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We study the near-resonant dipole-dipole interaction between two atoms in a broadband squeezed vacuum.
We show that this ‘‘vacuum’’ modifies the rate of spontaneous emission of the atoms so that it may depend not
merely on their relative position, as is normally the case, but also on their center-of-mass position. The explicit
form of this latter dependence is a function of the way squeezing is achieved. We also show that in contrast to
the spontaneous decay rate, squeezed vacua do not modify the dipole-dipole potential between the atoms as
compared to its usual form. Finally, we develop a Monte Carlo wave-function description of the interaction
between atoms with an arbitrary internal structure and a squeezed vacuum and apply this formalism to the case
of off-resonant excitation of the atoms. We find that in addition to the usual light shift, the squeezed vacuum
results in an additional contribution to the effective potential governing the evolution of the atomic ground
states.

PACS number~s!: 42.50.Dv, 42.50.Fx, 34.20.2b

I. INTRODUCTION

It is now well established that a number of radiative prop-
erties of atoms can be modified by tailoring the electromag-
netic environment with which the atoms interact. In particu-
lar the rate, or even the character, of spontaneous emission
can be modified by changing the density of electromagnetic
modes coupled to the atom. A related situation occurs if an
atom interacts with a squeezed vacuum, in which case the
usual single decay rate 1/T2 of the atomic polarization ceases
to give a correct description of atomic relaxation, and must
be replaced by two decay rates@1#.

In this paper we extend these results to the study of two-
body interactions between atoms. Since two-body interac-
tions are mediated by the electromagnetic field, it should be
expected that a tailored electromagnetic vacuum can have
significant consequences there too. A trivial example of how
this can occur is the near-resonant dipole-dipole interaction
between excited and ground atoms in high-Q cavities. The
physical origin of this interaction is the reabsorption by one
of the atoms of a photon spontaneously emitted by the other
one, so that if spontaneous emission is inhibited, respectively
enhanced, the near-resonant dipole-dipole interaction will
clearly also be suppressed, respectively enhanced.

More interesting perhaps is the situation of a ‘‘squeezed
vacuum.’’ While the density of modes of the electromagnetic
field is not modified here, correlations are introduced be-
tween various modes at the expense of having a nonvanish-
ing mean photon number in the field. In this context we note
that the dipole-dipole interaction in a thermal reservoir at
nonzero temperature has been previously analyzed@2#. It was
found that the dipole-dipole interaction is not changed from
its zero-temperature expression, due to the exact balance be-
tween the effects of stimulated absorption and emission: the
dipole-dipole interaction is truly an effect of the electromag-
netic vacuum. We find that this result carries over to the case
of a squeezed vacuum. More surprising is that the quantum
correlations between field modes, while leading to significant
qualitative and quantitative changes in the cooperative emis-

sion rate of the atoms, do not change the dipole-dipole po-
tential.

There is a large amount of literature dealing with the in-
teraction between single atoms and squeezed vacua, includ-
ing the study of driven and nondriven two-level and multi-
level atoms, see e.g.,@1,3–7#. A few publications have also
addressed issues related to two atoms@8–11#. In most cases,
however, this work considers extensions of the Dicke model
where the atoms are assumed to be separated by much less
than an optical wavelength. A notable exception is the work
of Ficek @10#, who also considered the situation of large
interatomic separations. However, his emphasis was not so
much on the study of two-body collisions as on the creation
of correlated atomic states. We try in this paper to make
contact with Ficek’s results whenever possible.

Section II defines our model of the interaction between
two atoms, a classical light field and the free-space con-
tinuum of field modes of the quantized electromagnetic field.
Section III is the central section of this paper. It outlines the
derivation of the cooperative spontaneous emission rate of
the atoms and of the near-resonant dipole-dipole interaction.
They both result from the elimination of the continuum of
field modes in the Born-Markov approximation. We show
explicitly the dependence of the spontaneous emission rate
on the relative as well as on the center-of-mass coordinates
of the atoms. The physical origin of this double dependence
is discussed. We also show that the coupling of the atoms to
a squeezed vacuum does not change the form of the dipole-
dipole potential as compared to the usual situation. Section
IV then introduces a Monte Carlo wave-function formalism
for atoms in a squeezed bath. Section V applies these results
to the case of off-resonant excitation of the atoms, where the
excited electronic states can be adiabatically eliminated. We
show that in addition to the usual light shifts, the squeezed
vacuum results in an additional contribution to the effective
potential governing the evolution of the atomic ground
states. Finally Sec. VI is a summary and conclusion. Calcu-
lational details are relegated to two appendixes.
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II. PHYSICAL MODEL

Our model is an extension of the theory of the dipole-
dipole interaction to account for a squeezed vacuum pro-
duced either by four-wave mixing@12,13# or by parametric
amplification@14,15#. The atoms-field system is described by
the Hamiltonian

H5HS1HF1HA2F , ~1!

whereHS5HA1HA2L describes a system of two atoms
and their electric dipole coupling to some laser fields of fre-
quencyvL which form, e.g., an optical lattice.~The presence
of these classical fields is actually not necessary until Sec. V,
where they will be used to justify the adiabatic elimination of
the upper electronic levels of the atoms.! In a frame rotating
at frequencyvL , the Hamiltonian of the two-atom system
takes the form

HA5(
i51

2

HA,i5(
i51

2 F pi22M
1\~v02vL!Pe,i G , ~2!

wherepi is the center-of-mass momentum of thei th atom
andv0 denotes the Bohr frequency between the degenerate
ground and degenerate excited magnetic sublevels of the
Jg→Je atomic transition under consideration, the ground
state energy being taken equal to 0. The operatorsPe,i , and
Pg,i which will be introduced shortly, are projectors onto the
subspaces of the excited, respectively ground electronic
atomic states@16#,

Pe5 (
m52Je

Je

uem&^emu, ~3!

and similarly forPg . The electric dipole interaction between
the atoms and the laser fields may be expressed compactly as

HA2L5(
i51

2

HA2L,i52(
i51

2

@d1
•EL

1~r i !1d2
•EL

2~r i !#,

~4!

where r i is the center-of-mass position operator of thei th
atom,EL(r i)5EL

1(r i)e
2 ivLt1c.c. is the laser field at the po-

sition of that atom, and we have introduced the atomic rais-
ing operatord15PedPg , d being the atomic dipole mo-
ment. The last two terms in Eq.~1! describe the dipole
coupling of the atoms to the free-space continuum of modes
of the quantized electromagnetic field, with

HF5(
s

\vsas
†as ~5!

and

HA2F5(
i51

2

(
s
E0~k!@di

1
• ê l ~ k̂!#ase

ik•r i1H.c. ~6!

As usual, the mode indexs5$k,l % runs over both a con-
tinuum of wave vectors and two orthogonal polarizations
l 56 for eachk. We chose circular polarizations character-
ized by orthogonal vectorsê l ( k̂) in the plane perpendicular

to the direction of propagationk̂5k/k of modes. The anni-
hilation and creation operators satisfy the boson commuta-
tion relation@as ,as8

†
#5d(k2k8)d l ,l 8, E0(k)5A\ck/2e0V

is the ‘‘electric field per photon’’ of modes, andV is the
quantization volume.

III. DIPOLE-DIPOLE EFFECTS

If the continuum of modes of the electromagnetic field is
initially in the vacuum, then its elimination in the Born-
Markov approximation leads to several familiar effects. The
first, and best known of these, is single-atom spontaneous
emission, and a radiative shift that will be ignored in the
following. The presence of two atoms instead of one leads in
addition to the appearance of a two-body dipole-dipole inter-
action between excited and ground atoms and to a modula-
tion of the spontaneous emission rate@17–19#. Its physical
origin is the reabsorption by one atom of a photon spontane-
ously emitted by the other one, while the modulation of the
spontaneous emission rate is a quantum interference effect
which reduces to ‘‘Dicke superradiance’’ if both atoms are
within one optical wavelength.

The coupling of the atoms to a squeezed vacuum leads to
more complex dynamics, even for a single atom. In particu-
lar, it is no longer possible to describe the decay of the
atomic polarization by a single rate 1/T2 @1#. We consider
explicitly two concrete ways to achieve a squeezed vacuum,
near-degenerate four-wave mixing@12,13# and near-
degenerate parametric amplification@14,15#. While both
mechanisms lead to similar reservoir properties as far as fre-
quencies are considered, and hence lead to similar single-
atom dynamics, the pairs of correlated modes that are gener-
ated differ significantly with respect to their coordinate
dependence, with important consequences for two-body in-
teractions. Specifically, squeezing leads to the following
nonvanishing field correlation functions between modes of
the electromagnetic field@7#:

^as
†as8&5@N~v!/vv8#d~v2v8!d~ k̂2 k̂8!d l ,l 8, ~7!

^asas8&5@M ~v,v8!/v~2v02v!#d~2v02v2v8!

3d~ k̂6 k̂8!d l ,l 8, ~8!

with similar expressions for̂asas8
† & and ^as

†as8
† &. In these

expressions,N(v) are the mean photon numbers at fre-
quencyv5ck in the squeezed ‘‘vacuum,’’M (v,v8) is the
so-called squeezing parameter, and the frequency of the
pump beam~s! is taken to be equal to the atomic transition
frequencyv0 . The1 sign in the argument of thed function
in Eq. ~8! corresponds to four-wave mixing, and the2 sign
to parametric amplification. The squeezing parameter
M (v,v8) is related to the mean photon number per mode
N(v) by the inequality uM (v,v8)u2<N(v)N(v8)
1min„N(v),N(v8)…. In the case of ‘‘perfect squeezing’’
N(v)5N(v8) and uM (v,v8)u25N(v)@N(v)11# @20#.

The elimination of the electromagnetic field modes in the
Born-Markov approximation leads to an atomic master equa-
tion of the usual form
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ṙ52
i

\
@Hs ,r#1Lr, ~9!

where the Liouvillian

Lr52
1

\2E
0

t

dtTrF$HA2F~ t !HA2F~t!rA2F~t!

2HA2F~ t !rA2F~t!HA2F~t!

2HA2F~t!rA2F~t!HA2F~ t !

1rA2F~t!HA2F~t!HA2F~ t !% ~10!

results from the elimination of the field degrees of freedom.
As is now well established@17–19# in the case of two atoms
the contributionLr to the master equation~9! cannot be
interpreted as a simple damping term: it also includes a
Hamiltonian contributionVdd , which is the dipole-dipole
potential resulting from the reabsorption by one atom of a
photon spontaneously emitted by the other one.

In taking the partial trace TrF over the field variables, we
assume that the reservoir is in a squeezed vacuum. This leads
to the appearance of several new terms as compared to the
thermal equilibrium situation, due to the nonvanishing
second-order correlation functions involving pairs of annihi-
lation or creation operators, see Eq.~7!. Details of the deri-
vation of the master equation are given in Appendix A. An
important result is that the dipole-dipole potentialVdd is not
modified as compared to its value for a usual vacuum, or, for
that matter, of a thermal reservoir at nonzero temperature.
Specifically, one finds@18,19#

Vdd5
\g f

2 (
q,q850,6

aqq8~D1
1
• êq!~D2

2
• êq8!1H.c., ~11!

where the coefficientaqq8 is given explicitly by

aqq85
3

2pv0
3 PE dv

v3

v02vE dV~ k̂!

4p
Dq,q8~ k̂,k̂!eiv k̂•r /c,

~12!

and P stands for ‘‘principal part.’’ In this last expression,

Dq,q8~ k̂,k̂8!5 (
l 56

@ ê l ~ k̂!• êq#* @ ê l ~ k̂8!• êq8# ~13!

gives the usual dipole-dipole radiation pattern,êq ,q50,6
are unit vectors with respect to the quantization axis 0z, and
r5r12r2 is the relative coordinate of the two atoms.

The result that neither a thermal bath@2# nor a squeezed
vacuum modifies the dipole-dipole potentialVdd may appear
surprising at first, as its form is, after all, very ‘‘classical
looking.’’ One might therefore have expected that the stimu-
lated effects associated with a nonzero mean photon number
in a reservoir at finite temperature, or with nonvanishing cor-
relation functions between pairs of annihilation operators in
a squeezed vacuum, would lead to a modification ofVdd .
That thestimulatedabsorption and emission effects associ-
ated with these nonvanishing correlation functions compen-
sate each other exactly clearly demonstrates that despite its
classical-looking form, the dipole-dipole interaction is in-
deed truly a ‘‘vacuum effect,’’ intimately connected to spon-
taneous emission.

Turning now to the dissipative part of the master equation
~9!, we note that it includes several types of contributions.
The first ones are ‘‘single-atom’’ effects, and account both
for usual spontaneous emission as well as for its modifica-
tions due to the coupling of the atoms to a squeezed vacuum
@1#. In addition, dissipation includes two-atom effects whose
origin can be traced back both to ‘‘thermal’’ and to
‘‘squeezed’’ contributions. The ‘‘thermal’’ contributions ac-
count for the spatially modulated rate of spontaneous emis-
sion resulting from the interference between the two decay
channels of the atomic system, including the stimulated pro-
cesses associated with the nonvanishing mean photon num-
ber in a squeezed vacuum. Finally, the two-atom Liouvillian
includes a contribution proportional to the squeezing param-
eterM (v0 ,v0). Its form depends on the way the squeezed
vacuum has been produced. In particular, it exhibits an ex-
plicit dependence on the center-of-mass coordinate
R5(r11r2)/2 of the atomic system in the case of squeezing
via parametric amplification.

A lengthy calculation outlined in Appendix A yields for
the dissipative partLdr of the two-atom master equation

Ldr52
g f

2 (
j51,2

(
q50,6

$@N~v0!11#~Dj
1
• êq!~Dj

2
• ê2q!r1N~v0!~Dj

2
• ê2q!~Dj

1
• êq!r% ~14!

2
g f

2
M ~v0 ,v0! (

j51,2
(

q,q850,6

jqq8@~Dj
1
• êq!~Dj

1
• êq8!r1r~Dj

1
• êq!~Dj

1
• êq8!#

2
g f

2
@N~v0!11# (

q,q850,6

gqq8@~D1
1
• êq!~D2

2
• êq8!r1r~D1

1
• êq!~D2

2
• êq8!#

2
g f

2
N~v0! (

q,q850,6

gqq8@~D1
2
• êq!~D2

1
• êq8!r1r~D1

2
• êq!~D2

1
• êq8!#

2g fM ~v0 ,v0! (
q,q850,6

kqq8@~D1
1
• êq!~D2

1
• êq8!r1r~D1

1
• êq!~D2

1
• êq8!#
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1
3g f

2 (
j ,l 51,2

(
q,q856

E dV~ k̂!

4p
$@N~v0!11#Dq,q8~ k̂,k̂!~Dj

2
• ê2q!e

2 i
v0

c k̂•r jrei
v0

c k̂•r l ~Dl
1
• êq8!

1N~v0!Dq,2q8~ k̂,k̂!~Dj
1
• ê2q!e

i
v0

c k̂•r jre2 i
v0

c k̂•r l ~Dl
2
• êq8!

1M ~v0 ,v0!Dq,2q8~ k̂,6 k̂!~Dj
1
• êq!e

i
v0

c k̂•r jrei
v0

c k̂•r l ~Dl
1
• êq8!%1H.c.

The last contribution to this Liouvillian, proportional to a
solid angle integral, would usually be interpreted as a ‘‘fill-
up’’ term which describes how the atomic ground states are
populated via spontaneous emission. The terms including
products of raising and lowering operators can indeed be
interpreted in this way, the exponentials such as, e.g.,
exp(2iv0k̂•r j /c) describing the atomic recoil associated
with atomic decay. In addition to these familiar fill-up terms,
this integrand also includes additional terms containing prod-
ucts of two atomic raising or lowering operators. Their
physical origin is the absorption of two photons from, or
emission of two photons into, the squeezed vacuum, with the
associated atomic recoil. Such terms disappear for an elec-
tromagnetic reservoir in thermal equilibrium
@M (v0 ,v0)50#. While these two-atom and two-photon
emission or absorption terms can obviously not be inter-
preted as ‘‘fill-up’’ terms, we shall still loosely call the inte-
gral in the master equation~14! the fill-up part.

Turning now to the other contributions to Eq.~14!, we
observe that the first term, proportional to the spontaneous
emission rateg f5(1/3pe0)(d

2v0
3/\c3), describes single-atom

spontaneous emission, and in addition the stimulated emis-
sion and absorption processes associated with the presence of
a mean photon number^N(v0)& in the squeezed vacuum.
The second term, proportional to

jqq85
3

2E dV~ k̂!

4p
Dq,2q8~ k̂,k̂!e2i

v0

c k̂•R, ~15!

for the case where the squeezed vacuum results from para-
metric amplification, and to

jqq85dq,2q8 ~16!

in the case of near-degenerate four-wave mixing, describes
the modification of the single-atom spontaneous decay rate
due to the presence of a squeezed vacuum. The dependence
of jqq8 on the center-of-mass position of the atoms, in the
case of parametric amplification, has previously been noted
by Ficek@10#. It results from the fact that squeezing destroys
the isotropy of space, as can be seen by expressing the
squeezed vacuum correlation functions in coordinate space:
Due to the resonant nature of the atom-photon exchange, the
only pairs of modes which contribute to the atomic decay are

^asas8&5@M ~v0 ,v0!/vv0#d~v2v0!d~ k̂6 k̂8!d l ,l 8,
~17!

where6 corresponds to parametric amplification and four-
wave mixing, respectively. In coordinate space this correla-
tion function becomes

^al ,r1al 8,r2&[E dkdk8^asas8&e
2 ik•r1e2 ik8•r2

5M ~v0 ,v0!E dV~ k̂!e2 i
v0

c k̂•~r16r2!d l ,l 8.

~18!

In the case of counterpropagating modes~four-wave mix-
ing!, it exhibits a dependence on the relative coordinater ,

^al ,r1al 8,r2&5M ~v0 ,v0!E dV~ k̂!e2 i
v0

c k̂•rd l ,l 8,

~19!

while in the case of copropagating modes~parametric ampli-
fication! it depends on the center-of-mass coordinateR,

^al ,r1al 8,r2&5M ~v0 ,v0!E dV~ k̂!e22i
v0

c k̂•Rd l ,l 8,

~20!

which demonstrates how squeezing destroys the isotropy of
space.

The next two terms in Eq.~14!, proportional togqq8,
describe the spatial modulation of the atomic decay rates due
to the presence of a second atom, and depend on their rela-
tive positionr , as expected. Here

gqq85
3

2E dV~ k̂!

4p
Dq,q8~ k̂,k̂!ei

v0

c k̂•r. ~21!

The explicit forms of these coefficients are given in Appen-
dix B. In the absence of squeezing or for a reservoir at zero
temperature, we haveN(v0)50 and we recover the modu-
lated spontaneous decay discussed, e.g., in Refs.@18,19,21#.

Finally, the ‘‘squeezed’’ contribution to the collective de-
cay of the two-atom system is proportional tokqq8, whose
form depends on the way squeezing has been achieved. For
parametric amplification we havekqq85jqq8, and hence a
dependence of the decay on the center-of-mass position of
the atomic system, while for near-degenerate four-wave mix-
ing we have

kqq85
3

2E dV~ k̂!

4p
Dq,2q8~ k̂,2 k̂!ei

v0

c k̂•r, ~22!

and hence a dependence on the relative position of the atoms.
The explicit forms of these coefficients are also given in
Appendix B.
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We find, then, that in contrast to the dipole-dipole poten-
tial, the dissipative part of the two-atom Liouvillian depends
sensitively on the spatial characteristics of the reservoir cor-
relations. For a squeezed vacuum achieved via parametric
amplification, the atomic decay depends both on the relative
and center-of-mass positions of atoms, while in the case of
four-wave mixing it depends only on the relative position of
atoms, as in the case of a thermal bath.

IV. MONTE CARLO WAVE-FUNCTION APPROACH

The two-atom master equation derived in the preceding
section is rather combersome to handle, in particular numeri-
cally, since a two-atom description leads to substantial com-
puter memory requirements. It has recently been demon-
strated that in case the master equation of a given problem is
of the Lindblad form, it is possible to replace it by an equiva-
lent formalism relying on an effective non-Hermitian Hamil-
tonian and Monte Carlo wave-function~MCWF! simulations
@22–24#. For example, Ref.@22# explicitly developed such a
formalism for the situation of a two-level atom in a squeezed
reservoir. The goal of this section is to extend these ideas to
the problem at hand, that is, to a system of two multilevel
atoms with arbitrary internal structure and coupled to a
squeezed vacuum, by introducing operators allowing expres-
sion of the master equation~14! in the Lindblad form

Ldr52
1

2(m ~Cm
†Cmr1rCm

†Cm!1(
m

CmrCm
† .

~23!

We proceed by first introducing the operators

Cl
~1!~ k̂!5 (

q56
@ ê l ~ k̂!• êq#@e

2 i k̂•r1~D1
2
• êq!

1e2 i k̂•r2~D2
2
• êq!# ~24!

and

Cl
~2!~ k̂!5@Cl

~1!~ k̂!#†, ~25!

which permit reexpression of the master equation~14! as

Ldr5
1

2 (
i , j51

2

b i j (
l 56

E dV~ k̂!

4p
@2Cl

~ i !~ k̂1!rCl
~ j !~ k̂2!

†

2Cl
~ j !~ k̂2!

†Cl
~ i !~ k̂1!r2rCl

~ j !~ k̂2!
†Cl

~ i !~ k̂1!#

3d~ k̂16 k̂2!, ~26!

where the6 in the argument of thed function corresponds
to a preparation of the squeezed vacuum via parametric am-
plification and four-wave mixing, respectively. The coeffi-
cientsb i j can be thought of as elements of the (232) matrix

b5
3g f

2 S N~v0!11 2M* ~v0 ,v0!

2M ~v0 ,v0! N~v0!
D . ~27!

Equation~26! has the same form as Eq.~22! of Ref. @22#,
except that the physical interpretation of the operators in-

volved is of course different. Nonetheless, it can be diago-
nalized in the same way, leading to

Lr5
1

2 (
i51

2

(
l 56

E dV~ k̂!

4p
@2Al

~ i !~ k̂1!rAl
~ i !~ k̂2!

†2Al
~ i !( k̂2!

†

3Al
~ i !~ k̂1!r2rAl

~ i !~ k̂2!
†Al

~ i !~ k̂1!]d~ k̂16 k̂2!, ~28!

where the operatorsAl
( i )( k̂) are given by

Al
~ i !~ k̂!5Al i(

j51

2

Cl
~ j !~ k̂!Uji . ~29!

Here l1,253g f@2N(v0)116A114uM (v0 ,v0)u2#/4, and
the coefficientsUji are the elements of the unitary matrix

U5S cos~u/2!e2 if/2 2sin~u/2!e2 if/2

sin~u/2!eif/2 cos~u/2!eif/2
D , ~30!

with tanu52uM (v0 ,v0)u and M (v0 ,v0)
5uM (v0 ,v0)uei (f1p). For two-level atoms coupled to a
perfectly squeezed vacuum andR5r50 ~Dicke model!,
the master equation~28! reduces to the results of Agarwal
and Puri @8#. @Note that in that case,l250 and hence
Al
(2)( k̂)50.#
The effective non-Hermitian Hamiltonian describing two

atoms coupled to a squeezed vacuum is therefore

Heff5Hs1Vdd1Hdamp, ~31!

where the non-Hermitian Hamiltonian describing the atomic
damping

Hdamp5
i\

2 (
i51

2

(
l 56

E dV~ k̂!

4p
Al

~ i !~ k̂2!
†Al

~ i !~ k̂1!d~ k̂16 k̂2!

~32!

can be expressed as the sum of a single-atom contribution

H1,damp5
i\g f

2 (
i51,2

(
q50,6

~D̂i
1
• êq!~D̂i

2
• êq* ! ~33!

and a two-body componentH2,damp5H2,damp
(t) 1H2,damp

(s)

with

H2,damp
~ t ! 5

i\g f

2
@2N~v0!11# (

q,q850,6

gqq8@~D1
1
• êq!

3~D2
2
• êq8!1~D1

2
• êq!~D2

1
• êq8!# ~34!

giving the ‘‘thermal’’ contributions and

H2,damp
~s! 5 i\g fM ~v0 ,v0!

3S (
q,q850,6

kqq8~D1
1
• êq!~D2

1
• êq8!1H.c.D

~35!

giving the ‘‘squeezing’’ contributions. We observe that in
contrast to the two-atom part,H1,damp does not contain a
‘‘squeezing’’ contribution, due to the fact that
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Di
1
•Di

15Di
2
•Di

250. Single-atom ‘‘squeezing’’ contribu-
tions appear only in the fill-up term of the master equation
~14!, as previously discussed.

V. LOW INTENSITY REGIME

The impact of a squeezed vacuum on the modulation of
the decay rate is particularly transparent for atoms interacting
with a low intensity near-resonant external laser field such
that the subspace of excited states remains almost unpopu-
lated. In this case, it is possible to adiabatically eliminate the
excited states manifold. Similarly to the approach of Ref.
@25#, we decompose the atomic state vectoruc(t)& as

uc~ t !&5Pe,1Pe,2uc~ t !&1Pe,1Pg,2uc~ t !&1Pg,1Pe,2uc~ t !&

1Pg,1Pg,2uc~ t !&

[cee1ceg1cge1cgg , ~36!

where the projectorsPe,i andPg,i , i51,2 are given by Eq.
~3!. Substituting this expression into the Schro¨dinger equa-
tion

i\
duc&
dt

5Heffuc& ~37!

then yields the coupled differential equations

ċee5F2
iK

\
12S id2

g f

2
@N~v0!11# D Gcee1

iV

2
@G1~r1!cge1G1~r2!ceg#1

i

\
H2,damp

~s! cgg ,

ċeg5F2
iK

\
1S id2

g f

2
@N~v0!11# D Gceg1

iV

2
@G1~r1!cgg1G2~r2!cee#1

i

\
~Vdd1H2,damp

~ t ! !cge ,

ċge5F2
iK

\
1S id2

g f

2
@N~v0!11# D Gcge1

iV

2
@G2~r1!cee1G1~r2!cgg#1

i

\
~Vdd1H2,damp

~ t ! !ceg ,

ċgg52F iK\ 1
g f

2
N~v0!Gcgg1

iV

2
@G2~r1!ceg1G2~r2!cge#1

i

\
H2,damp

~s! cee, ~38!

whereK5(p1
21p2

2)/2M is the kinetic energy of the atoms,
and the local optical potentials, or light shifts, are given by
G6(r i)5d6

•EL
6(r i)/\V, V being the Rabi frequency@16#.

Particularly noteworthy in these equations is the coupling
between the statesceeandcgg viaH2,damp

(s) . This coupling is
possible because in contrast to the usual vacuum, it is pos-
sible to simultaneously absorb two photons from, or emit
two photons into, a squeezed vacuum.

In the case of large detuningsd5vL2v0 between the
laser frequency and the Bohr frequency of the atomic transi-
tion, the excited states remain weakly populated and it is
possible to adiabatically eliminate them. To lowest order in
the dipole-dipole interaction, the effective evolution of the
ground state wave functioncgg is then given by

ċgg52
i

\ S p1
2

2M
1

p2
2

2M Dcgg2g fN~v0!cgg2 ids0F ~G1
2G1

1

1G2
2G2

1!1
2

\2V2 ~H2,damp
s !2Gcgg1O~d22!, ~39!

where s05(V/2)2/„d21$g f@N(v0)11#/2%2… is the satura-
tion parameter. However, in the regime of large detunings
considered here,d@V,g fN(v0) it is adequate to approxi-
mate this parameter bys0;(V/2d)2. The other components
of the wave function of the two-atom system adiabatically
follow cgg according to the algebraic relations
ceg52(1/d)G1

1cgg , cge52(1/d)G2
1cgg , and cee5

2(H2,damp
(s) /2\d)cgg . In addition to the usual optical poten-

tial, the potential energy appearing in Eq.~39! also includes
a correction due to interaction of the atoms with the
squeezed vacuum. It might at first appear unexpected that
H2,damp

(s) should give a contribution to the potential. But as
follows from Eqs.~38!, the coupling to the squeezed vacuum
results in the exchange of populations between excited and
ground state manifolds of the atoms, which means that
H2,damp

(s) plays the role of a parametric force. It was already
shown in Ref.@25# that the dipole-dipole interaction contrib-
utes to the effective potential

Vdd2eff52
V2

d2
~G1

2VddG2
11G2

2VddG1
1!, ~40!

only to second order in perturbation theory. In contrast, the
presence of a squeezed vacuum contributes to the effective
potential

Vdd2eff
q 5

1

2\d
~H2,damp

~s! !2 ~41!

at the same order as the optical fields.

VI. SUMMARY AND CONCLUSION

In this paper we have analyzed the impact of a squeezed
vacuum on the dynamics of a two-atom system. Surprisingly
perhaps, we found that it does not modify the Hamiltonian
part of the dipole-dipole interaction, due to a cancellation of
the associated stimulated absorption and emission effects in
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a way analogous to the case of a thermal bath at nonzero
temperature. It does, however, modify the decay rate of the
atoms. In particular, for a squeezed vacuum obtained via
parametric amplification, this rate depends not just on the
relative position of the atoms, as is normally the case, but
also on their center of mass. This results from the fact that
squeezing destroys the isotropy of space. Finally, we found
that in case the excited electronic states of the atoms can be
adiabatically eliminated, the effects of a squeezed vacuum
appear already in lowest order in perturbation theory, in the
form of an effective potential resulting from the squeezed-
vacuum-induced population exchange between the excited
and ground atomic states. This exchange is possible since, in
contrast to the situation of a thermal reservoir, it is now
possible to simultaneously exchange two excitations between
the atoms and the reservoir. It is interesting to note that this
effect already appears to first order in perturbation theory,
while the dipole-dipole interaction contributes to the effec-
tive potential only to second order in perturbation theory.

An experimental verification of the effects predicted in
this paper requires one to achieve conditions similar to those
needed to demonstrate the modification of single-atom radia-
tive processes in squeezed light, with the additional difficulty
that ideally, one would like to be able to keep the separation
between the atoms under control. The major difficulty, both
for single- and two-atom experiments, seems to be associated
with the need to achieve a situation where the coupling of the
atoms to the squeezed bath dominates over the coupling to
ordinary vacuum. This requires that ‘‘mode matching’’ be
achieved between the squeezed vacuum and the radiation
pattern of the atoms. In free space, this implies that a
squeezed vacuum must be achieved over a large fraction of 4
p steradians. Kimble and co-workers@26# have proposed
several approaches toward this goal, involving, for instance,

the use of atoms trapped in the Lamb-Dicke regime and ir-
radiated by squeezed light from a beam of large numerical
aperture, or an alternative approach using ‘‘one-
dimensional’’ atoms in a high finesse cavity.
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APPENDIX A: DERIVATION
OF THE MASTER EQUATION

FOR ATOMS IRRADIATED BY SQUEEZED VACUUM

This appendix gives details of the derivation of the master
equation~14!, mostly emphasizing terms due to atom inter-
action with squeezed vacuum. Introducing the field operators

G jq~ t ![(
s

G jqs5(
s
E0~k!@ ê l ~ k̂!• êq#ase

i k̂•r jei ~v02v!t

~A1!

permits one to express the interaction between the atoms and
the field modes as

HA2F5(
jq

~Dj
1
• êq!G jq1H.c. ~A2!

In taking the trace TrF over the bath, we have to take into
account that it is in a squeezed state, so that in addition to
correlations of the typêG1q

† G2q8&, which are already non-
zero for a thermal bath, the following nonzero correlation
functions must also be considered:

^G1q~ t !G2q8~t!&5 (
s1 ,s2

^G1qs1
G2q8s2&

52
3g f

16p

c3

v0
3

e0V

2p\ (
l ,l 856

E E dk1dk2E0~k1!E0~k2!

3^as1as2& rDq,q8~ k̂1 ,k̂2!e
i
2~k12k2!•rei ~k11k2!•Rei ~ck12v0!tei ~ck22v0!t.

Taking into account Eqs.~7! and ~8! yields then, in the case of parametric amplification,

^G1q~ t !G2q8~t!&5(
s

@^G1qs1
G2q8s2&e

i ~v02v!~ t2t!1^G1qs2
G2q8s1&e

2 i ~v02v!~ t2t!#d l ,l 8d~2v02ck12ck2!d~ k̂12 k̂2!

52
3g f

4

1

v0
3E dvv2Av~2v02v!@M ~v,2v02v!ei ~v02v!~ t2t!

1M ~2v02v,v!e2 i ~v02v!~ t2t!#E dV~k!

4p
Dq,2q8~zk̂,k̂!ei

v0

c k̂•re2i
v02v

c k̂–R.

while for four-wave mixing we find
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^G1qG2q8&5(
s

@^G1qs1
G2q8s2&e

i ~v02v!~ t2t!1^G1qs2
G2q8s1&e

2 i ~v02v!~ t2t!#d l ,l 8d~2v02ck12ck2!d~ k̂11 k̂2!

52
3g f

4

1

v0
3E dvv2Av~2v02v!@M ~v,2v02v!ei ~v02v!~ t2t!

1M ~2v02v,v!e2 i ~v02v!~ t2t!#E dV~ k̂!

4p
Dq,2q8~ k̂,2 k̂!ei

v0

c k̂•re2i
v02v

c k̂•R.

Performing the integral over the time differencet in Eq. ~10! then gives in the case of parametric amplification

E
0

t

^G1qG2q8&dt52
3g f

4

1

v0
3E dvv2Av~2v02v!HM ~v,2v02v!Fd~v02v!1

i

p
PS 1

v02v D G
1M ~2v02v,v!Fd~v02v!2

i

p
PS 1

v02v D G J E dV~ k̂!

4p
Dq,2q8~k,2k!e2i

v0

c k̂•Rei
v02v

c k̂•r

52
3g f

2
M ~v0 ,v0!E dV~ k̂!

4p
Dq,2q8~ k̂,k̂!e2i

v0

c k̂•R,

while for four-wave mixing we get

E
0

t

^G1qG2q8&dt52
3g f

4

1

v0
3E dvv2Av~2v02v!HM ~v,2v02v!Fd~v02v!1 i

P

p S 1

v02v D G
1M ~2v02v,v!Fd~v02v!2 i

P

p S 1

v02v D G J E dV~ k̂!

4p
Dq,q8~ k̂,2 k̂!ei

v0

c k̂•re2i
v02v

c k̂•R

52
3g f

2
M ~v0 ,v0!E dV~ k̂!

4p
Dq,q8~ k̂,2 k̂!ei

v0

c k̂•r.

For both parametric amplification and four-wave mixing, the
principal parts cancel each other, which means that the cou-
pling of the atoms to a broadband squeezed vacuum does not
lead to ‘‘frequency shifts,’’ i.e., there are no new contribu-
tions to the Hamiltonian evolution of the atoms. The only
effect of squeezing is to modify the various rates of sponta-
neous emission.

APPENDIX B: EXPLICIT EXPRESSIONS
FOR THE COEFFICIENTS

OF THE MASTER EQUATION

This appendix gives expressions for the coefficients~15!–
~22! occurring in the two-atom master equation. The rates
gqq8 are given by

gqq85gq8q
* ,

g115g225 j 0~kr !2 1
4 ~3cos2u r21! j 2~kr !,

g005 j 0~kr !1 1
2 ~3cos2u r21! j 2~kr !,

g205g015
3

2A2
j 2~kr !sinu r cosu re

2 ifr,

g215 3
4 j 2~kr !~12cos2u r !e

22ifr.

In the case of parametric amplification, the coefficients
kqq8 are

kqq85k2q82q
* ,

k115 3
4 j 2~2kR!~12cos2uR!e22ifR,

k005 j 0~2kR!1 1
2 ~3cos2uR21! j 2~2kR!,

k205k025
3

2A2
j 2~2kR!sinuR cosuRe

2 ifR,

k125k215 j 0~2kR!2 1
4 ~3cos2uR21! j 2~2kR!,

and in the case of four-wave mixing they are

kqq85kq8q
* ,

k115k225 j 0~kr !2 1
4 ~3cos2u r21! j 2~kr !,

k005 j 0~kr !1 1
2 ~3cos2u r21! j 2~kr !,
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k205k015
3

2A2
j 2~kr !sinu r cosu re

2 ifr,

k125 3
4 j 2~kr !~12cos2u r !e

22ifr.

In these expressions (r ,u r ,f r) and (R,uR ,fR) are the
spherical coordinates of the relative and center-of-mass po-
sition, respectively, expressed with respect to the quantiza-
tion coordinate system, and the functionsj i(kr) are spherical
Bessel functions of the first kind.
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