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Quantum-field coherence in a Raman amplifier
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We investigate the dynamics of a two-mode stimulated Raman scattering model including propagation and
the quantum correlations that develop between the Stokes and anti-Stokes fields. For example, under certain
conditions two-mode squeezed states can result. We report results for quadrature squeezing and sum squeezing.
Quadrature squeezing only occurs when the anti-Stokes coupling constant is larger than the Stokes coupling
constant. The amount of squeezing increases as the damping of the material polarization is increased.

PACS numbd(s): 42.50.Dv,32.80.Cy,42.65.Dr

I. INTRODUCTION effects of propagation. First, we have studied the quantum
initiation of the Stokes and anti-Stokes fields in a little more
Stimulated Raman scattering has provided a wealth of indetail in Sec. Il. In Sec. llI, the equations for quadrature and
formation about quantum statistics and field coherddde  sum squeezing are given for the continuum field case. We
Being an amplifier system, quantum noise is magnified tdPresent the results we have obtained for the quantum corre-
macroscopic levels and statistical properties are directly relation between the Stokes and anti-Stokes fields in Sec. IV.
lated to the quantum initiation of the Stokes field. Several
physical properties have been examined in the context of Il. MODEL
guantum initiation including the quantum statistics of soli- . i . . . .
tary wave generatiofi2,3], pulse energy statisticB4—9], We treat muljuple fields in SRS by mcIudmg.the coupling
beam-pointing statistic§1,10,11, and spectral properties betwe_en _three fle_zlds: t_he pump Ias_er and two fields generated
[12,13. from its mte_ractlon with the medl_um, the Stokes and the
The Stokes field undergoes a large amplification, but th@nti-Stokes fields. The SRS equations for the two-mode Ra-
noise level remains quantum limited, corresponding to ondnan amplifier in the slowly varying envelope approximation
photon per spatiotemporal mode. As a result, Raman ampliith phase matching of the anti-Stokes field are
fiers have been used for quantum limited image amplification

with possible applications to the medical fi¢lt4,15. JEL" (o) () (+)=(+)
Few studies have reported the quantum dynamics of Pl =BQ BN —kQ RS, (1a
stimulated Raman scatteringRS when both the Stokes
and anti-Stokes fields are important. Penzkoffer, Laubereau, JEL)
and Kaiser[16] derived a formal expression for the SRS S =kQEM, (1b)
equations for the Stokes and anti-Stokes fields. They have 3
studied the coupling between the two fields in the steady-
state regime. Ackerhalt and Milonfil7] derived the SRS IEL") e(s)
equations by treating the interaction as a four-wave mixing 9E -BQE", (10

and have concentrated their work primarily in the studies of
Raman solitons. Both of these studies ignore the quantum (+)
aspects of the field. Scalora, Bowden, and HEL8 have 9Q
studied the coupling of the pump, Stokes, and anti-Stokes  J7
fields with the inclusion of diffraction and quantum initiation (1d)
effects.
In a previous papefl9], we have studied the quantum  These equations are similar to the ones used by Scalora,
correlations between the Stokes and anti-Stokes fields usifgowden, and Hau$l8] but here we neglect diffraction ef-
a single-mode model of the fields. This corresponds to 4ects. We adopt the normalization convention used by En-
cavity model coupling between the fields and the atomic meglund and Bowde2] for the various fields and parameters
dia. Solutions were obtained in the linear regime; the coherthat occur in the equations. That is, the fields in Edsare
ence functions were calculated to examine several types gfimensionless and the length of the medium is normalized to
quantum-squeezing phenomena, namely, quadrature squegipity.
ing and two types of higher-order coherences called sum and The variableé=z is the propagation distance inside the
difference squeezinf20]. For that model only sum squeez- medium andr=t—z/c is the retarded time where for all
ing existed. practical purposes equals the speed of light in vacuum.
In this paper, we have extended the study to include th&!™, ES”), andES") in Egs. (1) correspond to the laser

=-TQ"M+«kNES E["+ BNELE[T +F.
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field, the Stokes field, and the anti-Stokes field, respectively. £ -
Q") is the macroscopic polarization of the medium dhib EST(&7)=E57(0,n)+ Kf d¢'Q7)(&,7;¢,0)
the collisional damping rate. 0

The symbolsk and 8 denote the coupling constants for 27 = =0
the Stokes and anti-Stokes fields, respectively. The ratio of Tk fodT Es (fyTiO,T')JFBKL dr'Ep
these coefficients distinguishes two regimes of dynamical

evolution with distinct quantum coherence properties. The s —~

function Q is the effective transition operator; the process is X(¢&70,7")+ Kf f dr'dé'F(&,m ¢, 7"),
driven by the Langevin force operatbr, which is taken to 070

be a Gaussian, Markovian, stationary random process and is 2

further discussed below. ;

The system of equations with Stokes and anti-Stokes g(+) —E®) _ f r_(+) gl
fields develops distinct coherence properties during evolu- A (&m) =By (0m)—8 Od§ QH&me 0
tion depending on the magnitude of the coupling constants,
i.e., whether or not the Stokes coupling constans domi- _ de =S 0.7 ) — 2de B
nant over the anti-Stokes coupling constgnfThe laser field B o TS (&7m0m)=f8 o A
is assumed to be undepleted; i.e., the first equation of the set

in Egs.(1) is not relevant ancEf_” is constant. The remain- X(£,7,0 T/)_BfongrdgrET(g e )

ing equations are linear and can be solved by Laplace trans- T oJo e
form techniques. In the undepleted-pump regime, the solu- 3)
tions for the case ok> g follow naturally from Egs.(1).

They are given by where the general definitions are employed:

/ ’
Nl/zléﬁ 71"(7'77")51/2 Il[{4N(K2_BZ)IOL( T-T )5}1/2] E<+)

AE-‘,(A\J,FS)(g' T;O’T,) = mﬁe (T_ T!)l/Z A,S(OIT,)7 (43)
QU(&,7¢,0=152e T [{4N(x2— B2 oLr(E— E)}IQH(£,0), (4b)
F(&me m)=15te " I {4N(xP= B2 o (r— ) (6= ENIF(E 7). (49

The pump field intensity i$o, =E3, andE,, is assumed to have the usual exponential growth in both the Stokes and
be real. The above solutions take on a familiar form wheranti-Stokes fields. This is because the strong coupling be-
B=0; they reduce to the solutions for the Stokes field. tween the laser field and Stokes field is more effective in
Let us first examine the above solutions wher 0, i.e.,  exciting the initial population from the ground state to a
when the laser-Stokes coupling is absent. This will be helpvirtual state before it settles to an excited state. The process
ful in the following when both fields are present. In this case,is then reversed due to the nonzgrpwith the population of
only the anti-Stokes field exists and we can show that th@toms going from the excited state to another virtual state
normal-ordered intensity vanishes whereas the antinormaknd back to the ground state. This reversed process is driven
ordered intensity is equal to the vacuum fluctuations. This iy the polarization of the Raman medium.
intuitively evident because the initiation of the anti-Stokes If 8>k, we find that the pump field is less effective in
field in the medium requires the pump fidigl to excite the driving the initial population of the ground state to the ex-
initial population from an excited state to a virtual state. Thiscited state. This is because the coupling between the pump
can happen if the pump field is far from resonance. As thdield and the Stokes field is smaller than that of the laser and
population of the atoms returns to the ground state, a blueanti-Stokes, and the anti-Stokes field removes population
shifted anti-Stokes field is emitted. The initiating radiation isfrom the excited state and thus reduces the atomic polariza-
then amplified as it travels along the Raman medium leadingjon. Since the initial averages are defined such that the ini-
to stimulated Raman scattering. The asymmetry that existial population is in the ground state, the buildup of the
between the Stokes and anti-Stokes intensities is due to tHstokes field will be small. This implies a small generation of
assumption in Eq(1) that the initial population remains in the anti-Stokes field that results from the weakened induced
the ground state. Since=0, the population of the atoms polarization in the Raman medium. Therefore, the dynamics
remains in the ground state most of the time and hence thef the system wheB> «x shows that the magnitudes of the
anti—Stokes field remains negligible. fields are smaller and the buildup is slower compared to the
When both the fields are present, the relative size of th@revious state.
coupling constants plays an important role in determining the The solutions forEg and E5 when 8>k have the same
magnitudes of the Stokes and anti-Stokes fields>#3, we  general form as Eq$2) and(3) but with «>— 82 replaced by
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,82—K2 and the modified Bessel functiol,(x) replaced by the ordinary Bessel functiodg(x). This means that
((&,70,7), QU(&,7;¢',0), andF(¢,7:¢',7') in Eq. (4) become

NYA gt rr-e g TLANGE = )l ou (7= 7) 617

ENS(6707)= (e =) Eps(0.7), (52)
Q& m¢,0=152e T3 [{4N(B2— k)l oL T(£— £ )}21QH)(£,0), (5b)
F(&m¢ ,7)=Eoe " I {4N(B2— i)l o (7— 7' ) (6— ENM2IF (¢, 7). (50)

We defined the averages of the Stokes and anti-Stokesumed that the correlation functions are measured at two

fields in our calculations as different times.
<E A (0, T)E (07))=d(7=7"). (6) A. Quadrature squeezing
Since we assume that the ground state is initially popu- Let us define the operators as a linear combination of the
lated, the averages f@ andF at the boundaries are Stokes and anti-Stokes field operators:
(QM(£,0Q'7(¢,0))=Na(¢-¢"), @) 1 _
Xa= GBS/ EN+EN (60 +ESIEN+EN (6],
(FI(r.&)F(7',§))=2INS&(r— ) 8(¢—¢).  (8) (129

These averages are consistent with the electric field com- _
mutation relations. We can verify that the solutions of the , | (=) (=) (+) (+)
operator equation)—(5) are consistent with the field com- Xz_ﬁ[ES (&) +Ex (§,7)—Es (§,7)—Ex(§,7)].
mutation relations (12b)

(+) (=) NT=TE(*) (=) ’
[Ei7 (0B (0 ]=[E (& 7).E (£7)] The standard deviationd X;, are constructed from both
=5(r—1'), (9) operators; their products satisfy the Heisenberg inequality

wherei=A,S. The independence of the commutation rela- AX;AX,=3[(Cy), 13
tion on £ can be proved21] by showing that
whereCy is the commutatofrX; ,X,] that can be represented
(+) EC) N as a linear combination of the commutators
g[E (&m).E(&m)1=0, 0 [E6(0,7),ES)(0,7)] and[ESY(0.7),ES(0,7)]. The op-
erators are in a quantum state, said to be normal squeezed in

and by substituting thé derivatives for the SRS equations of the X; direction if the variance oK; satisfies the condition
the anti-Stokes field.

Expanding the commutation relation and taking an aver- (AXp)?<3[(Cx)l. (14)
age, we obtain

(E(ENET(E ) —(EL(E,7)EM(&,7))
=6(m—171'), (11

To determine whether the dynamics produces a squeezed
state, we define the shifted variance

8X§=(AX1)?=3(C), (15)
that is, the difference between the antinormal-ordered inten-
sity and the normal-ordered intensity is equal to the deltayhich is negative when the state is squeezed alongXthe
function. direction.

IIl. QUANTUM-FIELD CORRELATIONS B. Sum squeezing

One difficulty encountered in our calculation for the  Sum squeezing is a particular type of higher-order squeez-
higher-order correlation functions is the divergent term thafng motivated by the ability of two fields to generate sum
arises from the vacuum fluctuations of the Stokes and antirequencies through a nonlinear interaction in a medium
Stokes fields, when equal times are assumed. Normal firsf19]. For sum squeezing, we adopt the definition of Hillery
order squeezing does not have this problem as the divergeg], introducing the following operators:
term cancels. However, in sum squeezing, the divergent term
is present as a product with other nondivergent terms, as V,=3[ES (&, 7)EY (&, 7)) T ES(£,m)ELN ) (£,75)],
shown below. In order to avoid this problem, we have as- (163
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[
Vo=5[Es (6, m)EL (6 7) — B (6,2 ER(,720)],

(16b) -030
— y=1
wherer,>7;. There is sum squeezing in thMg direction if o035l L Lin
c Q T
(AVy)2<H(BS (¢, 1) ST (6,72) & o)
TEV(ETEN (6 H0), a3
w045 .
where r
. -0.50 f
C=[E5"(£&,m0).E5 (6,7))] 0 1 8 12 16 20
or T

[EY(&,71),ER(6,7m0)].

We similarly define the shifted variance fof as

FIG. 1. The quadraturéxi defined in Eq.(15). For this case
B>k and the propagation distanceds-1.0. The initial squeezing
is largely decreased without dampihg=0 and its value is retained

C for large dampingy=1. The symboly is defined in the Appendix.
Vi=(AVy)? = H(ES (£, T)EL (£,7m2)

scaled by &|B%— k?|lo, andy is defined in the Appendix,
+Ej (£ m)ER (6,72 +C), (18 Eq.(A4).

which is negative in the region of the quantum state. Since
we have assumed,> 7, then C=4(7,— 75)=0. There- A. Quadrature squeezing

fore, light is sum squeezed in the direction if The solutions for the field operators in Eq4) are ap-

5Vf=(AV1)2<O. (19) plied in calculating the field moments to determine if the
fields are quadrature squeezed in the sense of two-mode
In the context of a single-mode SRS model, we have presqueezing. We independently carried out the moment analy-
viously found the existence of sum squeezing in a caséis for the Stokes field and anti-Stokes field and found that
where quadrature squeezing was ab$@et. Thus, the ab- there is no first-order squeezing for the individual Stokes or
sence of squeezing for the second moments cannot be usedti-Stokes fields in either the uncoupled system or the
to preclude hidden quantum coherence properties that beoupled system. However, when a linear combination of the
come apparent for higher moments. Stokes and anti-Stokes fields is used in the coupled system,
There is another type of higher-order squeezing calledhen the light is squeezed for the first quadrature of the state
difference squeezin0] that is not reported here. As in our g> .
previous single-mode modglL9], we did not find squeezing  Figure 1 is a plot of the shifted variances versus the re-
for those moments and therefore, they are not discussed fugarded time for the first quadrature of the st@te x. The
ther. figure is plotted at the propagation distance ef0.5 for two
values ofy. Light is X; squeezed when the curve lies below
IV. RESULTS the zero of the shifted varianc8X?. At time 7=0 (local

We illustrate the calculations of the previous section for alime), the shifted variance for this state is negative e;nd the
variety of parameters. The parameters of interest in th&duation at this point is given byl o N&(—28x+2x?).
model are the damping constant, the coupling constants, thEhe negative initial value for the variance is due to the quan-
retarded time’ and the propagation distance a|ong the Raméﬁm coherence that is built up between the field fluctuations
cell. The shifted variances, for the cases when the Stokedt the boundary and the polarization fluctuations in the me-
laser coupling constant is larger than the anti-Stokes—lasélium[see Eqs(2) and(3)] as the fluctuations propagate into
coupling constant and vice versa, are examined against ttibe medium. The curves fop=0 and 1 show that light is
model parameters for squeezing of light. X1 squeezed for the length of time indicated. The amount of

For all the results below, we have fixed the pump inten-squeezing decreases in both instancesy Asreases from 0
sity atl o, = 10?? and the number of Raman active moleculesto 1, the curve is asymptotically more negative; in other
at N=10°2 The values of the coupling constants arewords as the material polarization damping increases, the
k=2.0x10%2, B=102%2 when «>B and «=10"22  amount of squeezing increases.

B=2.0x10 % when 8> k. The parameters are taken from  This happens because as we increase the damping con-
Ref. [2] although we have arbitrarily increased the pumpstant, the polarization relaxes more quickly to follow the
intensity and the number of Raman active molecules to indynamics of the fields. In the limit of large damping, the
crease the magnitude of squeezing. The retarded time olarization dynamics is adiabatically eliminated to give
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FIG. 2. A plot showing the variancéxi Vs propagation dis- FIG. 3. The varianceavg for k> and I'=0. The initial
tance and time. The damping constantyis 1 and 8> «. vacuum state value is initially squeezed, but at longer times the

squeezing is replaced by a positive shifted variance.

K BNEYE") FT
Q(+)=FNE(§)E(,_+>+ %4— Nk (20) B. Sum squeezing
Both cases of the coupling coefficients have the ability to
o ) . ) develop sum-squeezed light. Some aspects of sum squeezing
when this is substituted in Eq&lb) and(1c), the equations  are found to be very similar to that of normal first-order

of motion resemble those for two-mode squeeZi2ig: squeezing. In the case of the system whereB, light was
found to be squeezed in the variance of the operstar
deCY NI = whereas in the other cas@¥ «) squeezing occurs in the
s _ Nou o ap(+) (-4 & -
4G - T (k°Eg '+ kBE, )+ T (21)  variance of the operator .

Despite the absence of quadrature squeezing for the case
x>, there is sum squeezing. Figure 3 shows a three-
dE) NloL BF dimensional plot of6V3 versus the retarded time and the

i T(KﬁEg)+ﬁ2E§;>)— T (22)  propagation distance for>g. We let7,=7,+10" % in our

§ numerical representation of the analytical results. In this plot,

I'=0 and the light is squeezed over a range of times and

These are ordinary differential equations that describe théistances. The=0 values for the variance do not exhibit the
field quantum coherence in the adiabatic limit of large dampfield coherences discussed above 8 . However, the co-
ing. The additional Langevin term limits the amount of herence that produces sum squeezing at later times is even-
squeezing. The dynamics of the fields for this case is osciltually destroyed and the squeezed variances show strong as-
latory; as the laser places population to the excited state and
the system amplifies the Stokes radiation, the stronger cou-
pling of the anti-Stokes field generation returns it quickly to
the ground state and reduces the amplification of the Stokes
field. The two fields are in competition for the population.
The field strengths of the Stokes and anti-Stokes fields are &
limited due to the effect of the field competition on material Q%
polarization. The shifted variance is proportional to the cor-
relation between the Stokes and anti-Stokes fields. Hence, ag-§
the damping constant increases, the intensity of the fields ass'S
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We sety=1, which is defined in the Appendix EA4); the L) < e,
L

integrals are numerically evaluated. It can be seen from the
plot that squeezing increases as we increase the propagation
distance and hold- constant. It indicates that as the fields
travel along the medium, the strength of the fields is more FIG. 4. The variancesV3 for x>8 and y=1. The initial
strongly correlated through their dynamics. This reduction invacuum state value is squeezed and at longer times the shifted vari-
strength reduces the shifted variance. ance remains negative.
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FIG. 5. The variancesV? for B>« and I'=0. The initial

Despite the absence of quadrature squeezing for the case
k>3, there is sum squeezing. The three-dimensional space-
time plot of 84 for this case witH" =0 is shown in Fig. 5.
There is a substantial amount of squeezing at initial times as
the light is propagating in the material. At long times though,
the squeezing is eventually lost as the coherence is random-
ized. The much larger value for the minimum of the variance
in this case, as compared with Fig. 3, is due to the amplifi-
cation of the field amplitudes. For this case the operdias
not squeezed.

The squeezing is again stabilized at long timed as
increased. This is shown in Fig. 6 where the squeezing with
propagation distance is apparent. The magnitude of the
squeezing is reduced somewhat over the minimum value
found in Fig. 5. The value is due to the influence of the
polarization Langevin forces that tend to smear the coher-
ence.

vacuum state value is initially squeezed, but at longer times the V. SUMMARY

shifted variance is positive.

In an SRS system where the Stokes field is allowed to
couple with the anti-Stokes field, quantum coherences de-

ymptotic growth towards infinity. This is due to the yelop between the fields and are manifested as quadrature
amplification of the noise in this case by the dynamics of thesqueezing, as well as higher-order squeezing. Wierg,
fields. The magnitude of the squeezing found is quite smallihe light is sum squeezed. Whéh= 0, the magnitude of the
this is because the fields are not amplified for this case. Thehifted variance is large. AS is increased to unity, the mag-

variance ofV; is not squeezed for this case.

nitude of the shifted variance decreases significantly and the

As T is increased, so too is the amount of squeezing, bulight is fully squeezed over a regime of space and time.
only by a marginal amount. This is shown in Fig. 4, whereWhen B>k, the coherences develop normal first-order
5V§ is plotted as a function of the propagation distance andqueezing and sum squeezing. The magnitude of the shifted

time. In this plot, y=T/[4N(x?— %)l ]=1 [defined in

variance is smaller ai'=0 compared to thec> g case.

Eq. (A4)] and the integrals were numerically evaluated. TheWhenT is increased to unity, the magnitude of the shifted

magnitude of the shifted variance has stabilized as a result ofariance increases. This is in contrast to the case when
the increase of". Light in this case is squeezed at longer x> 8 where the shifted variance decreases.

times and larger distances. As for the case of quadrature The sum squeezing is much larger in the case where
squeezing above, the addition of damping serves to retain th8> «, since the fields are not greatly amplified during propa-

coherence developed between the electromagnetic field ogation. The finding of sum squeezing for this case is remi-

erators. The additional dynamics of the polarization operatoniscent of our previous result for a nonpropagating field

serves to eliminate the quantum coherence. Again, the operasodel [19], where sum squeezing was found without the

tor V; does not exhibit squeezing.

ey
e
2L RLALY 2z
BRI RIREAL LR,
LR ERR
ERTELERLL
SR

Z
LT
R o,
KRR
KRR
LA
Pttt
LA Aoy vy oy,
LA LA AL T
3
LA TR
R LR s
L R R B AR R

SV7 (B>K)
-0.4-0.3-0.1 0.0

ey,
CRLRR
O, e
LI

i A,
A R R R AR R A L TR R

A A A A A A AL AR
B

R AR R AR A AR
R R R R AL

gy ey hy ey

QAL

g0 ]
L
210114

{
-

FIG. 6. The variancesV? for B>« and y=1. The initial

appearance of quadrature squeezing.

APPENDIX

The following results have been used in the moment com-
putations. They are provided here for the benefit of the in-
terested reader. The calculations have used the following av-
erages for the fields:

(EW01ELd(0,7))=d(7— 1), (Ala)

(QU(£0Q7(¢,0)=Ns(é-¢), (Alb)

(FI(r,&)F(',&))=2TNS(7— 1) 8(£~ &), (Alc)
whereN is the total number of Raman active molecules.

1. First-order normal squeezing

The two cases defined by the ratio of the coupling coef-
ficients have identical derivations, so we report only one

vacuum state value is strongly squeezed and following by a saturdiere. For the case> g, the shifted variance for the first

tion of the sum squeezing.

quadrature is
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1
(8X)=2 |0LN§ — Br[2e 27 5(7,E) + 4yfa(7,E)]

+ k[ 2 ,(7,€) + 1+ 2yf5(7,€)]

— B~ 1+e 27 ty(1,8)+2yfa(7,8)]
 2Br(x>+ B Br)

(K2_182) fl( 7, §)
44 g4
+ (K 24)f1(7 5)] (A2)
where the following definitions are applied:

N 1 (FIE et Y )

fl<r,§>=f0dre O e
(A3a)
fo(7,6) =151~ 15([(71Y?)  (A3D)
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Fo(r,€)= f e 2 R ) ]H2)
0
—12@E(r—1)]Y2). (A30)

We have scaled the time coordinateand express it in
units of 4N(k>—B?)loL, i.e., Tnew=4N(k’—B?)loLT0q
and the new damping constant is scaled according to

y=TI4N(k*— Bl o . (A4)

The pump field is assumed to be real and independent of
7. WhenB> k, we replace<’— 82 by 82— k2 and the modi-
fied Bessel functions, (x) by the ordinary Bessel functions

Jn(X).

2. Sum squeezing

For sum squeezing, the averages of the fields are made at
two different times. The calculations for the shifted variances
are similar to the first-order squeezing but with the addition
of two-time correlations. Fok> 3, the variance of the first
guadrature has the following terms:

([ES (&, m)EY (&,m)12)=B2PIGIN?E [ “71E5( 7)) + 4ye 2Vl (1)) fa(11) — €7 2V 1f y(71) — 2yf 5(11) +4¥?5( )]

K2ﬁ4
=)
K4B2

13 N2E2[ 287 2771f o( 1) 1 (7y) —

fa(r) +4yfi(r)fs(7)]

+ (Kzﬁ|éLszz[efzyrlfz(71)f1(7'1)_f1(71)+2’)’f1(7'1)f3(71)]

B)

4 4 2 06
( :BB)ZIZLN ng (Tl)+( KBﬁ)ZIZLN ng (Tl) (A5a~)
([ES(&,m)ER(&,72)1%) = B2KPIE N2 EY @ 2772 5( 7)) + 29F5( 1) ]
K4BZ
+(_K2__/32_)|ZOLszz[e_zwzfz(Tz)fl(72)+f1(72)+27f1(72)f3(72)]
2 n4 4 H4 6 2
+ %%LN%ZQ(@H ﬁ@ngzfﬁ )+ %%LN%%(@).
(A5b)

To simplify the expression, the following notational definitions were introduced for the normal-ordered fourth moment

My (&1, m)=(ES (&) ER(6m) ES)(Em)

ESI(€,7m))

and the antinormal-ordered fourth moment

MA%(§.71172)2<E(3+)(§’ 7,) Eﬁj)(g,rz) E(S‘)(g,rl) ES;>(§,71)> are given by the following lengthy expressions:

My (&,71,72)= B271 5 N?&7 € 2771f5(10) = 1+ 2f5(7y)]

K4B2
( (x*=B?)
K2B4
( (x*=B%)
2K4B2
Uy

) OLN () +

( 2__

|(ZJLN2§3/2[377(T1+72)“5(7'117'2)"‘fzzu(Tl:7'2)+27f5(7'1,7'2)f4(7'1,72)],

) OLN 28 e 21t y(1y) F1(70) — Fo(72) + 29F1(72) Fa(71)]

4B4
)ZI%LN EL 3y, 1)+ Fa(m)F1(7)]

(A6a)
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M (&,71,m5) = B2k B N2EH @ 2771f o(71) — 1+ 29F 5(11) ]+ 482 K21 5 N2E[ — e 2Y72g( 7y, 75) F5( 71, T2)

K2,B4
—e 227 Tg2( 1), ) + 2yg( 7y, 7o) f5( 71, 7o)€ V2T W]+ mléLNzngl(Tl)
2K2:84 2K4,82
+ ml ZOLN2§3/29(71172)67 y(TrTl)f4( T1,72)+ mléLsz‘o’lz[—e* 7(72771)9(7'1,7'2)f4( T1,72)
KA,BZ
+e YT (1, mp) fe( T, 7o) + 29F 4 (71, 7o) Fs( 71, 72) ]+ mléLNzgz
K4B4
x[em#rmty(m) ~ fa(r) +2yTa(m) Ta( )]+ o gyl olN*E T a(m) Ta( 7o) +£3(r0, 7). (ABb)
Additional moment contributions are
_ _ _ xB°
(Bs (£,70Ex'(§,70)) = kBl oNE —e 2 if5(m1) + 1= 29T5(7)] = 7 gy lolNEfa( 1) (A7a)
(+) (+) B
(Es (&, 12)Epx '(€,72))=—kBlo NE- mloﬂ\‘ffl( 72), (A7b)
where we introduced the following definitions
([ &(m— )]
g(7y,7p)= 1 (rzirl)ll’z , (A8a)
noo o €= 7)Y (&= 7)]M?)
f4(71,72)=fo dr'e” Y(mtn-27) (1= )2 (7= 1) 172 ’ (A8BD)
fs(7,70)= f71d7'67 ’/(Tl+72727’>i0( =7 ,1—7"), (A8c)
0

2 o€ 1Y ([ €212 — 121 (€] o ([ €72])

To—T1

io(71,72)= (A8d)

The functiongg( 74, 7,) andf,(7,,7>) result from the correlations between the Stokes and anti-Stokes fields. The functions
ig(71,7) andfg(71,7,) result from the correlations of the material polarization and the Langevin noise, respectively.
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