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Lowering of threshold conditions for nonlinear effects in a microsphere
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An explicit relationship between the Lorenz-Mie resonances and nonlinear optics of a microsphere has been
found. We have constructed an approximate analytic method which allows an adequate assessment of the
threshold for stimulated Raman scattering in microspheres. Systematic investigation of the characteristic equa-
tion, using approximate analytic expressions, reveals that not all modes have the same quality. Some reso-
nances with very high quality correspond to a physical situation in which the spherical waves can be envi-
sioned as whispering-gallery light waves that are totally internally reflected by the sphere boundary, without
suffering almost any loss.

PACS numbes): 42.50.Dv

I. INTRODUCTION electric and magnetic fields inside a homogeneous, isotropic,
and source-free dielectric microsphere of radiusre repre-
A dielectric microsphere possesses natural modes of ligtgented in terms of vector spherical harmonic wave functions.
oscillation at characteristic frequencies corresponding to sp=or a plane wave excitation, linearly polarized in theli-
cific size to wavelength ratios. These structure resonancefgction and propagating along tzeaxis, the expression for
sometimes called “morphology dependent resonances,” arthe electric field takes the form
known to cause extremely large field intensities within the -
spherical cavity, very narrow modes, high density of electro- E(r t)zefiwtz E.in 2n+1 (MY —id NY )
magnetic(EM) modes, and hence have extremely large theo- ' & 7% n(n+1)noln nveln’
retical quality factorsQ~10? [1,2]. These characteristics )
impart very low threshold conditions for nonlinear processes ) ] )
[3]. Transparent microspheres act as hi@esonators with whereM aanN are the vector spherlca! harmon_lc functions
the feedback provided by the whispering light waves. o_f the f|rsF l_<|nd[14]. C, represents the internal field expan-
A variety of interesting nonlinear phenomena in micro- Sion coefficientswe discuss here only TE modemposing
droplets have been reported: Cavity QED effdetl spon- the relevant_ boundary cor_1d|'§|ons yields t_he followlng expres-
taneous emission from droplets showing intense spectr&ion of the internal electric field expansion coefficients:
peaks superimposed on the normal bulk emis§idras well . 1 , 1 . ,
as modified fluorescence lifetimg§], enhanced lasing7], c— in(P)Lphy” ()]’ =i (p)pin(p)] @
and Raman gain8] . Third order nonlinear optical effects, " in(mp) [ phM(p) 1 —h Y (p) [ mpjn(mp)]’”
normally seen in bulk liquids only under intense nanosecond ) o )
pulse excitation, were reported to be observed at low power Herem stands for the relative refractive indepx,is the
cw excitation in microdroplet§9,10]. Theoretical work on ~Size parameter defined hy=k,a, wherek, is the wave
stimulated Brillouin scattering has also been reportediumber in the surrounding medium, and the derivatives are
[11,12. This extremely low threshold can be attributed toWith respect to the function argumen(p) andh{"(p) are
interacting waves simultaneously resonant with h@jrop-  the spherical Bessel function and spherical Hankel functions
let modes and to the presence of significant QED enhancef the first and third kind, respectively. Amplitude enhance-
ment of nonlinear gain. ment factors correspond to the roots of the characteristic
Sharp resonances have been studied both analytically afjuation. These are just the roots of the denominator in Eg.
numerically in a number of publicatior[8,13]. However, (2), i.e., when the following transcendental equation is
most of the publications, as rigorous as they are, deal witlpbeyed:
calculations of passive resonances and have been too quali- ] ) .
tative with regard to nonlinear optics. Moreover, as we shall [mpja(mp)]"  [phy"(p)]
see, there are more limitations on threshold enhancement inmp)  hB(p)
than just the narrowness of the resonances. Because of that
we try here to clarify the relationship between the passive Equation(3) contains all the necessary physical informa-
resonances and nonlinear optics. We suggest a set of thetien regarding the position, width, spacing, and strength of
retical approximations that allow one to simply and reliably the resonances. The characteristic equation is solved by a set
evaluate the threshold condition for nonlinear phenomenaof discrete roots labeled, s that correspond to the number
At the same time, the theory presented is quite generak solution for a given principal mode number These roots
Though our theory is quite general, we illustrate it only on(size parametgrare complex, and define eigenfrequencies of
stimulated Raman scatterif§RS. virtual modes which represent radiative solutions of the
We start from some basics of Lorenz-Mie theory. TheMaxwell equations. The modes are termed virtual since their
sphere can be treated as a body bounded by a closed surfegize parameter is a complex number. The real and imaginary
within which a system of standing waves can be set up. Thearts of the size parameter define resonance positions and

TE modes. 3)
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width, respectively, and hence dictate the radiative lifetimeone must either use a numerical approach or search for an
of the mode. Natural resonant frequencies associated withppropriate approximation for the Bessel functignskr)

the modes are given Hyl 4] and hi(kr). The numerical approach has already been un-
dertaken in many workgsee, for examplg3]). Although
1 sczpﬁS , , 2mCo these solutions have quite a high precision and have been
wns= NV gz ATl —, (4 developed for Bessel functions of high order, they unfortu-

nately do not contribute to the physical understanding of the
wheres is the dielectric constant of the surrounding mediumenhancement of the mode quality. Moreover, the numerical
and o represents its conductivity. We have assumed a non@PProach does not provide analytic expressions for the
magnetic mediumg=1). Complex rootsp, <, of the char- damping constants which are of crucial importance for the
acteristic equation account for the leakage losses, which mdguantitative assessment of the threshold parameters of vari-
be present even if the material conductivityis zero. The OUS nonlinear phenomena. We therefore consider the follow-
reason for this behavior is that the characteristic equation i¥'d various approximations to the Bessel functions. A more
explicitly complex even if the relative index of refraction is accurate treatment can be found in the work of Lam, Leung,
purely real, thus the size parameters, are also complex. and Yound13]. Our approach, though much simpler, covers
They actually represent the evanescentlike waves. For actudl! the meaningful asymptotic regions of the Bessel functions

frequency excitation, the, coefficient cannot have an infi- Nt treated earlier by this group. What follows is then an
nite amplitude. However, a sharp finite amplitude is possible2Symptotic treatment of spherical Bessel function. The Airy

Resonances occur when the real size parameter approacﬁHECtiO”S approximation was found to be the most fruitful. It
the complex roots of the characteristic equation. reads{15]

There are mainly two mechanisms responsible for energy w3
losses inside the spherical cavity. h(D = A /lwexp{i V<W_ Y arctaw ]+ T

(1) Ohmic losses by heating of the medium. These are " 6p 3 6
represented explicitly by the conductivity tefsm 3 1

(2) Inherent energy leakadéhe field escaping outside the X H<l}3>,<— +o|l -], (5)
sphere via the evanescent wavekhis mechanism is repre- 3

f:r;]]ggrmﬁt?semitl(;?gghgﬁighrﬁ L@ggg:]i%lgafgrogh?ijlzehra\?vhereH 131s the cylindrical Hankel function of the first kind
S . Sp very N9 g of order, andv=n+1/2 . The erroro(1/v) does not
quality of some cavity modes, since once matter is presen T
we almost cannot control the Ohmic losses. exceed the value 2/2/v, and th_us_the approximation is ex-
As will be seen, the imaginary part of the eigenfrequencyp,eCteOI to be better2 for Igrge indices Thg parametew,
depends on the indices and's. Under certain conditions, 9IVen byw=+(p/v)"~1, is the characteristic parameter of

which we discuss in detail in this article, the damping can pdhe different regions. It_ is a measure of the deviation of the
made vanishingly smallthe characteristic equation has al- &rgumentp from the pointp=v.

most pure real roojs The reduction of the linewidth results

in the enhancement of the mode lifetime, hence investigation ~ A. The trigonometric region (optical geometric limit)

of various nonlinear phenomena in microspheres will be es- Here we assume the parameteto be much larger than

pecially interesting. The enhancement in the mode quality,nity, which means that the argument of the Bessel functions

corresponds to a physical situation, in which the sphericalg much greater than its indéshe trigonometric approxima-
standing wave behaves like a ray of light, which is totally tjony [15]). As a consequence we may write
reflected by the internal surface of the sphere without suffer-

ing almost any lossedotal internal reflection It is interest- 2 T
ing to note that microsphere resonances are narrow Lorentz- H(l}e),(x)* \/ RGXF{i(X— e Z) } (6)
ians to first approximation, and are in fact exponentially
narrower. where
In the following section, we investigate the influence of
different asymptotic behaviors of the spherical Bessel func- ™
tions on the mode width. arctaw= = . @
Il. ASYMPTOTIC BEHAVIOR OF SPHERICAL BESSEL Here we hav_e used the trigonometric gpprqximation for the
FUNCTIONS AND THE QUALITY OF MODES Hankel function. Making these approximations, one easily

obtains for the spherical Hankel function

In this section we examine the conditions under which the ,
linewidth, and hence the damping constant, of the spherical (1)) N ir(n+1) e’
wave become minimal. The required information is con- ha (p)~(=1) ? (8)
tained in the characteristic equation which completely deter-
mines the frequencies and the width of the resonances. Iiithe argumenp for the outgoing external wave corresponds
order to acquire the desired information we solve the charto the trigonometric region, i.e., it obeys the conditions under
acteristic equation for the rootp,s. This characteristic ~which the trigonometric approximation is valid, then the in-
equation has no vector features and thus can be treated agesinal wave is even more so, because the argument of the
purely scalar problem. Since this equation is transcendentalhternal wave is multiplied bym>1. Substitution of the
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trigonometric approximation in the characteristic equation 1[(1 A"\ .
(3) for both waves yields the following simple characteristic ol 5T | Tid"|cosy+siny=0, (15)
equation: P

where A(p) and ¢(p) are the amplitude and phase of the
9) stationary phase region. Let us compare @§) and its ana-

log Eqg. (9). The term in parentheses,pt A’'/A~—1/2v,

being a real quantity, describes a small correctiohorder
wherey is defined by v~1) to the resonance position. The imaginary term de-
scribes the width of resonance. We remark here that we are
not interested in exact calculation of resonance positions, but
rather we wish to obtain an order of magnitude for the width
in different regions. Hence we would allow ourselves to ne-
For a real index of refraction, we obtain for the resonanceaylect the small real term with respect to the imaginary term
positions and width, respectively, in Eg. (15. The width of the resonance in the stationary
phase region retains its form E@L2), provided that the re-

[
— +siny=
cosy+siny=0,

y=mp+g(n+1). (10

st fractive index was renormalized:
Re(pns) = T 55N+ 1), (13)
1 met1
r= In , (16)
1 m+1 Mren Mren— 1
'=—=2Im(pys)= —In—— (12 where
Inspectipn of the last two expressions yields the following Myen=M/SINB. (17
conclusions. o ) )
(1) All the resonances have the same width. The last expression indicates a broad margin for narrowing
(2) The distance between resonances is constant. the width, due to the presence of the factor J&sin mye,
(3) These resonances are much wider than those observéBlen>M), since can be a small number. Renormalization
experimentally[16]. of the refractive index indicates morphological focusittge

To conclude this subsection we observe that the rescsphere can be envisioned as a microjearsd thus it is ex-
nances obtained by replacing Bessel functions by their trigoPected to lead to a more pronounced self-focusing nonlinear
nometric approximation do not reflect the physical situationeffect. Furthermore, in the stationary phase region the reso-
observed in experiments, so we should discard them aance positions and widths are size parameter dependent,
physically irrelevant. In fact these resonances “reside” farwhich is a more realistic description of the resonances ob-
away from the sphere surface. served experimentally. In addition, the width appears to de-

crease significantly compared to that obtained in the trigono-

B. Stationary phase region and refractive index metric region.

renormalization o )
. . C. No oscillation region
In this region we assume the parameteto be a number

of the order unity or less, but not too close to the point 1he damping constant can still be drastically decreased.
p=v (our approximation breaks down when the argumenﬂ_-et p correspond to the region characterlzed by purely
p is in the neighborhood of the radiug”® right to the point ~ iMaginary w parameter(the argument is smaller than the
p=). If, in addition, we assume that the cylindrical Hankel indeX. We call this region the “no oscillation region” be-
function can be replaced by its trigonometric approximation cause Bessel functions do oscillate there. Our main approxi-
which is obviously justified, provided that the orderis ~ Mation formula(S) still holds, butw is purely imaginary, as
large enough, we obtain the well known stationary phasénentmned before. It is convenient to use here the real quan-

approximation to the spherical Bessel functions tity p defined agp=—iw. The spherical Bessel function in
the no oscillation region takes the form

v

hit(p)= 7

v(w—arctaw) —

1
exp 1
W h(l)(p) ~—j ev(arctampf p)' (18)
" Vvpp
or in a more familiar form, in terms of the angBedefined by

cosB="lp, While deriving the last expression we have neglected a simi-

lar real term, but with an opposite exponential dependence.

1 - Let us return now to the characteristic equation and substi-
W Ve~ ayr oy tute Eq.(18) for the external wave. Since the argument of the
o () Vpvtans exp| v(tans— ) 4} 19 internal wave ismp, it will be reasonable to assume that it

will be adequately described by the stationary phase approxi-

We assume that the argument of the internal wave belongs tmation. However, the characteristic equation obtained by do-

the trigonometric approximation and substitute the correing so turns out to predict resonance positions that system-
sponding asymptotic expressions in the characteristic equaically deviate from the exact positions calculated
tion, (3). Doing so we obtain numerically from the exact characteristic equation. Thus in
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order to improve the accuracy of our approximated charac- -4
teristic equation we have included a term of the order of i
v~ 1in the expression for the stationary phase approximation, -6 F —— InT'(numerical)
as follows: i
i m=1.33
1 sing -8 I ]
in(y)= (cos¢1+ 1) (19 2 | ]
n ’
Joizy | B, S0l ~ :
where g i
E-12 | N
y=mp (20) [
and -14 — .
2 B
W, = y—2—1. (21) -16 ™ B
g 30 40 50 60 70 80 90 100
Substituting the last expression together with Bd@) in the Fig. 1: n( mode number)

characteristic equation one obtains the result

FIG. 1. Logarithm of width as a function of the principal mode

3
sin¢1($iNl+ le) =—Ccosp,| B+ Ak (22 number. We can see exponentially decreasing width.
where (24) reveals that the linewidth is expected to be an exponen-
tially decreasing function of its order, as can be readily
1 seen by considering the asymptotic behavior of the spherical
B= 2_p2 —vp—1l. (23 Neumann function appearing in the denominator of @24).

In conclusion, the resonances discussed in this subsection
The notable property of the last characteristic equation is thaare of a very high qualitysmall width that might be almost
it is purely real, and thus does not describe damping at allentirely determined by the finite conductivity of the sphere.
Physically, it means that the spherical mode does not expeFhe reason for this behavior is that energy losses originating
rience any decay, unless we take into account active losses in the geometry of the problem will become smaller as the
the medium. Certainly, it corresponds to a very high qualitymode number increases, until eventually they would be ig-
of the cavity mode, which is restricted only by the conduc-norable relative to Ohmic losses. These modes are called
tivity of the dielectric sphere. In fact, the laser light under whispering modes and in fact their path degenerates into the
such circumstances is trapped within the sphere. Howeveperimeter.
the last equation was obtained after a series of approxima-
tions, during which the exact knowledge regarding the width
was lost. Nevertheless, there is nothing in the last statement
to undermine its importance. As we will see immediately, In this subsection we compare our predictions regarding
this equation nicely predicts resonance positions. In order toesonance positions and width based on numerical solution
get a reliable expression for the linewidth we have followedof our approximated Eq$22) and(24), with exact numerical
Lam et al. (see[13]), by going to the complek plane and results. Exact resonance positions and width were calculated
seeking an approximate expression for the internal field exby solving numerically the exact characteristic equation, Eq.
pansion coefficient, suitable to the situation under considert3). Only first order resonances were considered for principal
ation, i.e., to the case where the external wave corresponds tode numbers ranging from=40 ton=90. Figure 1 shows
the no oscillation region, while the internal wave is describedhe logarithm of the exact width versus the principal mode
in terms of the stationary phase approximation. The resultingumber, from which we see that the widthimgleedan ex-
expression for the linewidth turns out to be very accurate anghonentially decreasing function of the mode number. Figures
reliable, provided that we know to calculate resonance posi2 and 3 compare resonance positions and linewidth, normal-
tions accurately enough. For a TE resonance the expressiazred to the exact numerical values, obtained from our results

D. Comparison with numerical results

reads(in units of the size parametel) and those of Lanet al. (se€[13]), as a function of the mode
number. The comparison yields the following.
[ 2 (24) (1) Relative errors are of the order of tenths of a percent,
TE™

for resonance positions, and of about 4% for the width.

(2) Linewidths calculated by substitution of exact numeri-
HereI is the width at half maximumx, is the real part of cal resonance positions in the approximated expression are in
the size parameter, ang, is the spherical Neumann func- good agreement with those calculated numerically. This sup-
tion. The singularity in the last expression has a physicaports the reliability of that expression. In other words, the
significance. As the relative index of refraction approachesnalytic expression for linewidth is an excellent approxima-
unity the sphere “disappears” and thus resonances are ndion, provided that accurate resonance positions are substi-
expected, so thdf ought to go to infinity. Inspection of Eq. tuted.

(M?—1)x5ya(Xo)
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sion for the threshold intensity, required by this process. In

1.002 | . e C.ClLametal order to achieve this task we need to establish a connection

EL *  Our's(improved) between the usual nonlinear SRS process and the micro-

1.001 L ., m=1.33 § sphere formalism. We shall see that under certain conditions
o I e T v ] it is possible to get a substantial reduction of the threshold
gﬁ 1 L tee i v condition. The reduction of the threshold intensity can be

attributed to the enhancement of the amplification constant,
due to the creation of large fields, with the necessary feed-
back provided by the whispering waves on one hand, and to
QED enhancement of nonlinear gain on the other H&id

0.998 i The effect of QED enhancement of nonlinear gain will not
30 40 50 60 70 80 90 100 be discussed here

n ( mode number)

©
©
©
©
T
Il

FIG. 2. Approximate resonance locations, normalized to exact
values,pyic, as obtained by ugcrossesand Lamet al. (circles.

The index of refraction is 1.33. In stimulated Raman scattering two waves of high inten-
sity and of frequencies, (referred to as the laser wavand

w, (referred to as the Stokes wa\are mixed together in the

(3) Relative errors decrease fqr Iar_ge mode numbers, Fhedium to produce an induced polarization, which in turn
expected from the type of approximation we have used. . Will act as a source for new coherent waves. The sigagal
To conclude our numerical comparison, we can say with '

confidence that our approximated characteristic equation ar{gs) 1 enhanced ibos=w, ~ 02, where(} is the Raman active
the expression for the linewidth correctly predict resonancé®sSonance |n.the.rr.1ed|u(atom|c transition frequengy For
positions and width, especially for waves with large angulaith® Sake of simplicity we assume here that no phase match-
momentum. The apparent small advantage over the proc#ld condition is obeyed, and hence no anti-Stokes waves and
dure proposed by Laret al. is expected to diminish with higher terms are present. In addition we assume that the in-
increasing mode number. Our proposed procedure neces$lUt frequencies coincide with higR-cavity modes. The cou-
tates the solution of a very simple characteristic equation anBling between the waves is governed by a set of two coupled
can be used as a reliable and fast alternative to the exa¥{ave equationgthe coupling is brought by the nonlinear
numerical solution, or at least as a fine starting point forPolarization termps
more accurate numerical computation, employing Newton’s

A. Laser-Stokes coupling equations

€ J°E, 41'rw|2

method. The investigation of mode quality in this section VXVXE+ — —5=—> p?\ﬁ)(wl)efiwﬁ
covers all the meaningful regions of mode behavior, and thus dt c
is more general than the work done to date. (25
2 4 2
ll. STIMULATED RAMAN SCATTERING IN VXV XEt S a_EZS = TS P (e s,
MICROSPHERES ¢ dat c

We discuss now stimulated Raman scattering from micro- i o 3)
spheres, where our motivation is to get an analytic expresihereE; are the fields inside the spherey/(w;) are the
Fourier components of the third order nonlinear polarization,

+  our's(improved) and ¢; are the dielectric constants, at the corresponding fre-

s+ C.C.Lam at all quencies. The problem now is to express the polarization as
a function of the interacting waves, for the set of equations
1.08 F T T TR (25) to be closed. We derive these expressions by consider-
R . ] ing a classic model for the stimulated Raman process, ad-
[ . R 1 justed to the spherical geometry. This results in the expres-
1.04 faa e T sion
2 Saa 0t
SO 3 )= y(3) 2
F PN (ws) =6 xR (ws)|AI| Ases-8)8,
I ] (26)
098 y | PR (@) =6xR(w)|AJ?A (8- &€,
0'92'....|....|..,.r....n....l....|...,_ (3) . . . . .
where yr’(w;) is the third order nonlinear electric suscepti-
30 40 50 60 70 80 90 100 bility, e(r) are the spatial parts of the fields, which corre-
Fig. 3 n( mode order) spond to a specific spherical mode, and the amplitédese

slowly varying in time with respect to the optical oscillations

) _ _ and are related to the fields through the relation
FIG. 3. Approximate widths, normalized to exact values,

I'vie, as obtained by ug@iamond$ and Lamet al. (triangles. The )
index of refraction is 1.33. Ei=A(t)e '@lte(r), i=l,s. (27
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A significant simplification of Eq(25) can be obtained by their argument is such that it can be represented by the “no
considering the representati¢®?), taking into account that oscillation approximation), while the internal waves are

the spatial part must obey the wave equation, i.e., represented by the stationary phase approximation. In order
) to evaluate the threshold, we should first establish a connec-
VXVxe(r)=kie(r). (28)  tion between the steady state amplitt&° and the ampli-

We make use of the slowly varying envelope approximationtUde of the external wave exciting the sphdgfg, First let us

(SVEA) |92Al 9t?| < w|9A/dt], taking into account only the define the spherical functiorey(r) as

equations for the real part of the ampIitudeE;)(. This re- 2n+1 )
sults in the relations Q(f)=lnm|\45,)1,n (34)
dA -~ - - _— . .
T T'\(A—ASS =8 |AJ2(A—ASS), (290  and represent the field in the same manner as &0, i.e.,
_ Ei=Ai(t)e "' (r). (35)
d_ts + stsz B A |2ZS, (30 Comparing the last two expressions with Eb), for the case
of single mode, TE type excitation, we arrive at the relation
with the definitions between the Maxwell amplitud&, and the internal field

expansion coefficient, which reads=Egc,. Remembering
c , the resonant nature of the field expansion coefficient, we
I'i=Tapst ﬁr(l’)’ i=ls (3D arrive at the conclusion that the maximization of the coeffi-
cient corresponds to a resonant event and thus we can write,
and for the steady state amplitud&>= Eqmaxc,}. The steady
@) ) state amplitude is calculated by substituting the relevant ap-
L2mojimxg’(wpKlad?) K| Lk proximation for spherical Bessel functions, and maximizing
i € o LKELS T the expression. For our case the procedure is most simple,
(32 once we have the approximate foiinorenzian line shape

) o ) of the c,, coefficient. Thec, coefficient can be written near a
While deriving the last equations we have performed volumerg resonance asee[13])

average(denoted by()) over the spatial part, and introduced

the steady state amplitudg™>. The damping constart; is yYn(po) I'e/2
decomposed into two parts, whelrg,s accounts for the ab- Cn:jn(po) (p—po) +il1e/2’
sorption part and the second term accounts for leakage losses

and should be calculated from the Lorenz-Mie theory.wherej,(po), Yn(po) are the spherical Bessel and Neumann
I'(p) is the width of the resonance in units of the dimension-function, evaluated at resonance, respectively. At resonance
less size parameter aig] are the gain constal%%sgmultiplied we may letp— pg, obtaining for the steady state amplitude
by the volume average quantities. The quantifgs (steady _

state amplitudeand I'; (damping constantswill be deter- APS=2E g2 (>ehpor~Por, (37)

mined from the Lorenz-Mie theory in the next section. The . .
set of Egs.(29), (30) allows one to study the dynamics of where the subscript 0 reminds us that the parangesdrould

coupling between the laser wav@ump wave and the be evaluated at resonance positions only, and the subscript
Stokes wave. This study is beyond the scope of the preseiﬂremmds us that the corresponding term originates in the

paper, where we only examine threshold conditions. aser wave. In d.eriving.Ec{37) we hfave replaped _the spheri-
' cal Bessel function by its asymptotic approximation. In order

to evaluate the volume average quantities we need to solve
the relevant integral. The angular part can be found in many
Besides the damping constants there are other quantitieextbooks[14]. For the evaluation of the spherical part see
in the basic coupling equationi29), (30) which also origi- Ref.[17]. Solving the integral we get for the volume average
nate in Lorenz-Mie theory. These quantities are the steadgf the amplitude squareintensity
state amplitudeA™ and the volume averages, which will )
i ; ; ; 0 3y m—1
participate in threshold evaluation, as we shall see immedi (la?)= = (39)
ately. The threshold condition follows from the stationary 2 m?j ﬁ(mpm)'
solutions of(29), (30), i.e.,

(36)

B. Threshold evaluation

Here n; is the number of the resonance of the laser wave.
Before getting to threshold evaluation, let us make some pre-
liminary remarks. In stimulated Brillouin scatterin@BS),

there exists a limit on the frequency shét [12]. This can
which is just a mathematical statement saying that thresholgossibly cause the scattered frequeney not to coincide

is achieved when the total gailgain coefficient times the with a morphology dependent resonance and hence one deals
intensity,,85><|A|SS12) exceeds lossed’¢). We evaluate the with a single resonance case. This limit does not exist in
threshold in the most interesting case, i.e., when the externatimulated Raman scattering. In addition, because of the
waves are represented by the “no oscillation regiqng., large width of the gain curve it is reasonable to expect that

I
S§2- _S
IAﬁ/ﬂ, (33)

S
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the scattered frequency will also coincide with a morphology

dependent resonance, thus having a double resonance situa- /
tion (both pump and Stokes waves coincide with hi@h- L
cavity modeg Taking this into account and assigning addi- / ,’
tional indicesl ands, identifying the origin of the relevant . 0.81/
terms, we obtain after substitution of the expressions for the g2q, x2.2:10 ;
steady state amplitude, and the volume average in(Eg), O;P
for the threshold condition <10~ 3 4.4
/
\ g
//
o E2= mCVspo,se‘2”5[""““”‘”"“’018)‘povs]} P o
I,sE0= 2_12.______ ! lemm—=—== . .
a(m*—=1)“pos 73.2 73.4 73.6  73.8

e—4v| [arctai(pg)) — Po, ] p1 (laser size parameter )

3nyj ﬁ(mpo,l)

(39

FIG. 4. Comparison of threshold intensity, as a function of size

In obtaining the last expression we have nealected absor arameter, between linear caviggolid line) and the sphere. The
9 p € have neglected absor, .o wave parameters were chosen to coincide witf jTi€so-

tion losses relative to leakage losses. We also introduced &, .o ith size parametpg=73.261, for a 6.Jum water droplet
new gain constant independent of the volume average, d?fn: 1.133). L=0.1 m,T=0.01. Note ’the different scales here.

fined by

ﬁi:a’i<|a(|2>, i #k. (40) ) )
size parametegfwavelength. We take the Stokes size param-
The first term on the right-hand side in E§9) represents  eter to bepys=72.261, which corresponds to a wavelength
losses of the Stokes wave and lowers the threstalé to  of A;=525 nm for a 6.12um droplet(radiug. The index of
the exponentially decreasing functjoras the order of the refraction ism=1.33 (watep. For the linear cavity we have
resonance increases and the losses decrease. The second tefigsenL=0.1 m, T=0.01. We can see that there exists a
on the right-hand side of E439) represents resonance of the drastic reduction of threshold intensity, of about ten orders of
laser wave, and it is also expected to reduce the thresholghagnitude, near the poipt=74.2. Note the different scales
Let us compare now the threshold intensity obtained for @f the two graphs. For lower order modes that are more
sphere with that obtained for a linear cavity. For a linearlossy, the reduction of threshold intensity can be less pro-
cavity we may take the threshold condition to be given by nounced and even worse than that of the linear cavity, but
the main point is that the microsphere, being a selective sys-

E2=> & (41) tem, will favor higher modes that are less lossy.
Ag |
whereI's are the Stokes wave losses ang) is the gain IV. CONCLUSION
constant. Neglecting absorption and diffraction losses and
taking into account only cavity end losses we have We have constructed an approximate analytic approach
which allows an adequate assessment of a threshold for non-
cT linear interaction in microspheres. Systematic investigation
Fszﬁ' (42 of the characteristic equation, using approximate analytic ex-

pressions, reveals that not all modes have the same quality.
Herec, T, m, andL, are the speed of light, transmittance of In particular, modes characterized by external wave “obey-
the mirrors, the index of refraction, and the cavity length,ing” the “no oscillation” approximation, and internal waves
respectively. Comparison between the last expression arfdr which their argument corresponds to the stationary phase
Eqg. (41) shows that we indeed get drastic reductionof = approximation, are characterized by very high quality, and
threshold condition, due to the presence of exponentially decorrespond to a physical situation in which the spherical
creasing factor. A more careful inspection of E41) shows wave can be envisioned as whispering-gallery light waves
that, in fact, threshold intensity is an oscillating function of that are totally internally reflected by the sphere boundary,
the size parameter, due to the spherical Bessel function in thaithout suffering almost any loss. We have derived an ap-
denominator of Eq(41). This behavior is a consequence of proximate characteristic equation, transcendental in fact, but
the resonant nature of the sphere. Linewidth would becomwhich is very simple. It predicts correct resonance positions
broadened on increasing the size parameter and thus tlaad can be used as a very good alternative to the exact char-
threshold intensity would increase as a function of size paacteristic equation. The resonance width was found to be an
rameter. The most interesting physical behavior is that thexponentially decreasing function of the mode numtaer
energy losses of high order modes in microspheres beconwular momentumn Threshold intensity evaluation in the most
smaller, in contrast with what happens in a linear cavity ininteresting cases, of very high mode quality, has shown a
which losses increase for high order modes. Figure 4 showdramatic reduction, with respect to the same process in a
the threshold intensity in the microsphere compared to theonventional linear cavity. Though our theory was exempli-
linear cavity case, where we have fixed the Stokes paranfied in the case of stimulated Raman scattering, it can easily
eters to correspond to TE; resonance and varied the laser be applied to other nonlinear and quantum optics processes.
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