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Dipole-dipole interaction in squeezed vacua
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We study the near-resonant dipole-dipole interaction between two atoms in a broadband squeezed vacuum.
We show that this “vacuum” modifies the rate of spontaneous emission of the atoms so that it may depend not
merely on their relative position, as is normally the case, but also on their center-of-mass position. The explicit
form of this latter dependence is a function of the way squeezing is achieved. We also show that in contrast to
the spontaneous decay rate, squeezed vacua do not modify the dipole-dipole potential between the atoms as
compared to its usual form. Finally, we develop a Monte Carlo wave-function description of the interaction
between atoms with an arbitrary internal structure and a squeezed vacuum and apply this formalism to the case
of off-resonant excitation of the atoms. We find that in addition to the usual light shift, the squeezed vacuum
results in an additional contribution to the effective potential governing the evolution of the atomic ground
states.

PACS numbgs): 42.50.Dv, 42.50.Fx, 34.26b

I. INTRODUCTION sion rate of the atoms, do not change the dipole-dipole po-
tential.

It is now well established that a number of radiative prop- There is a large amount of literature dealing with the in-
erties of atoms can be modified by tailoring the electromagteraction between single atoms and squeezed vacua, includ-
netic environment with which the atoms interact. In particu-ing the study of driven and nondriven two-level and multi-
lar the rate, or even the character, of spontaneous emissidavel atoms, see e.d.1,3-7]. A few publications have also
can be modified by changing the density of electromagnetiaddressed issues related to two at¢Bs1l]. In most cases,
modes coupled to the atom. A related situation occurs if amowever, this work considers extensions of the Dicke model
atom interacts with a squeezed vacuum, in which case th@here the atoms are assumed to be separated by much less
usual single decay rateT of the atomic polarization ceases than an optical wavelength. A notable exception is the work
to give a correct description of atomic relaxation, and muskf Ficek [10], who also considered the situation of large
be replaced by two decay ratgs]. interatomic separations. However, his emphasis was not so

In this paper we extend these results to the study of tWop,ch on the study of two-body collisions as on the creation
body interactions between atoms. Since two-body interacst . rejated atomic states. We try in this paper to make
tions are mediated by the electromagnetic field, it should b%ontact with Ficek’s results whenever possible

expected that a tailored electromagnetic vacuum can have Section Il defines our model of the interaction between

significant consequences there too. A trivial example of hOV\{ i . .
> . : ; ) . two atoms, a classical light field and the free-space con-
this can occur is the near-resonant dipole-dipole interaction

between excited and ground atoms in highsavities. The tlnuu_m of fi_eld modes of the guantizeq electromagngtic field.
physical origin of this interaction is the reabsorption by onese(?t'or_‘ lllis the central se_ctlon of this paper. It. oqtlmes the
of the atoms of a photon spontaneously emitted by the othé{ienvatlon of the cooperative spontar_leous emission ratg of
one, so that if spontaneous emission is inhibited, respectivelf!® atoms and of the near-resonant dipole-dipole interaction.
enhanced, the near-resonant dipole-dipole interaction will "€y both result from the elimination of the continuum of
clearly also be suppressed, respectively enhanced. field modes in the Born-Markov approximation. We show

More interesting perhaps is the situation of a “squeezedXplicitly the dependence of the spontaneous emission rate
vacuum.” While the density of modes of the electromagneticon the relative as well as on the center-of-mass coordinates
field is not modified here, correlations are introduced beof the atoms. The physical origin of this double dependence
tween various modes at the expense of having a nonvanisks discussed. We also show that the coupling of the atoms to
ing mean photon number in the field. In this context we notea squeezed vacuum does not change the form of the dipole-
that the dipole-dipole interaction in a thermal reservoir atdipole potential as compared to the usual situation. Section
nonzero temperature has been previously analf2edt was IV then introduces a Monte Carlo wave-function formalism
found that the dipole-dipole interaction is not changed fromfor atoms in a squeezed bath. Section V applies these results
its zero-temperature expression, due to the exact balance hbie-the case of off-resonant excitation of the atoms, where the
tween the effects of stimulated absorption and emission: thexcited electronic states can be adiabatically eliminated. We
dipole-dipole interaction is truly an effect of the electromag-show that in addition to the usual light shifts, the squeezed
netic vacuum. We find that this result carries over to the casgacuum results in an additional contribution to the effective
of a squeezed vacuum. More surprising is that the quanturpotential governing the evolution of the atomic ground
correlations between field modes, while leading to significanstates. Finally Sec. VI is a summary and conclusion. Calcu-
qualitative and quantitative changes in the cooperative emidational details are relegated to two appendixes.
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IIl. PHYSICAL MODEL to the direction of propagatiofo: k/k of modes. The anni-

Our model is an extension of the theory of the dipo|e_hilati0n and creation operators satisfy the boson commuta-
. . . : : T ) .
dipole interaction to account for a squeezed vacuum protion relation[as,ag, ]= 6(k—k") 8, 1, Zo(k)= Vick/2eV
duced either by four-wave mixingl2,13 or by parametric is the “electric field per photon” of mods, andV is the
amplification[14,15. The atoms-field system is described by quantization volume.
the Hamiltonian

=Tt Het Fon_e 1) IIl. DIPOLE-DIPOLE EFFECTS

where 7<= 7+ %»_, describes a system of two atoms . If the continuum of modes of the electromagnetic field is

and their electric dipole coupling to some laser fields of fre—Inltlally in the vacuum, then its ellmlnatlon_|n the Bom-
. : . Markov approximation leads to several familiar effects. The
qguencyw, which form, e.g., an optical lattic€The presence

of these classical fields is actually not necessary until Sec. \;|rst, and best known of these, is single-atom spontaneous

where they will be used to justify the adiabatic elimination of ?orlr;(lnsviilr?n, .?r?g ?ersaedr:igvoef t?:cl)ﬁa:g?r:svivr;ltgz dl%?%rﬁglégotlrs]?n
the upper electronic levels of the atomis a frame rotating 9. P

L addition to the appearance of a two-body dipole-dipole inter-
at frequencyw, , the Hamiltonian of the two-atom system . ;
takes the form action between excited and ground atoms and to a modula-

tion of the spontaneous emission r@lg-19. lts physical

2 2 p? origin is the reabsorption by one atom of a photon spontane-
Tp= 2 Top = E _'+ﬁ(wo_w|_)pei ' ) ously emitted by the other one, while the modulation of the
i=1 Toi=(2M ’ spontaneous emission rate is a quantum interference effect

_ which reduces to “Dicke superradiance” if both atoms are
wherep; is the center-of-mass momentum of tite atom  \yithin one optical wavelength.

and w, denotes the Bohr frequency between the degenerate The coupling of the atoms to a squeezed vacuum leads to
ground and degenerate excited magnetic sublevels of theore complex dynamics, even for a single atom. In particu-
Jg—Je atomic transition under consideration, the groundjar, it is no longer possible to describe the decay of the
state energy being taken equal to 0. The opera®rs and  atomic polarization by a single rateT/ [1]. We consider
Py i which will be introduced shortly, are projectors onto the explicitly two concrete ways to achieve a squeezed vacuum,
subspaces of the excited, respectively ground electronigear-degenerate four-wave mixing12,13 and near-

atomic state$16], degenerate parametric amplificatiqi4,15. While both
3 mecha_misms lead to similar reservoir properties _as_far as fre-
P — 2 &) (en 3) quencies are conS|der¢d, and hence lead to similar single-
¢ omE,, T atom dynamics, the pairs of correlated modes that are gener-

ated differ significantly with respect to their coordinate
and similarly forP. The electric dipole interaction between dependence, with important consequences for two-body in-
the atoms and the laser fields may be expressed compactly &sactions. Specifically, squeezing leads to the following

nonvanishing field correlation functions between modes of

2 2 the electromagnetic fielfr]:

]//AfL:;l Ta—Li= _21 [d*-Ef(r)+d™-E ()],
(4) (alag)=[N(w)/ww'18(w—w')S(k—K')8, ,, (7)

wherer; is the center-of-mass position operator of ilie

atom,E, (r))=E/ (r;)e" "'+ c.c. is the laser field at the po- (asas ) =[M(w,0") 0(2w)— )]8(2wy—w—w")
sition of that atom, and we have introduced the atomic rais-
ing operatord*zPedPg, d being the atomic dipole mo-
ment. The last two terms in Ed1l) describe the dipole
coupling of the atoms to the free-space continuum of modegjith similar expressions fO(aSa;> and <a;ra;f,>_ In these

X S(k+K')8, /1, (8)

of the quantized electromagnetic field, with expressionsN(w) are the mean photon numbers at fre-
quencyw=ck in the squeezed “vacuum,M(w,w') is the
_],Z'F:E ﬁwsalas (5) so-called squeezing parameter, and the frequency of the
S

pump bearts) is taken to be equal to the atomic transition
frequencywy. The + sign in the argument of thé function
in Eq. (8) corresponds to four-wave mixing, and thesign
2 to parametric amplification. The squeezing parameter
A + 5 ik-r; M(w,w") is related to the mean photon number per mode
Ha-r=2y 2 Lold’-E(l)]ag! i He. () N(w) by the inequality |M(w,w')]2<N(w)N(w')
+min(N(w),N(»")). In the case of “perfect squeezing”
As usual, the mode indeg={k,/} runs over both a con- N(w)=N(w') and|M(w,»")|?=N(w)[N(w)+1] [20].
tinuum of wave vectors and two orthogonal polarizations The elimination of the electromagnetic field modes in the
/= * for eachk. We chose circular polarizations character- Born-Markov approximation leads to an atomic master equa-
ized by orthogonal vectors, (k) in the plane perpendicular tion of the usual form

and
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p=—Z[Hs.p]+ Zp, ) Zaq(kK)= 3 [eAR)- e [6/(K)- 2] (13

here the Liouvilli . . . i -
where the Liouvitian gives the usual dipole-dipole radiation patteeg,q=0,=

are unit vectors with respect to the quantization axds#nd
r=r,—r, is the relative coordinate of the two atoms.

The result that neither a thermal bd®) nor a squeezed
vacuum modifies the dipole-dipole potenti4]y may appear
surprising at first, as its form is, after all, very “classical
— Za-e(7)pa-p(7) 7 a—£ (1) looking.” One might therefore have expected that the stimu-

" oy lated effects associated with a nonzero mean photon number
T Pa-r(7) Zar(7) Zp-r (D)} 19 in 4 reservoir at finite temperature, or with non\?anishing cor-
results from the elimination of the field degrees of freedom'elation functions between pairs of annihilation operators in
As is now well establishefll7—19 in the case of two atoms & Squeezed vacuum, would lead to a modificatiorVgf.
the contribution %p to the master equatio®) cannot be That thestimulatedabsorption and emission effects associ-
interpreted as a simple damping term: it also includes &ted with these nonvanishing correlation functions compen-
Hamiltonian contributionVyq, which is the dipole-dipole Sate each other exactly clearly demonstrates that despite its
potential resulting from the reabsorption by one atom of &lassical-looking form, the dipole-dipole interaction is in-
photon spontaneously emitted by the other one. deed truly a “vacuum effect,” intimately connected to spon-

In taking the partial trace Frover the field variables, we aneous emission. _
assume that the reservoir is in a squeezed vacuum. This leads TUmning now to the dissipative part of the master equation
to the appearance of several new terms as compared to the)» We note that it includes several types of contributions.
thermal equilibrium situation, due to the nonvanishing The first ones are "single-atom” effects, and account both
second-order correlation functions involving pairs of annihi-for usual spontaneous emission as well as for its modifica-
lation or creation operators, see Ed). Details of the deri- tions due to the coupling of the atoms to a squeezed vacuum
vation of the master equation are given in Appendix A. Anl1]. In addition, dissipation includes two-atom effects whose
important result is that the dipole-dipole potenti&yy is not ~ Origin can be traced back both to “thermal” and to
modified as compared to its value for a usual vacuum, or, forSduéezed” contributions. The “thermal” contributions ac-

that matter, of a thermal reservoir at nonzero temperaturéount for the spatially modulated rate of spontaneous emis-
Specifically, one find§18,19 sion resulting from the interference between the two decay

channels of the atomic system, including the stimulated pro-
hys cesses associated with the nonvanishing mean photon num-
Vaa=—- >
q.9’=0,x

1 [t
Zp=- ﬁfodTTrF{'%A—F(t)~7KA—F(T)PA—F(T)

—Ta—e(D)pp—e(7)Hp_(7)

+ 2 -2 K . . -
agq (D1 - €)(D; - €q)+H.Cc., (1) perin a squeezed vacuum. Finally, the two-atom Liouvillian
includes a contribution proportional to the squeezing param-

eter M (wgq,wq). Its form depends on the way the squeezed

where the coefficient,q is given explicitly by

5 .
a /:in do— fdmk)fz ((k,kyelwkrie
49 27ng wo— Qg TGO ’

(12

and P stands for “principal part.” In this last expression,

Yt
Sgp=— =
aP 252450+

_?M(wo,wo)jz E

=124,q9'=0x

—FN(wg)+1]
0,9 =0,*

{[N(wo)+1](D} - &) (D - &_¢)p+N(wo)(D; - &_¢)(D;' - &g)p}

vacuum has been produced. In particular, it exhibits an ex-
plicit dependence on the center-of-mass coordinate
R=(r,+r5)/2 of the atomic system in the case of squeezing
via parametric amplification.

A lengthy calculation outlined in Appendix A yields for
the dissipative partZyp of the two-atom master equation

(14)

gqq’[(Dj_'— : eq)(Dj+ : Gq/)P+P(Dj+ : Gq)(Dj+ : %q’)]

')’qq’[(DI'%q)(Dg'%q')p+p(Dl+'%q)(Dg'%q’)]

- ZN(wo) X veq[(Ds &) (D} &)+ p(D; -2)(D5 &)

q,9'=0*

—¥M(wg,00) X
9,9'=0,=

qu’[(DI'Eq)(D;'Eq')p"'p(DI'Eq)(D;'Eq')]



3576 E. V. GOLDSTEIN AND P. MEYSTRE 53

3vs dQ (k) B T YR
+71,/z:1,zq,q/z:i 1 {IN(wo) +1] % 4 (K K)(D} - &_g)e”' T*Tipe e/ (D; &)

W~
C

(,1)0,‘ o~

A A . iadt)
+N(wo) Zg,—q/(KK)(D; - e_g)e e ipe™ Th (D, &)

A~ A 00~ @0~ R
+M(wg,w0) Zg —q' (K, £K) (D} - &g)e' e ¥ Tipe' s ¥ (D} - &)} +H.c.

The last contribution to this Liouvillian, proportional to a _ o

solid angle integral, would usually be interpreted as a “fill- <a/,r1a/’,r2>5f dkdk’(asagye™ " re~tk T2
up” term which describes how the atomic ground states are
populated via spontaneous emission. The terms including
products of raising and lowering operators can indeed be
interpreted in this way, the exponentials such as, e.g.,
exp(—iwgk-r;/c) describing the atomic recoil associated

with atomic decay. In addition to these familiar fill-up terms, |, the case of counterpropagating modésur-wave mix-

this integrand also llncluans additional tlerms containing pro.dl—ng), it exhibits a dependence on the relative coordimate
ucts of two atomic raising or lowering operators. Their

physical origin is the absorption of two photons from, or . wo-

emission of two photons into, the squeezed vacuum, with the (a/,rla/,h): M(wo,wo)f dQ (ke Tk, ),
associated atomic recoil. Such terms disappear for an elec- (19)
tromagnetic reservoir in thermal equilibrium

[M(wq,w0)=0]. While these two-atom and two-photon e in the case of copropagating modearametric ampli-
emission or absorption terms can _obwously not be_ '”ter’fication) it depends on the center-of-mass coordirRte
preted as “fill-up” terms, we shall still loosely call the inte-

gral in the master equatiofi4) the fill-up part. ~ g~

Turning now to the other contributions to E(L4), we (a/,,la/r,r2>=M(w0,w0)f dQ (ke 2 ekRs, .,
observe that the first term, proportional to the spontaneous (20)
emission ratey; = (1/3mey)(dPwI#ic®), describes single-atom

spontaneous emission, and in addition the stimulated emigyhich demonstrates how squeezing destroys the isotropy of
sion and absorption processes associated with the presencesphce.

a mean photon numb&N(wo)) in the squeezed vacuum.  The next two terms in Eq(14), proportional t0yqq:,

~ . @0~
= M(wo,wo)f dQ(k)e_l?k.(rliu)&/’//.

(18

The second term, proportional to describe the spatial modulation of the atomic decay rates due
3 dQ(Iz) wo- to the presence of a second atom, and depend on their rela-
qq' = Ef e T4 _q,(k,k)eZiTk-R, (15  five positionr, as expected. Here
3(dK) . @0
for the case where the squeezed vacuum results from para- Yo' = _f _g,q’q,(k’k)elTk.r. (22)
metric amplification, and to 2 4m
g = Oq—q’ (16) The explicit forms of these coefficients are given in Appen-

dix B. In the absence of squeezing or for a reservoir at zero
in the case of near-degenerate four-wave mixing, describegmperature, we havd(w,)=0 and we recover the modu-
the modification of the single-atom spontaneous decay ratRited spontaneous decay discussed, e.g., in Re8s19,2].
due to the presence of a squeezed vacuum. The dependencerinally, the “squeezed” contribution to the collective de-
of 4 on the center-of-mass position of the atoms, in thecay of the two-atom system is proportional #Qq, Whose
case of parametric amplification, has previously been notegbrm depends on the way squeezing has been achieved. For
by Ficek[10]. It results from the fact that squeezing destroysparametric amplification we have,q = &qq'» and hence a
the isotropy of space, as can be seen by expressing thfependence of the decay on the center-of-mass position of

squeezed vacuum correlation functions in coordinate spacehe atomic system, while for near-degenerate four-wave mix-
Due to the resonant nature of the atom-photon exchange, theg we have

only pairs of modes which contribute to the atomic decay are

A 3 (dQ(k
(a5s) = [M (w0, 00) wwo] 8(w—wo) Sk =K") 6, 1, =] g

(17) qq 2

where = corresponds to parametric amplification and four-and hence a dependence on the relative position of the atoms.
wave mixing, respectively. In coordinate space this correlaThe explicit forms of these coefficients are also given in
tion function becomes Appendix B.

~ ~ _(A)o,\
1 Zo-ak—keTh, (@22
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We find, then, that in contrast to the dipole-dipole poten-volved is of course different. Nonetheless, it can be diago-
tial, the dissipative part of the two-atom Liouvillian dependsnalized in the same way, leading to
sensitively on the spatial characteristics of the reservoir cor- 5
relations. For a squeezed vacuum achieved via parametric 1 dQk) i r 0/ Nt AGYE At
amplification, the atomic decay depends both on the relativeffpzi ;1 /Zt f W[ZA/ (k)pAs (k)" = A/ (ko)
and center-of-mass positions of atoms, while in the case of R o o o
four-wave mixing it depends only on the relative position of X AP (ky)p—pA (ko) TAD (k)] 8(kixky), (29
atoms, as in the case of a thermal bath. L

where the operatora!) (k) are given by

IV. MONTE CARLO WAVE-FUNCTION APPROACH

2
The two-atom master equation derived in the preceding A(/i)(k)Z\/?\—iZ cP(k)Uj; . (29)
section is rather combersome to handle, in particular numeri- =1
cally, since a two-atom description leads to substantial comg,. . »=37v{2N(wg) + 1+ V1+4|M(wq,wo)|?]/4, and
1,2 — ’ y

puter memory requirements. |t has. recently' been demor}'he coefficientdJ;; are the elements of the unitary matrix
strated that in case the master equation of a given problem Is

of the Lindblad form, it is possible to replace it by an equiva- cog 0/2)e"1*2  —sin(p/2)e" ¢

lent formalism relying on an effective non-Hermitian Hamil- ) 612 g2 | (30
tonian and Monte Carlo wave-functigMCWF) simulations sin(6/2)e cog 0/2)e

[22-24. For example, Ref.22] explicitly developed sucha _ . _

formalism for the situation of a two-level atom in a squeezeo?’vIth tang=2|M (wo, wo)| and M (o, wo)

= i(¢p+m) -
reservoir. The goal of this section is to extend these ideas to IM(wo,wo)le . For two-level atoms coupled to a

the problem at hand, that is, to a system of two muItiIeveI{Dhegfﬁ;:ggtesrqgef;ggm\é?crglércssrﬁj: ;; Ore(le:(I:tlgeofm:daez\,Nal
atoms with arbitrary internal structure and coupled to a d Puri[8] q[N te that in that ~0 and hg
squeezed vacuum, by introducing operators allowing expreé"!n uri|8]. [Note that in that caser,=0 and hence

) ; : ) @0y —
sion of the master equatidi4) in the Lindblad form A7 (k)=0.] ) » o .
The effective non-Hermitian Hamiltonian describing two

1 : : : atoms coupled to a squeezed vacuum is therefore
Lap==52 (CoCrp+pCrCm) + 2 CruoCry.

23 Heti=H s+ Naa+ 7 damps (31
where the non-Hermitian Hamiltonian describing the atomic
We proceed by first introducing the operators damping
- T R i dOK) o~ e e
C(/l)(k):qzi [e,(K)-€qlle Tk "1(D; - €q) .Jﬁdamp:7izl /Z+ 4;- )A(/')(kz)TAQ)(kl) S(kixky)
. R 32
+e (D gy)] (24) €2
can be expressed as the sum of a single-atom contribution
and
A ~ ) _iﬁ7f2 2 T
C(/Z)(k)Z[C(/l)(k)]T, (25) ']Zl,damp_Ti:l’2 0« (D 'eq)(Di 'eq) (33
which permit reexpression of the master equatib4) as and a two-body COMPONENtZ, qams= 7S Hams™ 75 hamp
with
2 -
o 1 dQ (k) - N
va=3 3, B 3 | Sl kpc) ks

if .
*JA(Zt,)dampzT‘Yf[ZN(wo) +1] ’EO . ’)’qq’[(DI : eq)
~ (ko) 'C(ky)p— pCY (k)T (ky)] ) DA
o X (Dy - &)+ (D5 - &g)(D; - &q)] (34)

X 8(kixky), (26)

giving the “thermal” contributions and
where thex in the argument of thé function corresponds
to a preparation of the squeezed vacuum via parametric am- S =117 M (@0, @)
plification and four-wave mixing, respectively. The coeffi-
cientsg;; can be thought of as elements of theq{2) matrix X 2 qu,([)+ . gq)(D; . gq,)+ H.c.

1
9,9’ =0,=
27 (39

giving the “squeezing” contributions. We observe that in
Equation(26) has the same form as E(R2) of Ref.[22], contrast to the two-atom part/; 4amp do€s not contain a
except that the physical interpretation of the operators in*squeezing” contribution, due to the fact that

_% N(wo)+1 _M*(wo,(vo)
S 2 —M(wg,w0) N(wo)
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D;"-D;"=D; -D; =0. Single-atom “squeezing” contribu-  [¢(1))=Pe1Pe 2 th(t))+ P 1Py o th(t)) + Py 1Pe o th(1))
tions appear only in the fill-up term of the master equation PP ¢
(14), as previously discussed. g.1Pg.d ¥(1)

= ‘//ee+ llfeg"_ ‘//ge"_ ‘v//gg ’ (36)

where the projector®,; andPg;, i=1,2 are given by Eq.

The impact of a squeezed vacuum on the modulation of3)  sypstituting this expression into the Satirmer equa-
the decay rate is particularly transparent for atoms interactingyp,

with a low intensity near-resonant external laser field such

that the subspace of excited states remains almost unpopu- _d|y)

lated. In this case, it is possible to adiabatically eliminate the IhT = el ) (37)
excited states manifold. Similarly to the approach of Ref.

[25], we decompose the atomic state vedipft)) as then yields the coupled differential equations

V. LOW INTENSITY REGIME

i i
Yoot 7[G+(f1)l//ge+ G (1) thegl + g‘%ﬁamﬁbgg '

i5— g[N(wo)Jrl]

. iK
Yee™ _?4'2

: iK io . ) i ©
¢eg: _?"' weg+7[G (r1)¢gg+G (rz)wed"'%(Vdd"'j%z,dam;)wge!

i 56— g[N(wo)ﬂ]

: iK . Vi iQ . i 9
¢ge: _7"' |5—7[N(w0)+1] l/’ge+7[G (r1)¢ee+G (rz)’ﬂgg]‘l'g(vdd'l'jg}(z,dam;)wega

iK
—+ I'N(wp)

i0 B i
5 2 'ﬁgg"'?[G (rl)'//eg+G (rz)wge]"'g]%z,damﬁﬂeev (38)

';[’gg: -

whereK=(p§+ p%)/ZM is the kinetic energy of the atoms, tial, the potential energy appearing in E§9) also includes
and the local optical potentials, or light shifts, are given bya correction due to interaction of the atoms with the
G=(r;)=d*-E[ (r))/hQ, Q being the Rabi frequendyi6].  squeezed vacuum. It might at first appear unexpected that
Particularly noteworthy in these equations is the coupling"éﬁﬂ,ampshould give a contribution to the potential. But as
between the statefe andqq via 75, This couplingis ~ follows from Eqs.(38), the coupling to the squeezed vacuum
possible because in contrast to the usual vacuum, it is pogesults in the exchange of populations between excited and
sible to simultaneously absorb two photons from, or emitground state manifolds of the atoms, which means that
two photons into, a squeezed vacuum. .%gfzjampplays the role of a parametric force. It was already
In the case of large detunings=w, — w, between the shown in Ref[25] that the dipole-dipole interaction contrib-
laser frequency and the Bohr frequency of the atomic transidtes to the effective potential
tion, the excited states remain weakly populated and it is
possible to adiabatically eliminate them. To lowest order in
the dipole-dipole interaction, the effective evolution of the
ground state wave functiothy, is then given by

2
Viad-eff= — ?(GIVddGz+ +G; VgdGy), (40)

only to second order in perturbation theory. In contrast, the
presence of a squeezed vacuum contributes to the effective

[
(G; Gy potential

- P P
'vz’gg__ﬁ

M + m) ’/’gg_ ¥iN(wo) l//gg_ i 9g

1
Yot O(572), (39 Via-et= 57 5 (75 tamp (41)

3 2
+ G2 G;) + W(-y/’/g,damgz

. at the same order as the optical fields.
where sy=(2/2)2/ (8% +{y:[N(wg) + 1]/2}?) is the satura-

tion parameter. However, in the regime of large detunings
considered hered>Q,v;N(wp) it is adequate to approxi-
mate this parameter by~ (2/25)%. The other components  |n this paper we have analyzed the impact of a squeezed
of the wave function of the two-atom system adiabaticallyyacuum on the dynamics of a two-atom system. Surprisingly
follow ¢4, according to the algebraic relations perhaps, we found that it does not modify the Hamiltonian
Yog=— (U8)GT hgg, thge=—(1I8)G3 thgg, and = part of the dipole-dipole interaction, due to a cancellation of
—(J//‘f?,angh 8) 44 In addition to the usual optical poten- the associated stimulated absorption and emission effects in

VI. SUMMARY AND CONCLUSION
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a way analogous to the case of a thermal bath at nonzetthe use of atoms trapped in the Lamb-Dicke regime and ir-

temperature. It does, however, modify the decay rate of theadiated by squeezed light from a beam of large numerical

atoms. In particular, for a squeezed vacuum obtained viaperture, or an alternative approach using ‘“one-

parametric amplification, this rate depends not just on tha&imensional” atoms in a high finesse cavity.

relative position of the atoms, as is normally the case, but

also on their center of mass. This results from the fact that ACKNOWLEDGMENTS

squeezing destroys the isotropy of space. Finally, we found . ) i
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vacuum-induced population exchange between the excited

and ground atomic states. This exchange is possible since, in APPENDIX A: DERIVATION

contrast to the situation of a thermal reservoir, it is now OF THE MASTER EQUATION

possible to simultaneously exchange two excitations between FOR ATOMS IRRADIATED BY SQUEEZED VACUUM

the atoms and the reservoir. It is interesting to note that this

effect already appears to first order in perturbation theory

while the dipole-dipole interaction contributes to the effec-

tive potential only to second order in perturbation theory.
An experimental verification of the effects predicted in . .

this paper requires one to achieve conditions similar to those I'jq(1) =2 T'jqs= > Zo(K)[€,(K)- €4]ase’ Mgl (wom )t

needed to demonstrate the modification of single-atom radia- s s (A1)

tive processes in squeezed light, with the additional difficulty

that ideally, one would like to be able to keep the separatiopermits one to express the interaction between the atoms and

between the atoms under control. The major difficulty, boththe field modes as

for single- and two-atom experiments, seems to be associated

with the need to achieve a situation where the coupling of the

atoms to the squeezed bath dominates over the coupling to

ordinary vacuum. This requires that “mode matching” be

achieved between the squeezed vacuum and the radiatidm taking the trace Tz over the bath, we have to take into

pattern of the atoms. In free space, this implies that aaccount that it is in a squeezed state, so that in addition to

squeezed vacuum must be achieved over a large fraction ofebrrelations of the typéFIqFZq,), which are already non-

7 steradians. Kimble and co-workef&6] have proposed zero for a thermal bath, the following nonzero correlation

several approaches toward this goal, involving, for instancefunctions must also be considered:

This appendix gives details of the derivation of the master
equation(14), mostly emphasizing terms due to atom inter-
action with squeezed vacuum. Introducing the field operators

Tag=2 (D -€g)Tjq+H.cC. (A2)
19

(T1q(OT2q (1) = 2 (T1qsT2q's))
$1,S2

3y; ¢ &V ff o o

A A : : :
X (@s,8s,)r Zq,q' (K1, kp)€2K17k2) Telkatka) Rel(clamwoltgllelemwo)T,

Taking into account Eqg7) and(8) yields then, in the case of parametric amplification,

(P1q(D 2/ (7)) = 2 [(T1q5, T 2q7s,)€ 0" 0D 4(T' 1o Topgrs Yo (907715, L, 5(200— cky—Ckp) 8(k1— ko)

3‘)/f 1

=—— —f doo’Vw(2we— 0)[M(w,20¢— w)e'(@o™ @7

- 3
4 (O]
wyg— WA

dQ(k A A ®Or
( )_‘@q',q/(zk,k)elTOk.reZI Oc k'R'

4

+ M(Zwo—w,w)efi(‘”ofw)(t”)]f

while for four-wave mixing we find
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<quF2qf>=§ [(T1qs,T 2q75,)€ 0™ D 4+(T g Tagrs ye 907718, 1 8(2w0— Cky—Cky) 8(Ky +Ky)

3
Syt fdww 0(20g— @)[M(©,20y— ©)e @ o)t

4 (l)o

—Wa

0
)g/q,—q’(k k)e'_'” ¢ kR,

+M(2wy— w,w)e”

Performing the integral over the time differeneén Eq. (10) then gives in the case of parametric amplification

t 3’)/f 1 i
L(Fszq,)dT:—Tw—SJ dwwz\/w(Zwo—w)‘I\/l(w,ZwO—w) Nwy—w)+ ;P wo—w)
[ 1 dQ(k wo— @~
+M(2wo— »,0) 5(w0—w)——P( ) UL _qr(k,— k)e2' Pk Rgi—g—kr
T \wy—w 47

A A . @0~
=——M (wo, q,_q,(k,k)eZ'Tk'R,

while for four-wave mixing we get
P01
Swg— w)+i —( )

t 3
J(rlqrzq,>d7: il fda)w Vo(2wy— )[M(w,Za)o—w)
0 T\ Wy~ W

5(w0—w)—i£( 1 )“fdﬂ( ) qq’(k k)éﬁAkr woc—w](.R

+M2wy— w,w)

wo— w 4
= ngl\/l (wg, a)o)f ,q,(IQ,—R)e@i”.
|
For both parametric amplification and four-wave mixing, the y_+=2j,(kr)(1—cog6,)e 2

principal parts cancel each other, which means that the cou-

pling of the atoms to a broadband squeezed vacuum does ngt the case of parametric amplification, the coefficients
lead to “frequency shifts,” i.e., there are no new contribu- Kqq are

tions to the Hamiltonian evolution of the atoms. The only

effect of squeezing is to modify the various rates of sponta- .

neous emission. Kag' =K_q'—q>

++=1]2(2kR)(1—cos fr)e 2R,
APPENDIX B: EXPLICIT EXPRESSIONS

FOR THE COEFFICIENTS koo=Jo(2kR) + % (3co6r—1)j,(2kR),
OF THE MASTER EQUATION

This appendix gives expressions for the coeffici¢h&— B 3 . “ig
(22) occurring in the two-atom master equation. The rates K*O—Kof——zﬁlz(ZkR)SmﬁR cosire 'R,
Yqq are given by

Ky =x_4=jo(2kR)— 7 (3c0$6r—1)j,(2kR),
Yag' = ')’;rqa
and in the case of four-wave mixing they are
Yir=7--=jo(kr)— 3 (3co$6,—1)j,(kr),

*
) . qu/:Kq,q,
Yo0=io(Kr)+ 3 (3cog6, —1)j,(kr),

Ki+=k-_=]o(kr)— (3co$6,—1)j,(kr),

0= Yo+ =—=].(kr)sing, cos9.e” %
Yoo Yor =5 plalknsing co koo=Jo(kr)+ £ (30086, — 1)]o(kr),
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In these expressionsr,@,,¢,) and R,6r,¢r) are the

K_o= Ko+ =—=](kr)sing, cosd,e ¢, spherical coordinates of the relative and center-of-mass po-
V2 sition, respectively, expressed with respect to the quantiza-
. 2ig tion coordinate system, and the functigngr) are spherical
Ki-=7]ja(kr)(1—-cogg)e #%. Bessel functions of the first kind.
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