption spectrum for the CS case for
weak fields andC52.0. ~a! N50.0 ~solid!, 0.5 ~small dash!, 2.0
~large dash!, and 20.0~dot-dash!. ~b! Linewidth of the two Lorent-
zian components of the pump-probe absorption spectrum as a func-
tion of N. Frequencies are in units ofG21.
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