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An explicit relationship between the Lorenz-Mie resonances and nonlinear optics of a microsphere has been
found. We have constructed an approximate analytic method which allows an adequate assessment of the
threshold for stimulated Raman scattering in microspheres. Systematic investigation of the characteristic equa-
tion, using approximate analytic expressions, reveals that not all modes have the same quality. Some reso-
nances with very high quality correspond to a physical situation in which the spherical waves can be envi-
sioned as whispering-gallery light waves that are totally internally reflected by the sphere boundary, without
suffering almost any loss.

PACS number~s!: 42.50.Dv

I. INTRODUCTION

A dielectric microsphere possesses natural modes of light
oscillation at characteristic frequencies corresponding to spe-
cific size to wavelength ratios. These structure resonances,
sometimes called ‘‘morphology dependent resonances,’’ are
known to cause extremely large field intensities within the
spherical cavity, very narrow modes, high density of electro-
magnetic~EM! modes, and hence have extremely large theo-
retical quality factorsQ'1020 @1,2#. These characteristics
impart very low threshold conditions for nonlinear processes
@3#. Transparent microspheres act as high-Q resonators with
the feedback provided by the whispering light waves.

A variety of interesting nonlinear phenomena in micro-
droplets have been reported: Cavity QED effects@4#, spon-
taneous emission from droplets showing intense spectral
peaks superimposed on the normal bulk emission@5# as well
as modified fluorescence lifetimes@6#, enhanced lasing@7#,
and Raman gains@8# . Third order nonlinear optical effects,
normally seen in bulk liquids only under intense nanosecond
pulse excitation, were reported to be observed at low power
cw excitation in microdroplets@9,10#. Theoretical work on
stimulated Brillouin scattering has also been reported
@11,12#. This extremely low threshold can be attributed to
interacting waves simultaneously resonant with high-Q drop-
let modes and to the presence of significant QED enhance-
ment of nonlinear gain.

Sharp resonances have been studied both analytically and
numerically in a number of publications@3,13#. However,
most of the publications, as rigorous as they are, deal with
calculations of passive resonances and have been too quali-
tative with regard to nonlinear optics. Moreover, as we shall
see, there are more limitations on threshold enhancement
than just the narrowness of the resonances. Because of that
we try here to clarify the relationship between the passive
resonances and nonlinear optics. We suggest a set of theo-
retical approximations that allow one to simply and reliably
evaluate the threshold condition for nonlinear phenomena.
At the same time, the theory presented is quite general.
Though our theory is quite general, we illustrate it only on
stimulated Raman scattering~SRS!.

We start from some basics of Lorenz-Mie theory. The
sphere can be treated as a body bounded by a closed surface
within which a system of standing waves can be set up. The

electric and magnetic fields inside a homogeneous, isotropic,
and source-free dielectric microsphere of radiusa are repre-
sented in terms of vector spherical harmonic wave functions.
For a plane wave excitation, linearly polarized in thex di-
rection and propagating along thez axis, the expression for
the electric field takes the form

E~r ,t !5e2 ivt(
n51
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whereM andN are the vector spherical harmonic functions
of the first kind@14#. cn represents the internal field expan-
sion coefficients~we discuss here only TE modes!. Imposing
the relevant boundary conditions yields the following expres-
sion of the internal electric field expansion coefficients:
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Herem stands for the relative refractive index,r is the
size parameter defined byr5k2a, where k2 is the wave
number in the surrounding medium, and the derivatives are
with respect to the function argument.j n(r) andhn

(1)(r) are
the spherical Bessel function and spherical Hankel functions
of the first and third kind, respectively. Amplitude enhance-
ment factors correspond to the roots of the characteristic
equation. These are just the roots of the denominator in Eq.
~2!, i.e., when the following transcendental equation is
obeyed:
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Equation~3! contains all the necessary physical informa-
tion regarding the position, width, spacing, and strength of
the resonances. The characteristic equation is solved by a set
of discrete roots labeledrn,s that correspond to the number
s solution for a given principal mode numbern. These roots
~size parameter! are complex, and define eigenfrequencies of
virtual modes which represent radiative solutions of the
Maxwell equations. The modes are termed virtual since their
size parameter is a complex number. The real and imaginary
parts of the size parameter define resonance positions and
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width, respectively, and hence dictate the radiative lifetime
of the mode. Natural resonant frequencies associated with
the modes are given by@14#
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«
, ~4!

where« is the dielectric constant of the surrounding medium
ands represents its conductivity. We have assumed a non-
magnetic medium (m51). Complex roots,rn,s , of the char-
acteristic equation account for the leakage losses, which may
be present even if the material conductivitys is zero. The
reason for this behavior is that the characteristic equation is
explicitly complex even if the relative index of refraction is
purely real, thus the size parametersrn,s are also complex.
They actually represent the evanescentlike waves. For actual
frequency excitation, thecn coefficient cannot have an infi-
nite amplitude. However, a sharp finite amplitude is possible.
Resonances occur when the real size parameter approaches
the complex roots of the characteristic equation.

There are mainly two mechanisms responsible for energy
losses inside the spherical cavity.

~1! Ohmic losses by heating of the medium. These are
represented explicitly by the conductivity terms.

~2! Inherent energy leakage~the field escaping outside the
sphere via the evanescent waves!. This mechanism is repre-
sented mathematically by the imaginary part of the size pa-
rameter. It is the mechanism responsible for the very high
quality of some cavity modes, since once matter is present
we almost cannot control the Ohmic losses.

As will be seen, the imaginary part of the eigenfrequency
depends on the indicesn and s. Under certain conditions,
which we discuss in detail in this article, the damping can be
made vanishingly small~the characteristic equation has al-
most pure real roots!. The reduction of the linewidth results
in the enhancement of the mode lifetime, hence investigation
of various nonlinear phenomena in microspheres will be es-
pecially interesting. The enhancement in the mode quality
corresponds to a physical situation, in which the spherical
standing wave behaves like a ray of light, which is totally
reflected by the internal surface of the sphere without suffer-
ing almost any losses~total internal reflection!. It is interest-
ing to note that microsphere resonances are narrow Lorentz-
ians to first approximation, and are in fact exponentially
narrower.

In the following section, we investigate the influence of
different asymptotic behaviors of the spherical Bessel func-
tions on the mode width.

II. ASYMPTOTIC BEHAVIOR OF SPHERICAL BESSEL
FUNCTIONS AND THE QUALITY OF MODES

In this section we examine the conditions under which the
linewidth, and hence the damping constant, of the spherical
wave become minimal. The required information is con-
tained in the characteristic equation which completely deter-
mines the frequencies and the width of the resonances. In
order to acquire the desired information we solve the char-
acteristic equation for the rootsrn,s . This characteristic
equation has no vector features and thus can be treated as a
purely scalar problem. Since this equation is transcendental,

one must either use a numerical approach or search for an
appropriate approximation for the Bessel functionsj n(kr)
and hn

1(kr). The numerical approach has already been un-
dertaken in many works~see, for example@3#!. Although
these solutions have quite a high precision and have been
developed for Bessel functions of high order, they unfortu-
nately do not contribute to the physical understanding of the
enhancement of the mode quality. Moreover, the numerical
approach does not provide analytic expressions for the
damping constants which are of crucial importance for the
quantitative assessment of the threshold parameters of vari-
ous nonlinear phenomena. We therefore consider the follow-
ing various approximations to the Bessel functions. A more
accurate treatment can be found in the work of Lam, Leung,
and Young@13#. Our approach, though much simpler, covers
all the meaningful asymptotic regions of the Bessel functions
not treated earlier by this group. What follows is then an
asymptotic treatment of spherical Bessel function. The Airy
functions approximation was found to be the most fruitful. It
reads@15#
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whereH1/3 is the cylindrical Hankel function of the first kind
and of order13, andn5n11/2 . The erroro(1/n) does not
exceed the value 24A2/n, and thus the approximation is ex-
pected to be better for large indicesn. The parameterw,
given byw5A(r/n)221, is the characteristic parameter of
the different regions. It is a measure of the deviation of the
argumentr from the pointr5n.

A. The trigonometric region „optical geometric limit…

Here we assume the parameterw to be much larger than
unity, which means that the argument of the Bessel functions
is much greater than its index~the trigonometric approxima-
tion @15#!. As a consequence we may write
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where
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p

2
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Here we have used the trigonometric approximation for the
Hankel function. Making these approximations, one easily
obtains for the spherical Hankel function

hn
~1!~r!'~2 i !~n11!

eir

r
. ~8!

If the argumentr for the outgoing external wave corresponds
to the trigonometric region, i.e., it obeys the conditions under
which the trigonometric approximation is valid, then the in-
ternal wave is even more so, because the argument of the
internal wave is multiplied bym.1. Substitution of the
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trigonometric approximation in the characteristic equation
~3! for both waves yields the following simple characteristic
equation:

i

m
cosg1sing50, ~9!

whereg is defined by

g5mr1
p

2
~n11!. ~10!

For a real index of refraction, we obtain for the resonance
positions and width, respectively,
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sp
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~n11!, ~11!
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m11
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Inspection of the last two expressions yields the following
conclusions.

~1! All the resonances have the same width.
~2! The distance between resonances is constant.
~3! These resonances are much wider than those observed

experimentally@16#.
To conclude this subsection we observe that the reso-

nances obtained by replacing Bessel functions by their trigo-
nometric approximation do not reflect the physical situation
observed in experiments, so we should discard them as
physically irrelevant. In fact these resonances ‘‘reside’’ far
away from the sphere surface.

B. Stationary phase region and refractive index
renormalization

In this region we assume the parameterw to be a number
of the order unity or less, but not too close to the point
r5n ~our approximation breaks down when the argument
r is in the neighborhood of the radiusn1/3 right to the point
r5n). If, in addition, we assume that the cylindrical Hankel
function can be replaced by its trigonometric approximation,
which is obviously justified, provided that the ordern is
large enough, we obtain the well known stationary phase
approximation to the spherical Bessel functions

hn
~1!~r!5

1

Arnw
expi Fn~w2arctanw!2

p

4 G , ~13!

or in a more familiar form, in terms of the angleb defined by
cosb5n/r,
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p
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We assume that the argument of the internal wave belongs to
the trigonometric approximation and substitute the corre-
sponding asymptotic expressions in the characteristic equa-
tion, ~3!. Doing so we obtain

1

m F S 1r 1
A8

A D1 if8Gcosg1sing50, ~15!

whereA(r) andf(r) are the amplitude and phase of the
stationary phase region. Let us compare Eq.~15! and its ana-
log Eq. ~9!. The term in parentheses, 1/r1A8/A'21/2n,
being a real quantity, describes a small correction~of order
n21) to the resonance position. The imaginary term de-
scribes the width of resonance. We remark here that we are
not interested in exact calculation of resonance positions, but
rather we wish to obtain an order of magnitude for the width
in different regions. Hence we would allow ourselves to ne-
glect the small real term with respect to the imaginary term
in Eq. ~15!. The width of the resonance in the stationary
phase region retains its form Eq.~12!, provided that the re-
fractive index was renormalized:

G5
1

mren
ln
mren11

mren21
, ~16!

where

mren5m/sinb. ~17!

The last expression indicates a broad margin for narrowing
the width, due to the presence of the factor 1/sinb in mren
(mren.m), sinceb can be a small number. Renormalization
of the refractive index indicates morphological focusing~the
sphere can be envisioned as a microlens! and thus it is ex-
pected to lead to a more pronounced self-focusing nonlinear
effect. Furthermore, in the stationary phase region the reso-
nance positions and widths are size parameter dependent,
which is a more realistic description of the resonances ob-
served experimentally. In addition, the width appears to de-
crease significantly compared to that obtained in the trigono-
metric region.

C. No oscillation region

The damping constant can still be drastically decreased.
Let r correspond to the region characterized by purely
imaginaryw parameter~the argument is smaller than the
index!. We call this region the ‘‘no oscillation region’’ be-
cause Bessel functions do oscillate there. Our main approxi-
mation formula~5! still holds, butw is purely imaginary, as
mentioned before. It is convenient to use here the real quan-
tity p defined asp52 iw. The spherical Bessel function in
the no oscillation region takes the form

hn
~1!~r!'2 i

1

Anrp
en~arctanhp2p!. ~18!

While deriving the last expression we have neglected a simi-
lar real term, but with an opposite exponential dependence.
Let us return now to the characteristic equation and substi-
tute Eq.~18! for the external wave. Since the argument of the
internal wave ismr, it will be reasonable to assume that it
will be adequately described by the stationary phase approxi-
mation. However, the characteristic equation obtained by do-
ing so turns out to predict resonance positions that system-
atically deviate from the exact positions calculated
numerically from the exact characteristic equation. Thus in
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order to improve the accuracy of our approximated charac-
teristic equation we have included a term of the order of
n21 in the expression for the stationary phase approximation,
as follows:

j n~y!5
1

Anw1y
S cosf11

sinf1

8nw1
D , ~19!

where

y5mr ~20!

and

w15Ay2

n2
21. ~21!

Substituting the last expression together with Eq.~18! in the
characteristic equation one obtains the result

sinf1S b
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The notable property of the last characteristic equation is that
it is purely real, and thus does not describe damping at all.
Physically, it means that the spherical mode does not expe-
rience any decay, unless we take into account active losses in
the medium. Certainly, it corresponds to a very high quality
of the cavity mode, which is restricted only by the conduc-
tivity of the dielectric sphere. In fact, the laser light under
such circumstances is trapped within the sphere. However,
the last equation was obtained after a series of approxima-
tions, during which the exact knowledge regarding the width
was lost. Nevertheless, there is nothing in the last statement
to undermine its importance. As we will see immediately,
this equation nicely predicts resonance positions. In order to
get a reliable expression for the linewidth we have followed
Lam et al. ~see@13#!, by going to the complexk plane and
seeking an approximate expression for the internal field ex-
pansion coefficient, suitable to the situation under consider-
ation, i.e., to the case where the external wave corresponds to
the no oscillation region, while the internal wave is described
in terms of the stationary phase approximation. The resulting
expression for the linewidth turns out to be very accurate and
reliable, provided that we know to calculate resonance posi-
tions accurately enough. For a TE resonance the expression
reads~in units of the size parameterr)

GTE5
2

~m221!x0
2yn

2~x0!
. ~24!

HereG is the width at half maximum,x0 is the real part of
the size parameter, andyn is the spherical Neumann func-
tion. The singularity in the last expression has a physical
significance. As the relative index of refraction approaches
unity the sphere ‘‘disappears’’ and thus resonances are not
expected, so thatG ought to go to infinity. Inspection of Eq.

~24! reveals that the linewidth is expected to be an exponen-
tially decreasing function of its ordern, as can be readily
seen by considering the asymptotic behavior of the spherical
Neumann function appearing in the denominator of Eq.~24!.

In conclusion, the resonances discussed in this subsection
are of a very high quality~small width! that might be almost
entirely determined by the finite conductivity of the sphere.
The reason for this behavior is that energy losses originating
in the geometry of the problem will become smaller as the
mode number increases, until eventually they would be ig-
norable relative to Ohmic losses. These modes are called
whispering modes and in fact their path degenerates into the
perimeter.

D. Comparison with numerical results

In this subsection we compare our predictions regarding
resonance positions and width based on numerical solution
of our approximated Eqs.~22! and~24!, with exact numerical
results. Exact resonance positions and width were calculated
by solving numerically the exact characteristic equation, Eq.
~3!. Only first order resonances were considered for principal
mode numbers ranging fromn540 ton590. Figure 1 shows
the logarithm of the exact width versus the principal mode
number, from which we see that the width isindeedan ex-
ponentially decreasing function of the mode number. Figures
2 and 3 compare resonance positions and linewidth, normal-
ized to the exact numerical values, obtained from our results
and those of Lamet al. ~see@13#!, as a function of the mode
number. The comparison yields the following.

~1! Relative errors are of the order of tenths of a percent,
for resonance positions, and of about 4% for the width.

~2! Linewidths calculated by substitution of exact numeri-
cal resonance positions in the approximated expression are in
good agreement with those calculated numerically. This sup-
ports the reliability of that expression. In other words, the
analytic expression for linewidth is an excellent approxima-
tion, provided that accurate resonance positions are substi-
tuted.

FIG. 1. Logarithm of width as a function of the principal mode
number. We can see exponentially decreasing width.
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~3! Relative errors decrease for large mode numbers, as
expected from the type of approximation we have used.

To conclude our numerical comparison, we can say with
confidence that our approximated characteristic equation and
the expression for the linewidth correctly predict resonance
positions and width, especially for waves with large angular
momentum. The apparent small advantage over the proce-
dure proposed by Lamet al. is expected to diminish with
increasing mode number. Our proposed procedure necessi-
tates the solution of a very simple characteristic equation and
can be used as a reliable and fast alternative to the exact
numerical solution, or at least as a fine starting point for
more accurate numerical computation, employing Newton’s
method. The investigation of mode quality in this section
covers all the meaningful regions of mode behavior, and thus
is more general than the work done to date.

III. STIMULATED RAMAN SCATTERING IN
MICROSPHERES

We discuss now stimulated Raman scattering from micro-
spheres, where our motivation is to get an analytic expres-

sion for the threshold intensity, required by this process. In
order to achieve this task we need to establish a connection
between the usual nonlinear SRS process and the micro-
sphere formalism. We shall see that under certain conditions
it is possible to get a substantial reduction of the threshold
condition. The reduction of the threshold intensity can be
attributed to the enhancement of the amplification constant,
due to the creation of large fields, with the necessary feed-
back provided by the whispering waves on one hand, and to
QED enhancement of nonlinear gain on the other hand@9#.
The effect of QED enhancement of nonlinear gain will not
be discussed here.

A. Laser-Stokes coupling equations

In stimulated Raman scattering two waves of high inten-
sity and of frequenciesv l ~referred to as the laser wave! and
vs ~referred to as the Stokes wave! are mixed together in the
medium to produce an induced polarization, which in turn
will act as a source for new coherent waves. The signal~at
vs) is enhanced ifvs5v l2V, whereV is the Raman active
resonance in the medium~atomic transition frequency!. For
the sake of simplicity we assume here that no phase match-
ing condition is obeyed, and hence no anti-Stokes waves and
higher terms are present. In addition we assume that the in-
put frequencies coincide with high-Q cavity modes. The cou-
pling between the waves is governed by a set of two coupled
wave equations~the coupling is brought by the nonlinear
polarization terms!
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whereEi are the fields inside the sphere,PNl
(3)(v i) are the

Fourier components of the third order nonlinear polarization,
ande i are the dielectric constants, at the corresponding fre-
quencies. The problem now is to express the polarization as
a function of the interacting waves, for the set of equations
~25! to be closed. We derive these expressions by consider-
ing a classic model for the stimulated Raman process, ad-
justed to the spherical geometry. This results in the expres-
sion

PNl
~3!~vs!56xR

~3!~vs!uAl u2As~es•el !el ,
~26!

PNl
~3!~v l !56xR

~3!~v l !uAsu2Al~el•es!es ,

wherexR
(3)(v i) is the third order nonlinear electric suscepti-

bility, ei(r ) are the spatial parts of the fields, which corre-
spond to a specific spherical mode, and the amplitudesAi are
slowly varying in time with respect to the optical oscillations
and are related to the fieldsEi through the relation

Ei5Ai~ t !e
2 iv i tei~r !, i5 l ,s. ~27!

FIG. 2. Approximate resonance locations, normalized to exact
values,rMie , as obtained by us~crosses! and Lamet al. ~circles!.
The index of refraction is 1.33.

FIG. 3. Approximate widths, normalized to exact values,
GMie , as obtained by us~diamonds! and Lamet al. ~triangles!. The
index of refraction is 1.33.
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A significant simplification of Eq.~25! can be obtained by
considering the representation~27!, taking into account that
the spatial part must obey the wave equation, i.e.,

“3“3ei~r !5ki
2ei~r !. ~28!

We make use of the slowly varying envelope approximation
~SVEA! u]2A/]t2u!vu]A/]tu, taking into account only the
equations for the real part of the amplitudes (Ãi). This re-
sults in the relations

dÃl
dt

1G l~Ãl2Ãl
SS!5b l uAsu2~Ãl2Ãl

SS!, ~29!
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with the definitions
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While deriving the last equations we have performed volume
average~denoted bŷ &) over the spatial part, and introduced
the steady state amplitudeÃl

SS. The damping constantG i is
decomposed into two parts, whereGabs accounts for the ab-
sorption part and the second term accounts for leakage losses
and should be calculated from the Lorenz-Mie theory.
G(r) is the width of the resonance in units of the dimension-
less size parameter andb j are the gain constants multiplied
by the volume average quantities. The quantitiesÃl

SS ~steady
state amplitude! and G i ~damping constants! will be deter-
mined from the Lorenz-Mie theory in the next section. The
set of Eqs.~29!, ~30! allows one to study the dynamics of
coupling between the laser wave~pump wave! and the
Stokes wave. This study is beyond the scope of the present
paper, where we only examine threshold conditions.

B. Threshold evaluation

Besides the damping constants there are other quantities
in the basic coupling equations~29!, ~30! which also origi-
nate in Lorenz-Mie theory. These quantities are the steady
state amplitudeÃl

SS and the volume averages, which will
participate in threshold evaluation, as we shall see immedi-
ately. The threshold condition follows from the stationary
solutions of~29!, ~30!, i.e.,

uAl
SSu2>

Gs

bs
, ~33!

which is just a mathematical statement saying that threshold
is achieved when the total gain~gain coefficient times the
intensity,bs3uAl

SSu2) exceeds losses (Gs). We evaluate the
threshold in the most interesting case, i.e., when the external
waves are represented by the ‘‘no oscillation region’’~i.e.,

their argument is such that it can be represented by the ‘‘no
oscillation approximation’’!, while the internal waves are
represented by the stationary phase approximation. In order
to evaluate the threshold, we should first establish a connec-
tion between the steady state amplitudeÃl

SS and the ampli-
tude of the external wave exciting the sphere,E0 . First let us
define the spherical functionsei(r ) as

ei~r !5 i n
2n11

n~n11!
M0,1,n

„1… ~34!

and represent the field in the same manner as in Eq.~27!, i.e.,

Ei5Ai~ t !e
2 iv i tei~r !. ~35!

Comparing the last two expressions with Eq.~1!, for the case
of single mode, TE type excitation, we arrive at the relation
between the Maxwell amplitudeE0 and the internal field
expansion coefficient, which readsAl5E0cn . Remembering
the resonant nature of the field expansion coefficient, we
arrive at the conclusion that the maximization of the coeffi-
cient corresponds to a resonant event and thus we can write,
for the steady state amplitude,Al

SS5E0max$cn%. The steady
state amplitude is calculated by substituting the relevant ap-
proximation for spherical Bessel functions, and maximizing
the expression. For our case the procedure is most simple,
once we have the approximate form~Lorenzian line shape!
of thecn coefficient. Thecn coefficient can be written near a
TE resonance as~see@13#!

cn5
yn~r0!

j n~r0!

GTE/2

~r2r0!1 iGTE/2
, ~36!

where j n(r0), yn(r0) are the spherical Bessel and Neumann
function, evaluated at resonance, respectively. At resonance
we may letr→r0 , obtaining for the steady state amplitude

Al
SS52E0e

2n~arctanhp0,l2p0,l !, ~37!

where the subscript 0 reminds us that the parameterp should
be evaluated at resonance positions only, and the subscript
l reminds us that the corresponding term originates in the
laser wave. In deriving Eq.~37! we have replaced the spheri-
cal Bessel function by its asymptotic approximation. In order
to evaluate the volume average quantities we need to solve
the relevant integral. The angular part can be found in many
textbooks@14#. For the evaluation of the spherical part see
Ref. @17#. Solving the integral we get for the volume average
of the amplitude squared~intensity!

^uel u2&5
3nl
2

m221

m2 j n
2~mr0,l !

. ~38!

Here nl is the number of the resonance of the laser wave.
Before getting to threshold evaluation, let us make some pre-
liminary remarks. In stimulated Brillouin scattering~SBS!,
there exists a limit on the frequency shiftV @12#. This can
possibly cause the scattered frequencyvs not to coincide
with a morphology dependent resonance and hence one deals
with a single resonance case. This limit does not exist in
stimulated Raman scattering. In addition, because of the
large width of the gain curve it is reasonable to expect that
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the scattered frequency will also coincide with a morphology
dependent resonance, thus having a double resonance situa-
tion ~both pump and Stokes waves coincide with high-Q
cavity modes!. Taking this into account and assigning addi-
tional indicesl and s, identifying the origin of the relevant
terms, we obtain after substitution of the expressions for the
steady state amplitude, and the volume average in Eq.~33!,
for the threshold condition

a l ,sE0
2>Fmcnsp0,se

22ns@arctanh~p0,s!2p0,s#

a~m221!2r0,s
G

3Fe24n l @arctanh~p0,l !2p0,l #

3nl j n
2~mr0,l !

G . ~39!

In obtaining the last expression we have neglected absorp-
tion losses relative to leakage losses. We also introduced a
new gain constant independent of the volume average, de-
fined by

b i5a i^ueku2&, iÞk. ~40!

The first term on the right-hand side in Eq.~39! represents
losses of the Stokes wave and lowers the threshold~due to
the exponentially decreasing function!, as the order of the
resonance increases and the losses decrease. The second term
on the right-hand side of Eq.~39! represents resonance of the
laser wave, and it is also expected to reduce the threshold.
Let us compare now the threshold intensity obtained for a
sphere with that obtained for a linear cavity. For a linear
cavity we may take the threshold condition to be given by

E0
2>

Gs

as,l
, ~41!

whereGs are the Stokes wave losses andas,l is the gain
constant. Neglecting absorption and diffraction losses and
taking into account only cavity end losses we have

Gs5
cT

mL
. ~42!

Herec, T, m, andL, are the speed of light, transmittance of
the mirrors, the index of refraction, and the cavity length,
respectively. Comparison between the last expression and
Eq. ~41! shows that we indeed get adrastic reductionof
threshold condition, due to the presence of exponentially de-
creasing factor. A more careful inspection of Eq.~41! shows
that, in fact, threshold intensity is an oscillating function of
the size parameter, due to the spherical Bessel function in the
denominator of Eq.~41!. This behavior is a consequence of
the resonant nature of the sphere. Linewidth would become
broadened on increasing the size parameter and thus the
threshold intensity would increase as a function of size pa-
rameter. The most interesting physical behavior is that the
energy losses of high order modes in microspheres become
smaller, in contrast with what happens in a linear cavity in
which losses increase for high order modes. Figure 4 shows
the threshold intensity in the microsphere compared to the
linear cavity case, where we have fixed the Stokes param-
eters to correspond to TE90,1 resonance and varied the laser

size parameter~wavelength!. We take the Stokes size param-
eter to ber0,s572.261, which corresponds to a wavelength
of ls5525 nm for a 6.12mm droplet~radius!. The index of
refraction ism51.33 ~water!. For the linear cavity we have
chosenL50.1 m, T50.01. We can see that there exists a
drastic reduction of threshold intensity, of about ten orders of
magnitude, near the pointr574.2. Note the different scales
of the two graphs. For lower order modes that are more
lossy, the reduction of threshold intensity can be less pro-
nounced and even worse than that of the linear cavity, but
the main point is that the microsphere, being a selective sys-
tem, will favor higher modes that are less lossy.

IV. CONCLUSION

We have constructed an approximate analytic approach
which allows an adequate assessment of a threshold for non-
linear interaction in microspheres. Systematic investigation
of the characteristic equation, using approximate analytic ex-
pressions, reveals that not all modes have the same quality.
In particular, modes characterized by external wave ‘‘obey-
ing’’ the ‘‘no oscillation’’ approximation, and internal waves
for which their argument corresponds to the stationary phase
approximation, are characterized by very high quality, and
correspond to a physical situation in which the spherical
wave can be envisioned as whispering-gallery light waves
that are totally internally reflected by the sphere boundary,
without suffering almost any loss. We have derived an ap-
proximate characteristic equation, transcendental in fact, but
which is very simple. It predicts correct resonance positions
and can be used as a very good alternative to the exact char-
acteristic equation. The resonance width was found to be an
exponentially decreasing function of the mode number~an-
gular momentum!. Threshold intensity evaluation in the most
interesting cases, of very high mode quality, has shown a
dramatic reduction, with respect to the same process in a
conventional linear cavity. Though our theory was exempli-
fied in the case of stimulated Raman scattering, it can easily
be applied to other nonlinear and quantum optics processes.

FIG. 4. Comparison of threshold intensity, as a function of size
parameter, between linear cavity~solid line! and the sphere. The
Stokes wave parameters were chosen to coincide with TE90,1 reso-
nance, with size parameterrs573.261, for a 6.1mm water droplet
(m51.33). L50.1 m,T50.01. Note the different scales here.
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