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The phase relationship between an induced atomic dipole moment and a driving laser field is an essential
aspect of high harmonic generation~HHG! in a dense medium. A ‘‘phase-matching’’ criterion must be fulfilled
to obtain coherent amplification of harmonic radiation, which is critical for practical HHG. We have performed
numerical calculations on model atoms to survey the intensity dependence of the phase in the case of strong
one- or two-frequency laser fields. The calculations show that multiphoton resonances significantly affect the
yield of harmonic generation and that in the ‘‘plateau’’ regime, the phases exhibit only weak dependence upon
the intensity of the driving field.

PACS number~s!: 42.65.Ky

I. INTRODUCTION

High harmonic generation~HHG! may lead to a practical
source of short-wavelength coherent radiation if the conver-
sion efficiency can be increased from that currently observed
in laboratory experiments. A key factor limiting harmonic
output is phase matching of the driving field and harmonic
radiation. Effects of electromagnetic wave propagation and
intrinsic atomic phase variation both contribute to phase mis-
match of harmonic generation. Previous theoretical work has
emphasized propagation effects@1#, and intrinsic phase
variation has begun to generate attention@2#.

In particular, Shkolnikovet al. @3,4# have identified an
optimal phase-matching condition in the case of high-order
difference-frequency mixing. Their analysis relies upon the
intensity dependence of the phase and amplitude of the
single-atom response to a driving field. At present, these de-
pendencies have not been systematically understood outside
the perturbative regime, especially when two driving fre-
quencies are applied. In this paper we investigate the varia-
tions of intensity-dependent phases for one- and two-
frequency driving laser fields incident on a commonly used
one-dimensional model atom@5–9#, which has been popular-
ized by the work of Eberly and co-workers@6,7#. This one-
dimensional model incorporates the effects of intermediate
dressed-state resonances, which are of key importance in un-
derstanding details of strong-field ionization@10,11,9#. We
find that these resonances have a pronounced and complex
effect on harmonic generation. However, in the plateau re-
gion, dependence of the atomic phase upon driving laser in-
tensity is weak except for cases of isolated resonances.

II. ONE-DIMENSIONAL MODEL ATOM

The one-dimensional model atom has been used exten-
sively in calculations of HHG and multiphoton ionization
@5–9#. It describes an electron subject to an atomic potential
of the form@in atomic units~a.u.!, in which the electron mass
me and the chargee, and the reduced Planck constant\ have
the numerical value 1#

U52
U0

Ax211
, U050.707 325. ~2.1!

This potential exhibits the long-range Coulomb tail charac-
teristic of real atomic systems, and supports an infinite series
of bound states. Energies of the lowest eight states of this
model atom are given in Table I. This choice of parameters
gives an ionization potential identical to that of Xe, and also
places an even-parity state at the same energy as a 4f state of
Xe; this has been found to be useful in interpreting the
strong-field photoionization process in that atom@9#.

We have solved the time-dependent Schro¨dinger equation
for this system in the presence of laser fields in the dipole
approximation. Propagation of the wave function in time is
calculated by use of the split-operator expression:

uc~ t1Dt !&5e2 iĤDtuc~ t !&

5e2 iV̂Dt/2e2 i T̂Dte2 iV̂Dt/2uc~ t !&1O~Dt3!,

~2.2!

whereT is the kinetic energy operator andV is the potential
of Eq. ~2.1! plus the potential of the laser fieldsf (t)x, treated
in the electric dipole approximation. The kinetic energy con-

tribution e2IT̂Dt has been calculated by Richardson’s split-
operator method @12,13#, in which T is approxi-

TABLE I. Energy levels of one-dimensional model atom.

Energy~a.u.!
Level designation Even parity Odd parity

E0 20.445 932
E1 20.158 850
E2 20.084 660
E3 20.050 024
E4 20.034 018
E5 20.023 960
E6 20.018 182
E7 20.013 987
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mated by a three-term finite difference formula with a grid
spacing of 0.25 a.u. The box six is 1024 a.u. and an
exponential-type absorbing potential@14# has been put near
the boundary to suppress reflection of the wave function by
the box walls. Convergence of calculation results has been
positively tested by doubling the box size. The spectra are
relatively stable with respect to changes of the grid spacing.
The laser pulse durationD is 32 optical cycles, except where
noted, with a pulse envelope shape of sin2(pt/D).

We solve Eq.~2.2! over the duration of the pulse, and
record the instantaneous values of the accelerationa(t)
given by

a~ t !5^c~ t !u2†@x,H#,H‡uc~ t !&5 K c~ t !U]U~x!

]x Uc~ t !L
1 f ~ t !. ~2.3!

In contrast to the dipole moment operatord(t), Eq. ~2.3! is
dominated by contributions from regions near the center of
potential. This feature makesa converge faster thand with
respect to box size. The power spectra presented in this work
are the squares of the absolute values of Fourier components
of a(t) averaged over the duration of the pulse. All calcula-
tions were done on a Connection Machine CM-5 parallel
computer.

III. RESULTS OF CALCULATIONS

For a one-frequency driving field, results for laser fre-
quencyv50.073 489 a.u. (l'620 nm! and v50.04554
a.u. (l'1 mm! are shown in Figs. 1 and 2, respectively.
Two regimes are apparent in these power spectra. When the
peak laser field strengthF is small, the response is consistent
with the predictions of perturbation theory, being propor-
tional to F2n wheren is the harmonic order. The ramps of
the seventh and ninth harmonics in Fig. 2 should come from
near-resonance enhancements between ground state andE1
andE3 , respectively. The phases of harmonics show weak
variation with respect to driving field strength.

WhenF exceeds a threshold value, hereF'0.04 a.u., the
harmonic spectra enter the ‘‘plateau’’ regime in which all are
of comparable intensity. The phases of harmonics in the pla-
teau regime seem to be flat except for isolated structures.

Several resonant structures are prominent in the perturba-
tion regime. These resonances are associated with multipho-
ton transitions from the dressed atomic ground state to a
field-shifted Rydberg state, and they are known to be the
principal mediators of atomic ionization in strong laser fields
@9#. To explore these resonances, we compare the power
spectra and phases for different pulse durations. Figures 1
and 3 correspond toD532 and 64 optical cycles, respec-
tively. Although the longer pulse case reveals more reso-
nance structures and complicated variations in plateau re-
gime, the broad appearances of the spectra are very similar.
It should be noticed that the phases of harmonics in the pla-
teau regime attain the same average values, even though
their fluctuations differ.

Association of the spectral fluctuation with atomic reso-
nances is illustrated in Fig. 4, which shows the final-state
atomic populations as a function ofF. Population enhance-
ments of the statesE2 , E4 , and E6 occur at the field

strengths associated with Floquet quasienergy crossings cal-
culated by Edwards and Clark@9#, which are shown in Table
II. These population enhancements are accompanied by val-
leys in power spectra and sudden changes in phase, visible in
Fig. 3. The most significant case is the change in the seventh
and ninth harmonics nearF'0.022 a.u., which corresponds
to a six-photon transition between statesE0 andE4 . Since
this is a six-photon process, it gives prominent effects on
higher (n.6) harmonics by contributing directly to their
lowest-order perturbation term, but has a lesser influence on
lower harmonics: in the language of perturbation theory, this
would derive from higher-order terms.

One question that motivated the present investigation con-
cerned the possible influence of such resonances on har-
monic generation, in particular whether they could be ex-
ploited in the multiphoton excitation process to enhance
harmonic yields. We see that orders of magnitude changes of
harmonic response are induced by these resonances, though
these are most pronounced before the onset of the plateau.
Nevertheless, this issue may be worth further exploration, as
we can see that the harmonic yield exhibits a maximum with
respect to driving field strength, located near the resonance
regime. Furthermore, we believe that the sharp dips in har-

FIG. 1. Power spectrum and phase of harmonics of one-
dimensional model atom. Power spectra are in arbitrary units. Laser
frequency isv50.073 489 a.u. (l'620 nm!. The lines 1, 3, 5, 7, 9
are of the fundamental and the third, fifth, seventh, and ninth har-
monic ofv, respectively. In~a! the power spectra are seen to follow
the behavior predicted by perturbation theory at low fields, and to
exhibit the plateau effect atF.0.04 a.u. The feature near
F'0.02 a.u. is associated with a dressed-state atomic resonance
identified in Ref.@9#.
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monic yield apparent at higher intensities are also associated
with atomic resonances.

For two-frequency driving fields, we set up laser fields
with frequencies ofv50.045 54 a.u. and 3v. The amplitude
of the fields are identical. We have performed calculations
with different relative phase between the two fields, and do
find variations of ionization rates, intensities of harmonics,
and resonance structures with phase. However, the general
features summarized here are independent of phase, and the
results shown in Fig. 5 for zero phase shift may be taken to
be characteristic. We see that the sharp resonance features
apparent in the one-color case of Fig. 2 are largely washed
out, and that the phases in the plateau region exhibit
smoother variation. This is probably due to the fact that a
given harmonic can now be produced by a lower-order pro-
cess than in the case of one frequency~e.g., the fifth har-
monic can be produced by absorption of one photon of fre-
quency 3v and two photons of frequencyv, as well as five
photons of frequencyv), and the lower-order processes are
intrinsically stronger and less affected by resonances. On the
other hand, the two-frequency system will be characterized
by its own set of Floquet resonances, and we would expect to
see their influence in the plateau region.

IV. DISCUSSION

In the one-dimensional model, the variations of intensity-
dependent phases of high harmonics in the plateau regime
are small, except for fluctuations near multiphoton reso-

FIG. 2. ~a! Power spectrum and~b! phase of harmonics of one-
dimensional model atom. Laser frequency isv50.045 54 a.u.
(l'1 mm!.

FIG. 3. ~a! Power spectrum and~b! phase of harmonics of one-
dimensional model atom in the same condition as in Fig. 1, except
the pulse duration is doubled to 64 optical cycles.

FIG. 4. Final-state population distribution of ground state and
the first to the seventh excited states in pulse duration of 64 optical
cycles.~a! is for even-parity states and~b! is for odd-parity states.
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nances. In the two-frequency case, these variations are re-
duced even further. The phases are not sensitive to pulse
duration, though the complicated variations in the plateau
regime exhibit minor changes with respect to pulse duration.
The optimal phase-matching condition suggested by Sh-
kolnikov et al. @3,4# should hold.

Most of the prominent structures in power spectra and
phase of harmonics in the perturbation regime and in the
beginning of the plateau regime can be identified with the
dressed-state multiphoton resonances that are primarily re-
sponsible for ionization@10,11,9#. In the plateau regime we
find a high density of such structures; although this makes it
difficult to identify them uniquely with specific resonances,
we believe they do originate in dressed-state multiphoton
phenomena similar to those encountered below the plateau
threshold.

A very different sort of behavior of the phase of high
harmonics is observed in the low-frequency model proposed
by Lewensteinet al. @15#, which has been compared quite
favorably to some experiments. In that model, the phase var-
ies extremely rapidly with intensity, and there is also a good
deal of structure apparent in the harmonic intensities. Those
features cannot be due to atomic resonances, since there is no
representation of atomic structure contained in that model.
Since the model requires that the ionization potentialI@v, it
is not strictly applicable in the range of parameters we have

studied here. However, we felt it worthwhile to make some
statements of comparison.

We have carried out calculations for the model of Ref.
@15#, with an additional aspect of including the effects of a
finite pulse~the original model was developed for monochro-
matic excitation!. We do this by applying the pulse summa-
tion technique in the adiabatic approximation. Under adia-
batic conditions, the pulse shape envelope change is much
slower than the atomic response, and we can getx(t) and
dn(t) in pulsed fields fromx( f ) and dn( f ) in continuous
fields when the pulse strength isf at the timet. We then sum
updn(t) over the pulse duration to obtain the harmonic spec-
trum.

The phase under pulsed-field conditions shows much
slower changes than are observed in the case of monochro-
matic excitation, since the pulsed case contains contributions
from a range of driving intensities, and the process of sum-
mation tends to smooth the power spectrum and phase of
harmonic. We have also calculated spectra of two-frequency
fields with driving frequenciesv and 3v. Under pulsed-field
conditions, the phase change in two-frequency fields at the
high-intensity regime is significantly slower than in one-
frequency fields.

From these results, we conclude that the pulse summation
technique reduces the rapidity of variation of phase changes
in the low-frequency model, and that the addition of a second
frequency has a similar effect. Small variations of power
spectra and phases in plateau regime thus appear in both the
model primarily discussed in this paper and the low-
frequency model. The low-frequency model, however, does
not produce any structure in the perturbation regime, since
the model contains no representation of any bound states
other than ground state. Thus it is not clear that this resem-
blance of the predictions of both models has a common ori-
gin.
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TABLE II. This table contains a list of the resonant intensities
for model-atom levelsE2–E8 with a laser photon energy of
0.073 489 a.u. (l'620 nm!, as from the Floquet results of Ref.
@10#.

Resonant intensity Resonant field strength
Level ~W cm22) ~a.u.!

E2 2.531013 0.027
E4 1.831013 0.023
E6 8.531012 0.016
E8 4.731012 0.012

FIG. 5. ~a! Power spectrum and~b! phase of harmonics of one-
dimensional model atom. Laser frequency isv50.045 54 a.u.
(l'1 mm! and 3v, with no phase difference.
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