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Interaction of a two-level atom with a squeezed vacuum: Photon statistics and spectra
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We consider the interaction of a two-level atom with a squeezed vacuum, both in free space and in a cavity
of moderateQ. In the latter case, only vacuum modes coupled to the cavity are squeezed. In both cases we
calculate the following quantities for the fluorescent light fields: the second-order intensity correlation func-
tion g(z)(r), the spectrum of squeezing, the coherent spectrum, and the spectrum obtained in a pump-probe
absorption measurement. Nonclassical behavior is discussed and comparison to an ordinary vacuum and
thermal fields is madd S1050-29476)05105-(

PACS numbds): 42.50.Ar, 42.50.Dv

[. INTRODUCTION population inversion, as discussed by Savage and Lindberg
[9]. For very strong driving fields and finite-bandwidth
In recent years, squeezed light sources have becomsgueezed light centered on the Rabi sidebands, Pdrkiis
available in the laboratory and attention has turned to theiand Cirac and Sanchez-Sdtbl] have found narrowing of
interaction with optical systems. In particular, much attentionone of the Rabi sidebands. Parkins, Zoller, and Carmichael
has been directed at modifying the radiative properties of afl2] have calculated the fluorescent spectrum of a strongly
atom via interaction with a squeezed light. This began withcoupled atom-cavity system, where the driving field is tuned
the seminal work of Gardingd], who showed that the decay to the one-photon dressed state resonance and have predicted
rate of the atomic polarization quadratures was phase depenarrowing. One notable example of a calculation in which
dent. Carmichael, Lane, and Wal8] (hereafter referred to the atom interacts with only one mode that is squeezed is the
as CLW considered resonance fluorescence when the atomork of Vyas and SingH13], who considered resonance
is immersed in a squeezed vacuum. They predicted that fdtuorescence in the weak-field limit when the usual coherent
weak driving fields, independent of the relative phase bedriving field was replaced by the squeezed output of an op-
tween the driving field and the squeezed vacuum, the incatical parametric oscillator.
herent spectrum would narrow as the amount of squeezing It is the purpose of this paper to discuss various aspects of
was increased. In the limit of strong squeezingi-fainction  this problem that have not been addressed to date: the
spectrum would be obtained. For stronger driving fields, thesecond-order intensity correlation functigff'(s), the spec-
central peak of the Mollow spectrum could be broadened otrum of squeezing, the coherent spectrum, and the spectrum
narrowed, depending on the relative phase between thebtained in a pump-probe absorption measurement. The lat-
strong driving field and the squeezed vacuum. The phototer has been considered in free space by Ritsch and Zoller
number distributiorP(n) has been calculated by Jagatap and 14], who have also included finite-bandwidth effects. We
Lawande[3], showing phase-sensitive behavior for strongcalculate these quantities both for an atom completely em-
fields. bedded in a squeezed vacuum, and also for an atom inside a
It was realized early on that experiments would probablycavity, where the cavity modes are driven by a squeezed
require some sort of cavity system, as it is impractical tovacuum, but the vacuum modes the atom couples directly to
squeeze all of the vacuum modes that interact with an atomout the side of the cavity, for examplare ordinary vacu-
Several theoretical calculations having to do with squeezingims. We use this phrase fully realizing that there is nothing
only the cavity modes have been presented. Sajépgkas ordinary about the vacuum in quantum mechanics, as it con-
calculated that for large Jaynes-Cummings couplingnd  tains a wealth of interesting phenomena. We use the term
strong excitation, the width of the Rabi sidebands could besimply to describe the case where none of the modes the
narrowed, but not below the natural linewidth. In a cavity of atom interacts with are squeezed. Comparisons to the case
moderateQ, Courty and Reynaufb] found that one of the when a thermal field replaces the squeezed field are made.
Rabi sidebands could be suppressed for the proper detunin@ne purpose we have is to discuss when application of a
essentially turning off spontaneous emission from one of thequeezed field does something interestirgy, nonclassica)
dressed states. KennefB] has found similar behavior in the and when the changes resulting from replacing the ordinary
many-atom case. Rice and Pedr¢#i have considered an vacuum with a squeezed field depend solely on the fact that
extension of the work of CLW, again for an atom in a cavity the input field has a nonzero photon occupation number, and
of moderateQ. They found that it was possible to squeezenot on the special phase dependent properties of squeezed
away the cavity enhancement part of the linewidth, but thatight. In Sec. Il we describe the two physical models under
to obtain measurably subnatural linewidths, the fraction ofstudy, and discuss the Bloch equations for each system. In
47 sr the cavity mode subtends must be significant. ThisSecs. Il and 1V, we present the results for the second-order
system has also been considered by Ciicwho investi- intensity correlation functiomy®(7) and coherent spectrum,
gated both the fluorescent spectrum and the steady-statespectively. In Secs. V and VI, we discuss the pump-probe
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FIG. 2. Two-level atom in an optical cavity, cavity loss rate

spontaneous emission raféinto noncavity modes, driven by a
coherent fieldy, with a squeezed vacuum characterized byvaiN
incident on the output mirror. Hereafter referred to as the CS case.

_ _ we use are consistent with those of Rice and Pedrotti. Im-

FIG. 1. Two-level atom driven by a coherent fied spontane-  pjicit in all of our calculations(as in those of CLWis the
Ous emission rate’, immersed in a SqUeeZed vacuum characterize SSUmption that a Sma." WindOW Of unsqueezed vacuum
by M.N. Hereafter referred to as the SV case. modes exists to view the fluorescence from the atom, uncon-
b i ¢ d th ; ¢ . taminated by a strong squeezed field, which could swamp the
absorption -spectrum an € spectrum 0 Squeez'ngltuorescence. The second model, which we refer to as the

Throughout, comparisons to coherent and thermal fields wi avity-squeezedCS) model, is shown in Fig. 2. It is essen-
tially an extension of the SV model to make explicit the

be discussed, and we conclude in Sec. VII.
“window” through which the fluorescence is viewed. This is
Il. PHYSICAL MODELS provided for in the unsqueezed modes out the side of the
The first model, which we refer to as the squeezed-_caVity' which we take to be an ordinary vacuum. Th_e cavity
vacuum (SV) model, is shown in Fig. 1. It consists of a is characterized by Its field decgy ratear)d the coupling of
two-level atom in free space, embedded in a squeeze@1e atom to the.caV|ty mode is described by. the Jaynes-
vacuum. The atom has a free-space lifetimeyof, and in- ummings coupling parameter I'n terms of cavity param- - -
teracts with a driving field, characterized by the dimension-t€rs that can be changed experimentally, these are defined in
less parametel. The squeezed field is characterized asin€ following manner:

usual by the parameteifd and M. N of course is just the _ h e AL)Y2 5
mean photon number of the squeezed vacua, whéfeds- 9= ulwolh&oAL) ™ ©
scribes the phase-sensitive properties of the squeezed state. k=ml.71c, (6)

For a coherent squeezed state, such as that produced by an
optical parametric oscillatoN andM satisfy the following  where A is the transverse area of the field modejs the

relation: length of the cavity,7 is the cavity finesse, and. is the
round-trip cavity time. Rice and Pedrotti have shown that if
IM[=VN(N+1). (1 all of the atomic dynamics occur within the bandwidth of the

cavity [I'(1+2C) and Rabi frequency)<k, the bad-cavity

If one were to seM =0 while retaining a nonzerd\, the  jinit] the system is described by the following Bloch equa-

resulting model would be that of an atom embedded in

thermal background. If a result is independenthdf then ons:
one would obtain the same result for a thermal field with the . r
same photon occupation number. (o)== 5 [1+2C(1+2N-2[M[cose) (o)
It was shown by CLW that this system was described by
the following Bloch equations on resonance: +I(2C|M|sin¢)(ay), )

(0,0=—7(N=|M|cosp+3)(0y)+¥M[sin¢(a), _ r

(0)= =5 [1+2C(1+2N+2|M|cose) (o)

(ay)=—y(N+|M|cos¢+3)(a,)+ y|M|sin¢(a,) +T(2C|M|sin ) { o) — (YIV2){ o), ®)
—(YIV2)(0,), 3

(0)=—T[1+2CN+ D] {0+ T oeonT D)

V2 :
+(YIV2)(ay), (4 +(YIV2)(ay), ©

. 1
(o)=— 7(2N+1)(<Uz>+ INF1

with Y=4v2uE.,/%. Herep is the(scalaj transition dipole  whereT is the decay rate of the atom into modes other than
matrix element for the atom, ang is the relative phase the privileged cavity modéapproximatelyy unless the cav-

between the driving field and the squeezed vacua. Pleasg subtends a large fraction ofmsn, andY and C are
note that these equations differ from those of CLW in twodefined by

ways: our definition foro.. is half as large, and the phase
of our driving field is shifted bys/2. The conventions that Y=2v2g&I kT, (10
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C=g?%«T. (11) It is instructive to examine the eigenvalues of the Bloch
equations, as they play a large role in determining the results
Here, # is the dimensionless intracavity driving field presented here. They are
Z=—k(T1m) (0ol hegAL) V2T € 1Ey,, (12 A==k, (25
where T, and 6, are, respectively, the transmission coeffi- No= =yt v l2+Q, (26)

cient and phase change at the mirror through which the co-
herent field Eq,; is inserted. We consider an essentially No==yy T 720, (27
single-ended cavity, letting, tend to zero andk,,; tend to _ N2 o\2112 }
infinity. Again, Y is a_s_caled driving field_, .and is just the. ¥iv(?ne :g%h(()%c/)i)[étgist%zg aniYsgec.tr\z/av. € now turn our atten
single-atom cooperativity parameter familiar from the optical
bistability literature. It is assumed here that the other field
injected into the cavity is squeezed, and that the bandwidth
of the squeezing is large compared to the cavity bandwidth.
We note that both systems are essentially the same, with The second-order intensity correlation functigi?(7) is
three different decay rateg, y,, andy,. The nonsqueezed defined as
vacuum modes in the CS model lead to a limit on the size of
nonclassical effects. For example, the linewidth of the inco-

Ill. SECOND-ORDER INTENSITY CORRELATION
FUNCTION g@(7)

(0,(0)a(1)o_(1)o_(0))

herent spectrum can only be made as narroW,ashich is 9®(n)= (0,(0)a_(0))2 ’ (28)
significantly less than the free-space ratenly when the
cavity mode encloses a large fraction af 4r. where we have defined
These equations simplify greatly for two choicesdof 0 ]
and /2. These are the cases of most interest to us, and then ox=0yxloy, (29)

both systems obey the following Bloch equations §&+0,
where we have scaled time in units pin the SV case, and
I' in the CS case:

which is the probability of detecting a photon at timgiven
that one was detected at time 0O, relative to that same prob-
ability for a field in a coherent state. In the steady state, we

() ==yl o), (13 ~ May use the quantum regression theorem to evaluate the nec-
X aux essary correlation functions, which then obey the Bloch
<C-ry>: — ()~ (YIV2)(a) (14) equations but with different initial conditions. The result is
) ()]
(0)=—v(02)+ 8)+(YIV2){0y), (15  g@(r)=1—exp—(yy+v,)7} costQr)+ sinr’(QT)},
where for the SV case we have (30
Y= (N+M+1/2), (16 “Where
0= %[(')’y_ 72)2_2Y2]1/2- (3
Yy=(N—M+1/2), (17)
WYz ‘/ZY<0'y>
o=-1/2, (19 For weak fieldgY—0), in the SV case, this result simplifies
to
and in the CS case we have
g?(r)~1—exgd —(2N+1)7], (33
Yx=3[1+2C(2N+2M+1)], 20 o ]
independent oM, i.e., it is the same for thermal fields and
= 1+2C(2N-2M+1)], (22) squeezed fields. Similarly, in the CS case, we find
)(r)~1—exp{—[2N(1+2C)+1]7}. 34

Plots of these are shown in Fig. 3. We see that of course
8=—3(1+2C). (23 g@(0)=0, as it must be for a single two-level atom, but that

g?(7) rapidly approaches unity, approaching it at a faster
Results for¢=m/2 are obtained simply by changing the sign rate as the squeezing is increased. This result makes sense if
of M. The SV case can be recovered from the CS case bye recall that the squeezed vacuum state is a state of nonzero
letting I'—9/2 and C—1/2. We note that in the strong mean photon numbeX. As the squeezing paramethr is
squeezing limitM is approximated by increased, the atom interacts with a larger amount of pho-
tons, and it takes a correspondingly shorter time to reexcite
the atom after an emission event. In the weak-field limit,

1
M=N+3" 8N @) there is essentially no coherent field to provide a phase ref-
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1.2 : : : : : of the squeezed vacuum is in phase with the coherent driving
i ] field, and hence in phase with the Rabi oscillations of the
atom, there is an increase in the amplitude of the oscillations
in g@(7) relative to the thermal light of the same mean pho-
ton number. For the opposite phage #/2 there is an en-
hancement in the suppression of the oscillations relative to
that of the thermal state. In both cases however, the oscilla-
tions are smaller than the case of an ordinary vacuum. This is
seen in the eigenvalues of the Bloch equations, as the pres-
ence of the squeezed vacuum increases the magnitude of the
real part, but reduces the magnitude of the imaginary part;
faster damping and smaller oscillation frequency. Once
again, increasing the squeezing washes out the oscillations,
as can be seen in Fig. 4. Essentially similar behavior is ob-
served for the CS case, although here the cavity enhance-
ment of spontaneous emission increases the decay rate.

IV. COHERENT SPECTRUM

The fluorescent spectrum is given by

line(@)=(04(0))(0-(0)) 8w~ wo)

! i A A
+;Ref_m< o, (7)Ao_(0))

Xexgi(w—wg)7T]dT. (36

The 6 function component is known as the coherent, Ray-
leigh, or elastic scattering spectrum; the second component is
the incoherent or inelastic scattering spectrum. We calculate
FIG. 3. Second-order intensity correlation functigf'(7) for  the intensity of the coherent spectrum as the driving field is
the SV case for weak fieldsa) For no squeezingdash, thermal  scanned across the central resonance frequency. This is de-

light (dot-dash, and squeezed vacuufsolid) with N=1.0.(b) For  termined using steady states obtained from the Bloch equa-
N=0.0 (solid), 0.2 (small dash, 1.0 (large dash and 2.0(dot-

tions,
dash. Recall the scaling of the time axis=yt.
. <‘-7x>: - ')’x<0'x>_A<0'y>! 37
erence, hence the result is the same for all phases of the
squeezed vacuum. The atom is predominantly in the ground (0,)=—1,0) = (YIV2)(o)+ A{ay), (39
state, and the interaction with the squeezed vacuum produces
the same result as the thermal light of the same mean photon () =—7(a)+ 8)+(YIV2){0), (39)

number, and there is no phase-sensitive behavior. This is

similar to the behavior obtained by Vyas and SifdB] for  \here we have included the detuning of the driving field
an atom interacting with one broadband squeezed mode. fom the atomic resonance by an amountnormalized to

In the limit of large squeezing, in the SV case we have the spontaneous emission rateThe steady-state solution to
these equations is given by

g?(7)=1—exp{—N7}| coshQ, g7) ) _ASY 1 w0
Ox)ss™ ,
1 . X/ss VI Yy AZs Y_zﬁ
+ [1_Y2/(2N2)]1/2 SInHQLST) ’ (35) X7y 2 Yz
where hereQ, =N[1-Y?/N?]2 Notice that the large = xoY 1 a1
squeezing and weak coherent field limits do not commute. (oy)ss= V3 ) Y2y, (42)
Once moreg®(0)=0 and the rise to unity is oscillatory in Yxyyt AT+ > 7
nature, due to the Rabi oscillations of the atom. The ampli- z
tude of the oscillations is reduced by the presence of a Y +A?)
squeezed vacuum, just as there would be if the atom were (0))ss= YxYy — (42
interacting with a thermal, noisy reservoir. Howevg?)(7) LAZE Y7o
is sensitive to the phase of the squeezed vacuum, or more YxYy 2 v,

precisely the relative phase between the squeezed vacuum
and the coherent field. Fat=0, when the quiet quadrature Hence the coherent spectrum can be given as
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FIG. 4. Second-order intensity correlation functigif(s) for
the SV case for strong field¥,=10.0.(a) For no squeezinsolid),
thermal light (dot-dash, and squeezed vacuum with=1.0 and
6=0.0(small dashand 6==/2 (large dash (b) For ¢==/2,N=0.0
(solid), 0.5(small dash, 1.0(large dash and 2.0(dot-dash. (c) For
$=0.0, N=0.0 (solid), 0.5 (small dasl, 1.0 (large dash and 2.0

(dot-dash. Recall the scaling of the time axis=yt.
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FIG. 5. Coherent spectrum for the CS case, for weak fields with
C=1.0.(a) N=0 (solid) and N=2.0. (dash. (b) Linewidth of the
coherent spectrum as a function Mf Frequencies are in units of
r-

spectrum was broadened by the presence of the squeezed
vacuum. Essentially, the coherent spectrum is phase indepen-
dent, and samples both the quiet and noisy quadratures. In

the CS case, the coherent spectrum is given in the weak-field

limit by

| 1+A2
coh™ TT 1 2C(1+4N) + A%2

(44)

which exhibits the same broadening as the SV case, as
shown in Fig. 5.

V. PUMP-PROBE ABSORPTION SPECTRUM

Ritsch and Zollef14] examined the absorption spectrum
of a weak probe field as it is scanned across the central
resonance, in the presence of a second pump field tuned to
resonance. They obtained essentially the same result as Gar-
diner[1] and CLW[2] obtained for the incoherent spectrum.
That is the separation of the usual Lorentzian spectrum into
two distinct components as the amount of squeezing is in-
creased; one that is narrowed and one which is broadened. In
the limit of large squeezing the width of the narrow compo-
nent can be made arbitrarily small. In the case of a two-level

A similar expression has been obtained by Ritsch and Zolleatom in a cavity, the CS case, the pump-probe absorption
[14] for the SV case, where they found that the coherenspectrum is given for weak pump fields by
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0.5 . . ing for the SV and CS cases, in order to determine the effect
of a squeezed vacuum on nonclassical effects obtained with a
coherent field. The spectrum of squeezing is givehlt®y17]

S(w,0)=87]f:dr cofwr)Re (Ao (0)Ao_(7))

W(w)

+e?%( Ao (0)Aa. (7))} (46)

S(w,0) has a lower bound of-1 and O represents the shot-
noise limit. Heren is the combined collection and detection
efficiency. If one takes the limit of —0, the squeezing goes
away entirely, and the spectra of squeezing are a positive
narrow peak, and a positive broad peak, respectively. Chang-
ing the phase of the local oscillator relative to the phase of
the coherent field merely changes which quadrature is broad-
ened and which is narrowed. Summing these two spectra of
squeezing results in the incoherent spectrum containing a
narrowed and a broadened comporjéd. These results can
be understood in terms of the two quadratures of the atom as
independent scatterers of squeezed n¢p@®tons derived
from the squeezed vacuymwhere each quadrature acts as a
bandpass filter of different linewidth. Changing the phase of
the squeezed vacuum merely alters the bandwidths of the
two quadratures. In the case of a thermal vacuum, the atom
would still scatter noise, but the spectrum of squeezing
would be independent of phase. Here, we see that the use of
a squeezed vacuum results in the destruction of a nonclassi-
cal feature present when the system interacts with normal
vacuum modes. In the CS case, one has the same qualitative
behavior; with the linewidth of the two spectra of squeezing
FIG. 6. Pump-probe absorption spectrum for the CS case fobeing given by the appropriatg and Yy -
weak fields andC=2.0. (a) N=0.0 (solid), 0.5 (small dash 2.0

=0)""V

(T/u

(large dash and 20.0(dot-dash. (b) Linewidth of the two Lorent- VIl. CONCLUSIONS
zian components of the pump-probe absorption spectrum as a func-
tion of N. Frequencies are in units & *. We have calculated several quantities for a single two-
level atom immersed in a squeezed vacU®¥ mode}, and
Yy Yy for an atom in a cavity that is driven by a coherent field as
W(w)<) ===+ 5. (49 well as a squeezed vacuum, but interacts with an ordinary
YT w YWto

vacuum out the sides of the cavit€¢S model. We find that
Here we see that the spectrum SplitS into two components éBe photon statistics of the fluorescent field exhibit phOtOﬂ

in the SV case, and we obtain essentially the same result &tibunching[g®(0)<1], but that very rapidlyg®(r) ap-
that of the incoherent spectrum in the CS cg&e Note that proaches the value of unity. Indeed, for weak fields, the cor-
the width of the spectrum cannot be made arbitrarily narrowrelation function is exactly the same as that of a thermal field
as it is limited by the value of, the rate of spontaneous Of the same mean photon number. For strong fieg(7)
emission into the unsqueezed modes. The cavity enhanc@xhibits phase-sensitive behavior as the phase of the squeez-
ment of the linewidth,['(1+2C) can be reduced using a ing is varied relative to the phase of the coherent driving
squeezed vacuum, but is only subnatural if the cavity enfield. Hence we see that in some respects a squeezed vacuum
closes a significant portion ofAsr as was the case for the is similar to noise. This is due to the fact that although there
incoherent spectrum. Once again this weak-field result is inaré phase correlations for a squeezed vacuum, the average
dependent of the phase of the squeezed vacuum. This is exalue of the field is 0, but the average value of the intensity
hibited in Fig. 6. For thermal light of the same mean photoniS Not. The coherent spectrum and pump-probe absorption
number, there is on|y a broadening of the Spectrum_ SpeCtrUm for the CS case is very similar to those obtained by
Ritsch and Zollef14] for the SV case. The coherent spec-
trum is only broadened by the squeezed vacuum, and the
pump-probe absorption spectrum splits into a narrow and a
It is known that for weak coherent excitation, the fluores-broad component. The width of this spectrum cannot be
cence emitted from a two-level atom is squeezed, reflectingnade arbitrarily narrow, but is limited by the spontaneous
nonclassical atomic polarization fluctuatioh5,16. The emission rate into unsqueezed modes. Finally, we have cal-
guadrature w/2 out of phase with the driving field is culated the spectrum of squeezing for the fluorescent light,
squeezed, and the quadrature in phase with the driving fieldnd have found that interaction with a squeezed vacuum can
is unsqueezed. Here we investigate the spectrum of squeezempletely destroy the squeezing in the fluorescent light.

VI. SPECTRUM OF SQUEEZING
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