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We investigate the dynamics of a two-mode stimulated Raman scattering model including propagation and
the quantum correlations that develop between the Stokes and anti-Stokes fields. For example, under certain
conditions two-mode squeezed states can result. We report results for quadrature squeezing and sum squeezing.
Quadrature squeezing only occurs when the anti-Stokes coupling constant is larger than the Stokes coupling
constant. The amount of squeezing increases as the damping of the material polarization is increased.

PACS number~s!: 42.50.Dv,32.80.Cy,42.65.Dr

I. INTRODUCTION

Stimulated Raman scattering has provided a wealth of in-
formation about quantum statistics and field coherence@1#.
Being an amplifier system, quantum noise is magnified to
macroscopic levels and statistical properties are directly re-
lated to the quantum initiation of the Stokes field. Several
physical properties have been examined in the context of
quantum initiation including the quantum statistics of soli-
tary wave generation@2,3#, pulse energy statistics@4–9#,
beam-pointing statistics@1,10,11#, and spectral properties
@12,13#.

The Stokes field undergoes a large amplification, but the
noise level remains quantum limited, corresponding to one
photon per spatiotemporal mode. As a result, Raman ampli-
fiers have been used for quantum limited image amplification
with possible applications to the medical field@14,15#.

Few studies have reported the quantum dynamics of
stimulated Raman scattering~SRS! when both the Stokes
and anti-Stokes fields are important. Penzkoffer, Laubereau,
and Kaiser@16# derived a formal expression for the SRS
equations for the Stokes and anti-Stokes fields. They have
studied the coupling between the two fields in the steady-
state regime. Ackerhalt and Milonni@17# derived the SRS
equations by treating the interaction as a four-wave mixing
and have concentrated their work primarily in the studies of
Raman solitons. Both of these studies ignore the quantum
aspects of the field. Scalora, Bowden, and Haus@18# have
studied the coupling of the pump, Stokes, and anti-Stokes
fields with the inclusion of diffraction and quantum initiation
effects.

In a previous paper@19#, we have studied the quantum
correlations between the Stokes and anti-Stokes fields using
a single-mode model of the fields. This corresponds to a
cavity model coupling between the fields and the atomic me-
dia. Solutions were obtained in the linear regime; the coher-
ence functions were calculated to examine several types of
quantum-squeezing phenomena, namely, quadrature squeez-
ing and two types of higher-order coherences called sum and
difference squeezing@20#. For that model only sum squeez-
ing existed.

In this paper, we have extended the study to include the

effects of propagation. First, we have studied the quantum
initiation of the Stokes and anti-Stokes fields in a little more
detail in Sec. II. In Sec. III, the equations for quadrature and
sum squeezing are given for the continuum field case. We
present the results we have obtained for the quantum corre-
lation between the Stokes and anti-Stokes fields in Sec. IV.

II. MODEL

We treat multiple fields in SRS by including the coupling
between three fields: the pump laser and two fields generated
from its interaction with the medium, the Stokes and the
anti-Stokes fields. The SRS equations for the two-mode Ra-
man amplifier in the slowly varying envelope approximation
with phase matching of the anti-Stokes field are
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These equations are similar to the ones used by Scalora,
Bowden, and Haus@18# but here we neglect diffraction ef-
fects. We adopt the normalization convention used by En-
glund and Bowden@2# for the various fields and parameters
that occur in the equations. That is, the fields in Eqs.~1! are
dimensionless and the length of the medium is normalized to
unity.

The variablej5z is the propagation distance inside the
medium andt5t2z/c is the retarded time wherec for all
practical purposes equals the speed of light in vacuum.
EL
(1) , ES

(1) , andEA
(1) in Eqs. ~1! correspond to the laser

PHYSICAL REVIEW A MAY 1996VOLUME 53, NUMBER 5

531050-2947/96/53~5!/3606~8!/$10.00 3606 © 1996 The American Physical Society



field, the Stokes field, and the anti-Stokes field, respectively.
Q(1) is the macroscopic polarization of the medium andG is
the collisional damping rate.

The symbolsk andb denote the coupling constants for
the Stokes and anti-Stokes fields, respectively. The ratio of
these coefficients distinguishes two regimes of dynamical
evolution with distinct quantum coherence properties. The
functionQ is the effective transition operator; the process is
driven by the Langevin force operatorF, which is taken to
be a Gaussian, Markovian, stationary random process and is
further discussed below.

The system of equations with Stokes and anti-Stokes
fields develops distinct coherence properties during evolu-
tion depending on the magnitude of the coupling constants,
i.e., whether or not the Stokes coupling constantk is domi-
nant over the anti-Stokes coupling constantb. The laser field
is assumed to be undepleted; i.e., the first equation of the set
in Eqs.~1! is not relevant andEL

(1) is constant. The remain-
ing equations are linear and can be solved by Laplace trans-
form techniques. In the undepleted-pump regime, the solu-
tions for the case ofk.b follow naturally from Eqs.~1!.
They are given by
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~2 !~j,t;0,t8!2b2E

0

t

dt8ẼA
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where the general definitions are employed:
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The pump field intensity isI 0L5E0L
2 andE0L is assumed to

be real. The above solutions take on a familiar form when
b50; they reduce to the solutions for the Stokes field.

Let us first examine the above solutions whenk50, i.e.,
when the laser-Stokes coupling is absent. This will be help-
ful in the following when both fields are present. In this case,
only the anti-Stokes field exists and we can show that the
normal-ordered intensity vanishes whereas the antinormal-
ordered intensity is equal to the vacuum fluctuations. This is
intuitively evident because the initiation of the anti-Stokes
field in the medium requires the pump fieldEL to excite the
initial population from an excited state to a virtual state. This
can happen if the pump field is far from resonance. As the
population of the atoms returns to the ground state, a blue-
shifted anti-Stokes field is emitted. The initiating radiation is
then amplified as it travels along the Raman medium leading
to stimulated Raman scattering. The asymmetry that exists
between the Stokes and anti-Stokes intensities is due to the
assumption in Eq.~1! that the initial population remains in
the ground state. Sincek50, the population of the atoms
remains in the ground state most of the time and hence the
anti–Stokes field remains negligible.

When both the fields are present, the relative size of the
coupling constants plays an important role in determining the
magnitudes of the Stokes and anti-Stokes fields. Ifk.b, we

have the usual exponential growth in both the Stokes and
anti-Stokes fields. This is because the strong coupling be-
tween the laser field and Stokes field is more effective in
exciting the initial population from the ground state to a
virtual state before it settles to an excited state. The process
is then reversed due to the nonzerob, with the population of
atoms going from the excited state to another virtual state
and back to the ground state. This reversed process is driven
by the polarization of the Raman medium.

If b.k, we find that the pump field is less effective in
driving the initial population of the ground state to the ex-
cited state. This is because the coupling between the pump
field and the Stokes field is smaller than that of the laser and
anti-Stokes, and the anti-Stokes field removes population
from the excited state and thus reduces the atomic polariza-
tion. Since the initial averages are defined such that the ini-
tial population is in the ground state, the buildup of the
Stokes field will be small. This implies a small generation of
the anti-Stokes field that results from the weakened induced
polarization in the Raman medium. Therefore, the dynamics
of the system whenb.k shows that the magnitudes of the
fields are smaller and the buildup is slower compared to the
previous state.

The solutions forES andEA whenb.k have the same
general form as Eqs.~2! and~3! but withk22b2 replaced by
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b22k2 and the modified Bessel functionI n(x) replaced by the ordinary Bessel functionsJn(x). This means that
E˜A,S

(1)(j,t;0,t8), Q̃(1)(j,t;j8,0), andF̃(j,t;j8,t8) in Eq. ~4! become
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We defined the averages of the Stokes and anti-Stokes
fields in our calculations as
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Since we assume that the ground state is initially popu-
lated, the averages forQ andF at the boundaries are
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These averages are consistent with the electric field com-
mutation relations. We can verify that the solutions of the
operator equations~3!–~5! are consistent with the field com-
mutation relations
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where i5A,S. The independence of the commutation rela-
tion on j can be proved@21# by showing that
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and by substituting thej derivatives for the SRS equations of
the anti-Stokes field.

Expanding the commutation relation and taking an aver-
age, we obtain
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that is, the difference between the antinormal-ordered inten-
sity and the normal-ordered intensity is equal to the delta
function.

III. QUANTUM-FIELD CORRELATIONS

One difficulty encountered in our calculation for the
higher-order correlation functions is the divergent term that
arises from the vacuum fluctuations of the Stokes and anti-
Stokes fields, when equal times are assumed. Normal first-
order squeezing does not have this problem as the divergent
term cancels. However, in sum squeezing, the divergent term
is present as a product with other nondivergent terms, as
shown below. In order to avoid this problem, we have as-

sumed that the correlation functions are measured at two
different times.

A. Quadrature squeezing

Let us define the operators as a linear combination of the
Stokes and anti-Stokes field operators:
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The standard deviations,DXi , are constructed from both
operators; their products satisfy the Heisenberg inequality

DX1DX2>
1
2 u^CX&u, ~13!

whereCX is the commutator@X1 ,X2# that can be represented
as a linear combination of the commutators
@ES

(1)(0,t),ES
(2)(0,t)# and @EA

(1)(0,t),EA
(2)(0,t)#. The op-

erators are in a quantum state, said to be normal squeezed in
theX1 direction if the variance ofX1 satisfies the condition

~DX1!
2, 1

2 u^CX&u. ~14!

To determine whether the dynamics produces a squeezed
state, we define the shifted variance

dX1
25~DX1!

22 1
2 u^C&u, ~15!

which is negative when the state is squeezed along theX1
direction.

B. Sum squeezing

Sum squeezing is a particular type of higher-order squeez-
ing motivated by the ability of two fields to generate sum
frequencies through a nonlinear interaction in a medium
@19#. For sum squeezing, we adopt the definition of Hillery
@20#, introducing the following operators:
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wheret2.t1 . There is sum squeezing in theV1 direction if
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which is negative in the region of the quantum state. Since
we have assumedt2.t1 , then C5d(t12t2)50. There-
fore, light is sum squeezed in theV1 direction if

dV1
25~DV1!

2,0. ~19!

In the context of a single-mode SRS model, we have pre-
viously found the existence of sum squeezing in a case
where quadrature squeezing was absent@19#. Thus, the ab-
sence of squeezing for the second moments cannot be used
to preclude hidden quantum coherence properties that be-
come apparent for higher moments.

There is another type of higher-order squeezing called
difference squeezing@20# that is not reported here. As in our
previous single-mode model@19#, we did not find squeezing
for those moments and therefore, they are not discussed fur-
ther.

IV. RESULTS

We illustrate the calculations of the previous section for a
variety of parameters. The parameters of interest in the
model are the damping constant, the coupling constants, the
retarded time, and the propagation distance along the Raman
cell. The shifted variances, for the cases when the Stokes-
laser coupling constant is larger than the anti-Stokes–laser
coupling constant and vice versa, are examined against the
model parameters for squeezing of light.

For all the results below, we have fixed the pump inten-
sity at I OL51022 and the number of Raman active molecules
at N51022. The values of the coupling constants are
k52.0310222, b510222 when k.b and k510222,
b52.0310222 whenb.k. The parameters are taken from
Ref. @2# although we have arbitrarily increased the pump
intensity and the number of Raman active molecules to in-
crease the magnitude of squeezing. The retarded time is

scaled by 4Nub22k2uI OL andg is defined in the Appendix,
Eq. ~A4!.

A. Quadrature squeezing

The solutions for the field operators in Eqs.~1! are ap-
plied in calculating the field moments to determine if the
fields are quadrature squeezed in the sense of two-mode
squeezing. We independently carried out the moment analy-
sis for the Stokes field and anti-Stokes field and found that
there is no first-order squeezing for the individual Stokes or
anti-Stokes fields in either the uncoupled system or the
coupled system. However, when a linear combination of the
Stokes and anti-Stokes fields is used in the coupled system,
then the light is squeezed for the first quadrature of the state
b.k.

Figure 1 is a plot of the shifted variances versus the re-
tarded time for the first quadrature of the stateb.k. The
figure is plotted at the propagation distance ofj50.5 for two
values ofg. Light is Xi squeezed when the curve lies below
the zero of the shifted variancedXi

2 . At time t50 ~local
time!, the shifted variance for this state is negative and the
equation at this point is given by14I 0LNj(22bk12k2).
The negative initial value for the variance is due to the quan-
tum coherence that is built up between the field fluctuations
at the boundary and the polarization fluctuations in the me-
dium @see Eqs.~2! and~3!# as the fluctuations propagate into
the medium. The curves forg50 and 1 show that light is
X1 squeezed for the length of time indicated. The amount of
squeezing decreases in both instances. Asg increases from 0
to 1, the curve is asymptotically more negative; in other
words as the material polarization damping increases, the
amount of squeezing increases.

This happens because as we increase the damping con-
stant, the polarization relaxes more quickly to follow the
dynamics of the fields. In the limit of large damping, the
polarization dynamics is adiabatically eliminated to give

FIG. 1. The quadraturedX1
2 defined in Eq.~15!. For this case

b.k and the propagation distance isj51.0. The initial squeezing
is largely decreased without dampingG50 and its value is retained
for large dampingg51. The symbolg is defined in the Appendix.
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when this is substituted in Eqs.~1b! and ~1c!, the equations
of motion resemble those for two-mode squeezing@22#:
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These are ordinary differential equations that describe the
field quantum coherence in the adiabatic limit of large damp-
ing. The additional Langevin term limits the amount of
squeezing. The dynamics of the fields for this case is oscil-
latory; as the laser places population to the excited state and
the system amplifies the Stokes radiation, the stronger cou-
pling of the anti-Stokes field generation returns it quickly to
the ground state and reduces the amplification of the Stokes
field. The two fields are in competition for the population.

The field strengths of the Stokes and anti-Stokes fields are
limited due to the effect of the field competition on material
polarization. The shifted variance is proportional to the cor-
relation between the Stokes and anti-Stokes fields. Hence, as
the damping constant increases, the intensity of the fields as
well as of the two-field correlations decreases. Therefore, the
shifted variance decreases.

Figure 2 is a three-dimensional plot of the shifted vari-
ance versus the propagation distance and the retarded time.
We setg51, which is defined in the Appendix Eq.~A4!; the
integrals are numerically evaluated. It can be seen from the
plot that squeezing increases as we increase the propagation
distance and holdt constant. It indicates that as the fields
travel along the medium, the strength of the fields is more
strongly correlated through their dynamics. This reduction in
strength reduces the shifted variance.

B. Sum squeezing

Both cases of the coupling coefficients have the ability to
develop sum-squeezed light. Some aspects of sum squeezing
are found to be very similar to that of normal first-order
squeezing. In the case of the system wherek.b, light was
found to be squeezed in the variance of the operatorV2 ,
whereas in the other case (b.k) squeezing occurs in the
variance of the operatorV1 .

Despite the absence of quadrature squeezing for the case
k.b, there is sum squeezing. Figure 3 shows a three-
dimensional plot ofdV2

2 versus the retarded time and the
propagation distance fork.b. We lett25t111024 in our
numerical representation of the analytical results. In this plot,
G50 and the light is squeezed over a range of times and
distances. Thet50 values for the variance do not exhibit the
field coherences discussed above fordX1

2 . However, the co-
herence that produces sum squeezing at later times is even-
tually destroyed and the squeezed variances show strong as-

FIG. 4. The variancedV2
2 for k.b and g51. The initial

vacuum state value is squeezed and at longer times the shifted vari-
ance remains negative.

FIG. 2. A plot showing the variancedX1
2 vs propagation dis-

tance and time. The damping constant isg51 andb.k.
FIG. 3. The variancedV2

2 for k.b and G50. The initial
vacuum state value is initially squeezed, but at longer times the
squeezing is replaced by a positive shifted variance.

3610 53K. C. YEONG, JOSEPH W. HAUS, AND A. V. CHIZHOV



ymptotic growth towards infinity. This is due to the
amplification of the noise in this case by the dynamics of the
fields. The magnitude of the squeezing found is quite small;
this is because the fields are not amplified for this case. The
variance ofV1 is not squeezed for this case.

As G is increased, so too is the amount of squeezing, but
only by a marginal amount. This is shown in Fig. 4, where
dV2

2 is plotted as a function of the propagation distance and
time. In this plot, g5G/@4N(k22b2)I 0L#51 @defined in
Eq. ~A4!# and the integrals were numerically evaluated. The
magnitude of the shifted variance has stabilized as a result of
the increase ofG. Light in this case is squeezed at longer
times and larger distances. As for the case of quadrature
squeezing above, the addition of damping serves to retain the
coherence developed between the electromagnetic field op-
erators. The additional dynamics of the polarization operator
serves to eliminate the quantum coherence. Again, the opera-
tor V1 does not exhibit squeezing.

Despite the absence of quadrature squeezing for the case
k.b, there is sum squeezing. The three-dimensional space-
time plot ofdV1

2 for this case withG50 is shown in Fig. 5.
There is a substantial amount of squeezing at initial times as
the light is propagating in the material. At long times though,
the squeezing is eventually lost as the coherence is random-
ized. The much larger value for the minimum of the variance
in this case, as compared with Fig. 3, is due to the amplifi-
cation of the field amplitudes. For this case the operatorV2 is
not squeezed.

The squeezing is again stabilized at long times asG is
increased. This is shown in Fig. 6 where the squeezing with
propagation distance is apparent. The magnitude of the
squeezing is reduced somewhat over the minimum value
found in Fig. 5. The value is due to the influence of the
polarization Langevin forces that tend to smear the coher-
ence.

V. SUMMARY

In an SRS system where the Stokes field is allowed to
couple with the anti-Stokes field, quantum coherences de-
velop between the fields and are manifested as quadrature
squeezing, as well as higher-order squeezing. Whenk.b,
the light is sum squeezed. WhenG50, the magnitude of the
shifted variance is large. AsG is increased to unity, the mag-
nitude of the shifted variance decreases significantly and the
light is fully squeezed over a regime of space and time.
When b.k, the coherences develop normal first-order
squeezing and sum squeezing. The magnitude of the shifted
variance is smaller atG50 compared to thek.b case.
WhenG is increased to unity, the magnitude of the shifted
variance increases. This is in contrast to the case when
k.b where the shifted variance decreases.

The sum squeezing is much larger in the case where
b.k, since the fields are not greatly amplified during propa-
gation. The finding of sum squeezing for this case is remi-
niscent of our previous result for a nonpropagating field
model @19#, where sum squeezing was found without the
appearance of quadrature squeezing.

APPENDIX

The following results have been used in the moment com-
putations. They are provided here for the benefit of the in-
terested reader. The calculations have used the following av-
erages for the fields:

^EA,S
~1 !~0,t!EA,S

~2 !~0,t8!&5d~t2t8!, ~A1a!

^Q~1 !~j,0!Q~2 !~j8,0!&5Nd~j2j8!, ~A1b!

^F†~t,j!F~t8,j8!&52GNd~t2t8!d~j2j8!, ~A1c!

whereN is the total number of Raman active molecules.

1. First-order normal squeezing

The two cases defined by the ratio of the coupling coef-
ficients have identical derivations, so we report only one
here. For the casek.b, the shifted variance for the first
quadrature is

FIG. 5. The variancedV1
2 for b.k and G50. The initial

vacuum state value is initially squeezed, but at longer times the
shifted variance is positive.

FIG. 6. The variancedV1
2 for b.k and g51. The initial

vacuum state value is strongly squeezed and following by a satura-
tion of the sum squeezing.
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We have scaled the time coordinatet and express it in
units of 4N(k22b2)I OL , i.e., tnew54N(k22b2)I OLtold
and the new damping constant is scaled according to

g5G/4N~k22b2!I OL . ~A4!

The pump field is assumed to be real and independent of
t. Whenb.k, we replacek22b2 by b22k2 and the modi-
fied Bessel functionsI n(x) by the ordinary Bessel functions
Jn(x).

2. Sum squeezing

For sum squeezing, the averages of the fields are made at
two different times. The calculations for the shifted variances
are similar to the first-order squeezing but with the addition
of two-time correlations. Fork.b, the variance of the first
quadrature has the following terms:

^@ES
~2 !~j,t1!EA

~2 !~j,t1!#
2&5b2k2I OL

2 N2j2@e24gt1f 2
2~t1!14ge22gt1f 2~t1! f 3~t1!2e22gt1f 2~t1!22g f 3~t1!14g2f 3

2~t1!#

1
k2b4

~k22b2!
I OL
2 N2j2@2e22gt1f 2~t1! f 1~t1!2 f 1~t1!14g f 1~t1! f 3~t1!#

1
k4b2

~k22b2!
I OL
2 N2j2@e22gt1f 2~t1! f 1~t1!2 f 1~t1!12g f 1~t1! f 3~t1!#

1
k4b4

~k22b2!2
I OL
2 N2j2f 1

2~t1!1
k2b6

~k22b2!2
I OL
2 N2j2f 1

2~t1! ~A5a!

^@ES
~1 !~j,t2!EA

~1 !~j,t2!#
2&5b2k2I OL

2 N2j2@e22gt2f 2
2~t2!12g f 3~t2!#

1
k4b2

~k22b2!
I OL
2 N2j2@e22gt2f 2~t2! f 1~t2!1 f 1~t2!12g f 1~t2! f 3~t2!#

1
k2b4

~k22b2!
I OL
2 N2j2f 1~t2!1

k4b4

~k22b2!2
I OL
2 N2j2f 1

2~t2!1
k6b2

~k22b2!2
I OL
2 N2j2f 1

2~t2!.

~A5b!

To simplify the expression, the following notational definitions were introduced for the normal-ordered fourth moment
M4

N (j,t1 ,t2)5^ES
(2)(j,t1) EA

(2)(j,t1) ES
(1)(j,t2) EA

(1)(j,t2)& and the antinormal-ordered fourth moment
M4

A(j,t1 ,t2)5^ES
(1)(j,t2) EA

(1)(j,t2) ES
(2)(j,t1) EA

(2)(j,t1)& are given by the following lengthy expressions:

M4
N ~j,t1 ,t2!5b2k2I OL

2 N2j2@e22gt1f 2~t1!2112g f 3~t1!#

1
k4b2

~k22b2!
I OL
2 N2j2@e22gt1f 2~t1! f 1~t2!2 f 1~t2!12g f 1~t2! f 3~t1!#

1
k2b4

~k22b2!
I OL
2 N2j2f 1~t1!1

k4b4

~k22b2!2
I OL
2 N2j2@ f 4

2~t1 ,t2!1 f 1~t1! f 1~t2!#

1
2k4b2

~k22b2!
I OL
2 N2j3/2 @e2g~t11t2! f 5~t1 ,t2!1 f 4

2~t1 ,t2!12g f 5~t1 ,t2! f 4~t1 ,t2!#, ~A6a!
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M4
A~j,t1 ,t2!5b2k2I OL

2 N2j2@e22gt1f 2~t1!2112g f 3~t1!#14b2k2I OL
2 N2j@2e22gt2g~t1 ,t2! f 5~t1 ,t2!

2e22g~t22t1!g2~t1 ,t2!12gg~t1 ,t2! f 5~t1 ,t2!e
2g~t22t1!#1

k2b4

~k22b2!
I OL
2 N2j2f 1~t1!

1
2k2b4

~k22b2!
I OL
2 N2j3/2g~t1 ,t2!e

2g~t22t1! f 4~t1 ,t2!1
2k4b2

~k22b2!
I OL
2 N2j3/2 @2e2g~t22t1!g~t1 ,t2! f 4~t1 ,t2!

1e2g~t11t2! f 4~t1 ,t2! f 5~t1 ,t2!12g f 4~t1 ,t2! f 5~t1 ,t2!#1
k4b2

~k22b2!
I OL
2 N2j2

3@e22gt1f 2~t1!2 f 1~t1!12g f 1~t2! f 3~t1!#1
k4b4

~k22b2!2
I OL
2 N2j2@ f 1~t1! f 1~t2!1 f 4

2~t1 ,t2!#. ~A6b!

Additional moment contributions are

^ES
~2 !~j,t1!EA

~2 !~j,t1!&5kbI OLNj@2e22gt1f 2~t1!1122g f 3~t1!#2
kb3

~k22b2!
I OLNj f 1~t1! ~A7a!

^ES
~1 !~j,t2!EA

~1 !~j,t2!&52kbI OLNj2
k3b

~k22b2!
I OLNj f 1~t2!, ~A7b!

where we introduced the following definitions

g~t1 ,t2!5
I 1„@j~t22t1!#

1/2
…

~t22t1!
1/2 , ~A8a!

f 4~t1 ,t2!5E
0

t1
dt8e2g~t11t222t8!

I 1„@j~t12t8!#1/2 …I 1„@j~t22t8!#1/2 …

~t12t8!1/2 ~t22t8!1/2
, ~A8b!

f 5~t1 ,t2!5E
0

t1
dt8e2g~t11t222t8!i 0~t12t8,t22t8!, ~A8c!

i 0~t1 ,t2!5
t2

1/2 I 0„@jt1#
1/2

…I 1„@jt2#
1/2

…2t1
1/2 I 1„@jt1#

1/2
…I 0„@jt2#…

t22t1
. ~A8d!

The functionsg(t1 ,t2) and f 4(t1 ,t2) result from the correlations between the Stokes and anti-Stokes fields. The functions
i 0(t1 ,t2) and f 5(t1 ,t2) result from the correlations of the material polarization and the Langevin noise, respectively.
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