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Spontaneous emission in a planar Fabry-Ret microcavity
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We study the spontaneous-emission of a single atom located between two parallel infinite plates where one
of the plates is partially reflective and the plate separation is of the order of the wavelength of the atomic
transition. We pay particular attention to the nature of the field modes in such a finite finesse cavity, including
the full three-dimensional nature of the field. We then compute the decay rate of an excited atom placed inside
such a cavity. The angular distributions of the spontaneous-emission and of the cavity field vacuum fluctuation
variances are investigated. Finally, we examine the output field from an atom inside a finite finesse microcav-
ity. We show that the radiation transmitted outside such microcavity forms a nondiffracting Bessel beam.

PACS numbdps): 42.50.Dv, 42.50.Lc, 42.55:f

I. INTRODUCTION nating layers of two different kinds of material, one with
very high dielectric constant and another with very low di-
The microwave regime has many practical advantageslectric constanitl4,15. The overall reflectivity of the stack
over the optical regime for the realization of cavity QED can be made very high due to interferences between the par-
effects[1,2]. Single-mode higQ microwave cavities are tial reflections on each laydil6]. For this reason such a
easier to engineer than their optical counterparts: singlemirror is called a distributed Bragg reflector, or DBR for
mode microwave cavities have dimensions of the order oghort.
millimeters while single-mode optical cavities must be as DBR mirrors found an important application in the devel-
small as a few micrometers. The optical regime requiredpment of vertical cavity semiconductor lasé¢ts], where
high-quality factors and often relies on mode degeneracieshe vertical configuration reduces the length of gain media
In addition, electric-dipole moments associated with opticakrossed by light on each round-trip in the cavity from a few
transitions are much smaller than those associated with mhundred micrometers to only aboutgm [18]. In order to
crowave transitions of Rydberg atoms. Such high-qualitymake such a device lase, the number of round-trips has to be
factors are difficult to reach, given that ordinary metal mir-increased. A conventional semiconductor laser relies on the
rors tend to be rather lossy in the optical regime. 30% reflectivity given by the interface of air with the cleaved
Despite all these difficulties, cavity QED in the optical edges of the semiconductor block to provide the few round-
regime has attracted a great deal of intef8§tInhibition of  trips it needs to lasgl9]. Recent developments in molecular-
spontaneous-emission was demonstrated in the optical réeam epitaxy and ion implantation have now enabled the
gime in a single-mode cavity,5], with mirror separation of etching of distributed Bragg reflectors in a scale of microme-
the order of an optical wavelength few thousands of ang- ters[17]. Such DBR mirrors have been used to build planar
stromg, and in a confocal resonator, with mirror separationFabry-Peot microcavities, which allowed the operation of
of the order of 1 mm, exploiting the large mode degeneracyertical cavity semiconductor microlasers with threshold cur-
to create substantial cavity modified field§]. More re- rents much lower than in conventional semiconductor lasers
cently, An et al. [7] employed a confocal resonator, with [14,15,2(. Because DBR microcavities have dimensions of
mirrors of extremely high reflectivity yielding @ of about  the order of the lasing wavelength, they are expected to show
8x 10, to operate the first one-atom laser. some cavity QED effects such as modified spontaneous-
It has been proposed that the concept of energy band gagsission rates that would give microlasers unconventional
could be extended to photofi8,9]. Electronic energy band properties, e.g., thresholdless lasif#],22] and faster re-
gaps arise for electrons in solids where the atoms are asponse to modulation than conventional semiconductor la-
ranged periodically in spadel0]. The similarity[9,11-13  sers[23]. Distributed Bragg reflectors are far from being
between Schiinger's equation and Helmholtz’s equation perfect mirrors. Their reflectivity decreases appreciably for
suggests that a periodic dielectric would give rise to gaps imblique incidence$24]. However, they do not, presumably,
the electromagnetic mode density, i.e., to the absence a@&present the ultimate limit of technology. We have retained
modes for certain frequency intervals. Now, if a defect isin our model, described in Sec. Il, one key feature of semi-
introduced in the periodic dielectric, a single mode can beconductor microlasers, their planar Fabry-d®econfigura-
created within the gap, just as a defect in a crystal can gertion.
erate a discrete energy state within an energy band 1fap The question we address here is the following: what kind
This would then constitute a single-mode hi@heavity that  of cavity QED effects, arising from the planar geometry
could be engineered to operate in the optical regime. In ordeslone, can be expected in a planar FabryePenicrocavity
to have a true photonic band gap, the dielectric must bas we vary the finesse? The planar FabryePeicrocavity
periodic in all three dimensiong 3,12. Nonetheless, peri- we study in this paper is an open cavity where the atom-field
odicity in one dimension only already gives rise to somesystem is always in the weak-coupling regime. Instead of
interesting effects. A mirror can be built by stacking alter- calculating the modes of the cavity as an isolated system and
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then introducing the interaction with the outside by adding to SEMITRANSPARENT MIRROR
the master equation a Liouvillian term describing cavity
lossedq[25], we calculate in Sec. Ill the modes of the whole

4 z
system: cavity and outside world. In the weak-coupling re- l }l
gime, a cavity cannot change the irreversible nature of spon-
taneous emission in free space, but it can modify the
spontaneous-emission exponential decay[2é¢ In Sec. IV / / y
P4
X

we study these modifications and examine their dependence
on the finesse of the cavity. In Sec. V we examine the effect
of the cavity on vacuum fluctuations. We will see that such a
planar cavity can not only change the global spontaneous-
emission rate but also make emission more directional. Then,
in Sec. VI we investigate the consequences of this increased FIG. 1. Scheme of our microcavity where we have drawn the

directionality on the r.adlatlon t.hat escapes_from the Cavity g infinite parallel planes corresponding to perfect and semitrans-
We calculate the field outside the cavity due to thep,ient mirrors separated by a distariceThis microcavity is an
spontaneous-emission of a single atom inside and we finghealization of a real one where we neglect, among other things, the
that it is the field of a nondiffracting “Bessel beanf27].  internal structure of the mirrors, absorption of radiation by the mir-

Finally, we summarize our results in Sec. VII. Our prelimi- rors. and edge effects due to the finite extent of the mirrors.
nary results were summarized earli2g].

PERFECT MIRROR

problem. In electromagnetic theory there are two kinds of
materials that can be semitransparent: partial conductors and
dielectrics. We do not wish to consider the former because
We construct the simplest possible model of a planathey exhibit absorption. The latter will not absorb if the fre-
Fabry-Peot retaining the following features: the transpar- quency dependence of the dielectric constant can be ne-
ency of even the best mirrors that lets some of the radiatioglected, i.e., if they can be treated as nondispersive dielec-
escape to the outside and the open character of such a cavitics [46]. Any dielectric layer, however, will become
whose modes can never become completely discrete. A pl&ompletely transparent if it is made infinitesimally thsee
nar Fabry-Peot has no lateral mirrors. As a consequence,Sec. |l B. In order to avoid this, the dielectric constant has
even in the case where the plates are perfect reflectors, onlg increase accordingly as the thickness decreases. In the
the component of the wave vector normal to the plates cafpllowing subsections we show how we can simulate our
assume discrete values; all other components remaining cogemitransparent plane by such an idealized layer of dielectric
tinuous parameters. The second feature requires the adoptiomterial. We begin in Sec. Il A with a review of plane-wave
of a fully three-dimensional model. The first feature impliesreflection at dielectric interfaces. Then, in Sec. Il B we cal-
that the cavity is not an isolated system. In this paper weulate the reflection and transmission coefficients for a plane
study not only the radiation in the cavity but also that whichwave incident on a dielectric slab. Finally, in Sec. Il C we
is transmitted outside. In order to be able to do so, we inuse this result to obtain the reflectivity, transmissivity, and
clude the mirror transmissivity in a direct and explicit way in dielectric constant of our semitransparent plane.
our model and abandon the usual separation between cavity
modes and external modes. Such an approach has been
adopted by a number of authd29—3§. An added bonus of
this approach is that it is not limited to low transmissivity ~ Let us consider a plane wave incident, from the vacuum,
[39,40. onto a dielectric medium. Unless the impedances of both
Having stated what we want to include in the model, wemedia exactly matcp46], there must be a reflected wave in
can now exclude everything else that might complicate ougddition to the transmitted one. The appearance of reflected
analysis. We will assume that the mirrors are infinitesimallyand transmitted waves is an effect of the interferences be-
thin having no internal structure and no absorption. The infween the incident wave and those emitted by each excited
clusion in the model of the material medium of the mirror dipole in the dielectric medium. We will assume that they are
and absorption would make the quantization of the electro@ll plane waves. The dielectric is homogeneous. This is sum-
magnetic field much hardg41—45. In fact, we will think of ~ marized in Fig. 2.
these mirrors as mere boundary conditions. We will also as- The continuity of the component of the electric displace-
sume that the transverse dimensions are much larger than tRgent perpendicular to the interface, the component of the
plate separation so that we can approximate finite mirrors bglectric field parallel to the interface, and the magnetic field
mirrors extending all the way to infinity. Finally, there are (we assume that there is no magnetic mediyrald
two further simplifications: we will assume that radiation can i i i
only escape thﬁ)ugh one of the mirrors, the other one being a E,je'" P+ Egje" R P=Ere'"T?, 2.)
perfect reflector, and that there is no material medium either
in the cavity or outside. Our idealized FabryrBteis shown , , &y ,
in Fig. 1. The mirrors in our model are mathematical planes, E €17+ Eg "R P= —Er T’ 2.2
which have no thickness and extend all the way to infinity. 0
The perfect mirror can be simulated by a plane of infinite ‘ ' .
conductivity. The semitransparent mirror, however, poses a k,/A\E e P+kg/\Ege' "R P=k{/\E€'*TP, (2.3

Il. THE CAVITY MODEL

A. Dielectric interfaces
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k|:K+2k|z, (29)
kR:K_ 2k|z, (Zl@
kT= K+ ikTZ' (211)

We now determine from the boundary conditions the am-
plitudes of the reflected and transmitted waves produced by
the incident wave. Before doing so, we notice that the
boundary condition for the magnetic fie(d.3) will in gen-
eral couple different components Bf andE;. It does not
couple, however, the components perpendicular to the plane
of incidence with those lying on the plane of incidence. This
is a consequence of the symmetry of the problem. For each

FIG. 2. Schematic representation of the reflection of a planavave, the electric field has to be on the plane perpendicular
wave from the surface of a dielectric medium. A plane w&e to its wave vector. The intersection of such three planes as-
with wave vectork propagating in the vacuum is incident at an sociated with each wave is a line perpendicular to the plane
angle#, on the surface of a dielectric medium of dielectric constantgf incidence. We notice then that whenever the electric field
&4 giving rise to a reflected wavgg with wave vectok atan angle  of 5 wave is perpendicular to the plane of incidence, its mag-
fr and a transmitted wavEr with wave vectork at an angledr.  petic field will lie on the plane of incidence and vice versa.

. ) So if we examine the boundary conditions again, we see that
where j=x,y refer to components on the interface plane,ihere are two sets of pairs of independent equations, one set
g4 Is the dielectric constant of t_he.dlelectrlc mediusg,that involving only components perpendicular to the plane of in-
of the vacuum,| refers to the incident waveR to the re-  cjgence and another involving only components on the plane
flected wave, and’ to the transmitted wave. The varialge  of incidence. Using the subscript to designate the compo-
gives the position on the interface plane afd«g.«t are  pents perpendicular to the plane of incidence fatal desig-
the projections of the corresponding wave vectors on thgate those on the plane of incidence, we can write these

For these equations to hold at every point on the interface
plane, we must have E,, +Egr =Eq,,
K= Kr= KT=K. (2.4 k/E,, cosd, — kgEg, cofg=k;ET, cosf;  (2.12

From Eg. (2.4 and the wave equations for incident, re-
flected, and transmitted waves, we can deduce Snell’'s law
[46]. The wave equations satisfied by these waves yield the
dispersive relations between the wave number and the fre-
qguency for each medium

E|Hs|n0| + ER”S|n9R: (8d /80) ETHS|n6T f

E||cos), — Eg|cosfr=Eq|CcOH. (2.13

2
(2) =kZ=k3 (2.5  If we now substitute the dispersion relatiofZ5) and(2.6),
¢ Snell's law(2.7), and Eq.(2.8) in Egs.(2.12 and(2.13, we

find the following expressions for the normal and parallel
components of the reflected and transmitted waves:

(UZSd 2 -
o =K2. (2.6) cosf—(q4/2) —SirPo
Er = -
cosf+\/(eq/eg) —SiNte

and

Ei, (2.19

As the frequency is the same in both media, these relations

imply that ngkr=ng4k,, whereng=\uoeg and ng=uoey 2coy
are the refractive indices of the vacuum and the dielectric, Er, = —F,|, (219
coh+\(eq/eg) —SiNte

respectively. Using these results(ia4), we obtain

sing, (eq/e0)COH— \(4/0) —SIMFH

—— =ny4/Ng, 2.7 Er= E,, (2.16
sing;y 40 R (eq/eg)cOB+ \/(sd/so)—sﬁa !l
sinfgr=siné, , (2.9 . 2\eq164C0H i 017
whereé,, 6r, andd; are the angles of incidence, reflection, Tl (eqleg)cosh+ \/(sd/so)—sﬁa I '

and refraction measured from the normal to the interface.
Equation(2.4) also implies that all three waves lie on the where we have called, simply 6. These are Fresnel formu-
same plane. If we then use EQ.5, we can write las for reflection and refraction of plane waves on dielectric
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FIG. 3. Reflected and transmitted waves can be thought as re-

sulting from the sum of all multiple reflections in the slab. The
notation used in the calculations is explained in this figure.

interfaceq 46], used in the next subsection to obtain expres-

sions for the transmissivity and reflectivity of a slab of di-
electric material.

B. Thick dielectric film

S. M. DUTRA AND P. L. KNIGHT

Er. _ ty (0") 0, } = , (2.29
Eq 0 (8] Ey
where
cost’ —\(gqleq)—SINte’
ro (6= , 2.2
2.(0') cost’' +\(gqleq)—SiNFe’ (228
4y (8)= 2coy)’ (2.27
2 cos?’ +\(go/eg) —Sir?o" '
(solsd)C039’—\/(solsd)—siﬁﬁ' (2.29

(6= (60/£4)C0%' + \(8g/6q) — SIPO' "

2\ggleycoh’ (2.29
(e9leq)cos’ +(ggleq)—SiPo’
The total transmissivityT and reflectivityR of the slab

can be obtained by summing the contributions from all the
multiple reflections shown in Fig. 3,

ty (") =

Now we consider a plane wave incident on a slab of di-

electric of thicknesa. The incident wave will suffer a series

of reflections on each interface, being partially transmitted in
each reflection as shown in Fig. 3. According to the Fresnel

formulas(2.14—(2.17), on the first interface, the amplitudes
of the reflected and transmitted waves are given by

Eri| [ru(0) 0 =)
= (2.18
Er| 0 ry(o)] Ey
and
E t, () 0 ][E
T |t } I , (2.19
Eq 0 ty(o)] Ey
where
cod—\(eyleg) —sinto
(1, (0)= (2aleo) 2SO (220
cost9+\/(sd/so)—sﬁ0
t,(0)= 2coy (2.21
- cosf+ (eqleg) —Sirto’ '
(0 (e4leg)COH—\(g4/e0) —SINFH (2.22
r = , )
a (eqle0)COD+ \(e4leg) —SINFH
2+\eylegcosh
ty)(6)= fa7%0 ___ . (2.23
(e4le0)COD+ \(g4/eg) —SINFH
Similarly, on the second interface
Ers _ ra (6" 0/ = (2.24
Erj 0 ()] Ey

and

ET=TE|= ET1+ ET2+ LI
=e"t,(0")t1()E,
+e3%,(0')ry(0")r (0" )t (O)E + - - -

=ei5t2<0’)[ 20 [rzw')e‘ﬁ]z”]tl( 0)E,
(2.30
and
Er=RE ;=Eg;+Egp+ - - -
=11(0)E +€2%t,(0')ry( 0 )t (O)E + - - -

ri(0)+e"’ty(0")

x[ > [rz(e'>e“’]2““]tl<a>) E, (2.3)

wheret; is the 2<2 matrix on the right-hand side of Eq.
(2.19, t, is that on the right-hand side ¢2.25, rq,r, are
those in(2.18 and (2.24, and the phase differencé is
given by

w €4

=—\/—A co¥'. (2.32
C €p
Performing the sums if2.30 and(2.31) we find
T, O )
T= .
0 T (233
and
R, O
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where
e
s e
et O
:r1||(0)+r2”(9’)exp(i25) (239

1= 1 —ry(6)exp(i6)12

If we now use Snell's law2.7) to eliminate the angle of
refraction#’, we find that Eqs(2.26—(2.29 can be written
as

i (0,[0])_ 2\/(8d/80)_5in20
2  cof+\(eqleg)—SirPo’

660 V(egleg)—sinfd—cosd

r =

2. (0’16 cosf+ \(e4leg) —Sirto

V(egleg) —sinfO—(e4leq)cosd

(eq/e0)cOH+ (84/e0) —SIMO’
2\egleg\(egleg) —Sinfo

(sd/so)cos9+\/(sdlso)—siFGI

Comparing these equations with E¢8.20—(2.23), we find

(2.39

(2.40

ry(0'[6])= (2.41)

ty(0'[6])=

3591

[1—exp(i20)]ry, (6)
LTI (Dexpi 9T (253

[1-exp(i28)1r ()
1= T [ryy(0)expi o) (252

where
5= 2 A2 sirg. (2.53
C 80

From Eqgs.(2.49-(2.53, we can see that an infinitesimally
thin dielectric film,A— 0, of finite dielectric constanty will
be completely transparent because

limT, =1, (2.59
A—0
lim THZ 1, (255)
A—0
limR, =0, (2.56
A—0
lim Ry =0. (2.5
A—0

C. Semitransparent plane

In this subsection we will show that we can keep the
dielectric film semitransparent as it becomes infinitesimally
thin, if we let the dielectric constanty increase proportion-
ally so thate4A remain constant. Whesy becomes much

the following relations between the reflectivities and trans{arger thane,, the reflectivities at the first interface approach
missivities on the second interface and those on the first in-

terface

ro (0'[0])=—r1.(0), (243
ro(8'[0])=—ry(0), (2.44
to (0'[0])=t1,(60)—2rq, (), (2.49
ty(0'[6])= Z—Ztl(ﬁ)—Z\/Z:Zrl(e). (2.46

We also notice that
t (0)=1+ry,(0), (2.47)
ty(0)=[1+15(6)] \/z:: (2.48

Substituting Eqs(2.43—(2.48 in (2.39 to (2.38, we obtain

_[1-1%,(0)]exp(i5)
LI [ru(0)exi6)?

(2.49

_[1-rii(O)]expid)
T 1-Try(0)expio)

(2.50

€0
r{ (6)—2+\/—cosh—1,
€d

(2.58
€0
ry(6)—1-2 8—se09 (2.59
d
and the phase differenc®approaches
w €y
80— —\/—A. (2.60
C €p

Now we leteyA =¢q7, wherey is a constant, and we sub-
stitute Eqs(2.589—(2.60 in Egs.(2.49—-(2.52 and take the
limit A—0, eg4—. We obtain

im T oo t, (0) (2.61)
Im = _ — , -
a0 © 2cog—i(wlc)y *

Sd~>:x:
SdA=7]go

A“Lno T1= 25 (wie) g comp U0 (262
Sdﬂoc

SdA:ngO
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lim R, = i(w/c)n —r (), 2.6 Fox-Li Quasimodes Continuum modes

ST

£g—® Perfect Semitransparent
egA=neg irror mirror

So unlike the example given at the end of Sec. Il B, thisis FIG. 4. Schematic representation of Fox-Li quasimodes appear-
a true semitransparent plane. The paramet@ontrols the ing inside the cavity as modulations on the continuum of free-space
transparency of the plane. From Ed2.61)—(2.64), when  modes caused by the interferences produced by multiple reflections
» vanishes the plane becomes completely transparent arwh the cavity mirrors.
when p—o the plane becomes a perfect reflector. A one-
dimensional version of such a semitransparent plane was erthe whole system: cavity plus outside. What is often treated
ployed by a number of authof29-31,33,36,3R However, as cavity modes are really the so-called Fox-Li quasi modes
to our knowledge, only Ley and Loud¢B6] have published [47]. These quasimodes result from interferences due to suc-
expressions for the reflectivity and transmissivity of theircessive reflections on the cavity walls that modulate the oth-
one-dimensional version of our infinitesimally thin semi- erwise continuum set of propagating modes in free space
transparent mirror. Our expressions agree with theirs whefFig. 4. When the finesse is high, the Fox-Li quasimodes
we takef#=0, which corresponds to normal incidence. coincide with those of a perfect lossless isolated cavity ex-

The reflectivities and transmissivities given in Egs.cept that they have a small width, which is a function of the
(2.61)—(2.64) are all that we need to introduce the semitrans-finite finessg39]. For the true modes, we have also made a
parent plane in our cavity model. Nonetheless, let us derive@umber of other checks of the modes we have determined,
an expression for the spatial dependence of the dielectrigicluding an alternative determination of these modes di-
constant, because such an expression has been used ateetly from Maxwell's equations, verifying the field commu-
starting point in the literature more often than Eg61)—  tation relations, and recovering one-dimensional results from
(2.64). In the case of the infinite slab we have studied in Secour three-dimensional expressions. For reasons of brevity,
Il B, the dielectric constant of the whole of spagge are  we include only the limit of perfect reflectivity as this has the
assuming that there is nothing else in space apart from thextra benefit of helping us to understand the more interesting
infinite slab is given by case of high but finite finesse.

e(2)=[0(z=1)=0(z=1-A)]Jegteo. (269 A. Multiple-reflections approach

where® (z) is the Heaviside step function, i.€,(z) =0 for In the absence of a cavity, the free-space field can be
z<0 and®(z)=1 for z>0. We have now placed the coor- written in the form of a plane-wave expansion. If we deter-
dinate axes so that treaxis intersects the slab from=1to ~ mine how the microcavity modifies each plane-wave compo-
z=1+A. When we take the limit that leads to the semitrans-nent, we can then sum the modified components and obtain

parent plane, we obtain an expression for the total quantized field in the whole sys-
tem. As in Sec. Il, we decompose the electric field of each

. - 0(z—1)—0(z—1-A) plane wave into two parts, a component perpendicular to the
AI'LnO e(2)= A"Lno A neot &o plane of incidencex=_1 and another component lying on
P the plane of incidence.=|,

eqA=neq .
E, .=V LE} eaT, (3.0
= 46(z) +1 (2.66 | o
T4z o fo- ' whereV, , gives the direction of this electric-field compo-

nent andE?}a its amplitude. Successive reflections on the
As the derivative of the step function is tifefunction, we  Mirrors of the cavity modify these plane-wave components.

can rewrite Eq(2.66) as We obtain the field inside the cavity due to the plane-wave
componentE, , simply by adding the multiple reflections
e(z)=[nd(z—1)+1]ey. (2.67  depicted in Fig. §16]. In order to do so, we use the reflec-

tivities and transmissivities of the semitransparent plane we

Ill. MODE STRUCTURE have determined in Sec. Il C. As to the perfect mirror, we

assume it is a perfectly conducting plane. Because perfect
In much of quantum optics it is assumed that the cavityconductors make the component of the electric field on their
modes remain those of a perfect isolated cavity, the interacsurfaces vanish, a plane wave whose electric field is perpen-
tion with the outside being introduced in the master equatiordicular to the plane of incidence, just after being reflected off
by adding a Liouvillian loss terrfi25]. This approach is not the perfect mirror, must have its electric field multiplied by
advantageous when the finesse is [89,40. In this paper
we will avoid this approach and calculate the true modes of m, =—1. (3.2
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2= 0 =1 E These modified plane-wave components are the modes of the
La system. When we substitute them for the modes of free space
/] d in the usual procedure of field quantizati856,33,36,48we
;J P P) obtain the following expression for the positive-frequency
P Eora component of the electric field inside and outside the micro-
Afcr o 0" Erla cavity (our result agrees with that of De Martiet al. [49],
A, P when their general result is particularized for this gase
/] EC3 o - ~ ~
Ecsa 2 ro E;<r>=j d*k{ 22 (r k)& (K)a, (K)+[ £f'4(r. k) 1(K)
/ >
0 ) R
+ 27 5(r,k) g 2(k) Jay (k) 3.7
ERS,a

_ _ S where the integration is restricted to the half space, i.e., posi-

Peot cavity with the variables used in our calculations indicated inuse the labek = cav for the field inside the cavity angl =

the figure. out for the field outside the cavity. The mode functions are
- . iven by[28

On the other hand, when the electric field lies on the plane 09 y128]

incidence, it must be multiplied by éfja"(r,k)=iEif‘va@“"r:%Lsin(kzz), (3.9
my=1 @3 (1K) =1 0T Zicog O)sink,z), (3.9
after being reflected. Using this notation, we can write s
’ ’ (T K) =~ £ o ZsinB)cosk,2), (310
Ecavk,a=Ectat Ec2a™ - ] o o .
ZMr k) =1 £ 7 [sin(k,z)— A sed 6)sin(5)

=E? tu( e)((x,,a[ éo [eZ“smara(a)]”]e‘k',a'r x sin(k,z— 6)], (3.1
e ZPUrK) =12 0T 7 [sin(k,2) — A cog 6)sin(5)

WR'“{ Mg 2, (&M o 0)]n} eikR'”'r> X sin(k,z— 8)]cog ), (3.12
_EP (0 1_\7&;af‘k(';)';m . 1n1arza,rae(‘ :;ezrﬁ | ZPU(r k)= — £ € * " Zi[cogk,z) — A cog 6)sin(5)

@« @« 34 X cogk,z— d)]sin( 6), (3.13

R where k is the projection ofk on a plane parallel to the
where vg , gives the direction of the electric field of the mirrors, k is the unit vector in the direction of, 6 is the
reflected wave and angle betweek and thez axis, A = 7k is a measure of how

reflective the top mirror is for a given frequenaey=ck, and

5= "1 cosy 3.5 —
“vac= \/m (3.19

is the extra phase gained on each trip inside the cavity.

The field outside the cavity due to the plane-wave comis the cavity modified vacuum field strength. An extra factor
ponentE, , is obtained by summing the plane waves on thept 2 as compared to the free-space vacuum field strength
external side of the semitransparent plane, appears because of the perfect mirrorzatO that restricts
the fields to the half space. The functions, and | de-

Eoutk.a=Er.at Briat Ereat - B8 seribe the cavity resonances and are given by
:E?,a Ql,aeikl'a-r*—\?R,a ra(e) ) Coie)
('/,/ —
o s L cog #) — Ae'%sin(5)’ .19
t,(6)°m e o
AR — e FX PN P
1-r(0)me’? » 1 a1
“I™1— Ae'Pcoq 6)sin(8) (3.19
:E? (\7| eiklv‘y-r ~
. The polarization is given by the unit vectoes(k) =2/\k,
1 (0) [t (0)2—r (0)2]m, &2 8 .1(k)=k, andg 5(k)=2z. The operatorak,a,al,a are the
R 1-r (O)m.e% field annihilation and creation operators, respectively, for the

modek, a, with

Xe—iZ(SeikR'a-r]_ [A o 8k o ]1=0 (3.17
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and

J=0(k—K") 84 - (3.18

[ak ar ak’

B. Limit of perfect reflection

We have seen in Sec. Il C that whep—», the semi-
transparent mirror becomes a perfect mirror with

limr, =-1, (3.19
n—®°
limt, =0, (3.20
77*)0(2
lim I’Hzl, (3.2])
7]*}30
lim t||=0. (3.22

n— 0

In this subsection we will examine what happens to the mod

structure inside the cavity in this limit.
Let us define the operatoss, (k) andAj(k) such that

(3.23
(3.29

a, (k)= 7* (KA, (k),

ay (k)= (k) A(k).

Then the positive-frequency component of the electric-field

operator inside the cavity can be written as

El /)= fd3k{/ (r ke (KA (k) +[7%(r,k)g, (k)

+ //‘Cz(r k)q‘ 2AK)TA(K)}, (3.2
where
2 (r k=28 k)2 k), (3.26
23 k) =273 k) 2 (), (3.27
2483 k) = £53(r k) ZF (K). (3.28
We notice that’//ca"(r k) is proportional to|., |2, while

both 7/f3(r.k) and 7{%(r k) are proportional td #|?. As
we have mentioned earlier, the functiofs (k) and £ (k)

describe the cavity resonances. Let us investigate what ha|

pens to| #, |* and | Z||> when the semitransparent mirror
becomes a perfect reflector.
From Eq.(3.15, we obtain

(1/A?)cog6
[(1/A)cosh— (1/2)sin2k,l 1%+ sink,| °

|21 (k)|?= (3.29

When 7—«, cos/A is a very small quantity, which we
denote byl". So EQq.(3.29 becomes

1'*2

2_
L P = =z sinak T2 sirfky

(3.30

Resonances will occur at values lof such that
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sin2k,l =2T". (3.3)
The solution for small’ is
o
k.= kz,n:_n, (3.32

wheren=0,+1,+2,... . If we expand the trigonometric
functions in Eq.(3.30 aroundk, ,, we obtain

1
SSIN2KA~T | (k= kz )l (3.33
sinfkl =T ,, (3.39
where
T, = Kan (3.39
J"n_ml .

gubstituting Eqs(3.32—(3.39 into Eq. (3.30, we obtain

>

n=—ow

r?,
(K=K n)212+T7

|21 (k)|2= (3.36

When — o, the Lorentzian functions in E¢3.36) become
6 functions so that

. - 7T -
lim 7, (K)P=7 2 d(k—kzn)-  (3:37)
n—® =—®
Repeating the same analysis for||%, we obtain
S 1
Zi(k)|2= . (3.38
2ol = E w (ky— kg ) 212417
where
ry,= ! (3.39
I 77kz,n. .

Again, whenn— o, the Lorentzian functions in Eq3.38
becomes functions, thus

im | 7<)

n—

Erom Eqs.(3.8—(3.10, (3.26~(3.28, (3.37), and(3.40 we
see that, in the limit wherep— o, Eq. (3.25 yields [the
negative values of in the infinite sums in Eqg3.37) and
(3.40 do not contribute because the integral in E87) is
restricted tok,=0]

E 8(k,— Ky n)- (3.40

a ” .
lim Ega\)(r)=||—nZO j 02k Lya ™| ZA\KA | (KynZ+ K)
7]%0(‘2 -
. ~ kZ,ﬂ .
X sink, nz+ KTsmkzan
.AK ~
+|zEcoskZ,nz)A(kz,nz+ K)|. 3.4)
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We must now determine the commutation relations satis- g .
fied by the operatord\, (k, nz+ «) andAj(k, .2+ k). If we lim EG(r) =i \[I_E f B2 e ® T I\, (K)SiTK, 2
substitute Eq(3.23 into the commutation relatio(8.18, we n— n=0
obtain K «
+(k%sirkz,nz+iiicoskzvnz a(r)|.
[AL(K),AT(K)]ZT(K) £, (K)=8(k"—k). (3.42

(3.5)

Before we return to the finite reflectivity case, it is inter-
esting to study the changes in spontaneous emission induced
by such a perfect parallel plates cavity. We notice that be-

Multiplying both sides by ¥ (k). #7 (k') and taking the
limit »— o, we find

%2 S(ky— Ky n) 8(K; —ky 0 )[AL (K), Al (K")] cause there is still a continuum of modes available, an atom
n,n’ will always be in the weak-coupling regime in such a cavity.
The mode structure, however, is radically different from that

= 8(k,~ K, ) 8(k' —K). (3.43  of the free space; the cavity only allows modes with certain

m ' discrete values of the component of the wave vector normal

to the plates. So spontaneous emission will remain an irre-
If we now integrate Eq.3.43 over k, from k,,—e to  versible exponential decay process, but the decay rate can be
k,,+ € and overk, from k, ., — € to k, ., + €, with € being ~ dramatically different from that of free space. We will now

small enough to include onll, , andk, ,,/, we obtain calculate this decay rate for a single atom inside the cavity,
in the two-level atom and dipole approximatigril].
[A, (K, 2+ K)yAI(kz 2] As we are in the weak-coupling regime, we can use Fer-

mi’'s golden rule to compute the spontaneous-emission decay
| kzn'te rate y in the cavity and find
=;6(K’—K)Jk dk, 8(k;— Kk, )
zn' € 2
| =37 ] ¢ 3 K1 kald-Eeatral1.OF
:;5(K,_K)5nr,n. (3.49 e
XS w—wy), (3.52

So, apart from a normalization factor gfr/l, the operator wherer, is the position of the atom in the cavity, is the
A, (kznzt k) behaves as a continuous annihilation operatoiomic transition frequencyl is the atomic dipole operator,
in « and as a discrete annihilation operatorkin For this || ¢ 4) is the state in which the atom is not excited and the
reason, we make a slight change of notation, defining field modek of polarizationa has one photon, all the other
modes having no photons, and the stgt@®) is the state in
\/; - which the atom is excited and the field has no photons. Let
ay n(K)= TAi(kZ'nH K), (3.49 us consider the case where the atomic dipole is parallel to the
plates. After substituting Eq3.51) in Eq. (3.52), we obtain

where -
w5, [ o s
= kdk cosp—sin
[al,n(K)vaIYnl(K’)]:5n’,n5(K,_K)- (346) ‘yP 27780ﬁ|n=0 0 0 wal
n
Moreover, from Eq(3.17), we obtain X sir? l—wza> Sw—w,). (3.53
[a, n(x),a; n(x')]=0. (347 The angular integration yields
Similarly, for Aj(k,nz+ ) we find wad? & (27 e cmn) 2
t Yo 26kl 0 fo dd’fo wdw ( W ) _1}
[a”'n(K),a”Yn,(K')]Z Onr nO(K' — K), (3.48
wsirg| 27 )5( ) (354
SI —Z w— Wgy). .
[y n(#),a),0 (1)]=0, (3.49 I :

For any differentiable functiory(x) with an inversex(y)

whereay,(sq) is defined by and any functiorg(x) we have

T R ol
ay,n(r0)= \fTAKkz,nZ+ ). (3.50 f dx g(x) 8(y(x))= f dy g(X(y))d;;gx. (3.59

ExpressingA, (k, ,z+ ) and A‘|(kzyn2+ k) in terms of the Using (3.55, we can change the variable of integration in
annihilation operatora, () anday ,(«), we obtain[50] Eq. (3.54) to w, recovering the well-knowh50] expression
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the dipole, allowing some degree of spontaneous emission in
3 parallel — the cavity. We will return to this point in Sec. IV.
a5 L normal « -+ | There is no such complete inhibition of spontaneous emis-
; sion for a dipole normal to the plates because then the dipole
will interact with then=0 modes. This is also the reason
why vy, diverges in Fig. 6 when the plate separation de-
creases to zero. Because the energy density innth®
vacuum modes is inversely proportional to the volume be-
.- tween the plates when the plate separation decreases, the
0.5 coupling with the field increases, leading to the divergence.
Before such a divergence occurs, the interaction between the
atom and the atoms on the surface of the plates, which we
A o have neglected in this simple model, should become impor-
tant. In the next section we see that when the top plate is no

longer a perfect reflectory, will also display such a diver-
FIG. 6. Plot of the decay rate of an atom between two perfecgence_

mirrors as a function of mirror separation. The full line corresponds
to an atom with its electric-dipole moment parallel to the mirrors
and the dotted line to a dipole moment normal to the mirrors. The
decay rates are given in units of the decay rate in free space and the In this section we investigate how the spontaneous-
mirror separation in units of the atomic transition wavelength. emission rate changes when the finesse of the cavity in-
crease$26]. Let us start by considering the case of very low
for the decay rate of an atom between two perfect mirrorginesse where the top mirror is almost completely transpar-
with a dipole moment parallel to the mirrors: ent. Then we can assume thatis much smaller than the

atomic wavelength so that
~ [2'2’”:9\ " | 2 LG -
Yoo & g o] (ST %), (390

n=

3 T~ T T T T T T T T

Y/ 15

IV. SPONTANEOUS-EMISSION RATE

w
Aa=f n<l. (4.2

where[2I/1] is the largest integer number of half wave- e will now calculate the spontaneous-emission rate up to
lengths of the atomic transition that can fit in the plate sepajst order inA,.

ration| and vy, is the free space decay rate given by For a dipole normal to the plates, Ed8.7) and (3.52
yield, up to first order inA ,

342
wyd (357 -
YoT 5 2 ~3- . d 1
3mhegC _ g f _ @a 2 Wa
[ a———rse de 1+ Aax sin2 Ix)(l x?)co L2
For a dipole normal to the plates, a similar calculation yields (4.2

the well-known[50] result o .
This integral can be solved analytically for the general case;

a2 N how_ever, it is more instructive to qonsider special cases.
1_(5) co< 7l |- First we notice that when ; vanishes, Eq(4.2) reduces
to
(3.58
1 c

In Fig. 6, we plot the decay rates, given k§.56) and 72:37’0[§_(waz
(3.58, for an atom at the center of the cavity as a function of
the plate separatioh[50]. We notice that there is no spon- This is the well-known expression for the spontaneous-
taneous emission when the dipole is parallel to the plates aneinission decay rate of an atom near a perfect mirror when
the plate separation is narrower than half the atomic wavethe atomic dipole is normal to the mirr52,58,50. As we
length. The reason is that at wavelengths larger tharth2  can see from Eq4.3), we do not need a cavity to change the
only modes available are those where 0 whose polariza- spontaneous emission rate. In fact, the first controlled experi-
tions are normal to the plates and therefore not interactingnental study of modified spontaneous emissib8] con-
with the dipole. Another way of understanding this is to cerned the fluorescence of dye molecules near a single mir-
think of the images of the dipole on the plafé®2—-56 draw-  ror.
ing an analogy with many-atom cooperative ded&y]. In order to study the effect of the top mirror we must take
When the dipole is parallel to the plates and the plate sepa\,#0 in Eq.(4.2). Let us do so and compute the first-order
ration is shorter than half the atomic wavelength, the radiacavity effects. Consider a half wavelength cavity. When both
tion emitted by each image adds up to cancel completely thplates are perfect reflectors, the spontaneous-emission rate is
radiation emitted by the real dipole. Then we see that comthree-halves of that in free space at any point inside the cav-
plete inhibition of spontaneous emission can only happeiity for a dipole normal to the plates. So our first-order cor-
when the plates are perfect reflectors. Any small transmissiwection will depend on the position and for each position it
ity would upset this delicate balance between the images andglill be a correction in the direction that will bring the

3\ [21/\] 3\
—+

Yz=Yo0) g “~ 21

. 4.3

c\®
cosz?z

2
Wa
cos2—z+
C (O
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single mirror decay rate given k.3 closer to the constant
rate of three-halves of the rate in free space. In fact, after
some lengthy algebra, we find that when the atom is at the
center of the cavity, Eq4.2) yields

¥2=3%0 (4.4 /1

1 wzn 85
3T 7 e 72773]’

so that the semitransparent mirror enhances spontaneous
emission to bring it closer to three-halves ¢f. On the
other hand, when the atom sits on the perfect mirror, we find

2 wan 3
1m3%0 3T e 2

and the semitransparent mirror inhibits spontaneous emis- FIG. 7. Plot of the spontaneous-emission rate in units of the rate

sion, again bringing it closer to three-halvesf. Similar  in free space as a function of plate separation for an atom at the

results can be shown foy, . center of the cavity with its dipole moment parallel to the mirrors.
Let us now consider the case of a highly reflective topThe dotted line correspond to the case where both mirrors are per-

mirror. Substituting Eqs(3.36 and(3.38 in (3.7) and then fect (I';=0) and the full line to the case whelg=0.3.

in (3.52, we obtain for a dipole parallel to the plates

0 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04

(4.5 A

tails of the Lorentzian functions will give a negligible con-

3 (1 [21/A] re, tribution to the total integra) we obtain
ypziyof d(cosp) >, A% TR cog6
0 n=0 [ (Kz=kzn) 1"+, g 2N (g2
2 z
2 Y=o 2 {|=r| +1{{1—e 2 'cog 2mn |,
+ Lna sirfk,z (4.6 o8 T L2l !
(kz_ kz,n)2|2+rj,n,a - . (4'10)
whereT'| , is given by Eq.(3.39 andT', , , by Wherg agairf 21/\] is the maximum integer numbgr of half
’ o atomic wavelength& that can fit the plate separatidn
K, nC? A similar calculation yields the following expression for
I'ina=——=. 4.7 the spontaneous-emission rate in the high reflectivity limit

w . . .
7%a when the atomic dipole is normal to the plates:

When the plate separation is only a few atomic wavelengths

[21/\] 2
and » is much larger than the atomic wavelength, we can :3_>\ 14 2 1 Q
approximate boti"| , andl", , , by YT Yo n=1 2
c z
FH,n%FL,n,a% =l,. (4.9 X 1+e‘2zr§/'00£( 2mn —) ] . (4.1
Nwa I
Here we have to be careful because unlgss>, I'j o Wil comparing Eqs(4.10 and (4.11) with the corresponding

diverge, as can be seen from Hg.39. As we have men-  expressions for two perfectly reflecting parallel platg$6
tioned before, this means that; does not have a resonance gng (3.58, we notice the only difference is the decaying
atn=0 unlessp—x. It is a consequence of the fact that the exponentials in Eqs(4.10 and (4.11) that stem from the
Semitransparent mirror will not reflect radiation that is inci- transparency of the upper mirror. This does not bring any
dent at an angle ofr/2 with the normal except in the perfect sjgnificant differences from the perfect mirror case for a di-
mirror limit. There is no problem, however, in replacing pole normal to the mirrors. For a dipole parallel to the mir-
I o by I'y because 7| * appears in Eq(4.6) multiplied by  rors, however, we notice the dramatic change mentioned in
cosd so that, in this case, the=0 Lorentzian function will  Sec. 11l B. This is shown in Fig. 7, where we plot the ratio
vanish giving no contribution in Eq(4.9). Then Eq.(4.6)  y /v, given by Eq.(4.10 as a function of the plate separa-
becomes tion in units of atomic wavelengths for an atom at the center
of the cavity. We can see from Fig. 7 that as long as there is

3 ! [%H Fg at least a small amount of cavity loss due to mirror transmis-
Y7o VOJOanzo (wxlc—k, n)2|2+rg sivity, spontaneous-emission will not be completely sup-
’ pressed. In other words, this means that when the upper mir-
2 ., Wa ror is not a perfect reflector, there will be modes, other than
X(x +1)S'n2TZX' (4.9 the k,=0 modes, whose frequencies lie within the atomic

resonance and whose polarization is not orthogonal to the
If we now write the sine function as a sum of exponentialsatomic dipole.
and extend the integration to the entkeaxis (whenT’, is Finally, we discuss the spontaneous-emission rate for a
much smaller than one, the part of the integration over the\/2 cavity when the atomic dipole is parallel to the plates.
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0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 FIG. 8. Plot of the decay rate, in units of the
z/1 z/1 free-space decay rate, as a function of the posi-
tion of the atom. In(a) we show the case of a
Q) (d) single perfect mirror. Ir(b) we show the case of

a half wavelength cavity with\,=1. In (c) we
repeat the plot for the same cavity but with a
much higher finesseA,=10%). In (d) we show
the case of two perfect mirrors for comparison.
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This is the case where an atom with a sufficiently narfaw the direction of the dipole. We examine the vacuum field
linewidth smaller thanm/l) atomic line will couple to the fluctuations in thex component of the electric field, whose
(n=1) cavity resonance only. In Fig. 8 we plot the ratio of variance provides a good measure of these fluctuations. We
the decay rate in the cavity to that in free space as a functionotice, however, that for this given polarization ¢ompo-
of the position of the atom for four different finesses. We seenent of the electric fieldand frequencyatomic resonange
that when the reflectivity of the upper mirror is low, sponta-there are, in general, several modes of the field, one for each
neous emission is not suppressed on the upper mirror and tlgave vectork. We have devised a way of plotting the vari-
maximum rate is not exactly at the center and is less thaance, at a given position in space, of each mode correspond-
three times the rate in free space. As the reflectivity in-ing to this chosen polarization and frequency: we plot the
creases, the maximum rate increases towards three times thwtrface spanned by a vector whose direction coincides with
in free space and becomes very small on the upper mirror.that of a wave vectok and whose length gives the variance
of the corresponding mode. The advantage of plotting this
way is that for any given mode whose variance is shown in
the graph, we can immediately see what is the direction of
V. VACUUM ELUCTUATIONS emission for emission in that mode. The variance of a mode
at a given position is a measure of how likely is an atom
Vacuum fluctuations play an important role in the occupying that position to emit in that mode. This kind of
spontaneous-emission procd®9,61. In free space, such plot will automatically show in which directions an atom
fluctuations are isotropic. A cavity, however, modifies thesitting at a given position will be more likely to emit, making
mode structure of its surrounding space, leading to differenainy anisotropy explicitly evident in the graph. As an illustra-
vacuum fluctuations. We show in this section that our planation, we plot in Fig. 9 the variance of thecomponent of the
microcavity introduces a preferred direction, the directionelectric field at a given frequenay in free space, given by
normal to the plates, radically changing the vacuum fluctua-
tions associated with emission in this directidor two per- fr ] A
fect mirrors, this directionality has already been investigated [AEXee(r’k)]ZZZ 477380[1_ (k-3)°]. .
within the framework of classical antenna theory and the
image method56]). As a result, spontaneous emission will We notice that this variance is almost isotropic except that
become anisotropif23]. This anisotropy can be used to in- the constrainE-k=0 makes it look rather like a doughnut,
crease the probability of spontaneous emission in a particulawith a hole in the middle because tkecomponent of the
direction. In a laser, if this particular direction is chosen to beelectric field gets smaller and smaller ksapproaches the
the direction where laser light is generated, most of the phox axis.
tons produced by spontaneous emission would go into the Now let us examine how these fluctuations change when
lasing modes instead of being wasted to other modes and tlvee are in a cavity. We consider a cavity whose length is half
threshold would be reducd@1,22,62,63 of the wavelength of the atomic transition and we will com-
In general, atoms are more strongly affected by the compute the variance at the center of the cavity. In a one-
ponent of the electric field in the direction of its electric dimensional model with perfect mirrors, this would corre-
dipole [48]. We consider here the case where the atomispond to the case where the cavity supports a single mode
dipole is parallel to the mirrors and choose thaxis to be in  only, whose maximum is at the center of the cavity.
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FIG. 10. Variance of thex component of the electric fieln
units of A w/4m3e,) for an atom in front of a single mirror with the
atomic dipole moment parallel to the mirror. The perfect mirror
divides space into two halves destroying the toroidal shape we have
seen for free space. We notice that the maximum value of the vari-

FIG. 9. Va_rlance(ln units off.ck/4me) of thex component of  ance in this case is four times larger than the maximum value in
the electric field plotted for each mode of frequencly as the  free space.

length of the vector from the origin that points to the surface in the

figure in the directiork of the mode. The toroidal shape appears VI. SPONTANEOUS-EMISSION PATTERN
because of the polarization constralftk=0.

We have been concerned so far only with the radiation
From Eq.(3.7) we obtain the following expression for the inside the cavity. This cavity, however, can let some of the

variance of mode at positionr inside the cavity radiation escape outside when the upper mirror is not a per-
fect reflector. In this section we shall venture outside the
7 cavity and study the radiation that leaks out. We will con-
[AEL(r,k,0)]2=5—5—[|7(k)|%cog8 cog¢ sider the simplest possible case where there is a single atom
4meg in the cavity. We will then calculate the field outside pro-

o 2i ; duced by the spontaneous emission of the atom inside the
Z(K[sirf ¢lsirtk;z. 62 cavity. A similar calculation was also performed by De Mar-

. . . . tini et al. [49]. Their calculation, however, only yields the
The variance in the presence of a single perfect mirmOiyjectric field along a line normal to the mirrors passing

phanggs with the nature of the semitransparent 'mirror abovﬁrough the atom and does not describe the dependence of
it forming the top of the cavity. For a perfect mirror alone, {he field on thex andy coordinates. We will obtain such
i.e., 7=0, the fluctuations are constrained to the half spacgenendence explicitly. This will lead to a curious result that
but are still quite isotropic, as can be seen in Fig. 10. WheRpq\ys how the anisotropy of spontaneous emission in the
the semitransparent upper mirror is present as well, #€., cayity, discussed in the preceding section, manifests itself
* O., we'notlce a subgtantlal increase in the fluctuations in tr_‘%utside the cavity.

z direction, perpendicular to the mirrors, as we can see in | the interaction picture, the positive-frequency compo-

Fig. 11. As the reflectivity increases, i.e., whgrincreases, npent of the electric field outside the microcavit§.?) is
this anisotropy becomes more pronounced. In Fig. 12 Weyien py

compare plots for increasing values gfto show how the
fluctuations tend to dominate around thelirection as the
reflectivity increases. As the reflectivity increases, we ap- Egut(r):f d3k e e 2 k)e, (k)a, (k)
proach the results of Dowlingt al. [56] obtained for two

+

perfect mirrors. +1EM%r,K) 8 1K)+ 0% r,K) e H»(K)Tay(k)}.
We have also examined the fluctuations at other positions LA R0 atk)+ Fa(r k)& (k) Jay (k)
inside the cavity as well as for other cavity lengths. How- (6.9

ever, the case discussed above seems to be the most interest-

ing because it is the case where an atom with a sufficientlyn order to calculatéE,,, we must find how the time evolu-
narrow(a linewidth much smaller thas/l) atomic line will  tion of annihilation operators in E@6.1) is affected by the
couple to the §=1) cavity resonance only. interaction with the atom in the cavity.
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FIG. 12. Comparison between plots of the variance of xthe
component of the electric fieldn units of w/4m3e,) for an atom
with dipole moment parallel to the mirrors for increasing finesse.
The more isotropic variance here is the one for a single mirror
(A,=0), then there is the one fdr,= 1 and the casd ,=5 where
emission is quite biased in thedirection.

FIG. 11. Variance of thex component of the electric fiel@n
units of Zw/4m3s,) for an atom between two parallel mirrors, the
lower one being a perfect mirror and the upper one semitransparent
with A,=1. We notice that emission is much more directional here \\e can then integrate Heisenberg's equations for the field
than it is for free space or for a single mirror. annihilation operators in the rotating-wave approximation

and obtain the following expression for the field operators:

For an atom at, with a dipole parallel to the mirrors _ .
(along thex axis), we obtain the following equation of mo- a,(k,t)=a,(k,0)e”" ' +iuZi (ry,k)X- &,(k)

tion for the annihilation operators: dito-op-(v2K_1
X = e '“'g(0), 6.
TEErREE7- I

d P
Ji2a(0) =1 pZ* (ra KX &y (k)e' " a(t), (6.2
wherea=_,||. This is then inserted into the expression for

where u is the transition dipole moment of the atom, the electric field outside the cavit$.1), yielding

a=_1,|, ando is the lowering atomic operator. Because this

microcavity does not confine the field in all three spatial Eoul1:1) = Evacou 1) + Ed oud 1), (6.6)
dimensions, but only in one dimension, there are no Rabi

oscillations[64] and the time evolution of the atomic lower-
ing operator is given, to a reasonably good approximatio
[49], by the modified Weisskopf-Wigner exponentially de-
caying solution

where the first term on the right-hand side is the cavity-
Modified vacuum

+ — 3 —iwty 0U 2k
o(t)=ca(0)e (wat Y2ty o 6.3 Evac,ouﬁr't)_f d®k e 2 (r k)&, (k)ay (k,0)

out 2 L
where . is the Langevin noise term associated with the L0080k
dipole coupling to the vacuum fielgheeded to preserve the + éﬁ"’zt(r,k)é;‘ 2(|2)]au(k,0)} (6.7)
commutation relations of the operatprghe precise form of ' ’
%+ IS unimportant because we do not study here the nois
properties of the emitted light. The decay constaris the
cavity-modified spontaneous-emission decay rate at the po-

&nd the second term is the field emitted by the atom

.. . —yt2_ a—i(w—wy)t
sition of the atom given by + _ 7iwatf 58 €
Esoulr:)=iuno(0)e d°k (o= g =772
2
V=5 f wdK| (k) 2024 co2d X A(K, 1 Fa), 68
+|.Z,(K)|?sirfp]8(w— wy)SirPk,z,. (6.4  with £ given by
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AR, 0= 2291, K) 292 (1 k)R- 8 (K)B, (K)  pAsing o (DT,
ol A T ol s 0 0P g = o (ky—ky )22 +T?
+ZPA(r k)8 a(k) + 2Pa(r k)G (k)] T e o
cavk oA (L I
X[ (ra,K)X-g1(K) X114 (k= k) [ (6.11)
1,n

+ 255 (1o, 0K 8 o(K)]. 6.9

_As we are interested _in the case wher_e spontaneous er_nis— Let us now assume that time=1 cavity resonance is only
sion is enhanced, we will consider the high reflectivity limit
we have discussed in Sec. IV. In Sec. Il B we have obtaine(i
approximate expressions f¢tZ, |* and | %j|? in the high
reflectivity limit. In this section we will also need approxi-

lightly (the detuning is much smaller than the mode separa-
on 7/l) detuned from the atomic transition wavelength. We
also assume that the detuning is such that the atom is in the

mate expressions for the products of these functions with thEF9'me where spontaneous emission I enhanced. In other
words, the atomic resonance is somewhere between the

factors linear inA that appear in the mode function§"" in —1 and then=2 but h closerts 1 th
Eqg. (6.9. Proceeding in the same way as we have in Sec ~ - andthen=2 resonances, but much closeirts an
Il B, we obtain, after some algebra, the following approxi- n=2 because the detuning is small. We can then neglect all

mate expressions for these products: the Lorentzians in Eq$3.36), (3.38), (6.10, and(6.11), ex-
cept for the one whera=1. If we now make the change of
” (—1)”1“fn variable k—k—k, in the original integral over the wave

| Z)(K)A cod sins= >, (ko—k, VA2+T7 numberk in Eq. (6.8) and extend the integration to the whole
n=-—0o (Kz7 Rz n |,n

real axis as the tails of the Lorentzian functions give a neg-
I ligible contribution to the integral, we notice that there are
1+ m(kz_kz,n)}' two kinds of integrals involved in that total integral. They
' have the forms

X

(6.10
|
. (k+ ka)B(efytIZ_ efiwt)eiukI‘LZ
|1_f dk - 212 147 (612
—»  [k+iy/l2c][(k co9—k.+kcos0)71“+T" 7]

| Joc (k+kq)3(k cos9—ke+k,cod) (e "2—e 1otlukT ! 61
27 ). [k+iy/2c][(k cosf—k.+kacos)?12+T 4] : ©.13

wherek, is 27 over the wavelength of the atomic transition, o
k.= /| is the z component of the wave vector at the first |11:f dk
cavity resonancdi.e., k,,), I',, is I, with k replaced by
k+k, (e=L,])) andu is a function ofx, y, z, 6, and¢. We e (T //1)2(k+k,)3secd

i i i i i X .
milhnlow examine each of these two integrals in turn, starting [K+iy/2c][ (K—k.sed+kq)2— (I "2/1)%sed0]

1.
The integrand of ; has three poles given by (6.17
For u<0, contour integration yields
.Y
ki=—i-—, 6.1 .
! 2c 6.19 I'2e""2k,—iyl2c]®

[11=2i ;
11 7T|| ([ka—iy/2c]cosfi—ko) 2%+ T,

ke =kesed —k, =i “sed. (6.15 i ek irgsedkau(k —T2/1)3sedd
" s _ _ |
2l (ke—iT2/1)sed—k,+iyl2c

We can rewritd ; as a linear combination of two integrals (6.18

and foru>0,
Ilzei‘ytlzl 11_|12. (616) ) 2
- e|([kc+|I‘a/|]Seo9—ka)U(kC+irgll)l%seéa

|11:_ =] . ’
Let us considet 1, first. It is given by | (ke til'g/l)sed—k,+iyl2e

(6.19
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where we have assumed thgtandk. are much larger than
1/n and y/2c so that ', can be approximated by
I' ;= 1/9k, after the integration.

The second integrdl;, is given by

|12: f dk
(k+kg)3e' UK /1)2sed 0
X - - )
[k+iy/l2c][(k—kesed+k,)2— (I')2/1)%sedd]
(6.20

Contour integration of 1, for u<ct yields

Fge(ufct) yIZC[ ka_ i 7/20]3
([ka—iyl2c]cos—k¢)?12+T4

|12:2’7Ti

i ei([kcfil“ezlll]secﬂfka)(ufct)(kc_ il“i/l )3sedo
2l (ke—iT2/1)sed—ka+iyl2c ’
(6.21)

J’_

and foru>ct,

| - gl ([ke+il/l sed— kal(u=cti(k +iT%1)3sedd
2= (ke+iT2/)sed—k,+iy/2c

(6.22

Let us now consider what will happen whép is inte-
grated overd. Here we have to remember thatis a linear
combination of cog and sird. Let us examine the part of the
integral that contains factors of the kind

1
(kexT /l)sed—k,+ivyl2c

(6.23

If the width of this resonance if6.23 is small enough, we
can expand casand sird around the resonance and approxi-
mate the functions of appearing in the arguments of the
exponentials

2
ex [u—ct][ kctil— sew—ka}) (6.29
and
2
exp( u[ kexi T se@— ka] ) (6.25
by linear functions of sef:
Assuming that
FZ
ke> I—a (6.26

the width of the resonance i66.23 will be given by
yl2ck. and the resonance by sgek,/k.. Then
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_ kc) ke ( ka)
sinf=\/1—|—| — ————|sed— —

(ka k2\ki— k2 ke
+ (higher-order terms (6.27
and
kC kc 2 ka .
cos¥=——|+| | sed— — |+ (higher-order terms
ko \Kkg K
(6.28
Then if
K, 2
v<|—| ckg, (6.29
ke

we can substitute c@sand sird in u in exponentialg6.24)
and (6.25 by

ke
cos= — (6.30
Ka
and
. ke)?
sind=\/1—-|—] , (6.3
Ka

the integrals ove# involving the factorg6.23 will be of the
kind

° ei([kc+ir§/|]seu9—ka)u]c(Seog)

L (kc+iF§/|)seo9—ka+i7/2Cd(5909) (6.32
for v>0 and
= gillke=iT3Ise0—ka)vf (ech)
L (ke T2 sed— kot iyi2c 052?633

for v<0. In these integrals; does not depend on s¢and
f(sed) has no singularitiegpoles. Making the change of
variable se6—sed+k,/k. in (6.32 and extending the in-
tegral to— oo, we can integraté6.32 by contour integration.
We close the contour in the upper half of the complex plane
becausa >0, but then, as the integrand has no poles in the
upper half of the complex plane, integi@.32 vanishes.

Repeating the same procedure (6r33), we find that this
time the contour has to be closed in the lower half of the
complex plane because<0. Now if 7//2c—I‘§ka/IkC is
negative, there will be no poles in the lower half of the
complex plane and the integrés.33 will vanish as well.

So the terms in6.12 that involve the factor$6.23 will
not contribute to the result of the integral overof 1, and
therefore can be discarded when

Faks

<
v ZCI k.

(6.39

This condition implies that the atomic resonanceasrower
than the cavity resonandghis condition is not satisfied by
present-day semiconductor gain media such-asjunctions
and quantum wells; nonetheless, we will explore it further
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In this case, the atomic resonance is more important than the X
cavity resonance in determining the frequency of emission.
Then, as we will show when we integrate ovkethe remain-
ing terms in(6.12), the cavity resonance will influence the
direction of emission.

So, under condition§s.26), (6.29, and(6.34), we obtain

Fge(u—ct)y/ZC[ka— iyl2c]®
([ka—iy/2c]cosh— kc)2|2+rg®(Ct_ o
(6.35

where® is the Heaviside step function. Applying the same
method tol , given by Eq.(6.13), we obtain

Il:|2’ﬂ'

Ko—i cosﬁ—kc>. 6.36

2c

|2:|1_
r
a

If we now use(6.35 and(6.36) in (6.8) and integrate over
0 following the same procedure outlined above and assum-
ing that

V(X—Xg)%+(y—Yya)’sind.<(z—z,)sind,, (6.37)

we find that the terms involving exponentialsidt+z,)C,
whereC is negative, do not have poles where the contour is
closed and therefore do not contribute to the total integral.
Moreover, because the detuning is small, i.e.,

Kk.— k. <k (6.39 FIG. 13. Variance of th& component of the electric field at the
a "coner ) center of the cavity plotted for each mode of frequency

) 4 w,=(1+A)ck.. The fact that this surface is a cone, whose walls
we also find that thet andy components o ,, are much form an angled.=arcco§l/(1+A)] with the z axis, shows that

smaller than the component and can be neglected. Then, falgyission is more likely to occur in a direction forming an angle

frgm the cavity where>z,,I, we obtain the expression for g \yith the z axis. Such spatial frequency distribution, where the
Es,outv transverse component of the wave vector traces a ring, is character-
. istic of nondiffracting Bessel beams. The length over which the
Ed oulr 1) =XEoa(0)F(x,y)e” (¥/2Fiwa(t-[zc]cosic) beam is essentially nondiffracting is governed by the thickness of
, the cone, which is determined by the finesse of the cavity. This
. . - o . .
XSIn(kCZa)®(t— ECOS%), (6.39 E%T(i?4;§sop.>lotted for A=0.01 and A;°=0.004, in units of

where on the surface of any of the mirrors. However, the most
3 interesting feature oE ,, is that it describes a nondiffract-
£ __ Mhka (6.40 N9 Bessel beam.
07 2me l, ' Nondiffracting Bessel beams were introduced by Durnin
[27], who showed that there are beam-type solutions of the
andF is the integral ovew that is still to be done wave equation for free space that do not suffer transverse
spreading as they propagate. Durnin called these solutions

1 (2= ) Bessel beams because the dependence of the electric field on
F(x.y)= ﬂfo dé expli[{x—Xa}cosp the transverse radial coordinate is given by a Bessel function.
In a subsequent paper, Durren al. [67] reported on an ex-
+{y—Vya}sing]k,sing,). (6.41)  perimental realization of a Bessel beam employing a thin

circular slit (an annuluslocated in the focal plane of a lens.
Now this integral can be recognized as the Bessel functioVhen the circular slit was illuminated by collimated mono-
Jo [65,64,, i.e., chromatic light, each point within the slit acted as a point
source that the lens transformed into a plane wave. The su-
F(X,y)=Jo(V[X—Xa]2+[y—Yal?Kssind,). (6.4  perposition of these plane waves yields the Bessel beam.
Over the years, there have been many alternative proposals
From Egs.(6.39 and(6.40, we notice thaE . is pro-  on how to generate Bessel beams: Herman and WiggBis
portional to the transmissivity of the microcavity, as ex- have shown that the beam produced by a conical lens is
pected, and depends on the mode distribution inside the misrtually identical to aJy beam near the optical axis. In ad-
crocavity, sik.z,, vanishing when the atom is at a node, i.e.,dition, they suggested the use of spherical lenses having
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spherical aberration as a method of producing BessdFabry-Peot éalon) and it is necessary to use some extra
Jo-type beams. Holographic methods have also been suglevice, such as lenses, in order to select the right mode.
gested[69-71]. Indebetouw[72] proposed the use of a
Fabry-Peot &alon to generate a Bessel beam. Some methods VIl. SUMMARY
for producing Bessel beams had been proposed even before | this paper we have showed that cavity QED in a planar
Durnin showed that Bessel beams do not diffract. Fujiwaragyicrocavity can modify the angular distribution of atomic
[73] reported], beams produced by using a point source andspontaneous emission in such a way that nondiffracting
a small-angle reflecting cone. Recently, azimuthal Besselgessel beams may be generated. Of course a classical dipole
Gauss beam production in a concentric-circle gratingn such a geometry would also generate a nondiffracting
surface-emitting semiconductor laser was repofet75. Bessel beam as this is a consequence solely of the cavity
Our result can be understood if we recall that a Besseode structure and detuning. However, as we are interested
beam is a beam whose spatial frequency distribution forms g the possibility of investigating, in the future, the quantum
ring [72]. Now, the high finesse microcavity forces the emit- nojse in the light from these sources, we have adopted a
ted light to have exactly this distribution because it con-fyndamental quantum viewpoint of the emission. The degree
strains the component of the wave vector perpendicular t@y which the beam is actually nondiffractiriige., the propa-
the cavity mirror to assume the vallg, so that every wave gation distance over which diffraction is eliminajds gov-
vector of the emitted light has to form an anglewith the  erned by the finesse of the microcavity. We have concen-
z axis defining a ring. This is shown in Fig. 2, where we plottrated here on atomic spontaneous-emission from a single
the variance of thex component of the electric field at the jsplated two-level atom in a high-finesse microcavity. It has
center of the microcavity for each mode of frequencynot escaped our attention that a quantum-dot semiconductor
wa=CK,. The larger the variance of a given mode, the moresource, provided it is suitably confined to a region small
likely it is that the atom will emit in that mode. In Fig. 13 we enough, may well generate such a nondiffracting output from
have plotted, in the way described in Sec. V, the variance o§uch a cavity and eliminate the diffractive spread, which
the x component of the electric field for each mode resonantould otherwise plague these devices. The length over which

with the atomic transition. So the variance of a mode correthe beam is actually nondiffractive is governed by the cavity
sponding to emission in a particular direction is given by thelength and the finesse.

length of the vector that points in that direction and goes

from t_he o_rigin to the surface. From_this plot, it is clear that ACKNOWLEDGMENTS
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